SoftBank’s Pepper Goes to School to Train Next-Gen Roboticists

Post Syndicated from Erico Guizzo original https://spectrum.ieee.org/automaton/robotics/humanoids/softbank-pepper-next-gen-roboticists

“What we realized very quickly was, we need to take advantage of the fact that this robot can get kids excited about computer science,” Dawson says.

Today SoftBank is launching Tethys, a visual programming tool designed to teach students how to code by creating applications for Pepper. The company is hoping that its humanoid robot, which has been deployed in homes, retail stores, and research labs, can also play a role in schools, helping to foster the next generation of engineers and roboticists.

Tethys is based on an intuitive, graphical approach to coding. To create a program, you drag boxes (representing different robot behaviors) on the screen and connect them with wires. You can run your program instantly on a Pepper to see how it works. You can also run it on a virtual robot on the screen.

As part of a pilot program, more than 1,000 students in about 20 public schools in Boston, San Francisco, and Vancouver, Canada, are already using the tool. SoftBank plans to continue expanding to more locations. (Educators interested in bringing Tethys and Pepper to their schools should reach out to the company by email.)

Bringing robots to the classroom

The idea of using robots to teach coding, logic, and problem-solving skills is not new (in fact, in the United States it goes back nearly half a century). Lego robotics kits like Mindstorms, Boost, and WeDo are widely used in STEM education today. Other popular robots and kits include Dash and Dot, Cubelets, Sphero, VEX, Parallax, and Ozobot. Last year, iRobot acquired Root, a robotics education startup founded by Harvard researchers.

So SoftBank is entering a crowded market, although one that has a lot of growth potential. And to be fair, SoftBank is not entirely new to the educational space—its experience goes back to the acquisition of French company Aldebaran Robotics, whose Nao humanoid has long been used in classrooms. Pepper, also originally developed by Aldebaran, is Nao’s newer, bigger sibling, and it, too, has been used in classrooms before.

Pepper’s size is probably one of its main advantages over the competition. It’s a 1.2-meter tall humanoid that can move around a room, dance, and have conversations and play games with people—not just a small wheeled robot beeping and driving on a tabletop.

On the other hand, Pepper’s size also means it costs several times as much as those other robots. That’s a challenge if SoftBank wants to get lots of them out to schools, which may not be able to afford them. So far the company has addressed the issue by donating Peppers—over 100 robots in the past two years.

How Tethys work

When SoftBank first took Pepper to classrooms, it discovered that the robot’s original software development platform, called Choregraphe, wasn’t designed as an educational tool. It was hard to use by non engineers, and was glitchy. SoftBank then partnered with Finger Food Advanced Technology Group, a Vancouver-based software company, to develop Tethys.

Tethys is an integrated development environment, or IDE, that runs on a web browser (it works on regular laptops and also Chromebooks, popular in schools). It features a user-friendly visual programming interface, and in that sense it is similar to other visual programming languages like Blockly and Scratch.

But students aren’t limited to dragging blocks and wires on the screen; they can inspect the underlying Python scripts and modify them, or write their own code.

SoftBank says the new initiative is focused on “STREAM” education, or Science, Technology, Robotics, Engineering, Art, and Mathematics. Accordingly, Tethys is named after the Greek Titan goddess of streams, says SoftBank’s Dawson, who heads its STREAM Education program.

“It’s really important to make sure that more people are getting involved in robotics,” he says, “and that means not just the existing engineers who are out there, but trying to encourage the engineers of the future.”