All posts by Andrew Jones

Spacety Has Big Plans for Small Satellites

Post Syndicated from Andrew Jones original https://spectrum.ieee.org/tech-talk/aerospace/satellites/spacety-startup-plans-news-china-satellites

Witnessing the emergence of private space companies, new launch vehicles, and miniature satellites that have profoundly changed space activities in the United States, China needed to act. The government opened its space industry to private capital in 2014.

Hundreds of commercial companies, many with close ties to traditional space and defense enterprises, have now sprung up. They’re developing new rockets, building remote sensing and communications satellites, and aiming to fill gaps in ground station and space data services. 

One of the first private space companies in China was Spacety, a small satellite maker with offices in Beijing and Changsha, in central China. Its founders were in part inspired by the activities of SpaceX and Planet. They left their jobs at institutes under the Chinese Academy of Sciences (CAS), a state-owned entity with a measure of space-related activities, to establish Spacety in January 2016.

European Space Agency Targets Orbital Debris, Solar Storms

Post Syndicated from Andrew Jones original https://spectrum.ieee.org/tech-talk/aerospace/satellites/european-space-agency-esa-mission-news-orbital-debris-solar-storms

The European Space Agency (ESA) received a sizable budget boost in late 2019 and committed to joining NASA’s Artemis program, expanding Earth observation, returning a sample from Mars, and developing new rockets. Meanwhile, less glamorous projects will seek to safeguard and maintain the use of critical infrastructure in space and on Earth.

Space Debris Removal 

ESA’s ClearSpace-1 mission, having just received funding in November, is designed to address the growing danger of space debris, which threatens the use of low Earth orbit. Thirty-four thousand pieces of space junk larger than 10 centimeters (cm) are now in orbit around Earth, along with 900,000 pieces larger than 1 cm. They stem from hundreds of space missions launched since Sputnik-1 heralded the beginning of the Space Age in 1957. Traveling at the equivalent of Mach 25, even the tiniest piece of debris can threaten, for example, the International Space Station and its inhabitants, and create more debris when it collides. 

The ClearSpace-1 Active Debris Removal (ADR) mission will be carried out by a commercial consortium led by Swiss startup ClearSpace. Planned for launch in 2025, the mission will target a spent upper stage from an ESA Vega rocket orbiting at 720 kilometers above the Earth. Atmospheric drag is very low at this altitude, meaning objects remain in orbit for decades before reentry.

There, ClearSpace-1 will rendezvous with a target, which will be traveling at close to 8 kilometers per second. After making its approach, the spacecraft will employ ‘tentacles’ to reach beyond and around the object. 

“It’s like tentacles that embrace the object because you can capture the object before you touch it. Dynamics in space are very interesting because if you touch the object on one side, it will immediately drift away,” says Holger Krag of ESA’s Space Safety department and head of the Space Debris Office in Darmstadt, Germany. 

During the first mission, once ClearSpace-1 secures its target, the satellite will use its own propulsion to reenter Earth’s atmosphere, burning up in the process and destroying the piece it embraced. In future missions, ClearSpace hopes to build spacecraft that can remove multiple pieces of debris before the satellite burns up with all the debris onboard.  

Collisions involving such objects create more debris and increase the odds of future impacts. This cascade effect is known as the Kessler Syndrome for the NASA scientist who first described it. The 2009 collision of the active U.S. commercial Iridium 33 and defunct Russian military Kosmos-2251 satellites created a cloud of thousands of pieces of debris.  

With SpaceX, OneWeb, and other firms planning so-called megaconstellations of hundreds or even thousands of satellites, getting ahead of the situation is crucial to prevent low Earth orbit from becoming a graveyard.  

Eventually, ClearSpace-1 is intended to be a cost-efficient, repeatable approach to reducing debris available at a low price for customers, says Krag. ESA backing for the project comes with the aim of helping to establish a new market for debris removal and in-orbit servicing. Northern Sky Research projects that revenues from such services could reach US $4.5 billion by 2028. 

Other debris removal and servicing initiatives are being devised by companies including Astroscale in Japan and Northrop Grumman in the United States. The U.K.-based Surrey Satellite is also working on net and harpoon concepts to tackle space junk. 

Solar Storm Early Warning 

ESA is also looking to protect Earth from potential catastrophe with a mission to provide early warning of solar activity. The Carrington event, as the largest solar storm on record is known, was powerful enough to send aurora activity to as low as 20 degrees latitude and interfered with telegraph operators in North America. That was in 1859, with little vulnerable electrical infrastructure in place. A similar event today would disrupt GPS and communications satellites, cause power outages, affect oil drilling (which uses magnetic fields to navigate), and generally cause turmoil.

The L5 ‘Lagrange’ mission will head to the Sun-Earth Lagrange point 5, one of a number of stable positions created by gravitational forces of the two large bodies. From there, it will monitor the Sun for major events and warn of coronal mass ejections (CMEs) including estimates of their speed and direction.

These measurements would be used to provide space weather alerts and help mitigate against catastrophic damage to both orbital and terrestrial electronics. Krag, in an interview at a European Space Week meeting last month, states that these alerts could reduce potential harm and loss of life if used to postpone surgeries, divert flights over and near the poles, and stop trains during the peak of predicted activity from moderate-to-large solar storms. 

“Estimates over the next 15 years are that damages with no pre-warning can be in the order of billions to the sensitive infrastructure we have,” Krag states. Developments like autonomous driving, which rely on wireless communications, would be another concern, as would crewed space missions, especially those traveling beyond low Earth orbit, such as NASA’s Artemis program to return astronauts to the moon. 

Despite an overall budget boost, ESA’s request for 600 million euros from its member states for ‘space safety’ missions was not fully met. The L5 mission was not funded in its entirety so the team will concentrate first on developing the spacecraft’s instruments over the next three-year budget cycle, and hope for more funding in the future. Instruments currently under assessment include a coronagraph to help predict CME arrival times, a wide-angle, visible-light imaging system, a magnetograph to scan spectral absorption lines, and an X-ray flux monitor to quantify flare energy.

Pioneering Astronomy Experiment Begins Beyond the Moon

Post Syndicated from Andrew Jones original https://spectrum.ieee.org/tech-talk/aerospace/astrophysics/pioneering-astronomy-experiment-begins-beyond-the-moon

An unprecedented low-frequency radio astronomy experiment is now underway, 18 months after entering an orbit beyond the far side of the moon.

The Netherlands-China Low Frequency Explorer (NCLE), aboard the Chinese Queqiao relay satellite, is set to begin observations at low frequencies that cannot be made on Earth because of the ionosphere, particularly between 1 to 30 megahertz (MHz).

The first targets will be the sun and Jupiter, which are expected to have strong emissions at low frequencies. But the team also hopes to pick up much weaker signals from the ‘Cosmic Dawn’—when the first stars lit up around 12 billion years ago—and even ultra-faint signals from the preceding Cosmic Dark Ages. Detections would give unprecedented insights into these formative periods of the universe.

China Says Its Mars Landing Technology Is Ready for 2020

Post Syndicated from Andrew Jones original https://spectrum.ieee.org/tech-talk/aerospace/robotic-exploration/china-says-its-mars-landing-technology-is-ready-for-2020

China says it’s ready to attempt something only NASA has so far achieved—successfully landing a rover on Mars.

It will be China’s first independent attempt at an interplanetary mission, and comes with two ambitious goals. Launching in 2020, China’s Mars mission will attempt to put a probe in orbit around Mars and, separately, land a rover on the red planet. 

The mission was approved in early 2016 but updates have few and far between. Last week, a terse update (available here in Chinese) from the Xi’an Aerospace Propulsion Institute, a subsidiary of CASC, China’s main space contractor, revealed that the spacecraft’s propulsion system had passed all necessary tests. 

According to the report, the Shanghai Institute of Space Propulsion has completed tests of the spacecraft’s propulsion system for the hovering, hazard avoidance, slow-down, and landing stages of a Mars landing attempt. The successful tests verified the performance and control of the propulsion system, in which one engine producing 7,500 Newtons of thrust will provide the majority of force required to decelerate the spacecraft for landing.

China Grew Two Cotton Leaves on the Moon

Post Syndicated from Andrew Jones original https://spectrum.ieee.org/tech-talk/aerospace/robotic-exploration/china-grew-these-leaves-on-the-moon

The team behind a pioneering biological experiment sent to the lunar far side has released an image showing two green leaves grown on the moon.

The experiment began shortly after China’s Chang’e-4 spacecraft made the first ever landing on the far side of the moon, on 3 January this year.

Cotton, arabidopsis and potato seeds, and fruit-fly eggs and yeast were all aboard the 2.6-kilogram mini biosphere, but only the cotton produced positive results. 

Image processing has now shown that two cotton leaves had grown—rather than just one as initially thought—in what was the first biological growth experiment on the moon.

Blast Off! Satellite Captures Footage of Chinese Rocket Launch at Sea

Post Syndicated from Andrew Jones original https://spectrum.ieee.org/tech-talk/aerospace/space-flight/satellite-captures-footage-of-chinese-rocket-launch-at-sea

The launch of an Earth observation satellite was watched by a predecessor already in orbit

Early on 5 June, China made the world’s first sea-based orbital launch in five years, sending a Long March 11 rocket toward orbit. Amazingly, the event was filmed by a satellite passing overhead.

The video shows, through cloud cover, the ignition and launch of a Long March 11 solid-fueled rocket from a specially converted platform in the Yellow Sea between China and the Korean Peninsula, at 04:06 UTC.

The spectacular footage was captured by a Jilin-1 video satellite. Though around 550 kilometers up and traveling at 7.9 kilometers per second, it was capable of ‘staring’ at the precise area in order to catch the dramatic event on the surface below.

Satellites in low earth orbit complete a lap around the planet once every 90 minutes or so, but don’t pass over the same areas each time, so the launch had to be coordinated with the satellite’s orbit in order to capture it.

“You need to make sure the launch is at the same time as the satellite pass,” says Jonathan McDowell, an astronomer at the Harvard-Smithsonian Center for Astrophysics. “That may require small orbit adjustments for the satellite, but doesn’t need to be super precise.”

The Jilin-1 Earth observation satellite was one of nine in orbit made by Changguang Satellite Technology Co. Ltd., a commercial offshoot from the Changchun Institute of Optics, Fine Mechanics, and Physics (CIOMP) in northeast China, owned by the Chinese Academy of Sciences. The Jilin constellation consists of optical and video Earth observation satellites that provide remote sensing data to clients for uses related to forestry, land use, shipping, natural resources, environment, and urban planning.

The company emerged after a 2014 Chinese government policy change to allow private capital into areas of the space sector, including small satellites and launch vehicles.

The government is facilitating the establishment of commercial and private space companies with the aim of developing new technology, driving innovation, and reducing costs for both civilian and military use, while also seeking to stimulate economic growth through space-related activities, including providing access to space, manufacturing satellites, or developing downstream applications, such as communications, geospatial products, and location-based services.

Aboard the 20.8-meter, 58-metric-ton Long March 11 were seven satellites, including another Jilin-1 high-resolution Earth observation satellite, taking the number of satellites in the nascent Jilin Earth observation constellation to ten.

The launch was China’s first attempt at a sea launch, a capability which will allow it to carry out launches at low latitudes, from which rockets heading into low-inclination orbits get a boost from the greater rotational speed of the Earth at the equator, helping them toward the 7.9 km/s velocity required to achieve orbit. This means reduced fuel requirements or the possibility of sending heavier payloads into orbit. Sea launches could also reduce the amount of rocket debris which falls on populated areas after launches from China’s inland satellite launch sites.

Views of the launch from the platform were also impressive, showing the Long March 11 being expelled from a launching tube before igniting in mid-air.

Updated to include more information about the Jilin satellite constellation.

Private Space Launch Firms in China Race to Orbit

Post Syndicated from Andrew Jones original https://spectrum.ieee.org/aerospace/space-flight/private-space-launch-firms-in-china-race-to-orbit

Four companies set the pace with scheduled launches over the next two years

In the early years of rocketry at Caltech, there was no figure more influential than the Chinese cyberneticist Qian Xuesen. Then, in 1955, the United States repatriated him to China, suspecting him of being a spy.

Qian returned to China to become the father of the country’s space-launch vehicle and ballistic-missile programs and contributed greatly to the “Two Bombs, One Satellite” nuclear weapons and space project. And his efforts were not wasted—on 9 March of this year, the People’s Republic of China launched its 300th Long March rocket, which put China’s 506th spacecraft into orbit.

To do more exploration at a lower cost, the Chinese government has initiated policies aimed at establishing a private space industry like the one that exists in the United States, where companies such as SpaceX, Blue Origin, and Rocket Lab are bringing low-cost launch services to the space sector.

In 2014, China’s State Council issued a proposal called Document 60 that would open the nation’s launch and small satellite sectors to private capital. The government followed this announcement with helpful policies, including a national civil-military integration strategy to transfer crucial, complex, and sensitive technologies from state-owned space sector giants to startups approved by authorities.

Today, more than 10 private launch companies in China are working on launch vehicles or their components, and four are now prepared to make their first attempts to reach orbit.

Two Beijing-based companies, OneSpace and iSpace, are close to putting small satellites into orbit with their own rockets. The first OneSpace OS-M1 rocket failed around one minute after launch from Jiuquan Satellite Launch Center in the Gobi Desert on 27 March and, at press time, the iSpace Hyperbola-1 was expected to follow up with its own attempt at Jiuquan as early as April. Both launch vehicles are relatively small and use a premixed solid combination of fuel and oxidizer, which is cheap, reliable, and simple to make but less efficient than liquid fuel.

LandSpace Technology Corp. made the first private Chinese orbital launch attempt in October using a solid-propellant rocket. After successful burns and separations of the first and second stages, a problem with the rocket’s third stage saw the Zhuque-1 rocket and its small satellite payload fall from an apogee of 337 kilometers into the Indian Ocean. It reached a top speed of 6.3 kilometers per second, just shy of the 7.9 km/s required to achieve orbit.

The company has moved on to develop a much larger and more capable two-stage launch vehicle powered by liquid methane and liquid oxygen. It hopes to carry out the maiden flight of the Zhuque-2 in 2020 and plans to eventually make the rocket reusable, though doing so will reduce lift capability.

Meanwhile, LinkSpace Aerospace Technology Group, founded in 2014, has set its sights on building an orbital launch vehicle capable of vertical takeoff and landing, as demonstrated by SpaceX’s Falcon 9. The company wants to have a maiden flight of the liquid-propellant launcher NewLine-1 in 2021, after testing its NewLine Baby suborbital rocket throughout this year.

Lan Tianyi, founder of Ultimate Blue Nebula Co., a space consultancy in Beijing, says China’s launch companies each have different goals and capabilities. Some firms are focusing on developing launchers powered by solid fuel, while others opt for liquid propellants, which may allow the rockets to be reused. Some are also exploring creative options to provide space tourism services. “The whole launch-vehicle ecosystem is getting more and more complete,” he notes.

While Chinese firms race to reach orbit and score commercial contracts to launch constellations of remote-sensing and communications satellites, these companies will also help China drive down launch costs, and make more missions possible with fewer resources.

“If the entire world is moving in the direction of lower-cost, reusable, commercially driven launch systems, anyone who does not keep up with this development may find themselves out of the game,” says John Horack, a professor of mechanical and aerospace engineering at Ohio State University.

That these companies have come so far so quickly is an indicator of the level of state support for aerospace in China, and a sign that this mature industry is full of expertise. But the question of whether or not private launch firms are truly ready for takeoff can be answered only on the launchpad.

This article appears in the May 2019 print issue as “Private Rockets Ready for Liftoff in China.”