All posts by Mark Anderson

Ionic Materials Explores Plastic Electrolyte for Lithium-Ion Batteries

Post Syndicated from Mark Anderson original

Replacing a liquid electrolyte with a plastic one could lead to lithium-ion batteries that are safer and more energy dense

Better batteries for electric cars and grid energy storage may be just one revolution away—whether in fuel cells or flow batteries or supercapacitors. But there’s a company in Massachusetts that’s betting the evolution of existing technologyrather than a revolution—will determine how we power future EVs and store renewable energy. 

“Lithium ion has this massive scale,” says Erik Terjesen, senior director of licensing and strategy for Ionic Materials, based in the city of Woburn. “The people who build lithium-ion factories—the LGs, the CATLs of the world—are building massive capacity for lithium-ion.” These billions of dollars already invested, Terjesen says, represent inertia that will resist revolutionary new battery technologies—especially if lithium technology can offer more energy storage, safer products, lower prices, and be made in existing factories.

As IEEE Spectrum profiled in 2018, Ionic Materials is developing a plastic, solid-state electrolyte to sit between a rechargeable battery’s anode and cathode. The electrolyte acts as the conduction medium through which lithium ions flow from anode to cathode and back again—providing the basis for many charge-discharge cycles in the battery’s lifetime.

The most effective and resilient electrolytes in lithium-ion batteries to date have been liquids, which conduct ions well but do nothing to keep the cathode and anode from ever touching. This has been the job of a thin plastic membrane with tiny micron-sized holes in it called the separator, which allows lithium ions to pass through.

The problems come when there are manufacturing defects, tears in the separator, a puncture in the battery, or a growth of stalactite-like “dendrites” bridging cathode and anode through the separators. In all those cases, a short circuit could result. That is where the other downside of the liquid electrolyte comes in: It’s highly flammable. Which is why there have been reports of the (rare) exploding laptop, smartphone, and EV.

Ionic Materials’ solid-state electrolyte is, of course, its own separator. And it’s non-flammable.

“From the dialogues we’re having with electric vehicle OEMs, it’s exciting for them to have an inherently safe battery in their cars that works in the same way,” Terjesen says. “We’re not talking about a new design. We’re not talking about a new cell format. It fits into their world today.”

Since 2018, Terjesen says, the company has been establishing partnerships and announcing investors, including the French oil and gas company Total, A123 Systems, Dyson, Samsung, Renault-Nissan-Mitsubishi, and Volta Energy Technologies.

“We are aware of the fact that there is obviously a lot of hype that comes with the battery industry in general,” Terjesen says. “So our CEO Mike Zimmerman says you really need to prove what you’re saying, rather than just making claims.”

The areas the company is now most carefully investigating around their polymer electrolyte, he says, are safety, energy density, and cost.

The first two, he says, go hand in hand. The greater a battery’s energy density, the more the electrolyte’s safety matters. “We think our polymer can work with more energy dense anode and cathode combinations,” he says. “As people try to squeeze all the energy they can out of these cells, by default, the cell will become more volatile. We think the safety question will only continue to increase as you look at these higher-energy chemistries.”

The question of price, Terjesen says, is also important. In 2010, the industry produced batteries costing some US $1,200 per kilowatt-hour. By 2014, that price had fallen to $600/kWh. As of last year, it was south of $200/kWh. And now, Terjesen says, many industry players are trying to get below $100/kWh. (Ionic Materials does not release data on its cost or ability to enable battery companies to drive their unit cost down.)

“Getting below ($100/kWh) will be challenging, because the fundamental materials themselves are commodities. And the raw materials themselves have a certain price,” he says.

For instance, cobalt is both expensive and controversial, with much of its global reserves found in the Democratic Republic of the Congo—where corruption and disputed labor practices have led Elon Musk to swear off the mineral in Tesla’s future-generation cars.

“We’ve learned that cobalt is often used in these cells as a stabilizing agent,” Terjesen says. “So if we can create greater safety with our material, it opens the door for the potential to reduce or eliminate the cobalt.”

However, Terjesen says Ionic Materials is ultimately chemistry-agnostic. They do not even build batteries. The company only provides the solid-state electrolyte for battery-makers to develop whatever next-generation solid-state batteries the market will bear.

“There isn’t a single chemistry that we’re betting on,” he says. “We’re not going to the market and saying—you have to do this chemistry or that chemistry. We have multiple chemistries that we’re working on with multiple partners with our polymer.”

In other words, Ionic Materials is trying not to disrupt an industry accustomed to disruption.

“Most people who look at solid-state [batteries] think, it’s not a disruptor of lithium ions,” Terjesen says. “It’s the next phase of lithium ions.”

Can Electric Air Racing Add a Jolt to the Quest for Better E-Planes?

Post Syndicated from Mark Anderson original

Air Race E organizer looks to field inaugural race by late 2020

Although racing airplanes for sport has been a popular pastime around the world since the 1930s, its essential technology hasn’t changed much. Although computer design and engineering have greatly enhanced race planes’ thrust, economy, and maneuverability, the air racers still rely on petroleum-fueled propeller engines the way they did decades ago.

One entrepreneur is looking to fundamentally change the equation as soon as next year. He’s attempting to make air racing leapfrog past hybrid EVs and biofuels and go straight to all-electric propulsion.

“So, what we’re doing is taking the Formula One Air Racing rules,” says Jeff Zaltman, CEO of Dubai-headquartered Air Race Events, “and just changing the parts relevant to the propulsion system [so they run on electricity].” Zaltman adds that “We’re trying to change as little as possible as a starting point so the sport can transfer and migrate very easily.” 

Air Race Events is currently scouting out a location to host the first ever event for Air Race E, the moniker given to the new, all-electric air racing division. (Expect an announcement, Zaltman says, by the end of the year or the beginning of 2020.)

Black Holes Bumping in the Night: LIGO “Hears” Gravitational Waves With Increasing Sensitivity

Post Syndicated from Mark Anderson original

Technological enhancements to the Nobel Prize-winning detectors include ultra-efficient mirrors and “squeezed” laser light

At 4:18 a.m. Eastern time on 25 April, according to preliminary observations, a gravitational wave that had been traveling through deep space for many millions of years passed through the Earth. Like a patient spider sensitive to every jiggle in its web, a laser gravitational wave detector in the United States detected this subtle passing ripple in spacetime. Computer models of the event concluded the tiny wobbles were consistent with two neutron stars that co-orbited and then collided 500 million light-years away. 

Next came scientific proof that when it rains it pours. The very next day at 11:22 am ET, the Laser Interferometer Gravitational-Wave Observatory (LIGO) picked up another gravitational wave signal. This time, computer models pointed to a potential first-ever observation of a black hole drawing in a neutron star and swallowing it whole. This second spacetime ripple, preliminary models suggest, crossed some 1.2 billion light years of intergalactic space before it arrived at Earth.

In both cases, LIGO could thank a recent series of enhancements to its detectors for such its ability to sense such groundbreaking science crossing its threshold.

LIGO’s laser facilities, in Louisiana and Washington State, are separated by 3002 kilometers (3,030 km over the earth’s surface). Each LIGO facility splits a laser beam in two, sending the twinned streams of light down two perpendicular arms 4 km long. The light in the interferometer arms bounces back and forth between carefully calibrated mirrors and optics that then recombine the rays, producing a delicate interference pattern.

The pattern is so distinct that even the tiniest warps in spacetime that occur along the light rays’ travel paths—the very warps of spacetime that a passing gravitational wave would produce—will produce a noticeable change. One problem: The interferometer is also extremely sensitive to thermal noise in the mirrors and optics, electronics noise in the equipment, and even seismic noise from nearby vehicle traffic and earthquakes around the globe.

Noise was so significant an issue that, from 2006 to 2014, LIGO researchers observed no gravitational waves. However, on September 14, 2015, LIGO detected its first black hole collision—which netted three of LIGO’s chief investigators the 2017 Physics Nobel Prize.

Over the ensuing 394 days of operations between September 2015 and August 2017, LIGO observed 11 gravitational wave events. That averages out to one detection every 35 days.

Then, after the latest round of enhancements to its instruments, LIGO’s current run of observations began at the start of this month. In April alone, it’s observed five likely gravitational wave events: three colliding black holes and now the latest two neutron star/neutron star-black hole collisions.

This once-per-week frequency may indeed represent the new normal for LIGO. (Readers can bookmark this page to follow LIGO’s up to the minute progress.)

Most promisingly, both of last week’s LIGO chirps involve one or two neutron stars. Because neutron stars don’t gobble up the light their collisions might otherwise emit, such an impact offers up the promise of Earth being bathed in detectible gravitational and electromagnetic radiation. (Such dual-pronged observations constitute what’s called “multi-messenger astronomy.”)

“Neutron stars also emit light, so a lot of telescopes around the world chimed in to look for that and locate it in the sky in all different wavelengths of light,” says Sheila Dwyer, staff scientist at LIGO in Richland, Wash. “One of the big goals and motivations for LIGO was to make that possible—to see something with both gravitational waves and light.”

The first such multi-messenger  observation made by LIGO began in August 2017 with a gravitational wave detection. Soon thereafter came a stunning 84 scientific papers, examining the electromagnetic radiation from the collision across the spectrum from gamma rays to radio waves. The science spawned by this event, known as GW170817, led to precise timing of the speed of gravitational waves (the speed of light, as Einstein predicted), a solution to the mystery of gamma-ray bursts, and an overnight updating of models of the cosmic source of heavy elements on the periodic table. (Studies of the collision’s gravitational and electromagnetic radiation concluded that a large fraction of the universe’s elements heavier than iron originate from neutron star collisions just like GW170817.)

When the S190425z and S190426c signals came in, telescopes around the world pointed to the regions of the sky that the gravitational wave observations suggested. As of press time, however, no companion source in the sky has yet been found for either.

Yet because of LIGO’s increased sensitivity, the promise of yet more observations increase the likelihood that another GW170817 multi-messenger watershed event is imminent.

Dwyer says LIGO’s latest incarnation uses high-efficiency mirrors that reflect light back with low mechanical or thermal energy transfer from the light ray to the mirror. This is especially significant because, on average, the laser light bounces back and forth along the interferometer arms 1000 times before recombining and forming the detector’s interference pattern.

“Right now we have a very low-absorption coating,” she says. “A very small absorption of that [laser light] can heat up the optics in a way that causes a distortion.”

If the LIGO team can design even lower-loss mirror coatings (which of course could have spinoff applications in photonics, communications and optics) they can increase the power of the laser light traveling through the interferometer arms from the current 200 kilowatts to a projected 3 megawatts.

And according to Daniel Sigg, a LIGO lead scientist in Richland, Wash., another enhancement involves “squeezing” the laser light so that the breadth of its amplitude is sharper than Heisenberg’s Uncertainty Principle would normally allow.

“We can’t measure both the phase and the amplitude or intensity of photons [with high precision] simultaneously,” Sigg says. “But that gives you a loophole. Because we’re only counting photons, we don’t really care about their phase and frequency.”

So LIGO’s lasers use “squeezed light” beams that have higher noise in one domain (amplitude) in order to narrow the uncertainty in the other (phase or frequency). So between these two photon observables, Heisenberg is kept happy.

And that keeps LIGO’s ear tuned to more and more of the most energetic collisions in the universe—and allows it to turn up new science and potential spinoff technologies each time a black hole or neutron star goes bump in the night.

Amateurs’ Al Tells Real Rembrandts From Fakes

Post Syndicated from Mark Anderson original

In their spare time, a Massachusetts couple programmed a system that they say accurately identifies Rembrandts 90 percent of the time

A new AI algorithm may crack previously inaccessible image-recognition and analysis problems—especially those stymied by AI training sets that are too small, or whose individual sample images are too big and full of high-resolution detail that AI algorithms cannot process. Already, the new algorithm can detect forgeries of one famous artist’s work, and its creators are actively searching for other areas where it could potentially improve our ability to transform small data sets into ones large enough to train an AI neural network.

According to two amateur AI researchers, whose study is now under peer review at IEEE Transactions on Neural Networks and Learning Systems, the concept of entropy, borrowed from thermodynamics and information theory, may help AI systems uncover fake works of art.

In physical systems such as boiling pots of water and black holes, entropy concerns the amount of disorder contained within a given volume. In an image file, entropy is defined as the amount of useful, nonredundant information the file contains.