Now, your applications and federated users can complete longer running workloads in a single session by increasing the maximum session duration up to 12 hours for an IAM role. Users and applications still retrieve temporary credentials by assuming roles using AWS Security Token Service (AWS STS), but these credentials can now be valid for up to 12 hours when using the AWS SDK or CLI. This change allows your users and applications to perform longer running workloads, such as a batch upload to S3 or a CloudFormation template, using a single session. You can extend the maximum session duration using the IAM console or CLI. Once you increase the maximum session duration, users and applications assuming the IAM role can request temporary credentials that expire when the IAM role session expires.
In this post, I show you how to configure the maximum session duration for an existing IAM role to 4 hours (maximum allowed duration is 12 hours) using the IAM console. I’ll use 4 hours because AWS recommends configuring the session duration for a role to the shortest duration that your federated users would require to access your AWS resources. I’ll then show how existing federated users can use the AWS SDK or CLI to request temporary security credentials that are valid until the role session expires.
Configure the maximum session duration for an existing IAM role to 4 hours
Let’s assume you have an existing IAM role called ADFS-Production that allows your federated users to upload objects to an S3 bucket in your AWS account. You want to extend the maximum session duration for this role to 4 hours. By default, IAM roles in your AWS accounts have a maximum session duration of one hour. To extend a role’s maximum session duration to 4 hours, follow the steps below:
In the left navigation pane, select Roles and then select the role for which you want to increase the maximum session duration. For this example, I select ADFS-Production and verify the maximum session duration for this role. This value is set to 1 hour (3,600 seconds) by default.
Select Edit, and then define the maximum session duration.
Select one of the predefined durations or provide a custom duration. For this example, I set the maximum session duration to be 4 hours.
Select Save changes.
Alternatively, you can use the latest AWS CLI and call Update-Role to set the maximum session duration for the role ADFS-Production. Here’s an example to set the maximum session duration to 14,400 seconds (4 hours).
$ aws iam update-role -–role-name ADFS-Production -–MaxSessionDuration 14400
Now that you’ve successfully extended the maximum session for your IAM role, ADFS-Production, your federated users can use AWS STS to retrieve temporary credentials that are valid for 4 hours to access your S3 buckets.
Access AWS resources with temporary security credentials using AWS CLI/SDK
To enable federated SDK and CLI access for your users who use temporary security credentials, you might have implemented the solution described in the blog post on How to Implement Federated API and CLI Access Using SAML 2.0 and AD FS. That blog post demonstrates how to use the AWS Python SDK and some additional client-side integration code provided in the post to implement federated SDK and CLI access for your users. To enable your users to request longer temporary security credentials, you can make the following changes suggested in this blog to the solution provided in that post.
When calling AssumeRoleWithSAML API to request AWS temporary security credentials, you need to include the DurationSeconds parameter. The value of this parameter is the duration the user requests and, therefore, the duration their temporary security credentials are valid. In this example, I am using boto to request the maximum length of 14,400 seconds (4 hours) using code from the How to Implement Federated API and CLI Access Using SAML 2.0 and AD FS post that I have updated:
# Use the assertion to get an AWS STS token using Assume Role with SAML conn = boto.sts.connect_to_region(region) token = conn.assume_role_with_saml(role_arn, principal_arn, assertion, 14400)
By adding a value for the DurationSeconds parameter in the AssumeRoleWithSAML call, your federated user can retrieve temporary security credentials that are valid for up to 14,400 seconds (4 hours). If you don’t provide this value, the default session duration is 1 hour. If you provide a value of 5 hours for your temporary security credentials, AWS STS will throw an error since this is longer than the role session duration of 4 hours.
Conclusion
I demonstrated how you can configure the maximum session duration for a role from 1 hour (default) up to 12 hours. Then, I showed you how your federated users can retrieve temporary security credentials that are valid for longer durations to access AWS resources using AWS CLI/SDK for up to 12 hours.
Similarly, you can also increase the maximum role session duration for your applications and users who use Web Identity or OpenID Connect Federation or Cross-Account Access with Assume Role. If you have comments about this blog, submit them in the Comments section below. If you have questions or suggestions, please start a new thread on the IAM forum.
Today we’d like to walk you through AWS Identity and Access Management (IAM), federated sign-in through Active Directory (AD) and Active Directory Federation Services (ADFS). With IAM, you can centrally manage users, security credentials such as access keys, and permissions that control which resources users can access. Customers have the option of creating users and group objects within IAM or they can utilize a third-party federation service to assign external directory users access to AWS resources. To streamline the administration of user access in AWS, organizations can utilize a federated solution with an external directory, allowing them to minimize administrative overhead. Benefits of this approach include leveraging existing passwords and password policies, roles and groups. This guide provides a walk-through on how to automate the federation setup across multiple accounts/roles with an Active Directory backing identity store. This will establish the minimum baseline for the authentication architecture, including the initial IdP deployment and elements for federation.
ADFS Federated Authentication Process
The following describes the process a user will follow to authenticate to AWS using Active Directory and ADFS as the identity provider and identity brokers:
Corporate user accesses the corporate Active Directory Federation Services portal sign-in page and provides Active Directory authentication credentials.
AD FS authenticates the user against Active Directory.
Active Directory returns the user’s information, including AD group membership information.
AD FS dynamically builds ARNs by using Active Directory group memberships for the IAM roles and user attributes for the AWS account IDs, and sends a signed assertion to the users browser with a redirect to post the assertion to AWS STS.
Temporary credentials are returned using STS AssumeRoleWithSAML.
The user is authenticated and provided access to the AWS management console.
Configuration Steps
Configuration requires setup in the Identity Provider store (e.g. Active Directory), the identity broker (e.g. Active Directory Federation Services), and AWS. It is possible to configure AWS to federate authentication using a variety of third-party SAML 2.0 compliant identity providers, more information can be found here.
AWS Configuration
The configuration steps outlined in this document can be completed to enable federated access to multiple AWS accounts, facilitating a single sign on process across a multi-account AWS environment. Access can also be provided to multiple roles in each AWS account. The roles available to a user are based on their group memberships in the identity provider (IdP). In a multi-role and/or multi-account scenario, role assumption requires the user to select the account and role they wish to assume during the authentication process.
Identity Provider
A SAML 2.0 identity provider is an IAM resource that describes an identity provider (IdP) service that supports the SAML 2.0 (Security Assertion Markup Language 2.0) standard. AWS SAML identity provider configurations can be used to establish trust between AWS and SAML-compatible identity providers, such as Shibboleth or Microsoft Active Directory Federation Services. These enable users in an organization to access AWS resources using existing credentials from the identity provider.
A SAML identify provider can be configured using the AWS console by completing the following steps.
2. Select SAML for the provider type. Select a provider name of your choosing (this will become the logical name used in the identity provider ARN). Lastly, download the FederationMetadata.xml file from your ADFS server to your client system file (https://yourADFSserverFQDN/FederationMetadata/2007-06/FederationMetadata.xml). Click “Choose File” and upload it to AWS.
3. Click “Next Step” and then verify the information you have entered. Click “Create” to complete the AWS identity provider configuration process.
IAM Role Naming Convention for User Access Once the AWS identity provider configuration is complete, it is necessary to create the roles in AWS that federated users can assume via SAML 2.0. An IAM role is an AWS identity with permission policies that determine what the identity can and cannot do in AWS. In a federated authentication scenario, users (as defined in the IdP) assume an AWS role during the sign-in process. A role should be defined for each access delineation that you wish to define. For example, create a role for each line of business (LOB), or each function within a LOB. Each role will then be assigned a set of policies that define what privileges the users who will be assuming that role will have.
The following steps detail how to create a single role. These steps should be completed multiple times to enable assumption of different roles within AWS, as required.
2. Select “SAML” as the trusted entity type. Click Next Step.
3. Select your previously created identity provider. Click Next: Permissions.
4. The next step requires selection of policies that represent the desired permissions the user should obtain in AWS, once they have authenticated and successfully assumed the role. This can be either a custom policy or preferably an AWS managed policy. AWS recommends leveraging existing AWS access policies for job functions for common levels of access. For example, the “Billing” AWS Managed policy should be utilized to provide financial analyst access to AWS billing and cost information.
5. Provide a name for your role. All roles should be created with the prefix ADFS-<rolename> to simplify the identification of roles in AWS that are accessed through the federated authentication process. Next click, “Create Role”.
Active Directory Configuration
Determining how you will create and delineate your AD groups and IAM roles in AWS is crucial to how you secure access to your account and manage resources. SAML assertions to the AWS environment and the respective IAM role access will be managed through regular expression (regex) matching between your on-premises AD group name to an AWS IAM role.
One approach for creating the AD groups that uniquely identify the AWS IAM role mapping is by selecting a common group naming convention. For example, your AD groups would start with an identifier, for example AWS-, as this will distinguish your AWS groups from others within the organization. Next, include the 12-digit AWS account number. Finally, add the matching role name within the AWS account. Here is an example:
You should do this for each role and corresponding AWS account you wish to support with federated access. Users in Active Directory can subsequently be added to the groups, providing the ability to assume access to the corresponding roles in AWS. If a user is associated with multiple Active Directory groups and AWS accounts, they will see a list of roles by AWS account and will have the option to choose which role to assume. A user will not be able to assume more than one role at a time, but has the ability to switch between them as needed.
Note: Microsoft imposes a limit on the number of groups a user can be a member of (approximately 1,015 groups) due to the size limit for the access token that is created for each security principal. This limitation, however, is not affected by how the groups may or may not be nested.
Active Directory Federation Services Configuration
ADFS federation occurs with the participation of two parties; the identity or claims provider (in this case the owner of the identity repository – Active Directory) and the relying party, which is another application that wishes to outsource authentication to the identity provider; in this case Amazon Secure Token Service (STS). The relying party is a federation partner that is represented by a claims provider trust in the federation service.
Relying Party
You can configure a new relying party in Active Directory Federation Services by doing the following.
1. From the ADFS Management Console, right-click ADFS and select Add Relying Party Trust.
2. In the Add Relying Party Trust Wizard, click Start.
3. Check Import data about the relying party published online or on a local network, enter https://signin.aws.amazon.com/static/saml-metadata.xml, and then click Next. The metadata XML file is a standard SAML metadata document that describes AWS as a relying party.
Note: SAML federations use metadata documents to maintain information about the public keys and certificates that each party utilizes. At run time, each member of the federation can then use this information to validate that the cryptographic elements of the distributed transactions come from the expected actors and haven’t been tampered with. Since these metadata documents do not contain any sensitive cryptographic material, AWS publishes federation metadata at https://signin.aws.amazon.com/static/saml-metadata.xml
4. Set the display name for the relying party and then click Next.
5. We will not choose to enable/configure the MFA settings at this time.
6. Select “Permit all users to access this relying party” and click Next.
7. Review your settings and then click Next.
8. Choose Close on the Finish page to complete the Add Relying Party Trust Wizard. AWS is now configured as a relying party.
Custom Claim Rules
Microsoft Active Directory Federation Services (AD FS) uses Claims Rule Language to issue and transform claims between claims providers and relying parties. A claim is information about a user from a trusted source. The trusted source is asserting that the information is true, and that source has authenticated the user in some manner. The claims provider is the source of the claim. This can be information pulled from an attribute store such as Active Directory (AD). The relying party is the destination for the claims, in this case AWS.
AD FS provides administrators with the option to define custom rules that they can use to determine the behavior of identity claims with the claim rule language. The Active Directory Federation Services (AD FS) claim rule language acts as the administrative building block to help manage the behavior of incoming and outgoing claims. There are four claim rules that need to be created to effectively enable Active Directory users to assume roles in AWS based on group membership in Active Directory.
Right-click on the relying party (in this case Amazon Web Services) and then click Edit Claim Rules
Here are the steps used to create the claim rules for NameId, RoleSessionName, Get AD Groups and Roles.
1. NameId
a) In the Edit Claim Rules for <relying party> dialog box, click Add Rule. b) Select Transform an Incoming Claim and then click Next. c) Use the following settings:
i) Claim rule name: NameId ii) Incoming claim type: Windows Account Name iii) Outgoing claim type: Name ID iv) Outgoing name ID format: Persistent Identifier v) Pass through all claim values: checked
a) Click Add Rule. b) In the Claim rule template list, select Send Claims Using a Custom Rule and then click Next. c) For Claim Rule Name, select Get AD Groups, and then in Custom rule, enter the following:
This custom rule uses a script in the claim rule language that retrieves all the groups the authenticated user is a member of and places them into a temporary claim named http://temp/variable. Think of this as a variable you can access later.
Note: Ensure there’s no trailing whitespace to avoid unexpected results.
4. Role Attributes
a) Unlike the two previous claims, here we used custom rules to send role attributes. This is done by retrieving all the authenticated user’s AD groups and then matching the groups that start with to IAM roles of a similar name. I used the names of these groups to create Amazon Resource Names (ARNs) of IAM roles in my AWS account (i.e., those that start with AWS-). Sending role attributes requires two custom rules. The first rule retrieves all the authenticated user’s AD group memberships and the second rule performs the transformation to the roles claim.
i) Click Add Rule. ii) In the Claim rule template list, select Send Claims Using a Custom Rule and then click Next. iii) For Claim Rule Name, enter Roles, and then in Custom rule, enter the following:
Rule language: c:[Type == "http://temp/variable", Value =~ "(?i)^AWS-([\d]{12})"] => issue(Type = "https://aws.amazon.com/SAML/Attributes/Role", Value = RegExReplace(c.Value, "AWS-([\d]{12})-", "arn:aws:iam::$1:saml-provider/idp1,arn:aws:iam::$1:role/"));
This custom rule uses regular expressions to transform each of the group memberships of the form AWS-<Account Number>-<Role Name> into in the IAM role ARN, IAM federation provider ARN form AWS expects.
Note: In the example rule language above idp1 represents the logical name given to the SAML identity provider in the AWS identity provider setup. Please change this based on the logical name you chose in the IAM console for your identity provider.
Adjusting Session Duration
By default, the temporary credentials that are issued by AWS IAM for SAML federation are valid for an hour. Depending on your organizations security stance, you may wish to adjust. You can allow your federated users to work in the AWS Management Console for up to 12 hours. This can be accomplished by adding another claim rule in your ADFS configuration. To add the rule, do the following:
1. Access ADFS Management Tool on your ADFS Server. 2. Choose Relying Party Trusts, then select your AWS Relying Party configuration. 3. Choose Edit Claim Rules. 4. Choose Add Rule to configure a new rule, and then choose Send claims using a custom rule. Finally, choose Next. 5. Name your Rule “Session Duration” and add the following rule syntax. 6. Adjust the value of 28800 seconds (8 hours) as appropriate.
Rule language: => issue(Type = "https://aws.amazon.com/SAML/Attributes/SessionDuration", Value = "28800");
Note: AD FS 2012 R2 and AD FS 2016 tokens have a sixty-minute validity period by default. This value is configurable on a per-relying party trust basis. In addition to adding the “Session Duration” claim rule, you will also need to update the security token created by AD FS. To update this value, run the following command:
The Parameter “-TokenLifetime” determines the Lifetime in Minutes. In this example, we set the Lifetime to 480 minutes, eight hours.
These are the main settings related to session lifetimes and user authentication. Once updated, any new console session your federated users initiate will be valid for the duration specified in the SessionDuration claim.
API/CLI Access Access to the AWS API and command-line tools using federated access can be accomplished using techniques in the following blog article:
This will enable your users to access your AWS environment using their domain credentials through the AWS CLI or one of the AWS SDKs.
Conclusion In this post, I’ve shown you how to provide identity federation, and thus SSO, to the AWS Management Console for multiple accounts using SAML assertions. With this approach, the AWS Security Token service (STS) will provide temporary credentials (via SAML) for the user to ‘assume’ a role (that they have access to use, as denoted by AD Group membership) that has specific permissions associated; as opposed to providing long-term access credentials to the AWS resources. By adopting this model, you will have a secure and robust IAM approach for accessing AWS resources that align with AWS security best practices.
As part of the AWS Online Tech Talks series, AWS will present How to Integrate AWS Directory Service with Office 365 on Wednesday, November 15. This tech talk will start at 9:00 A.M. Pacific Time and end at 9:40 A.M. Pacific Time.
If you want to support Active Directory–aware workloads in AWS and Office 365 simultaneously using a managed Active Directory in the cloud, you need a nonintuitive integration to synchronize identities between deployments. AWS has recently introduced the ability for you to authenticate your Office 365 permissions using AWS Directory Service for Microsoft Active Directory (AWS Managed Microsoft AD) by using a custom configuration of Active Directory Federation Services (AD FS). In this webinar, AWS Directory Service Product Manager Ron Cully shows how to configure your AWS Managed Microsoft AD environment to synchronize with Office 365. He will provide detailed configuration settings, architectural considerations, and deployment steps for a highly available, secure, and easy-to-manage solution in the AWS Cloud.
You also will learn how to:
Deploy AWS Managed Microsoft AD.
Deploy Microsoft Azure AD Connect and AD FS with AWS Managed Microsoft AD.
Authenticate user access to Office 365 by using AWS Managed Microsoft AD.
Managing database users though federation allows you to manage authentication and authorization procedures centrally. Amazon Redshift now supports database authentication with IAM, enabling user authentication though enterprise federation. No need to manage separate database users and passwords to further ease the database administration. You can now manage users outside of AWS and authenticate them for access to an Amazon Redshift data warehouse. Do this by integrating IAM authentication and a third-party SAML-2.0 identity provider (IdP), such as AD FS, PingFederate, or Okta. In addition, database users can also be automatically created at their first login based on corporate permissions.
In this post, I demonstrate how you can extend the federation to enable single sign-on (SSO) to the Amazon Redshift data warehouse.
SAML and Amazon Redshift
AWS supports Security Assertion Markup Language (SAML) 2.0, which is an open standard for identity federation used by many IdPs. SAML enables federated SSO, which enables your users to sign in to the AWS Management Console. Users can also make programmatic calls to AWS API actions by using assertions from a SAML-compliant IdP. For example, if you use Microsoft Active Directory for corporate directories, you may be familiar with how Active Directory and AD FS work together to enable federation. For more information, see the Enabling Federation to AWS Using Windows Active Directory, AD FS, and SAML 2.0 AWS Security Blog post.
Amazon Redshift now provides the GetClusterCredentials API operation that allows you to generate temporary database user credentials for authentication. You can set up an IAM permissions policy that generates these credentials for connecting to Amazon Redshift. Extending the IAM authentication, you can configure the federation of AWS access though a SAML 2.0–compliant IdP. An IAM role can be configured to permit the federated users call the GetClusterCredentials action and generate temporary credentials to log in to Amazon Redshift databases. You can also set up policies to restrict access to Amazon Redshift clusters, databases, database user names, and user group.
Amazon Redshift federation workflow
In this post, I demonstrate how you can use a JDBC– or ODBC-based SQL client to log in to the Amazon Redshift cluster using this feature. The SQL clients used with Amazon Redshift JDBC or ODBC drivers automatically manage the process of calling the GetClusterCredentials action, retrieving the database user credentials, and establishing a connection to your Amazon Redshift database. You can also use your database application to programmatically call the GetClusterCredentials action, retrieve database user credentials, and connect to the database. I demonstrate these features using an example company to show how different database users accounts can be managed easily using federation.
The following diagram shows how the SSO process works:
JDBC/ODBC
Authenticate using Corp Username/Password
IdP sends SAML assertion
Call STS to assume role with SAML
STS Returns Temp Credentials
Use Temp Credentials to get Temp cluster credentials
Connect to Amazon Redshift using temp credentials
Walkthrough
Example Corp. is using Active Directory (idp host:demo.examplecorp.com) to manage federated access for users in its organization. It has an AWS account: 123456789012 and currently manages an Amazon Redshift cluster with the cluster ID “examplecorp-dw”, database “analytics” in us-west-2 region for its Sales and Data Science teams. It wants the following access:
Sales users can access the examplecorp-dw cluster using the sales_grp database group
Sales users access examplecorp-dw through a JDBC-based SQL client
Sales users access examplecorp-dw through an ODBC connection, for their reporting tools
Data Science users access the examplecorp-dw cluster using the data_science_grp database group.
Partners access the examplecorp-dw cluster and query using the partner_grp database group.
Partners are not federated through Active Directory and are provided with separate IAM user credentials (with IAM user name examplecorpsalespartner).
Partners can connect to the examplecorp-dw cluster programmatically, using language such as Python.
All users are automatically created in Amazon Redshift when they log in for the first time.
(Optional) Internal users do not specify database user or group information in their connection string. It is automatically assigned.
Data warehouse users can use SSO for the Amazon Redshift data warehouse using the preceding permissions.
For this walkthrough, assume that this company has already configured SSO to their AWS account: 123456789012 for their Active Directory domain demo.examplecorp.com. The Sales and Data Science teams are not required to specify database user and group information in the connection string. The connection string can be configured by adding SAML Attribute elements to your IdP. Configuring these optional attributes enables internal users to conveniently avoid providing the DbUser and DbGroup parameters when they log in to Amazon Redshift.
The user-name attribute can be set up as follows, with a user ID (for example, nancy) or an email address (for example. [email protected]):
Step 2: Create IAM roles for access to the Amazon Redshift cluster
The next step is to create IAM policies with permissions to call GetClusterCredentials and provide authorization for Amazon Redshift resources. To grant a SQL client the ability to retrieve the cluster endpoint, region, and port automatically, include the redshift:DescribeClusters action with the Amazon Redshift cluster resource in the IAM role. For example, users can connect to the Amazon Redshift cluster using a JDBC URL without the need to hardcode the Amazon Redshift endpoint:
Use IAM to create the following policies. You can also use an existing user or role and assign these policies. For example, if you already created an IAM role for IdP access, you can attach the necessary policies to that role. Here is the policy created for sales users for this example:
Allow users to retrieve the cluster endpoint, region, and port automatically for the Amazon Redshift cluster examplecorp-dw. This specification uses the resource format arn:aws:redshift:region:account-id:cluster:clustername. For example, the SQL client JDBC can be specified in the format jdbc:redshift:iam://clustername:region/dbname.
Generates a temporary token to authenticate into the examplecorp-dw cluster. “arn:aws:redshift:us-west-2:123456789012:dbuser:examplecorp-dw/${redshift:DbUser}” restricts the corporate user name to the database user name for that user. This resource is specified using the format: arn:aws:redshift:region:account-id:dbuser:clustername/dbusername.
The Condition block enforces that the AWS user ID should match “AIDIODR4TAW7CSEXAMPLE:${redshift:DbUser}@examplecorp.com”, so that individual users can authenticate only as themselves. The AIDIODR4TAW7CSEXAMPLE role has the Sales_DW_IAM_Policy policy attached.
Allows sales users to join the sales_grp database group through the resource “arn:aws:redshift:us-west-2:123456789012:dbgroup:examplecorp-dw/sales_grp” that is specified in the format arn:aws:redshift:region:account-id:dbgroup:clustername/dbgroupname.
Similar policies can be created for Data Science users with access to join the data_science_grp group in examplecorp-dw. You can now attach the Sales_DW_IAM_Policy policy to the role that is mapped to IdP application for SSO. For more information about how to define the claim rules, see Configuring SAML Assertions for the Authentication Response.
Because partners are not authorized using Active Directory, they are provided with IAM credentials and added to the partner_grp database group. The Partner_DW_IAM_Policy is attached to the IAM users for partners. The following policy allows partners to log in using the IAM user name as the database user name.
“redshift:DbUser“: “${aws:username}” forces an IAM user to use the IAM user name as the database user name.
With the previous steps configured, you can now establish the connection to Amazon Redshift through JDBC– or ODBC-supported clients.
Step 3: Set up database user access
Before you start connecting to Amazon Redshift using the SQL client, set up the database groups for appropriate data access. Log in to your Amazon Redshift database as superuser to create a database group, using CREATE GROUP.
Log in to examplecorp-dw/analytics as superuser and create the following groups and users:
CREATE GROUP sales_grp;
CREATE GROUP datascience_grp;
CREATE GROUP partner_grp;
Use the GRANT command to define access permissions to database objects (tables/views) for the preceding groups.
Step 4: Connect to Amazon Redshift using the JDBC SQL client
Assume that sales user “nancy” is using the SQL Workbench client and JDBC driver to log in to the Amazon Redshift data warehouse. The following steps help set up the client and establish the connection:
Build the JDBC URL with the IAM option in the following format: jdbc:redshift:iam://examplecorp-dw:us-west-2/sales_db
Because the redshift:DescribeClusters action is assigned to the preceding IAM roles, it automatically resolves the cluster endpoints and the port. Otherwise, you can specify the endpoint and port information in the JDBC URL, as described in Configure a JDBC Connection.
Identify the following JDBC options for providing the IAM credentials (see the “Prepare your environment” section) and configure in the SQL Workbench Connection Profile:
plugin_name=com.amazon.redshift.plugin.AdfsCredentialsProvider
idp_host=demo.examplecorp.com (The name of the corporate identity provider host)
idp_port=443 (The port of the corporate identity provider host)
user=examplecorp\nancy(corporate user name)
password=***(corporate user password)
The SQL workbench configuration looks similar to the following screenshot:
Now, “nancy” can connect to examplecorp-dw by authenticating using the corporate Active Directory. Because the SAML attributes elements are already configured for nancy, she logs in as database user nancy and is assigned the sales_grp. Similarly, other Sales and Data Science users can connect to the examplecorp-dw cluster. A custom Amazon Redshift ODBC driver can also be used to connect using a SQL client. For more information, see Configure an ODBC Connection.
Step 5: Connecting to Amazon Redshift using JDBC SQL Client and IAM Credentials
This optional step is necessary only when you want to enable users that are not authenticated with Active Directory. Partners are provided with IAM credentials that they can use to connect to the examplecorp-dw Amazon Redshift clusters. These IAM users are attached to Partner_DW_IAM_Policy that assigns them to be assigned to the public database group in Amazon Redshift. The following JDBC URLs enable them to connect to the Amazon Redshift cluster:
The AutoCreate option automatically creates a new database user the first time the partner logs in. There are several other options available to conveniently specify the IAM user credentials. For more information, see Options for providing IAM credentials.
Step 6: Connecting to Amazon Redshift using an ODBC client for Microsoft Windows
Assume that another sales user “uma” is using an ODBC-based client to log in to the Amazon Redshift data warehouse using Example Corp Active Directory. The following steps help set up the ODBC client and establish the Amazon Redshift connection in a Microsoft Windows operating system connected to your corporate network:
In the Start menu, locate the driver folder or folders:
Amazon Redshift ODBC Driver (32-bit)
Amazon Redshift ODBC Driver (64-bit)
If you installed both drivers, you have a folder for each driver.
Choose ODBC Administrator, and then type your administrator credentials.
To configure the driver for all users on the computer, choose System DSN. To configure the driver for your user account only, choose User DSN.
Choose Add.
Select the Amazon Redshift ODBC driver, and choose Finish. Configure the following attributes:
Data Source Name =any friendly name to identify the ODBC connection
Database=analytics
user=uma(corporate user name)
Auth Type-Identity Provider: AD FS
password=leave blank (Windows automatically authenticates)
Cluster ID: examplecorp-dw
idp_host=demo.examplecorp.com (The name of the corporate IdP host)
This configuration looks like the following:
Choose OK to save the ODBC connection.
Verify that uma is set up with the SAML attributes, as described in the “Set up IdPs and federation” section.
The user uma can now use this ODBC connection to establish the connection to the Amazon Redshift cluster using any ODBC-based tools or reporting tools such as Tableau. Internally, uma authenticates using the Sales_DW_IAM_Policy IAM role and is assigned the sales_grp database group.
Step 7: Connecting to Amazon Redshift using Python and IAM credentials
To enable partners, connect to the examplecorp-dw cluster programmatically, using Python on a computer such as Amazon EC2 instance. Reuse the IAM users that are attached to the Partner_DW_IAM_Policy policy defined in Step 2.
The following steps show this set up on an EC2 instance:
This example uses Python PostgreSQL Driver (PyGreSQL) to connect to your Amazon Redshift clusters. To install PyGreSQL on Amazon Linux, use the following command as the ec2-user:
The following code snippet demonstrates programmatic access to Amazon Redshift for partner users:
#!/usr/bin/env python
"""
Usage:
python redshift-unload-copy.py <config file> <region>
* Copyright 2014, Amazon.com, Inc. or its affiliates. All Rights Reserved.
*
* Licensed under the Amazon Software License (the "License").
* You may not use this file except in compliance with the License.
* A copy of the License is located at
*
* http://aws.amazon.com/asl/
*
* or in the "license" file accompanying this file. This file is distributed
* on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
* express or implied. See the License for the specific language governing
* permissions and limitations under the License.
"""
import sys
import pg
import boto3
REGION = 'us-west-2'
CLUSTER_IDENTIFIER = 'examplecorp-dw'
DB_NAME = 'sales_db'
DB_USER = 'examplecorpsalespartner'
options = """keepalives=1 keepalives_idle=200 keepalives_interval=200
keepalives_count=6"""
set_timeout_stmt = "set statement_timeout = 1200000"
def conn_to_rs(host, port, db, usr, pwd, opt=options, timeout=set_timeout_stmt):
rs_conn_string = """host=%s port=%s dbname=%s user=%s password=%s
%s""" % (host, port, db, usr, pwd, opt)
print "Connecting to %s:%s:%s as %s" % (host, port, db, usr)
rs_conn = pg.connect(dbname=rs_conn_string)
rs_conn.query(timeout)
return rs_conn
def main():
# describe the cluster and fetch the IAM temporary credentials
global redshift_client
redshift_client = boto3.client('redshift', region_name=REGION)
response_cluster_details = redshift_client.describe_clusters(ClusterIdentifier=CLUSTER_IDENTIFIER)
response_credentials = redshift_client.get_cluster_credentials(DbUser=DB_USER,DbName=DB_NAME,ClusterIdentifier=CLUSTER_IDENTIFIER,DurationSeconds=3600)
rs_host = response_cluster_details['Clusters'][0]['Endpoint']['Address']
rs_port = response_cluster_details['Clusters'][0]['Endpoint']['Port']
rs_db = DB_NAME
rs_iam_user = response_credentials['DbUser']
rs_iam_pwd = response_credentials['DbPassword']
# connect to the Amazon Redshift cluster
conn = conn_to_rs(rs_host, rs_port, rs_db, rs_iam_user,rs_iam_pwd)
# execute a query
result = conn.query("SELECT sysdate as dt")
# fetch results from the query
for dt_val in result.getresult() :
print dt_val
# close the Amazon Redshift connection
conn.close()
if __name__ == "__main__":
main()
You can save this Python program in a file (redshiftscript.py) and execute it at the command line as ec2-user:
python redshiftscript.py
Now partners can connect to the Amazon Redshift cluster using the Python script, and authentication is federated through the IAM user.
Summary
In this post, I demonstrated how to use federated access using Active Directory and IAM roles to enable single sign-on to an Amazon Redshift cluster. I also showed how partners outside an organization can be managed easily using IAM credentials. Using the GetClusterCredentials API action, now supported by Amazon Redshift, lets you manage a large number of database users and have them use corporate credentials to log in. You don’t have to maintain separate database user accounts.
Although this post demonstrated the integration of IAM with AD FS and Active Directory, you can replicate this solution across with your choice of SAML 2.0 third-party identity providers (IdP), such as PingFederate or Okta. For the different supported federation options, see Configure SAML Assertions for Your IdP.
If you have questions or suggestions, please comment below.
Thiyagarajan Arumugam is a Big Data Solutions Architect at Amazon Web Services and designs customer architectures to process data at scale. Prior to AWS, he built data warehouse solutions at Amazon.com. In his free time, he enjoys all outdoor sports and practices the Indian classical drum mridangam.
You can now enable your users to access Microsoft Office 365 with credentials that you manage in AWS Directory Service for Microsoft Active Directory, also known as AWS Microsoft AD. You can accomplish this by deploying Microsoft Azure Active Directory (AD) Connect and Active Directory Federation Services for Windows Server 2016 (AD FS 2016) with AWS Microsoft AD. AWS Microsoft AD makes it possible and easy for you to build a Windows environment in the AWS Cloud, synchronize your AWS Microsoft AD users into Microsoft Azure AD, and use Office 365, all without needing to create and manage AD domain controllers. Now you can also benefit from the broad set of AWS Cloud services for compute, storage, database, and Internet of Things (IoT) while continuing to use Office 365 business productivity apps—all with a single AD domain.
Office 365 provides different options to support user authentication with identities that come from AD. One common way to do this is to use Azure AD Connect and AD FS together with your AD directory. In this model, you use Azure AD Connect to synchronize user names from AD into Azure AD so that Office 365 can use those identities. To complete this solution, you use AD FS to enable Office 365 to authenticate the identities against your AD directory. Good news: AWS Microsoft AD now supports this model!
In this blog post, we show how to use Azure AD Connect and AD FS with AWS Microsoft AD so that your employees can access Office 365 by using their AD credentials.
Join an Amazon EC2 for Windows Server instance to the AWS Microsoft AD domain you use as your ADSync server. We will show you how to install Azure AD Connect on this instance later.
Using Active Directory Users and Computers on your Management instance, create a standard user named ADFSSVC in your AWS Microsoft AD directory. AD FS uses this user account later.
Note: You must use RDP and sign in with the AWS Microsoft AD admin account using the password you specified when you created your AWS Microsoft AD directory when performing Steps 3 and 6 in this “Prerequisites” section.
The following diagram illustrates the environment you must have in place to implement the solution in this blog post (the numbers in the diagram correspond to Steps 1–8 earlier in this section). We build on this configuration to install and configure Azure AD Connect and AD FS with Azure AD and Office 365.
Note: In this blog post, we use separate Microsoft Windows Server instances on which to run AD FS and Azure AD Connect. You can choose to combine these on a single server, as long as you use Windows Server 2016. Though it is technically possible to use an on-premises server as the AD FS and Azure AD host, such a configuration is counter to the idea of a Windows environment completely in the cloud. Also, this requires configuration of firewall ports and AWS security groups, which is beyond the scope of this blog.
Configuration background
When you create an AWS Microsoft AD directory, AWS exclusively retains the enterprise administrator account of the forest and domain administrator account for the root domain to deliver the directory as a managed service. When you set up your directory, AWS creates an organizational unit (OU) in the directory and delegates administrative privileges for the OU to your admin account. Within this OU, you administer users, groups, computers, Group Policy objects, other devices, and additional OUs as needed. You perform these actions using standard AD administration tools from a computer that is joined to an AWS Microsoft AD domain. Typically, the administration computer is an EC2 instance that you access using RDP, by logging in with your admin account credentials. From your admin account, you can also delegate permissions to other users or groups you create within your OU.
To use Office 365 with AD identities, you use Azure AD Connect to synchronize the AD identities into Azure AD. There are two commonly supported ways to use Azure AD Connect to support Office 365 use. In one model, you synchronize user names only, and you use AD FS to federate authentication from Office 365 to your AD. In the second model, you synchronize user names and passwords from your AD directory to Azure AD, and you do not have to use AD FS. The model supported by AWS Microsoft AD is the first model: synchronize user names only and use AD FS to authenticate from Office 365 to your AWS Microsoft AD. The AD FS model also enables authentication with SaaS applications that support federated authentication (this topic is beyond the scope of this blog post).
Note: Azure AD Connect now has a pass-through model of authentication. Because this was in a preview status at the time of writing this blog post, this authentication model is beyond the scope of this blog post.
In a default AD FS installation, AD FS uses two containers that require special AD permissions that your AWS Microsoft AD administrative account does not have. To address this, you will create two nested containers in your OU for AD FS to use. When you install AD FS, you tell AD FS where to find the containers through a Windows PowerShell parameter.
As described previously, we will now show you how to use Azure AD Connect and AD FS with AWS Microsoft AD with Azure AD and Office 365 in five steps, as illustrated in the following diagram.
Add two containers to AWS Microsoft AD for use by AD FS.
Install AD FS.
Integrate AD FS with Azure AD.
Synchronize users from AWS Microsoft AD to Azure AD with Azure AD Connect.
Sign in to Office 365 by using your Microsoft AD identities.
Step 1: Add two containers to AWS Microsoft AD for use by AD FS
The following steps show how to create the AD containers required by AD FS in your AWS Microsoft AD directory.
From the Management instance:
Generate a random global unique identifier (GUID) using the following Windows PowerShell command.
(New-Guid).Guid
Make a note of the GUID output because it will be required later on. In this case, the GUID is 67734c62-0805-4274-b72b-f7171110cd56.
Create a container named ADFS in your OU. The OU is located in the domain root and it has the same name as the NetBIOS name you specified when you created your AWS Microsoft AD directory. In this example, our OU name is AWS, and our domain is DC=awsexample,DC=com. You create the container by running the following Windows PowerShell command. You must replace the names that are in bold text with the names from your AWS Microsoft AD directory.
Create another AD container in your new ADFS container, and use the previously generated GUID as the name. Do this by running the following Windows PowerShell command. Be sure to replace the names in bold text with the names from your AWS Microsoft AD directory and your GUID. In this example, we replace GUID with 67734c62-0805-4274-b72b-f7171110cd56. The other bold items shown match the names in our example AWS Microsoft AD directory.
To verify that you successfully created the ADFS and GUID containers, open Active Directory Users and Computers and navigate to the containers you created. Your root domain, OU name, and GUID name should match your AWS Microsoft AD configuration.
Note: If you do not see the ADFS and GUID containers, turn on Advanced Features by choosing View in the Active Directory Users and Computers tool, and then choosing Advanced Features.
Step 2: Install AD FS
In this section, we show how to install AD FS by using Windows PowerShell commands. First, though, select a federation service name for your AD FS server. You can create your federation service name by adding a short name (for example, sts) followed by your domain name (for example, awsexample.com). In this example, we use sts.awsexample.com as the federation service name.
Using your AWS Microsoft AD admin account, open an RDP session to your ADFS instance, run Windows PowerShell as a local administrator, and complete the following steps:
Install the Windows feature, AD FS, by running the following Windows PowerShell command. This command only adds the components needed to install your ADFS server later.
Install-WindowsFeature ADFS-Federation
Now that you have installed AD FS, you must obtain a certificate for use when you configure your ADFS server. The AD FS certificate plays an important role to secure communication between the ADFS server and clients, and to ensure tokens issued by the ADFS server are secured. AWS recommends that you use a certificate from a trusted Certificate Authority (CA).
In our example, we use the SSL certificate, sts.awsexample.com. It is important to note that the common name and subject alternative name (SAN) must include the federation service name we plan to use for the AD FS server. In our example, the name is sts.awsexample.com.
Choose File, choose Add/Remove snap-in, and choose Add.
For Add StandaloneSnap-in, choose Certificates and then choose Add.
For the Certificates snap-in, choose Computer account and then choose Next.
Choose Finish, and then choose OK to load the Certificates snap In.
Expand Certificates (Local Computer).
Right-click Personal, choose All Tasks, and then choose Import.
On the Certificate Import Wizard, choose Next.
Choose Browse to locate and select your certificate that has been given by your CA. Choose Next.
Ensure Certificate store is set to Personal, and choose Next.
Choose Finish and OK to complete the installation of the certificate on the AD FS server.
Next you need to retrieve the Thumbprint value of the newly installed certificate and save it for use when you configure your ADFS server. Follow the remaining steps:
In the Certificates console window, expand Personal, and choose Certificates.
Right-click the certificate, and then choose Open.
Choose the Details tab to locate the Thumbprint
Note: In this case, we will copy our certificate Thumbprint, d096652327cfa18487723ff61040c85c7f57f701, and save it in Windows Notepad.
Open an RDP session to your ADFS server by using the admin account for your AWS Microsoft AD directory. Install AD FS by running the following Windows PowerShell command. You must replace the bold strings in the command with the GUID you created in Step 1 and the names from your AWS Microsoft AD directory.
Enter the AD FS standard user account credentials for the ADFSSVC user and save it in the script variable, $svcCred, by running the following Windows PowerShell command.
$svcCred = (get-credential)
Type the Microsoft AD administrator credentials of the Admin user and save it in the script variable, $localAdminCred, by running the following Windows PowerShell command.
$localAdminCred = (get-credential)
Install the AD FS server by running the following Windows PowerShell command. You must replace the bold items with the Thumbprint ID from your certificate, and replace the federation service name with the federation service name you chose earlier. For our example, the federation service name is awsexample.com and we copy our certificate Thumbprint, d096652327cfa18487723ff61040c85c7f57f701, from where we saved it in Windows Notepad.
Note: Be sure to remove any empty spaces in the certificate Thumbprint value.
Create a DNS A record for use with AD FS. This record resolves the federation service name to the public IP address you assign to your ADFS instance. You must create the DNS A record at the DNS hosting provider that hosts your domain. In the following example, sts.awsexample.com is the federation service name and 54.x.x.x is the public IP address of our AD FS instance.
Hostname: awsexample.com
Record Type:A
IP Address:x.x.x
Enable the AD FS sign-in page by running the following Windows PowerShell command.
To verify that the AD FS sign-in page works, open a browser on the AD FS instance, and sign in on the AD FS sign-in page (https://<myfederation service name>/AD FS/ls/IdpInitiatedSignOn.aspx) by using your AWS Microsoft AD admin account. In our example, the federation service name (<my federation service name> in the sign-in page URL) is sts.awsexample.com.
Step 3: Integrate AD FS with Azure AD
The following steps show you how to connect AD FS with Office 365 by connecting to Azure AD with Windows PowerShell and federating the custom domain.From the ADFS instance, make sure you run Windows PowerShell as a local administrator and complete the following steps:
Connect to Azure AD using Windows PowerShell. Federate the custom domain you added and verified in Azure AD by running the following two Windows PowerShell commands. You must update the items in bold text with the names from your AWS Microsoft AD directory. For our example, our AD FS instance’s Fully Qualified Domain Name (FQDN) is adfsserver.awsexample.com, and our domain name is awsexample.com.
Step 4: Synchronize users from AWS Microsoft AD to Azure AD with Azure AD Connect
The following steps show you how to install and customize Azure AD Connect to synchronize your AWS Microsoft AD identities to Azure AD for use with Office 365.Open an RDP session to your ADSync instance by using your AWS Microsoft AD admin user account:
On the Welcome page of the Azure AD Connect Wizard, accept the license terms and privacy notice, and then choose Continue.
On the Express Settings page, choose Customize.
On the Install required components page, choose Install.
On the User sign-in page, choose Do not configure and then choose Next.
On the Connect to Azure AD page, enter your Office 365 global administrator account credentials and then choose Next.
On the Connect your directories page, choose Active Directory as the Directory Type, and then choose your Microsoft AD Forest as your Forest. Choose Add Directory.
At the prompt, enter your AWS Microsoft AD admin account credentials, and then choose OK.
Now that you have added the AWS Microsoft AD directory, choose Next.
On the Azure AD sign-in configuration page, choose Next.
Note: AWS recommends the userPrincipalName (UPN) attribute for use by AWS Microsoft AD users when they sign in to Azure AD and Office 365. The UPN attribute format combines the user’s login name and the UPN-suffix of an AWS Microsoft AD user. The UPN suffix is the domain name of your AWS Microsoft AD domain and the same domain name you added and verified with Azure AD.
In the following example from the Active Directory Users and Computers tool, the user’s UPN is [email protected], which is a combination of the user’s login name, awsuser, with the UPN-suffix, @awsexample.com.
On the Domain and OU filtering page, choose Sync selected domains and OUs, choose the Users OU under your NetBIOS OU, and then choose Next.
On the Uniquely identifying your users page, choose Next.
On the Filter users and devices page, choose Next.
On the Optional features page, choose Next.
On the Ready to configure page, choose Start the synchronization process when configuration completes, and then choose Install.
The Azure AD Connect installation has now completed. Choose Exit.
Note: By default, the Azure AD Connect sync scheduler runs every 30 minutes to synchronize your AWS Microsoft AD identities to Azure AD. You can tune the scheduler by opening a Windows PowerShell session as an administrator and running the appropriate Windows PowerShell commands. For more information, go to Azure AD Connect Sync Scheduler.
Tip: Do you need to synchronize a change immediately? You can manually start a sync cycle outside the scheduled sync cycle from the Azure AD Connect sync instance. Open a Windows PowerShell session as an administrator and run the following Windows PowerShell commands.
Step 5: Sign in to Office 365 by using your AWS Microsoft AD identities
The following steps show you how to sign in to Office 365 using AD FS as the authentication method with your AWS Microsoft AD user account. In this example, we assign a license to the AWS Microsoft AD user account, [email protected], in the Office 365 admin center. We then sign in to Office 365 by using the AWS Microsoft AD user account UPN, [email protected].
Using a computer on the internet, open a browser and complete the following steps:
Sign in with the AWS Microsoft AD user account at https://portal.office.com. When entering the UPN of the AWS Microsoft AD user account, you will be redirected to your ADFS server sign-in page to complete user authentication.
On the AD FS sign-in page, enter your UPN and the password of the AWS Microsoft AD user account.
You have successfully signed in to Office 365 using your AWS Microsoft AD user account!
Summary
In this blog post, we showed how to use Azure AD Connect and AD FS with AWS Microsoft AD so that your employees can access Office 365 using their AD credentials. Now that you have Azure AD Connect and AD FS in place, you also might want to explore how to build upon this infrastructure to add sign-in for other Software as a Service (SaaS) applications that are compatible with AD FS. For example, this blog post explains how you can provide your users single sign-on access to Amazon AppStream by using AD FS.
Do you need to provide a workstation class experience for users who run graphics apps? With Amazon AppStream 2.0, you can stream graphics apps from AWS to a web browser running on any supported device. AppStream 2.0 offers a choice of GPU instance types. The range includes the newly launched Graphics Design instance, which allows you to offer a fast, fluid user experience at a fraction of the cost of using a graphics workstation, without upfront investments or long-term commitments.
In this post, I discuss the Graphics Design instance type in detail, and how you can use it to deliver a graphics application such as Siemens NX―a popular CAD/CAM application that we have been testing on AppStream 2.0 with engineers from Siemens PLM.
Graphics Instance Types on AppStream 2.0
First, a quick recap on the GPU instance types available with AppStream 2.0. In July, 2017, we launched graphics support for AppStream 2.0 with two new instance types that Jeff Barr discussed on the AWS Blog:
Graphics Desktop
Graphics Pro
Many customers in industries such as engineering, media, entertainment, and oil and gas are using these instances to deliver high-performance graphics applications to their users. These instance types are based on dedicated NVIDIA GPUs and can run the most demanding graphics applications, including those that rely on CUDA graphics API libraries.
Last week, we added a new lower-cost instance type: Graphics Design. This instance type is a great fit for engineers, 3D modelers, and designers who use graphics applications that rely on the hardware acceleration of DirectX, OpenGL, or OpenCL APIs, such as Siemens NX, Autodesk AutoCAD, or Adobe Photoshop. The Graphics Design instance is based on AMD’s FirePro S7150x2 Server GPUs and equipped with AMD Multiuser GPU technology. The instance type uses virtualized GPUs to achieve lower costs, and is available in four instance sizes to scale and match the requirements of your applications.
Instance
vCPUs
Instance RAM (GiB)
GPU Memory (GiB)
stream.graphics-design.large
2
7.5 GiB
1
stream.graphics-design.xlarge
4
15.3 GiB
2
stream.graphics-design.2xlarge
8
30.5 GiB
4
stream.graphics-design.4xlarge
16
61 GiB
8
The following table compares all three graphics instance types on AppStream 2.0, along with example applications you could use with each.
In the section, I walk through setting up Siemens NX with Graphics Design instances on AppStream 2.0. After set up is complete, users can able to access NX from within their browser and also access their design files from a file share. You can also use these steps to set up and test your own graphics applications on AppStream 2.0. Here’s the workflow:
Create a file share to load and save design files.
Create an AppStream 2.0 image with Siemens NX installed.
Create an AppStream 2.0 fleet and stack.
Invite users to access Siemens NX through a browser.
Step 1: Create a file share to load and save design files
To launch and configure the file server
Open the EC2 console and choose Launch Instance.
Scroll to the Microsoft Windows Server 2016 Base Image and choose Select.
Choose an instance type and size for your file server (I chose the general purpose m4.large instance). Choose Next: Configure Instance Details.
Select a VPC and subnet. You launch AppStream 2.0 resources in the same VPC. Choose Next: Add Storage.
If necessary, adjust the size of your EBS volume. Choose Review and Launch, Launch.
On the Instances page, give your file server a name, such as My File Server.
Ensure that the security group associated with the file server instance allows for incoming traffic from the security group that you select for your AppStream 2.0 fleets or image builders. You can use the default security group and select the same group while creating the image builder and fleet in later steps.
Log in to the file server using a remote access client such as Microsoft Remote Desktop. For more information about connecting to an EC2 Windows instance, see Connect to Your Windows Instance.
To enable file sharing
Create a new folder (such as C:\My Graphics Files) and upload the shared files to make available to your users.
From the Windows control panel, enable network discovery.
Choose Server Manager, File and Storage Services, Volumes.
Scroll to Shares and choose Start theAdd Roles and Features Wizard. Go through the wizard to install the File Server and Share role.
From the left navigation menu, choose Shares.
Choose Start the New Share Wizard to set up your folder as a file share.
Open the context (right-click) menu on the share and choose Properties, Permissions, Customize Permissions.
Choose Permissions, Add. Add Read and Execute permissions for everyone on the network.
Step 2: Create an AppStream 2.0 image with Siemens NX installed
To connect to the image builder and install applications
Create a graphics design image builder in the same VPC as your file server.
From the Image builder tab, select your image builder and choose Connect. This opens a new browser tab and display a desktop to log in to.
Log in to your image builder as ImageBuilderAdmin.
Launch the Image Assistant.
Download and install Siemens NX and other applications on the image builder. I added Blender and Firefox, but you could replace these with your own applications.
To verify the user experience, you can test the application performance on the instance.
Before you finish creating the image, you must mount the file share by enabling a few Microsoft Windows services.
To mount the file share
Open services.msc and check the following services:
DNS Client
Function Discovery Resource Publication
SSDP Discovery
UPnP Device H
If any of the preceding services have Startup Type set to Manual, open the context (right-click) menu on the service and choose Start. Otherwise, open the context (right-click) menu on the service and choose Properties. For Startup Type, choose Manual, Apply. To start the service, choose Start.
From the Windows control panel, enable network discovery.
Create a batch script that mounts a file share from the storage server set up earlier. The file share is mounted automatically when a user connects to the AppStream 2.0 environment.
Logon Script Location: C:\Users\Public\logon.bat
Script Contents:
:loop
net use H: \\path\to\network\share
PING localhost -n 30 >NUL
IF NOT EXIST H:\ GOTO loop
Open gpedit.msc and choose User Configuration, Windows Settings, Scripts. Set logon.bat as the user logon script.
Next, create a batch script that makes the mounted drive visible to the user.
Choose General, provide a task name, and then choose Change User or Group.
For Enter the object name to select, enter SYSTEM and choose Check Names, OK.
Choose Triggers, New. For Begin the task, choose At startup. Under Advanced Settings, change Delay task for to 5 minutes. Choose OK.
Choose Actions, New. Under Settings, for Program/script, enter C:\Users\Public\startup.bat. Choose OK.
Choose Conditions. Under Power, clear the Start the task only if the computer is on AC power Choose OK.
To view your scheduled task, choose Task Scheduler Library. Close Task Scheduler when you are done.
Step 3: Create an AppStream 2.0 fleet and stack
To create a fleet and stack
In the AppStream 2.0 management console, choose Fleets, Create Fleet.
Give the fleet a name, such as Graphics-Demo-Fleet, that uses the newly created image and the same VPC as your file server.
Choose Stacks, Create Stack. Give the stack a name, such as Graphics-Demo-Stack.
After the stack is created, select it and choose Actions, Associate Fleet. Associate the stack with the fleet you created in step 1.
Step 4: Invite users to access Siemens NX through a browser
To invite users
Choose User Pools, Create User to create users.
Enter a name and email address for each user.
Select the users just created, and choose Actions, Assign Stack to provide access to the stack created in step 2. You can also provide access using SAML 2.0 and connect to your Active Directory if necessary. For more information, see the Enabling Identity Federation with AD FS 3.0 and Amazon AppStream 2.0 post.
Your user receives an email invitation to set up an account and use a web portal to access the applications that you have included in your stack.
Step 5: Validate the setup
Time for a test drive with Siemens NX on AppStream 2.0!
Open the link for the AppStream 2.0 web portal shared through the email invitation. The web portal opens in your default browser. You must sign in with the temporary password and set a new password. After that, you get taken to your app catalog.
Launch Siemens NX and interact with it using the demo files available in the shared storage folder – My Graphics Files.
Want to provide users with single sign-on access to AppStream 2.0 using existing enterprise credentials? Active Directory Federation Services (AD FS) 3.0 can be used to provide single sign-on for Amazon AppStream 2.0 using SAML 2.0.
You can use your existing Active Directory or any SAML 2.0–compliant identity service to set up single sign-on access of AppStream 2.0 applications for your users. Identity federation using SAML 2.0 is currently available in all AppStream 2.0 regions.
This post explains how to configure federated identities for AppStream 2.0 using AD FS 3.0.
Walkthrough
After setting up SAML 2.0 federation for AppStream 2.0, users can browse to a specially crafted (AD FS RelayState) URL and be taken directly to their AppStream 2.0 applications.
When users sign in with this URL, they are authenticated against Active Directory. After they are authenticated, the browser receives a SAML assertion as an authentication response from AD FS, which is then posted by the browser to the AWS sign-in SAML endpoint. Temporary security credentials are issued after the assertion and the embedded attributes are validated. The temporary credentials are then used to create the sign-in URL. The user is redirected to the AppStream 2.0 streaming session. The following diagram shows the process.
The user browses to https://applications.exampleco.com. The sign-on page requests authentication for the user.
The federation service requests authentication from the organization’s identity store.
The identity store authenticates the user and returns the authentication response to the federation service.
On successful authentication, the federation service posts the SAML assertion to the user’s browser.
The user’s browser posts the SAML assertion to the AWS Sign-In SAML endpoint (https://signin.aws.amazon.com/saml). AWS Sign-In receives the SAML request, processes the request, authenticates the user, and forwards the authentication token to the AppStream 2.0 service.
Using the authentication token from AWS, AppStream 2.0 authorizes the user and presents applications to the browser.
In this post, use domain.local as the name of the Active Directory domain. Here are the steps in this walkthrough:
Configure AppStream 2.0 identity federation.
Configure the relying trust.
Create claim rules.
Enable RelayState and forms authentication.
Create the AppStream 2.0 RelayState URL and access the stack.
Test the configuration.
Prerequisites
This walkthrough assumes that you have the following prerequisites:
An instance joined to a domain with the “Active Directory Federation Services” role installed and post-deployment configuration completed
Familiarity with AppStream 2.0 resources
Configure AppStream 2.0 identity federation
First, create an AppStream 2.0 stack, as you reference the stack in upcoming steps. Name the stack ExampleStack. For this walkthrough, it doesn’t matter which underlying fleet you associate with the stack. You can create a fleet using one of the example Amazon-AppStream2-Sample-Image images available, or associate an existing fleet to the stack.
Get the AD FS metadata file
The first thing you need is the metadata file from your AD FS server. The metadata file is a signed document that is used later in this guide to establish the relying party trust. Don’t edit or reformat this file.
To download and save this file, navigate to the following location, replacing <FQDN_ADFS_SERVER> with your AD FS s fully qualified server name.
In the IAM console, choose Identity providers, Create provider.
On the Configure Provider page, for Provider Type, choose SAML. For Provider Name, type ADFS01 or similar name. Choose Choose File to upload the metadata document previously downloaded. Choose Next Step.
Verify the provider information and choose Create.
You need the Amazon Resource Name (ARN) of the identity provider (IdP) to configure claims rules later in this walkthrough. To get this, select the IdP that you just created. On the summary page, copy the value for Provider ARN. The ARN is in the following format:
Next, configure a policy with permissions to the AppStream 2.0 stack. This is the level of permissions that federated users have within AWS.
In the IAM console, choose Policies, Create Policy, Create Your Own Policy.
For Policy Name, enter a descriptive name. For Description, enter the level of permissions. For Policy Document, you customize the Region-Code, AccountID (without hyphens), and case-sensitive Stack-Name values.
For Region Codes, use one of the following values based on the region you are using AppStream 2.0 (the available regions for AppStream 2.0):
us-east-1
us-west-2
eu-west-1
ap-northeast-1
Choose Create Policy and you should see the following notification:
Create an IAM role
Here, you create a role that relates to an Active Directory group assigned to your AppStream 2.0 federated users. For this configuration, Active Directory groups and AWS roles are case-sensitive. Here you create an IAM Role named “ExampleStack” and an Active Directory group named in the format AWS-AccountNumber-RoleName, for example AWS-012345678910-ExampleStack.
In the IAM console, choose Roles, Create new role.
On the Select Role type page, choose Role for identity provider access. Choose Select next to Grant Web Single Sign-On (WebSSO) access to SAML providers.
On the Establish Trust page, make sure that the SAML provider that you just created (such as ADFS01) is selected. For Attribute and Value, keep the default values.
On the Verify Role Trust page, the Federated value matches the ARN noted previously for the principal IdP created earlier. The SAML: aud value equals https://signin.aws.amazon.com/saml, as shown below. This is prepopulated and does not require any change. Choose Next Step.
On the Attach policy page, attach the policy that you created earlier granting federated users access only to the AppStream 2.0 stack. In this walkthrough, the policy was named AppStream2_ExampleStack.
After selecting the correct policy, choose Next Step.
On the Set role name and review page, name the role ExampleStack. You can customize this naming convention, as I explain later when I create the claims rules.
You can describe the role as desired. Ensure that the trusted entities match the AD FS IdP ARN, and that the policy attached is the policy created earlier granting access only to this stack.
Choose Create Role.
Important: If you grant more than the stack permissions to federated users, you can give them access to other areas of the console as well. AWS strongly recommends that you attach policies to a role that grants access only to the resources to be shared with federated users.
For example, if you attach the AdministratorAccess policy instead of AppStream2_ExampleStack, any AppStream 2.0 federated user in the ExampleStack Active Directory group has AdministratorAccess in your AWS account. Even though AD FS routes users to the stack, users can still navigate to other areas of the console, using deep links that go directly to specific console locations.
Next, create the Active Directory group in the format AWS-AccountNumber-RoleName using the “ExampleStack” role name that you just created. You reference this Active Directory group in the AD FS claim rules later using regex. For Group scope, choose Global. For Group type, choose Security
Note: To follow this walkthrough exactly, name your Active Directory group in the format “AWS-AccountNumber-ExampleStack” replacing AccountNumber with your AWS AccountID (without hyphens). For example:
AWS-012345678910-ExampleStack
Configure the relying party trust
In this section, you configure AD FS 3.0 to communicate with the configurations made in AWS.
Open the AD FS console on your AD FS 3.0 server.
Open the context (right-click) menu for AD FS and choose Add Relying Party Trust…
On the Welcome page, choose Start. On the Select Data Source page, keep Import data about the relying party published online or on a local network checked. For Federation metadata address (host name or URL), type the following link to the SAML metadata to describe AWS as a relying party and then choose Next.
On the Specify Display Name page, for Display name, type “AppStream 2.0 – ExampleStack” or similar value. For Notes, provide a description. Choose Next.
On the Configure Multi-factor Authentication Now? page, choose I do not want to configure multi-factor authentication settings for this relying party trust at this time. Choose Next.
Because you are controlling access to the stack using an Active Directory group, and IAM role with an attached policy, on the Choose Issuance Authorization Rules page, check Permit all users to access this relying party. Choose Next.
On the Ready to Add Trust page, there shouldn’t be any changes needed to be made. Choose Next.
On the Finish page, clear Open the edit Claim Rules dialog for this relying party trust when the wizard closes. You open this later.
Next, you add the https://signin.aws.amazon.com/saml URL is listed on the Identifiers tab within the properties of the trust. To do this, open the context (right-click) menu for the relying party trust that you just created and choose Properties.
On the Monitoring tab and clear Monitor relying party. Choose Apply. On the Identifiers tab, for Relying party identifier, add https://signin.aws.amazon.com/saml and choose OK.
Create claim rules
In this section, you create four AD FS claim rules, which identify accounts, set LDAP attributes, get the Active Directory groups, and match them to the role created earlier.
In the AD FS console, expand Trust Relationships, choose Relying Party Trusts, and then select the relying party trust that you just created (in this case, the display name is AppStream 2.0 – ExampleStack). Open the context (right-click) menu for the relying party trust and choose Edit Claim Rules. Choose Add Rule.
Rule 1: Name ID
This claim rule tells AD FS the type of expected incoming claim and how to send the claim to AWS. AD FS receives the UPN and tags it as the Name ID when it’s forwarded to AWS. This rule interacts with the third rule, which fetches the user groups.
Claim rule template: Transform an Incoming Claim
Configure Claim Rule values:
Claim Rule Name: Name ID
Incoming Claim Type: UPN
Outgoing Claim Type: Name ID
Outgoing name ID format: Persistent Identifier
Pass through all claim values: selected
Rule 2: RoleSessionName
This rule sets a unique identifier for the user. In this case, use the E-Mail-Addresses values.
Claim rule template: Send LDAP Attributes as Claims
This rule converts the value of the Active Directory group starting with AWS-AccountNumber prefix to the roles known by AWS. For this rule, you need the AWS IdP ARN that you noted earlier. If your IdP in AWS was named ADFS01 and the AccountID was 012345678910, the ARN would look like the following:
arn:aws:iam::012345678910:saml-provider/ADFS01
Claim rule template: Send Claims Using a Custom Rule
Configure Claim Rule values:
Claim Rule Name: Roles
Custom Rule:
c:[Type == "http://temp/variable", Value =~ "(?i)^AWS-"]
=> issue(Type = "https://aws.amazon.com/SAML/Attributes/Role", Value = RegExReplace(c.Value, "AWS-012345678910-", "arn:aws:iam::012345678910:saml-provider/ADFS01,arn:aws:iam::019517892450:role/"));
Change arn:aws:iam::012345678910:saml-provider/ADFS01 to the ARN of your AWS IdP
Change 012345678910 to the ID (without hyphens) of the AWS account.
In this walkthrough, “AWS-” returns the Active Directory groups that start with the AWS- prefix, then removes AWS-012345678910- leaving ExampleStack left on the Active Directory Group name to match the ExampleStack IAM role. To customize the role naming convention, for example to name the IAM Role ADFS-ExampleStack, add “ADFS-” to the end of the role ARN at the end of the rule: arn:aws:iam::012345678910:role/ADFS-.
You should now have four claims rules created:
NameID
RoleSessionName
Get Active Directory Groups
Role
Enable RelayState and forms authentication
By default, AD FS 3.0 doesn’t have RelayState enabled. AppStream 2.0 uses RelayState to direct users to your AppStream 2.0 stack.
On your AD FS server, open the following with elevated (administrator) permissions:
In the Microsoft.IdentityServer.Servicehost.exe.config file, find the section <microsoft.identityServer.web>. Within this section, add the following line:
In the AD FS console, verify that forms authentication is enabled. Choose Authentication Policies. Under Primary Authentication, for Global Settings, choose Edit.
For Extranet, choose Forms Authentication. For Intranet, do the same and choose OK.
On the AD FS server, from an elevated (administrator) command prompt, run the following commands sequentially to stop, then start the AD FS service to register the changes:
net stop adfssrv
net start adfssrv
Create the AppStream 2.0 RelayState URL and access the stack
Now that RelayState is enabled, you can generate the URL.
I have created an Excel spreadsheet for RelayState URL generation, available as RelayGenerator.xlsx. This spreadsheet only requires the fully qualified domain name for your AD FS server, account ID (without hyphens), stack name (case-sensitive), and the AppStream 2.0 region. After all the inputs are entered, the spreadsheet generates a URL in the blue box, as shown in the screenshot below. Copy the entire contents of the blue box to retrieve the generated RelayState URL for AD FS.
Alternatively, if you do not have Excel, there are third-party tools for RelayState URL generation. However, they do require some customization to work with AppStream 2.0. Example customization steps for one such tool are provided below.
CodePlex has an AD FS RelayState generator, which downloads an HTML file locally that you can use to create the RelayState URL. The generator says it’s for AD FS 2.0; however, it also works for AD FS 3.0. You can generate the RelayState URL manually but if the syntax or case sensitivity is incorrect even slightly, it won’t work. I recommend using the tool to ensure a valid URL.
When you open the URL generator, clear out the default text fields. You see a tool that looks like the following:
To generate the values, you need three pieces of information:
IDP URL String
Relying Party Identifier
Relay State / Target App
IDP URL String
The IDP URL string is the URL you use to hit your AD FS sign-on page. For example:
Ultimately, the URL looks like the following example, which is for us-east-1, with a stack name of ExampleStack, and an account ID of 012345678910. The stack name is case-sensitive.
The generated RelayState URL can now be saved and used by users to log in directly from anywhere that can reach the AD FS server, using their existing domain credentials. After they are authenticated, users are directed seamlessly to the AppStream 2.0 stack.
Test the configuration
Create a new AD user in Domain.local named Test User, with a username TUser and an email address. An email address is required based on the claim rules.
Next, add TUser to the AD group you created for the AWS-012345678910-ExampleStack stack.
Next, navigate to the RelayState URL and log in with domain\TUser.
After you log in, you are directed to the streaming session for the ExampleStack stack. As an administrator, you can disassociate and associate different fleets of applications to this stack, without impacting federation, and deliver different applications to this group of federated users.
Because the policy attached to the role only allows access to this AppStream 2.0 stack, if a federated user were to try to access another section of the console, such as Amazon EC2, they would discover that they are not authorized to see (describe) any resources or perform any actions, as shown in the screenshot below. This is why it’s important to grant access only to the AppStream 2.0 stack.
Configurations for AD FS 4.0
If you are using AD FS 4.0, there are a few differences from the procedures discussed earlier.
Do not customize the following file as described in the Enable RelayState and forms authentication of the AD FS 3.0 guide:
Enable the IdP-initiated sign-on page that is used when generating the RelayState URL. To do this, open an elevated PowerShell terminal and run the following command:
To register these changes with AD FS, restart the AD FS service from an elevated PowerShell terminal (or command prompt):
net stop adfssrv
net start adfssrv
After these changes are made, AD FS 4.0 should now work for AppStream 2.0 identity federation.
Troubleshooting
If you are still encountering errors with your setup, below are common error messages you may see, and configuration areas that I recommend that you check.
Invalid policy
Unable to authorize the session. (Error Code: INVALID_AUTH_POLICY);Status Code:401
This error message can occur when the IAM policy does not permit access to the AppStream 2.0 stack. However, it can also occur when the stack name is not entered into the policy or RelayState URL using case-sensitive characters. For example, if your stack name is “ExampleStack” in AppStream 2.0 and the policy has “examplestack” or if the Relay State URL has “examplestack” or any capitalization pattern other than the exact stack name, you see this error message.
Invalid relay state
Error: Bad Request.(Error Code: INVALID_RELAY_STATE);Status Code:400
If you are receiving this error message, there is likely to be another issue in the Relay State URL. It could be related to case sensitivity (other than the stack name). For example, https://relay-state-region-endoint?stack=stackname&accountId=aws-account-id-without-hyphens.
Unable to authorize the session. Cross account access is not allowed. (Error Code: CROSS_ACCOUNT_ACCESS_NOT_ALLOWED);Status Code:401
If you see this error message, check to make sure that the AccountId number is correct in the Relay State URL.
Summary
In this post, you walked through enabling AD FS 3.0 for AppStream 2.0 identity federation. You should now be able to configure AD FS 3.0 or 4.0 for AppStream 2.0 identity federation. If you have questions or suggestions, please comment below.
To govern federated access to your AWS resources, it’s a common practice to use Microsoft Active Directory (AD) groups. When using AD groups, establishing federation requires the number of AD groups to be equal to the number of your AWS accounts multiplied by the number of roles in each of your AWS accounts. As you can imagine, this can result in the creation of a very large number of AD groups to manage federated access.
However, some organizations have limits on how many AD groups they can create. For example, an organization might need to keep its AD group hierarchy reasonably flat and avoid a deep nesting of groups. Such a situation needs a solution that doesn’t require you to create exponentially more AD groups while still allowing you to use access control and automated user integration.
In this blog post, I provide step-by-step instructions for integrating AWS Identity and Access Management (IAM) with Microsoft Active Directory Federation Services (AD FS) by using AD user attributes, allowing you to establish federated access without expanding your total number of AD groups. Your organization’s enterprise administrator probably has existing processes in place for managing AD group memberships and provisioning, and you can extend these processes to the management of AD user attributes and the reduction of your organization’s dependency on AD groups.
You have created an identity provider (IdP) in your AWS account using your XML file (https://<your-server-name-here>/FederationMetadata/2007-06/FederationMetadata.xml) from your AD FS server. Remember the name of your IdP because you will use it later in this solution.
You have created the appropriate IAM roles in your AWS account, which will be used for federated access.
After you satisfy these prerequisites, you can proceed to the next section of this post to configure your AD users and AD FS server.
Solution overview
To benefit fully from the solution in this post, your AD and AD FS environment should look similar to what is shown in the following diagram. I focus this post on AD users and claim rules in an AD FS server. AD FS claim rules provide the logic to identify who has been correctly set up in AD with the appropriate user attributes to sign in via AD FS to the AWS Management Console.
In the preceding diagram:
An AD user (let’s call him Bob) browses to the AD FS sample site (https://Fully.Qualified.Domain.Name.Here/adfs/ls/IdpInitiatedSignOn.aspx) inside this domain.
The sign-in page authenticates Bob against AD. If Bob is already authenticated or using a domain joined workstation, he also might be prompted for his AD user name and password.
Bob’s browser receives a SAML assertion in the form of an authentication response from AD FS. Bob’s access is authorized based on his AD group membership or on AD user attributes configured on his account.
Bob’s browser automatically posts the SAML assertion to the AWS sign-in endpoint for SAML (https://signin.aws.amazon.com/saml). The endpoint uses the AssumeRoleWithSAML API to request temporary security credentials and then constructs a sign-in URL for the AWS Management Console using those credentials.
Bob’s browser receives the sign-in URL and redirects to the AWS Management Console.
Deploy the solution
A. Configure an AD user’s account
Because the AD user attributes hold all the associated AWS account and role information when using this solution, you will start by configuring an AD user’s accounts.
To edit the user attributes in an AD user’s account:
On your AD server, in the Active Directory Users and Computers console, go to View > Advanced Features in Active Directory Users and Computers to see the Attribute editor tab.
For AD user Bob, edit one attribute using the built-in AD attribute editor. The attribute I am using is url, which is a multi-valued string. If you use another AD user attribute, consider how you will need to modify your AD FS claim rules later because different attributes may return the values differently back to the AD FS server. The name of the AD user attribute will be used in the AD FS claim rules later in this post.
Bob has two AWS accounts: 111122223333 and 444455556666. Each of Bob’s AWS accounts has two roles: AWS-Dev and AWS-ReadOnly. I have configured Bob’s url attribute with the corresponding values associated with his AWS accounts and roles. As part of the attribute entries, I prefixed each entry with AWS- to have a unique identifier. As shown in the following screenshot, I added the entries one at a time so that each value can be returned back to my AD FS server:
AWS-111122223333-Dev
AWS-111122223333-ReadOnly
AWS-444455556666-Dev
AWS-444455556666-ReadOnly
Bob also requires an email address because that information will be used in the role session name when Bob signs in to the AWS Management Console via his chosen AWS account and associated role. We use Bob’s email address only because it’s a common user attribute most users have and is also unique across users. The unique identifier is then forwarded by AD FS to be used by AWS as a unique value for users. If you have enabled AWS CloudTrail, the role session name is captured in CloudTrail and allows for ease of identification of who assumed the role and subsequent API calls the user or role might have executed on the platform (for example, ec2:terminateinstance).
Now that you have configured Bob’s account, you will configure the AD FS server claim rules.
B. Configure the AD FS server claim rules
Because this blog post assumes your environment is already up and running and to ensure that you can follow along, I am providing example Windows PowerShell code that you can run on your AD FS server. This code allows you to choose a conventional approach by using AD groups in AD FS claim rules, or for the purposes of this post, to use AD FS claim rules with AD user attributes. If you use the AD group approach on your AD FS server with the example code, your AD group naming convention must be: AWS-YourAccountNumber–YourRoleName. If you have already created claim rules for AWS on your AD FS server, I encourage you to run this code against a different AD FS server that has no existing AWS rules.
To configure the AD FS claim rules:
Open the AD FS console. You can find it by searching for ad, as shown in the following screenshot.
Expand Trust Relationships and choose Relying Party Trusts.
Run the example Windows PowerShell code from the command prompt in the same directory where you extracted the .zip file. The following screenshot shows a list of the example files from the .zip file.
Run the 01-Configure-ADFS-AD-User-URL-mapping.ps1 Windows PowerShell script to set up the AD FS claim rules. Note: Run this script with Administrative permissions. A log file is generated to which you can refer, as shown in the following screenshot.
After you run the Windows PowerShell script, you will see the new relying party trust that has been created in your AD FS configuration for Amazon Web Services, as shown in the following screenshot.
Right-click Amazon Web Services & AD User URL and choose Edit Claim Rules.
The following screenshot shows what your AD FS server claim rules should look like now.
About these four claim rules:
Claim rule 1 captures the Windows account name of the current user whose attributes will then be queried further with claim rule 3.
Claim rule 2 captures Bob’s email address for use in the role session name.
Claim rule 3 queries the current user’s URL attributes to identify which account and role the user is authorized to assume access to. These URL attribute values are then stored in a variable (http://temp/variable) for use in claim rule 4.
Claim rule 4 works by matching the first pattern match, ([^d]{12}), to $1 and the second pattern match, (\w*), to $2 for each entry in http://temp/variable. With this final rule, you define the resulting value for the AWS role attribute in a dynamic way, which allows the configuration to scale to support virtually any number of AWS accounts and IAM roles without further configuration within AD FS. By using these claim rules, you query, store, and then convert the values in the URL attributes to the IAM role attributes that AWS expects.
At the beginning of this post, I mentioned that you need to remember the name of the IdP you created in your AWS account, and now is when you will use your IdP’s name. Replace myADFS, highlighted in the following code, with the name of your IdP. (When modifying the rules, be careful not to insert any additional spaces because they can cause claim rules to not work as designed.)
Go to the AD FS sign-in page (https://Fully.Qualified.Domain.Name.Here/adfs/ls/IdpInitiatedSignOn.aspx) to test Bob’s federated access. Note that you might see a certificate warning if the server uses a locally self-signed certificate from Internet Information Services.
To test Bob’s federated access:
Choose Sign in to one of the following sites, choose Amazon Web Services& AD User URL from the list, and then choose Continue to Sign In.
If prompted, type Bob’s user name and password. You will be redirected to sign in to the Amazon Web Services AD FS page previously defined when you set up the AD FS relying party trusts.
After you authenticate to the server as Bob, your browser is redirected to https://signin.aws.amazon.com/saml, and you can choose which of Bob’s accounts and roles to use from. Choose a role and then choose Sign In.
You have signed in as Bob, and his email address now appears as part of the role session name, as shown in the following screenshot.
You can now see Bob’s email address used in the role session name. If you have enabled CloudTrail, the role session name is captured in CloudTrail and allows you to easily identify who assumed the role. If Bob wants to switch to a different account or role, he can return to his AD FS sign-in page (https://Fully.Qualified.Domain.Name.Here/adfs/ls/IdpInitiatedSignOn.aspx) and choose an alternative account or role.
Summary
In this blog post, I demonstrated how to use dynamic resolution of federated access using AD user attributes to scale your configuration and support a large number of AWS accounts and associated IAM roles. This is a powerful technique for managing a large number of AWS accounts and the federated access of associated AD users. Even though I demonstrate the integration of IAM with AD FS and AD, you can replicate this solution across your choice of SAML federated access technology, such as Shibboleth or OpenLDAP.
If you have comments about this blog post, submit them in the “Comments” section below. If you have implementation or troubleshooting questions, start a new thread on the IAM forum.
– Pierre
The collective thoughts of the interwebz
By continuing to use the site, you agree to the use of cookies. more information
The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.