For some organizations, the idea of “going serverless” can be daunting. But with an understanding of best practices – and the right tools — many serverless applications can be fully functional with only a few lines of code and little else.
Examples of fully-serverless-application use cases include:
Web or mobile backends – Create fully-serverless, mobile applications or websites by creating user-facing content in a native mobile application or static web content in an S3 bucket. Then have your front-end content integrate with Amazon API Gateway as a backend service API. Lambda functions will then execute the business logic you’ve written for each of the API Gateway methods in your backend API.
Chatbots and virtual assistants – Build new serverless ways to interact with your customers, like customer support assistants and bots ready to engage customers on your company-run social media pages. The Amazon Alexa Skills Kit (ASK) and Amazon Lex have the ability to apply natural-language understanding to user-voice and freeform-text input so that a Lambda function you write can intelligently respond and engage with them.
Internet of Things (IoT) backends – AWS IoT has direct-integration for device messages to be routed to and processed by Lambda functions. That means you can implement serverless backends for highly secure, scalable IoT applications for uses like connected consumer appliances and intelligent manufacturing facilities.
Using AWS Lambda as the logic layer of a serverless application can enable faster development speed and greater experimentation – and innovation — than in a traditional, server-based environment.
Once you’ve finished reading the whitepaper, below are a couple additional resources I recommend as your next step:
If you would like to better understand some of the architecture pattern possibilities for serverless applications: Thirty Serverless Architectures in 30 Minutes (re:Invent 2017 video)
If you’re ready to get hands-on and build a sample serverless application: AWS Serverless Workshops (GitHub Repository)
Andrew Baird is a Sr. Solutions Architect for AWS. Prior to becoming a Solutions Architect, Andrew was a developer, including time as an SDE with Amazon.com. He has worked on large-scale distributed systems, public-facing APIs, and operations automation.
This post courtesy of Paul Johnston, AWS Senior Developer Advocate – Serverless
Welcome to the first edition of the AWS Serverless ICYMI (In case you missed it) quarterly recap! Every quarter we’ll share all of the most recent product launches, feature enhancements, blog posts, webinars, Twitch live streams, and other interesting things that you might have missed!
Alexa Random Restaurant – Python-based backend for an Alexa skill that returns an open restaurant in a specified city using the Yelp API. Published by: Harsha Warrdhan Sharma
Podless – A serverless application that downloads podcasts to an S3 bucket. Published by: Stilvoid
Crypto-monitor – Collect and store crypto currency prices and send yourself an alert if one changes significantly. Published by: Drew Dresser
DailyDoggo – Send a daily link to a random dog picture to a phone number, via AWS Lambda and SNS. Published by: Kevin McCandless
These runtimes give Lambda developers and development teams even greater options for coding serverless, on-demand, compute solutions.
The AWS SAM 1.4.0 release was one of its biggest. The release added features for configuring many aspects of Amazon API Gateway, including CORS support, regional endpoints, binary media types, and stage settings. It also included per function concurrency support, tags and TableName for SimpleTable, and many documentation updates. Check out the release notes for the full list!
AppSync came out of the whitelisted preview and added a whole bunch of new features:
Here are the three webinars we delivered in Q1. We hold several Serverless webinars throughout the year, so look out for them in the Serverless section of the AWS Online Tech Talks page:
Keep an eye on AWS on Twitch for more Serverless videos and on the Join us on the Twitch AWS page for information about upcoming broadcasts and recent live streams.
Case studies
We’ve published several new case studies this quarter to help you with understanding how other organizations are using serverless technologies:
If you haven’t read the AWS Well Architected Framework Serverless Application Lens document, then it’s worth taking the time to do so. The document covers common serverless applications scenarios and identifies key elements to ensure that your workloads are architected according to best practices.
From now on, if you find issues with documentation we have open-sourced, you can tell us via a Pull Request rather than tweeting or emailing us. The current available serverless repositories are here:
We’re always looking to help people start learning how to build serverless applications. Our serverless web application workshops are online and you can do the hands-on labs yourself: Build a Serverless web application
Still looking for more?
The Serverless landing page has lots of information including a resources page containing case studies, webinars, whitepapers, customer stories, reference architectures, and even more Getting Started tutorials. Check it out!
You can always view and manage your Amazon GuardDuty findings on the Findings page in the GuardDuty console or by using GuardDuty APIs with the AWS CLI or SDK. But there’s a quicker and easier way, you can use Amazon Alexa as a conversational interface to review your GuardDuty findings. With Alexa, you can build natural voice experiences and create a more intuitive way of interacting GuardDuty.
In this post, I show you how to deploy a sample custom Alexa skill and use an Alexa-enabled device, such as Amazon Echo, to get information about GuardDuty findings across your AWS accounts and regions. The information provided by this sample skill gives you a broad overview of GuardDuty finding statistics, severities, and descriptions. When you hear something interesting, you can log in to the GuardDuty console or another analysis tool to investigate the findings data.
Note: Although not covered here, you can also deploy this sample skill using Alexa for Business, which you can use to make skills available to your shared devices and enrolled users without having to publish them to the Alexa skills store.
Prerequisites
To complete the steps in this post, make sure you have:
A basic understanding of Alexa Custom Skills, which is helpful for deploying the sample skill described here. If you’re not already familiar with Alexa custom skill concepts and terminology, you might want to review the following documentation resources.
An AWS account with GuardDuty enabled in one or more AWS regions.
Deploy the Lambda function by using the CloudFormation Template.
Create the custom skill in the Alexa developer console.
Test the skill using an Alexa-enabled device.
Deploy the Lambda function with the CloudFormation Template
For this next step, make sure you deploy the template within the AWS account you want to monitor.
To deploy the Lambda function in the N. Virginia region (see the note below), you can use the CloudFormation template provided by clicking the following link: load the supplied template. In the CloudFormation console, on the Select Template page, select Next.
Note: The following AWS regions support hosting custom Alexa skills: US East (N. Virginia), Asia Pacific (Tokyo), EU (Ireland), West (Oregon). If you want to deploy in a region other than N. Virginia, you will first need to upload the custom skill’s Lambda deployment package (zip file with code) to an S3 bucket in the selected region.
After you load the template, provide the following input parameters:
Input parameter
Input parameter description
FLASHREGIONS
Comma separated list of region Ids with NO spaces to include in flash briefing stats. At least one region is required. Make sure GuardDuty is enabled in regions declared.
MAXRESP
Max number of findings to return in a response.
ArtifactsBucket
S3 Bucket where Lambda deployment package resides. Leave the default for N. Virginia.
ArtifactsPrefix
Path in S3 bucket where Lambda deployment package resides. Leave the default for N. Virginia.
On the Specify Details page, enter the input parameters (see above), and then select Next.
On the Options page, accept the default values, and then select Next.
On the Review page, confirm the details, and then select Create. The stack will be created in approximately 2 minutes.
Create the custom skill in the Alexa developer console
In the second part of this solution implementation, you will create the skill in the Amazon Developer Console.
Sign in to the Alexa area of the Amazon Developer Console, select Your Alexa Consoles in the top right, and then select Skills.
Select Create Skill.
For the name, enter Ask Amazon GuardDuty, and then select Next.
In the Choose a model to add to your skill page, select Custom, and then select Create skill.
Select the JSON Editor and paste the contents of the alexa_ask_guardduty_skill.json file into the code editor, and overwrite the existing content. This file contains the intent schema which defines the set of intents the service can accept and process.
Select Save Model, select Build Model, and then wait for the build to complete.
When the model build is complete, on the left side, select Endpoint.
In the Endpoint page, in the Service Endpoint Type section, select AWS Lambda ARN (Amazon Resource Name).
In the Default Region field, copy and paste the value from the CloudFormation Stack Outputs key named AlexaAskGDSkillArn. Leave the default values for other options, and then select Save Endpoints.
Because you’re not publishing this skill, you don’t need to complete the Launch section of the configuration. The skill will remain in the “Development” status and will only be available for Alexa devices linked to the Amazon developer account used to create the skill. Anyone with physical access to the linked Alexa-enabled device can use the custom skill. As a best practice, I recommend that you delete the Lambda trigger created by the CloudFormation template and add a new one with Skill ID verification enabled.
Test the skill using an Alexa-enabled device
Now that you’ve deployed the sample solution, the next step is to test the skill. Make sure you’re using an Alexa-enabled device linked to the Amazon developer account used to create the skill. Before testing, if there are no current GuardDuty findings available, you can generate sample findings in the console. When you generate sample findings, GuardDuty populates your current findings list with one sample finding for each supported finding type.
You can test using the following voice commands:
“Alexa, Open GuardDuty” — Opens the skill and provides a welcome response. You can also use “Alexa, Ask GuardDuty”.
“Get flash briefing” — Provides global and regional counts for low, medium, and high severity findings. The regions declared in the FLASHREGIONS parameter are included. You can also use “Ask GuardDuty to get flash briefing” to bypass the welcome message. You can learn more about GuardDuty severity levels in the documentation.
For the next set of commands, you can specify the region, use region names such as <Virginia>, <Oregon>, <Ireland>, and so on:
“Get statistics for region” — Provides regional counts for low, medium, and high severity findings.
“Get findings for region” — Returns finding information for the requested region. The number of findings returned is configured in the MAXRESP parameter.
“Get <high/medium/low> severity findings for region” – Returns finding information with the minimum severity requested as high, medium, or low. The number of findings returned is configured in the MAXRESP parameter.
“Help” — Provides information about the skill and supported utterances. Also provides current configuration for FLASHREGIONS and MAXRESP.
You can use this sample solution to get GuardDuty statistics and findings through the Alexa conversational interface. You’ll be able to identify findings that require further investigation quickly. This solution’s code is available on GitHub.
At AWS, our customers have always been the motivation for our innovation. In turn, we’re committed to helping them accelerate the pace of their own innovation. It was in the spirit of helping our customers achieve their objectives faster that we launched AWS Lambda in 2014, eliminating the burden of server management and enabling AWS developers to focus on business logic instead of the challenges of provisioning and managing infrastructure.
In the years since, our customers have built amazing things using Lambda and other serverless offerings, such as Amazon API Gateway, Amazon Cognito, and Amazon DynamoDB. Together, these services make it easy to build entire applications without the need to provision, manage, monitor, or patch servers. By removing much of the operational drudgery of infrastructure management, we’ve helped our customers become more agile and achieve faster time-to-market for their applications and services. By eliminating cold servers and cold containers with request-based pricing, we’ve also eliminated the high cost of idle capacity and helped our customers achieve dramatically higher utilization and better economics.
After we launched Lambda, though, we quickly learned an important lesson: A single Lambda function rarely exists in isolation. Rather, many functions are part of serverless applications that collectively deliver customer value. Whether it’s the combination of event sources and event handlers, as serverless web apps that combine APIs with functions for dynamic content with static content repositories, or collections of functions that together provide a microservice architecture, our customers were building and delivering serverless architectures for every conceivable problem. Despite the economic and agility benefits that hundreds of thousands of AWS customers were enjoying with Lambda, we realized there was still more we could do.
How Customer Feedback Inspired Us to Innovate
We heard from our customers that getting started—either from scratch or when augmenting their implementation with new techniques or technologies—remained a challenge. When we looked for serverless assets to share, we found stellar examples built by serverless pioneers that represented a multitude of solutions across industries.
There were apps to facilitate monitoring and logging, to process image and audio files, to create Alexa skills, and to integrate with notification and location services. These apps ranged from “getting started” examples to complete, ready-to-run assets. What was missing, however, was a unified place for customers to discover this diversity of serverless applications and a step-by-step interface to help them configure and deploy them.
We also heard from customers and partners that building their own ecosystems—ecosystems increasingly composed of functions, APIs, and serverless applications—remained a challenge. They wanted a simple way to share samples, create extensibility, and grow consumer relationships on top of serverless approaches.
We built the AWS Serverless Application Repository to help solve both of these challenges by offering publishers and consumers of serverless apps a simple, fast, and effective way to share applications and grow user communities around them. Now, developers can easily learn how to apply serverless approaches to their implementation and business challenges by discovering, customizing, and deploying serverless applications directly from the Serverless Application Repository. They can also find libraries, components, patterns, and best practices that augment their existing knowledge, helping them bring services and applications to market faster than ever before.
How the AWS Serverless Application Repository Inspires Innovation for All Customers
Companies that want to create ecosystems, share samples, deliver extensibility and customization options, and complement their existing SaaS services use the Serverless Application Repository as a distribution channel, producing apps that can be easily discovered and consumed by their customers. AWS partners like HERE have introduced their location and transit services to thousands of companies and developers. Partners like Datadog, Splunk, and TensorIoT have showcased monitoring, logging, and IoT applications to the serverless community.
Individual developers are also publishing serverless applications that push the boundaries of innovation—some have published applications that leverage machine learning to predict the quality of wine while others have published applications that monitor crypto-currencies, instantly build beautiful image galleries, or create fast and simple surveys. All of these publishers are using serverless apps, and the Serverless Application Repository, as the easiest way to share what they’ve built. Best of all, their customers and fellow community members can find and deploy these applications with just a few clicks in the Lambda console. Apps in the Serverless Application Repository are free of charge, making it easy to explore new solutions or learn new technologies.
Finally, we at AWS continue to publish apps for the community to use. From apps that leverage Amazon Cognito to sync user data across applications to our latest collection of serverless apps that enable users to quickly execute common financial calculations, we’re constantly looking for opportunities to contribute to community growth and innovation.
At AWS, we’re more excited than ever by the growing adoption of serverless architectures and the innovation that services like AWS Lambda make possible. Helping our customers create and deliver new ideas drives us to keep inventing ways to make building and sharing serverless apps even easier. As the number of applications in the Serverless Application Repository grows, so too will the innovation that it fuels for both the owners and the consumers of those apps. With the general availability of the Serverless Application Repository, our customers become more than the engine of our innovation—they become the engine of innovation for one another.
To browse, discover, deploy, and publish serverless apps in minutes, visit the Serverless Application Repository. Go serverless—and go innovate!
Dr. Tim Wagner is the General Manager of AWS Lambda and Amazon API Gateway.
With Raspberry Pi projects using home assistant services such as Amazon Alexa and Google Home becoming more and more popular, we invited Raspberry Pi maker Matt ‘Raspberry Pi Spy‘ Hawkins to write a guest post about his latest project, the Pi Spy Alexa Skill.
Pi Spy Skill
The Alexa system uses Skills to provide voice-activated functionality, and it allows you to create new Skills to add extra features. With the Pi Spy Skill, you can ask Alexa what function each pin on the Raspberry Pi’s GPIO header provides, for example by using the phrase “Alexa, ask Pi Spy what is Pin 2.” In response to a phrase such as “Alexa, ask Pi Spy where is GPIO 8”, Alexa can now also tell you on which pin you can find a specific GPIO reference number.
This information is already available in various forms, but I thought it would be useful to retrieve it when I was busy soldering or building circuits and had no hands free.
Creating an Alexa Skill
There is a learning curve to creating a new Skill, and in some regards it was similar to mobile app development.
A Skill consists of two parts: the first is created within the Amazon Developer Console and defines the structure of the voice commands Alexa should recognise. The second part is a webservice that can receive data extracted from the voice commands and provide a response back to the device. You can create the webservice on a webserver, internet-connected device, or cloud service.
I decided to use Amazon’s AWS Lambda service. Once set up, this allows you to write code without having to worry about the server it is running on. It also supports Python, so it fit in nicely with most of my other projects.
To get started, I logged into the Amazon Developer Console with my personal Amazon account and navigated to the Alexa section. I created a new Skill named Pi Spy. Within a Skill, you define an Intent Schema and some Sample Utterances. The schema defines individual intents, and the utterances define how these are invoked by the user.
Here is how my ExaminePin intent is defined in the schema:
Example utterances then attempt to capture the different phrases the user might speak to their device.
Whenever Alexa matches a spoken phrase to an utterance, it passes the name of the intent and the variable PinID to the webservice.
In the test section, you can check what JSON data will be generated and passed to your webservice in response to specific phrases. This allows you to verify that the webservices’ responses are correct.
Over on the AWS Services site, I created a Lambda function based on one of the provided examples to receive the incoming requests. Here is the section of that code which deals with the ExaminePin intent:
For this intent, I used a Python dictionary to match the incoming pin number to its description. Another Python function deals with the GPIO queries. A URL to this Lambda function was added to the Skill as its ‘endpoint’.
As with the Skill, the Python code can be tested to iron out any syntax errors or logic problems.
With suitable configuration, it would be possible to create the webservice on a Pi, and that is something I’m currently working on. This approach is particularly interesting, as the Pi can then be used to control local hardware devices such as cameras, lights, or pet feeders.
Note
My Alexa Skill is currently only available to UK users. I’m hoping Amazon will choose to copy it to the US service, but I think that is down to its perceived popularity, or it may be done in bulk based on release date. In the next update, I’ll be adding an American English version to help speed up this process.
By continuing to use the site, you agree to the use of cookies. more information
The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.