The EU’s General Data Protection Regulation (GDPR) describes data processor and data controller roles, and some customers and AWS Partner Network (APN) partners are asking how this affects the long-established AWS Shared Responsibility Model. I wanted to take some time to help folks understand shared responsibilities for us and for our customers in context of the GDPR.
How does the AWS Shared Responsibility Model change under GDPR? The short answer – it doesn’t. AWS is responsible for securing the underlying infrastructure that supports the cloud and the services provided; while customers and APN partners, acting either as data controllers or data processors, are responsible for any personal data they put in the cloud. The shared responsibility model illustrates the various responsibilities of AWS and our customers and APN partners, and the same separation of responsibility applies under the GDPR.
AWS responsibilities as a data processor
The GDPR does introduce specific regulation and responsibilities regarding data controllers and processors. When any AWS customer uses our services to process personal data, the controller is usually the AWS customer (and sometimes it is the AWS customer’s customer). However, in all of these cases, AWS is always the data processor in relation to this activity. This is because the customer is directing the processing of data through its interaction with the AWS service controls, and AWS is only executing customer directions. As a data processor, AWS is responsible for protecting the global infrastructure that runs all of our services. Controllers using AWS maintain control over data hosted on this infrastructure, including the security configuration controls for handling end-user content and personal data. Protecting this infrastructure, is our number one priority, and we invest heavily in third-party auditors to test our security controls and make any issues they find available to our customer base through AWS Artifact. Our ISO 27018 report is a good example, as it tests security controls that focus on protection of personal data in particular.
AWS has an increased responsibility for our managed services. Examples of managed services include Amazon DynamoDB, Amazon RDS, Amazon Redshift, Amazon Elastic MapReduce, and Amazon WorkSpaces. These services provide the scalability and flexibility of cloud-based resources with less operational overhead because we handle basic security tasks like guest operating system (OS) and database patching, firewall configuration, and disaster recovery. For most managed services, you only configure logical access controls and protect account credentials, while maintaining control and responsibility of any personal data.
Customer and APN partner responsibilities as data controllers — and how AWS Services can help
Our customers can act as data controllers or data processors within their AWS environment. As a data controller, the services you use may determine how you configure those services to help meet your GDPR compliance needs. For example, AWS Services that are classified as Infrastructure as a Service (IaaS), such as Amazon EC2, Amazon VPC, and Amazon S3, are under your control and require you to perform all routine security configuration and management that would be necessary no matter where the servers were located. With Amazon EC2 instances, you are responsible for managing: guest OS (including updates and security patches), application software or utilities installed on the instances, and the configuration of the AWS-provided firewall (called a security group).
To help you realize data protection by design principles under the GDPR when using our infrastructure, we recommend you protect AWS account credentials and set up individual user accounts with Amazon Identity and Access Management (IAM) so that each user is only given the permissions necessary to fulfill their job duties. We also recommend using multi-factor authentication (MFA) with each account, requiring the use of SSL/TLS to communicate with AWS resources, setting up API/user activity logging with AWS CloudTrail, and using AWS encryption solutions, along with all default security controls within AWS Services. You can also use advanced managed security services, such as Amazon Macie, which assists in discovering and securing personal data stored in Amazon S3.
For more information, you can download the AWS Security Best Practices whitepaper or visit the AWS Security Resources or GDPR Center webpages. In addition to our solutions and services, AWS APN partners can provide hundreds of tools and features to help you meet your security objectives, ranging from network security and configuration management to access control and data encryption.
AWS has achieved Spain’s Esquema Nacional de Seguridad (ENS) High certification across 29 services. To successfully achieve the ENS High Standard, BDO España conducted an independent audit and attested that AWS meets confidentiality, integrity, and availability standards. This provides the assurance needed by Spanish Public Sector organizations wanting to build secure applications and services on AWS.
The National Security Framework, regulated under Royal Decree 3/2010, was developed through close collaboration between ENAC (Entidad Nacional de Acreditación), the Ministry of Finance and Public Administration and the CCN (National Cryptologic Centre), and other administrative bodies.
The following AWS Services are ENS High accredited across our Dublin and Frankfurt Regions:
The Amazon EMR team is cranking out new features at an impressive pace (guess they have lots of worker nodes)! So far this quarter they have added all of these features:
Today we are adding to this list with the addition of automatic scaling for EMR clusters. You can now use scale out and scale in policies to adjust the number of core and task nodes in your clusters in response to changing workloads and to optimize your resource usage:
Scale out Policies add additional capacity and allow you to tackle bigger problems. Applications like Apache Spark and Apache Hive will automatically take advantage of the increased processing power as it comes online.
Scale in Policies remove capacity, either at the end of an instance billing hour or as tasks complete. If a node is removed while it is running a YARN container, YARN will rerun that container on another node (read Configure Cluster Scale-Down Behavior for more info).
Using Auto Scaling In order to make use of Auto Scaling, an IAM role that give Auto Scaling permission to launch and terminate EC2 instances must be associated with your cluster. If you create a cluster from the EMR Console, it will create the EMR_AutoScaling_DefaultRole for you. You can use it as-is or customize it as needed. If you create a cluster programmatically or via the command-line, you will need to create it yourself. You can also create the default roles from the command line like this:
$ aws emr create-default-roles
From the console, you can edit the Auto Scaling policies by clicking on the Advanced Options when you create your cluster:
Simply click on the pencil icon to begin editing your policy. Here’s my Scale out policy:
Because this policy is driven by YARNMemoryAvailablePercentage, it will be activated under low-memory conditions when I am running a YARN-based framework such as Spark, Tez, or Hadoop MapReduce. I can choose many other metrics as well; here are some of my options:
And here’s my Scale in policy:
I can choose from the same set of metrics, and I can set a Cooldown period for each policy. This value sets the minimum amount of time between scaling activities, and allows the metrics to stabilize as the changes take effect.
Default policies (driven by YARNMemoryAvailablePercentage and ContainerPendingRatio) are also available in the console.
Another busy week in AWS-land! Today’s post included submissions from 21 internal and external contributors, along with material from my RSS feeds, my inbox, and other things that come my way. To join in the fun, create (or find) some awesome AWS-related content and submit a pull request!
VarnishAutoScalingCluster contains code and instructions for setting up a shared, horizontally scalable Varnish cluster that scales up and down using Auto Scaling groups.
AlbemaTV – AbemaTV is an Internet media-services company that operates one of Japan’s leading streaming platforms, FRESH! by AbemaTV. The company built its microservices platform on Amazon EC2 Container Service and uses an Amazon Aurora data store for its write-intensive microservices—such as timelines and chat—and a MySQL database on Amazon RDS for the remaining microservices APIs. By using AWS, AbemaTV has been able to quickly deploy its new platform at scale with minimal engineering effort.
Celgene – Celgene uses AWS to enable secure collaboration between internal and external researchers, allow individual scientists to launch hundreds of compute nodes, and reduce the time it takes to do computational jobs from weeks or months to less than a day. Celgene is a global biopharmaceutical company that creates drugs that fight cancer and other diseases and disorders. Celgene runs its high-performance computing research clusters, as well as its research collaboration environment, on AWS.
Under Armour – Under Armour can scale its Connected Fitness apps to meet the demands of more than 180 million global users, innovate and deliver new products and features more quickly, and expand internationally by taking advantage of the reliability and high availability of AWS. The company is a global leader in performance footwear, apparel, and equipment. Under Armour runs its growing Connected Fitness app platform on the AWS Cloud.
If you are running MapReduce jobs on premises and storing data in HDFS (the Hadoop Distributed File System), you can now copy that data directly from HDFS to an AWS Import/Export Snowball without using an intermediary staging file. Because HDFS is often used for Big Data workloads, this can greatly simplify the process of importing large amounts of data to AWS for further processing.
To use this new feature, download and configure the newest version of the Snowball Client on the on-premises host that is running the desired HDFS cluster. Then use commands like this to copy files from HDFS to S3 via Snowball:
AWS re:Invent 2016 begins November 28, and now, the live session catalog includes 32 security and compliance sessions. 19 of these sessions are in the Security & Compliance track and 13 are in the re:Source Mini Con for Security Services. All 32se titles and abstracts are included below.
As in past years, the sessions in the Security & Compliance track will take place in The Venetian | Palazzo in Las Vegas. Here’s what you have to look forward to!
Does meeting stringent compliance requirements keep you up at night? Do you worry about having the right audit trails in place as proof?
Cengage Learning’s Chief Security Officer, Robert Hotaling, shares his organization’s journey to AWS, and how they enabled continuous compliance for their dynamic environment with automation. When Cengage shifted from publishing to digital education and online learning, they needed a secure elastic infrastructure for their data intensive and cyclical business, and workload layer security tools that would help them meet compliance requirements (e.g., PCI).
In this session, you will learn why building security in from the beginning saves you time (and painful retrofits) later, how to gather and retain audit evidence for instances that are only up for minutes or hours, and how Cengage used Trend Micro Deep Security to meet many compliance requirements and ensured instances were instantly protected as they came online in a hybrid cloud architecture. Session sponsored by Trend Micro, Inc.
With security-relevant services such as AWS Config, VPC Flow Logs, Amazon CloudWatch Events, and AWS Lambda, you now have the ability to programmatically wrangle security events that may occur within your AWS environment, including prevention, detection, response, and remediation. This session covers the process of automating security event response with various AWS building blocks, taking several ideas from drawing board to code, and gaining confidence in your coverage by proactively testing security monitoring and response effectiveness before anyone else does.
Are you interested in learning how to control access to your AWS resources? Have you ever wondered how to best scope down permissions to achieve least privilege permissions access control? If your answer to these questions is “yes,” this session is for you. We take an in-depth look at the AWS Identity and Access Management (IAM) policy language. We start with the basics of the policy language and how to create and attach policies to IAM users, groups, and roles. As we dive deeper, we explore policy variables, conditions, and other tools to help you author least privilege policies. Throughout the session, we cover some common use cases, such as granting a user secure access to an Amazon S3 bucket or to launch an Amazon EC2 instance of a specific type.
In a rapidly changing IT environment, detecting and responding to new threats is more important than ever. This session shows you how to build a predictive analytics stack on AWS, which harnesses the power of Amazon Machine Learning in conjunction with Amazon Elasticsearch Service, AWS CloudTrail, and VPC Flow Logs to perform tasks such as anomaly detection and log analysis. We also demonstrate how you can use AWS Lambda to act on this information in an automated fashion, such as performing updates to AWS WAF and security groups, leading to an improved security posture and alleviating operational burden on your security teams.
With the rapid increase of complexity in managing security for distributed IT and cloud computing, security and compliance managers can innovate to ensure a high level of security when managing AWS resources. In this session, Chad Woolf, director of compliance for AWS, discusses which AWS service features to leverage to achieve a high level of security assurance over AWS resources, giving you more control of the security of your data and preparing you for a wide range of audits. You can now implement point-in-time audits and continuous monitoring in system architecture. Internal and external auditors can learn about emerging tools for monitoring environments in real time. Follow use case examples and demonstrations of services like Amazon Inspector, Amazon CloudWatch Logs, AWS CloudTrail, and AWS Config. Learn firsthand what some AWS customers have accomplished by leveraging AWS features to meet specific industry compliance requirements.
Encryption is a favorite of security and compliance professionals everywhere. Many compliance frameworks actually mandate encryption. Though encryption is important, it is also treacherous. Cryptographic protocols are subtle, and researchers are constantly finding new and creative flaws in them. Using encryption correctly, especially over time, also is expensive because you have to stay up to date.
AWS wants to encrypt data. And our customers, including Amazon, want to encrypt data. In this talk, we look at some of the challenges with using encryption, how AWS thinks internally about encryption, and how that thinking has informed the services we have built, the features we have vended, and our own usage of AWS.
Historically, relationships between developers and security teams have been challenging. Security teams sometimes see developers as careless and ignorant of risk, while developers might see security teams as dogmatic barriers to productivity. Can technologies and approaches such as the cloud, APIs, and automation lead to happier developers and more secure systems? Netflix has had success pursuing this approach, by leaning into the fundamental cloud concept of self-service, the Netflix cultural value of transparency in decision making, and the engineering efficiency principle of facilitating a “paved road.” This session explores how security teams can use thoughtful tools and automation to improve relationships with development teams while creating a more secure and manageable environment. Topics include Netflix’s approach to IAM entity management, Elastic Load Balancing and certificate management, and general security configuration monitoring.
In this session, CloudCheckr CTO Aaron Newman highlights effective strategies and tools that AWS users can employ to improve their security posture. Specific emphasis is placed upon leveraging native AWS services. He covers how to include concrete steps that users can begin employing immediately. Session sponsored by CloudCheckr.
Ensuring security and compliance across a globally distributed, large-scale AWS deployment requires a scalable process and a comprehensive set of technologies. In this session, Adobe will deep-dive into the AWS native monitoring and security services and some Splunk technologies leveraged globally to perform security monitoring across a large number of AWS accounts. You will learn about Adobe’s collection plumbing including components of S3, Kinesis, CloudWatch, SNS, Dynamo DB and Lambda, as well as the tooling and processes used at Adobe to deliver scalable monitoring without managing an unwieldy number of API keys and input stanzas. Session sponsored by Splunk.
AWS serverless architecture components such as Amazon S3, Amazon SQS, Amazon SNS, CloudWatch Logs, DynamoDB, Amazon Kinesis, and Lambda can be tightly constrained in their operation. However, it may still be possible to use some of them to propagate payloads that could be used to exploit vulnerabilities in some consuming endpoints or user-generated code. This session explores techniques for enhancing the security of these services, from assessing and tightening permissions in IAM to integrating tools and mechanisms for inline and out-of-band payload analysis that are more typically applied to traditional server-based architectures.
Johnson & Johnson is in the process of doing a proof of concept to rewrite the compliance framework that they presented at re:Invent 2014. This framework leverages the newest AWS services and abandons the need for continual describes and master rules servers. Instead, Johnson & Johnson plans to use a distributed, event-based architecture that not only reduces costs but also assigns costs to the appropriate projects rather than central IT.
This session tells how our most mature, security-minded Fortune 500 customers adopt AWS while improving end-to-end protection of their sensitive data. Learn about the enterprise security architecture decisions made during actual sensitive workload deployments as told by the AWS professional services and the solution architecture team members who lived them. In this very prescriptive, technical walkthrough, we share lessons learned from the development of enterprise security strategy, security use-case development, security configuration decisions, and the creation of AWS security operations playbooks to support customer architectures.
Professional services has completed five deep PCI engagements with enterprise customers over the last year. Common patterns were identified and codified in various artifacts. This session introduces the patterns that help customers address PCI requirements in a standard manner that also meets AWS best practices. Hear customers speak about their side of the journey and the solutions that they used to deploy a PCI compliance workload.
GxP is an acronym that refers to the regulations and guidelines applicable to life sciences organizations that make food and medical products such as drugs, medical devices, and medical software applications. The overall intent of GxP requirements is to ensure that food and medical products are safe for consumers and to ensure the integrity of data used to make product-related safety decisions.
The term GxP encompasses a broad range of compliance-related activities such as Good Laboratory Practices (GLP), Good Clinical Practices (GCP), Good Manufacturing Practices (GMP), and others, each of which has product-specific requirements that life sciences organizations must implement based on the 1) type of products they make and 2) country in which their products are sold. When life sciences organizations use computerized systems to perform certain GxP activities, they must ensure that the computerized GxP system is developed, validated, and operated appropriately for the intended use of the system.
For this session, co-presented with Merck, services such as Amazon EC2, Amazon CloudWatch Logs, AWS CloudTrail, AWS CodeCommit, Amazon Simple Storage Service (S3), and AWS CodePipeline will be discussed with an emphasis on implementing GxP-compliant systems in the AWS Cloud.
This session enables security operators to use data provided by AWS services such as AWS CloudTrail, AWS Config, Amazon CloudWatch Events, and VPC Flow Fogs to reduce vulnerabilities, and when required, execute timely security actions that fix the violation or gather more information about the vulnerability and attacker. We look at security practices for compliance with PCI, CIS Security Controls,and HIPAA. We dive deep into an example from an AWS customer, Siemens AG, which has automated governance and implemented automated remediation using CloudTrail, AWS Config Rules, and AWS Lambda. A prerequisite for this session is knowledge of software development with Java, Python, or Node.
As attackers become more sophisticated, web application developers need to constantly update their security configurations. Static firewall rules are no longer good enough. Developers need a way to deploy automated security that can learn from the application behavior and identify bad traffic patterns to detect bad bots or bad actors on the Internet. This session showcases some of the real-world customer use cases that use machine learning and AWS WAF (a web application firewall) to automatically identify bad actors affecting multiplayer gaming applications. We also present tutorials and code samples that show how customers can analyze traffic patterns and deploy new AWS WAF rules on the fly.
This session covers AWS Identity and Access Management (IAM) best practices that can help improve your security posture. We cover how to manage users and their security credentials. We also explain why you should delete your root access keys—or at the very least, rotate them regularly. Using common use cases, we demonstrate when to choose between using IAM users and IAM roles. Finally, we explore how to set permissions to grant least privilege access control in one or more of your AWS accounts.
This session covers what a real-world production deployment of a fully automated deployment pipeline looks like with instances that are deployed without SSH keys. By leveraging AWS CodeDeploy and Docker, we will show how we achieved semi-immutable and fully immutable infrastructures, and what the challenges and remediations were.
This session demonstrates 5 different security and compliance validation actions that you can perform using Amazon CloudWatch Events and AWS Config rules. This session focuses on the actual code for the various controls, actions, and remediation features, and how to use various AWS services and features to build them. The demos in this session include CIS Amazon Web Services Foundations validation; host-based AWS Config rules validation using AWS Lambda, SSH, and VPC-E; automatic creation and assigning of MFA tokens when new users are created; and automatic instance isolation based on SSH logons or VPC Flow Logs deny logs. This session focuses on code and live demos.
The re:Source Mini Con for Security Services offers you an opportunity to dive even deeper into security and compliance topics. Think of it as a one-day, fully immersive mini-conference. The Mini Con will take place in The Mirage in Las Vegas.
Audit teams can consistently evaluate the security of an AWS account. Best practices greatly reduce complexity when managing risk and auditing the use of AWS for critical, audited, and regulated systems. You can integrate these security checks into your security and audit ecosystem. Center for Internet Security (CIS) benchmarks are incorporated into products developed by 20 security vendors, are referenced by PCI 3.1 and FedRAMP, and are included in the National Vulnerability Database (NVD) National Checklist Program (NCP). This session shows you how to implement foundational security measures in your AWS account. The prescribed best practices help make implementation of core AWS security measures more straightforward for security teams and AWS account owners.
In this 2.5-hour workshop, we will show you how to manage permissions by drafting AWS IAM policies that adhere to the principle of least privilege–granting the least permissions required to achieve a task. You will learn all the ins and outs of drafting and applying IAM policies appropriately to help secure your AWS resources. In addition, we will show you how to configure network security using VPCs and security groups.
AWS Key Management Service provides an easy and cost-effective way to secure your data in AWS. In this session, you learn about leveraging the latest features of the service to minimize risk for your data. We also review the recently released Import Key feature that gives you more control over the encryption process by letting you bring your own keys to AWS.
This session shows you how to reduce your blast radius by using multiple AWS accounts per region and service, which helps limit the impact of a critical event such as a security breach. Using multiple accounts helps you define boundaries and provides blast-radius isolation.
Cloud computing offers many advantages, such as the ability to scale your web applications or website on demand. But how do you scale your security and compliance infrastructure along with the business? Join this session to understand best practices for scaling your security resources as you grow from zero to millions of users. Specifically, you learn the following:
How to scale your security and compliance infrastructure to keep up with a rapidly expanding threat base.
The security implications of scaling for numbers of users and numbers of applications, and how to satisfy both needs.
How agile development with integrated security testing and validation leads to a secure environment.
Best practices and design patterns of a continuous delivery pipeline and the appropriate security-focused testing for each.
The necessity of treating your security as code, just as you would do with infrastructure.
The services covered in this session include AWS IAM, Auto Scaling, Amazon Inspector, AWS WAF, and Amazon Cognito.
AWS supports identity federation using SAML (Security Assertion Markup Language) 2.0. Using SAML, you can configure your AWS accounts to integrate with your identity provider (IdP). Once configured, your federated users are authenticated and authorized by your organization’s IdP, and then can use single sign-on (SSO) to sign in to the AWS Management Console. This not only obviates the need for your users to remember yet another user name and password, but it also streamlines identity management for your administrators. This is great if your federated users want to access the AWS Management Console, but what if they want to use the AWS CLI or programmatically call AWS APIs?
In this 2.5-hour workshop, we will show you how you can implement federated API and CLI access for your users. The examples provided use the AWS Python SDK and some additional client-side integration code. If you have federated users that require this type of access, implementing this solution should earn you more than one high five on your next trip to the water cooler.
Microservice architectures provide numerous benefits but also have significant security challenges. This session presents how Nike uses layers of security to protect consumers and business. We show how network topology, network security primitives, identity and access management, traffic routing, secure network traffic, secrets management, and host-level security (antivirus, intrusion prevention system, intrusion detection system, file integrity monitoring) all combine to create a multilayer, end-to-end security solution for our microservice-based premium consumer experiences. Technologies to be covered include Amazon Virtual Private Cloud, access control lists, security groups, IAM roles and profiles, AWS KMS, NAT gateways, ELB load balancers, and Cerberus (our cloud-native secrets management solution).
Security of big data workloads in a hybrid IT environment often comes as an afterthought. This session discusses how enterprises can architect securing big data workloads on AWS. We cover the application of authentication, authorization, encryption, and additional security principles and mechanisms to workloads leveraging Amazon Elastic MapReduce and Amazon Redshift.
Attend this session to learn about security testing your applications in AWS. Effective security testing is challenging, but multiple features and services within AWS make security testing easier. This session covers common approaches to testing, including how we think about testing within AWS, how to apply AWS services to your test setup, remediating findings, and automation.
Distributed denial of service (DDoS) attack mitigation has traditionally been a challenge for those hosting on fixed infrastructure. In the cloud, users can build applications on elastic infrastructure that is capable of mitigating and absorbing DDoS attacks. What once required overprovisioning, additional infrastructure, or third-party services is now an inherent capability of many cloud-based applications. This session explains common DDoS attack vectors and how AWS customers with different use cases are addressing these challenges. As part of the session, we show you how to build applications that are resilient to DDoS and demonstrate how they work in practice.
Managing permissions across a growing number of identities and resources can be time consuming and complex. Testing, validating, and understanding permissions before and after policy changes are deployed is critical to ensuring that your users and systems have the appropriate level of access. This session walks through the tools that are available to test, validate, and understand the permissions in your account. We demonstrate how to use these tools and how to automate them to continually validate the permissions in your accounts. The tools demonstrated in this session help you answer common questions such as:
How does a policy change affect the overall permissions for a user, group, or role?
AWS CISO Steve Schmidt presents the state of the union for re:Source Mini Con for Security Services. He addresses the state of the security and compliance ecosystem; large enterprise customer additions in key industries; the vertical view: maturing spaces for AWS security assurance (GxP, IoT, CIS foundations); and the international view: data privacy protections and data sovereignty. The state of the union also addresses a number of new identity, directory, and access services, and closes by looking at what’s on the horizon.
Automatic and semiautomatic mechanical theorem provers are now being used within AWS to find proofs in mathematical logic that establish desired properties of key AWS components. In this session, we outline these efforts and discuss how mechanical theorem provers are used to replay found proofs of desired properties when software artifacts or networks are modified, thus helping provide security throughout the lifetime of the AWS system. We consider these use cases:
Using constraint solving to show that VPCs have desired safety properties, and maintaining this continuously at each change to the VPC.
Using automatic mechanical theorem provers to prove that s2n’s HMAC is correct and maintaining this continuously at each change to the s2n source code.
Using semiautomatic mechanical theorem provers to prove desired safety properties of Sassy protocol.
– Craig
The collective thoughts of the interwebz
By continuing to use the site, you agree to the use of cookies. more information
The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.