This series of blog posts uses the AWS Well-Architected Tool with the Serverless Lens to help customers build and operate applications using best practices. In each post, I address the nine serverless-specific questions identified by the Serverless Lens along with the recommended best practices. See the Introduction post for a table of contents and explanation of the example application.
Question OPS2: How do you approach application lifecycle management?
This post continues part 2 of this Operational Excellence question where I look at deploying to multiple stages using temporary environments, and rollout deployments. In part 1, I cover using infrastructure as code with version control to deploy applications in a repeatable manner.
Good practice: Use configuration management
Use environment variables and configuration management systems to make and track configuration changes. These systems reduce errors caused by manual processes, reduce the level of effort to deploy changes, and help isolate configuration from business logic.
Environment variables are suited for infrequently changing configuration options such as logging levels, and database connection strings. Configuration management systems are for dynamic configuration that might change frequently or contain sensitive data such as secrets.
For example, the Stripe payment keys for all branches, and names for individual branches, are visible within the Amplify Console in the Environment variables section.
For the serverless airline application, dynamic configuration is stored in AWS Systems Manager Parameter Store. During CloudFormation stack deployment, a number of parameters are stored in Systems Manager. For example, in the booking service AWS SAM template, the booking SNS topic ARN is stored.
View the stored SNS topic value by navigating to the Parameter Store console, and search for BookingTopic.
Finding Systems Manager Parameter Store values
Select the Parameter name and see the Amazon SNS ARN.
Viewing SNS topic value
The loyalty service then references this value within another stack.
When the Amplify Console Makefile deploys the loyalty service, it retrieves this value for the booking service from Parameter Store, and references it as a parameter-override. The deployment is also parametrized with the $${AWS_BRANCH} environment variable if there are multiple environments within the same AWS account and Region.
sam deploy \
--parameter-overrides \
BookingSNSTopic=/$${AWS_BRANCH}/service/booking/messaging/bookingTopic
Environment variables and configuration management systems help with managing application configuration.
Improvement plan summary
Use environment variables for configuration options that change infrequently such as logging levels, and database connection strings.
Use a configuration management system for dynamic configuration that might change frequently or contain sensitive data such as secrets.
Best practice: Use CI/CD including automated testing across separate accounts
Continuous integration/delivery/deployment is one of the cornerstones of cloud application development and a vital part of a DevOps initiative.
Explanation of CI/CD stages
Building CI/CD pipelines increases software delivery quality and feedback time for detecting and resolving errors. I cover how to deploy multiple stages in isolated environments and accounts, which helps with creating separate testing CI/CD pipelines in part 2. As the serverless airline example is using AWS Amplify Console, this comes with a built-in CI/CD pipeline.
Automate the build, deployment, testing, and rollback of the workload using KPI and operational alerts. This eases troubleshooting, enables faster remediation and feedback time, and enables automatic and manual rollback/roll-forward should an alert trigger.
I cover metrics, KPIs, and operational alerts in this series in the Application Health part 1, and part 2 posts. I cover rollout deployments with traffic shifting based on metrics in this question’s part 2.
CI/CD pipelines should include integration, and end-to-end tests. I cover local unit testing for Lambda and API Gateway in part 2.
Add an optional testing stage to Amplify Console to catch regressions before pushing code to production. Use the test step to run any test commands at build time using any testing framework of your choice. Amplify Console has deeper integration with the Cypress test suite that allows you to generate a UI report for your tests. Here is an example to set up end-to-end tests with Cypress.
Cypress testing example
There are a number of AWS and third-party solutions to host code and create CI/CD pipelines for serverless applications.
AWS CodeCommit is a fully managed git-based source control service for hosting code.
Use a continuous integration/continuous deployment (CI/CD) pipeline solution that deploys multiple stages in isolated environments/accounts.
Automate testing including but not limited to unit, integration, and end-to-end tests.
Favor rollout deployments over all-at-once deployments for more resilience, and gradually learn what metrics best determine your workload’s health to appropriately alert on.
Use a deployment system that supports traffic shifting as part of your pipeline, and rollback/roll-forward traffic to previous versions if an alert is triggered.
Good practice: Review function runtime deprecation policy
Lambda functions created using AWS provided runtimes follow official long-term support deprecation policies. Third-party provided runtime deprecation policy may differ from official long-term support. Review your runtime deprecation policy and have a mechanism to report on runtimes that, if deprecated, may affect your workload to operate as intended.
If you are unable to migrate to newer runtimes within the deprecation schedule, use AWS Lambda custom runtimes as an interim solution.
Improvement plan summary
Identify and report runtimes that might deprecate and their support policy.
Conclusion
Introducing application lifecycle management improves the development, deployment, and management of serverless applications. In part 1, I cover using infrastructure as code with version control to deploy applications in a repeatable manner. This reduces errors caused by manual processes and gives you more confidence your application works as expected. In part 2, I cover prototyping new features using temporary environments, and rollout deployments to gradually shift traffic to new application code.
In this post I cover configuration management, CI/CD for serverless applications, and managing function runtime deprecation.
In an upcoming post, I will cover the first Security question from the Well-Architected Serverless Lens – Controlling access to serverless APIs.
Slack is widely used by DevOps and development teams to communicate status. Typically, when a build has been tested and is ready to be promoted to a staging environment, a QA engineer or DevOps engineer kicks off the deployment. Using Slack in a ChatOps collaboration model, the promotion can be done in a single click from a Slack channel. And because the promotion happens through a Slack channel, the whole development team knows what’s happening without checking email.
In this blog post, I will show you how to integrate AWS services with a Slack application. I use an interactive message button and incoming webhook to promote a stage with a single click.
To follow along with the steps in this post, you’ll need a pipeline in AWS CodePipeline. If you don’t have a pipeline, the fastest way to create one for this use case is to use AWS CodeStar. Go to the AWS CodeStar console and select the Static Website template (shown in the screenshot). AWS CodeStar will create a pipeline with an AWS CodeCommit repository and an AWS CodeDeploy deployment for you. After the pipeline is created, you will need to add a manual approval stage.
You’ll also need to build a Slack app with webhooks and interactive components, write two Lambda functions, and create an API Gateway API and a SNS topic.
As you’ll see in the following diagram, when I make a change and merge a new feature into the master branch in AWS CodeCommit, the check-in kicks off my CI/CD pipeline in AWS CodePipeline. When CodePipeline reaches the approval stage, it sends a notification to Amazon SNS, which triggers an AWS Lambda function (ApprovalRequester).
The Slack channel receives a prompt that looks like the following screenshot. When I click Yes to approve the build promotion, the approval result is sent to CodePipeline through API Gateway and Lambda (ApprovalHandler). The pipeline continues on to deploy the build to the next environment.
Create a Slack app
For App Name, type a name for your app. For Development Slack Workspace, choose the name of your workspace. You’ll see in the following screenshot that my workspace is AWS ChatOps.
After the Slack application has been created, you will see the Basic Information page, where you can create incoming webhooks and enable interactive components.
To add incoming webhooks:
Under Add features and functionality, choose Incoming Webhooks. Turn the feature on by selecting Off, as shown in the following screenshot.
Now that the feature is turned on, choose Add New Webhook to Workspace. In the process of creating the webhook, Slack lets you choose the channel where messages will be posted.
After the webhook has been created, you’ll see its URL. You will use this URL when you create the Lambda function.
If you followed the steps in the post, the pipeline should look like the following.
Write the Lambda function for approval requests
This Lambda function is invoked by the SNS notification. It sends a request that consists of an interactive message button to the incoming webhook you created earlier. The following sample code sends the request to the incoming webhook. WEBHOOK_URL and SLACK_CHANNEL are the environment variables that hold values of the webhook URL that you created and the Slack channel where you want the interactive message button to appear.
# This function is invoked via SNS when the CodePipeline manual approval action starts.
# It will take the details from this approval notification and sent an interactive message to Slack that allows users to approve or cancel the deployment.
import os
import json
import logging
import urllib.parse
from base64 import b64decode
from urllib.request import Request, urlopen
from urllib.error import URLError, HTTPError
# This is passed as a plain-text environment variable for ease of demonstration.
# Consider encrypting the value with KMS or use an encrypted parameter in Parameter Store for production deployments.
SLACK_WEBHOOK_URL = os.environ['SLACK_WEBHOOK_URL']
SLACK_CHANNEL = os.environ['SLACK_CHANNEL']
logger = logging.getLogger()
logger.setLevel(logging.INFO)
def lambda_handler(event, context):
print("Received event: " + json.dumps(event, indent=2))
message = event["Records"][0]["Sns"]["Message"]
data = json.loads(message)
token = data["approval"]["token"]
codepipeline_name = data["approval"]["pipelineName"]
slack_message = {
"channel": SLACK_CHANNEL,
"text": "Would you like to promote the build to production?",
"attachments": [
{
"text": "Yes to deploy your build to production",
"fallback": "You are unable to promote a build",
"callback_id": "wopr_game",
"color": "#3AA3E3",
"attachment_type": "default",
"actions": [
{
"name": "deployment",
"text": "Yes",
"style": "danger",
"type": "button",
"value": json.dumps({"approve": True, "codePipelineToken": token, "codePipelineName": codepipeline_name}),
"confirm": {
"title": "Are you sure?",
"text": "This will deploy the build to production",
"ok_text": "Yes",
"dismiss_text": "No"
}
},
{
"name": "deployment",
"text": "No",
"type": "button",
"value": json.dumps({"approve": False, "codePipelineToken": token, "codePipelineName": codepipeline_name})
}
]
}
]
}
req = Request(SLACK_WEBHOOK_URL, json.dumps(slack_message).encode('utf-8'))
response = urlopen(req)
response.read()
return None
Create a SNS topic
Create a topic and then create a subscription that invokes the ApprovalRequester Lambda function. You can configure the manual approval action in the pipeline to send a message to this SNS topic when an approval action is required. When the pipeline reaches the approval stage, it sends a notification to this SNS topic. SNS publishes a notification to all of the subscribed endpoints. In this case, the Lambda function is the endpoint. Therefore, it invokes and executes the Lambda function. For information about how to create a SNS topic, see Create a Topic in the Amazon SNS Developer Guide.
Write the Lambda function for handling the interactive message button
This Lambda function is invoked by API Gateway. It receives the result of the interactive message button whether or not the build promotion was approved. If approved, an API call is made to CodePipeline to promote the build to the next environment. If not approved, the pipeline stops and does not move to the next stage.
The Lambda function code might look like the following. SLACK_VERIFICATION_TOKEN is the environment variable that contains your Slack verification token. You can find your verification token under Basic Information on Slack manage app page. When you scroll down, you will see App Credential. Verification token is found under the section.
# This function is triggered via API Gateway when a user acts on the Slack interactive message sent by approval_requester.py.
from urllib.parse import parse_qs
import json
import os
import boto3
SLACK_VERIFICATION_TOKEN = os.environ['SLACK_VERIFICATION_TOKEN']
#Triggered by API Gateway
#It kicks off a particular CodePipeline project
def lambda_handler(event, context):
#print("Received event: " + json.dumps(event, indent=2))
body = parse_qs(event['body'])
payload = json.loads(body['payload'][0])
# Validate Slack token
if SLACK_VERIFICATION_TOKEN == payload['token']:
send_slack_message(json.loads(payload['actions'][0]['value']))
# This will replace the interactive message with a simple text response.
# You can implement a more complex message update if you would like.
return {
"isBase64Encoded": "false",
"statusCode": 200,
"body": "{\"text\": \"The approval has been processed\"}"
}
else:
return {
"isBase64Encoded": "false",
"statusCode": 403,
"body": "{\"error\": \"This request does not include a vailid verification token.\"}"
}
def send_slack_message(action_details):
codepipeline_status = "Approved" if action_details["approve"] else "Rejected"
codepipeline_name = action_details["codePipelineName"]
token = action_details["codePipelineToken"]
client = boto3.client('codepipeline')
response_approval = client.put_approval_result(
pipelineName=codepipeline_name,
stageName='Approval',
actionName='ApprovalOrDeny',
result={'summary':'','status':codepipeline_status},
token=token)
print(response_approval)
Create the API Gateway API
In the Amazon API Gateway console, create a resource called InteractiveMessageHandler.
Create a POST method.
For Integration type, choose Lambda Function.
Select Use Lambda Proxy integration.
From Lambda Region, choose a region.
In Lambda Function, type a name for your function.
Now go back to your Slack application and enable interactive components.
To enable interactive components for the interactive message (Yes) button:
Under Features, choose Interactive Components.
Choose Enable Interactive Components.
Type a request URL in the text box. Use the invoke URL in Amazon API Gateway that will be called when the approval button is clicked.
Now that all the pieces have been created, run the solution by checking in a code change to your CodeCommit repo. That will release the change through CodePipeline. When the CodePipeline comes to the approval stage, it will prompt to your Slack channel to see if you want to promote the build to your staging or production environment. Choose Yes and then see if your change was deployed to the environment.
Conclusion
That is it! You have now created a Slack ChatOps solution using AWS CodeCommit, AWS CodePipeline, AWS Lambda, Amazon API Gateway, and Amazon Simple Notification Service.
Now that you know how to do this Slack and CodePipeline integration, you can use the same method to interact with other AWS services using API Gateway and Lambda. You can also use Slack’s slash command to initiate an action from a Slack channel, rather than responding in the way demonstrated in this post.
AWS Config enables continuous monitoring of your AWS resources, making it simple to assess, audit, and record resource configurations and changes. AWS Config does this through the use of rules that define the desired configuration state of your AWS resources. AWS Config provides a number of AWS managed rules that address a wide range of security concerns such as checking if you encrypted your Amazon Elastic Block Store (Amazon EBS) volumes, tagged your resources appropriately, and enabled multi-factor authentication (MFA) for root accounts. You can also create custom rules to codify your compliance requirements through the use of AWS Lambda functions.
In this post we’ll show you how to use AWS Config to monitor our Amazon Simple Storage Service (S3) bucket ACLs and policies for violations which allow public read or public write access. If AWS Config finds a policy violation, we’ll have it trigger an Amazon CloudWatch Event rule to trigger an AWS Lambda function which either corrects the S3 bucket ACL, or notifies you via Amazon Simple Notification Service (Amazon SNS) that the policy is in violation and allows public read or public write access. We’ll show you how to do this in five main steps.
Enable AWS Config to monitor Amazon S3 bucket ACLs and policies for compliance violations.
Create an IAM Role and Policy that grants a Lambda function permissions to read S3 bucket policies and send alerts through SNS.
Create and configure a CloudWatch Events rule that triggers the Lambda function when AWS Config detects an S3 bucket ACL or policy violation.
Create a Lambda function that uses the IAM role to review S3 bucket ACLs and policies, correct the ACLs, and notify your team of out-of-compliance policies.
Verify the monitoring solution.
Note: This post assumes your compliance policies require the buckets you monitor not allow public read or write access. If you have intentionally open buckets serving static content, for example, you can use this post as a jumping-off point for a solution tailored to your needs.
At the end of this post, we provide an AWS CloudFormation template that implements the solution outlined. The template enables you to deploy the solution in multiple regions quickly.
Important: The use of some of the resources deployed, including those deployed using the provided CloudFormation template, will incur costs as long as they are in use. AWS Config Rules incur costs in each region they are active.
Architecture
Here’s an architecture diagram of what we’ll implement:
Figure 1: Architecture diagram
Step 1: Enable AWS Config and Amazon S3 Bucket monitoring
The following steps demonstrate how to set up AWS Config to monitor Amazon S3 buckets.
If this is your first time using AWS Config, select Get started. If you’ve already used AWS Config, select Settings.
In the Settings page, under Resource types to record, clear the All resources checkbox. In the Specific types list, select Bucket under S3.
Figure 2: The Settings dialog box showing the “Specific types” list
Choose the Amazon S3 bucket for storing configuration history and snapshots. We’ll create a new Amazon S3 bucket.
Figure 3: Creating an S3 bucket
If you prefer to use an existing Amazon S3 bucket in your account, select the Choose a bucket from your account radio button and, using the dropdown, select an existing bucket.
Figure 4: Selecting an existing S3 bucket
Under Amazon SNS topic, check the box next to Stream configuration changes and notifications to an Amazon SNS topic, and then select the radio button to Create a topic.
Alternatively, you can choose a topic that you have previously created and subscribed to.
Figure 5: Selecting a topic that you’ve previously created and subscribed to
If you created a new SNS topic you need to subscribe to it to receive notifications. We’ll cover this in a later step.
Under AWS Config role, choose Create a role (unless you already have a role you want to use). We’re using the auto-suggested role name.
Figure 6: Creating a role
Select Next.
Configure Amazon S3 bucket monitoring rules:
On the AWS Config rules page, search for S3 and choose the s3-bucket-publice-read-prohibited and s3-bucket-public-write-prohibited rules, then click Next.
Figure 7: AWS Config rules dialog
On the Review page, select Confirm. AWS Config is now analyzing your Amazon S3 buckets, capturing their current configurations, and evaluating the configurations against the rules we selected.
If you created a new Amazon SNS topic, open the Amazon SNS Management Console and locate the topic you created:
Figure 8: Amazon SNS topic list
Copy the ARN of the topic (the string that begins with arn:) because you’ll need it in a later step.
Select the checkbox next to the topic, and then, under the Actions menu, select Subscribe to topic.
Select Email as the protocol, enter your email address, and then select Create subscription.
After several minutes, you’ll receive an email asking you to confirm your subscription for notifications for this topic. Select the link to confirm the subscription.
Step 2: Create a Role for Lambda
Our Lambda will need permissions that enable it to inspect and modify Amazon S3 bucket ACLs and policies, log to CloudWatch Logs, and publishing to an Amazon SNS topic. We’ll now set up a custom AWS Identity and Access Management (IAM) policy and role to support these actions and assign them to the Lambda function we’ll create in the next section.
In the AWS Management Console, under Services, select IAM to access the IAM Console.
Create a policy with the following permissions, or copy the following policy:
Select Lambda from the list of services that will use this role.
Select the check box next to the policy you created previously, and then select Next: Review
Name your role, give it a description, and then select Create Role. In this example, we’re naming the role LambdaS3PolicySecuringRole.
Step 3: Create and Configure a CloudWatch Rule
In this section, we’ll create a CloudWatch Rule to trigger the Lambda function when AWS Config determines that your Amazon S3 buckets are non-compliant.
In the AWS Management Console, under Services, select CloudWatch.
On the left-hand side, under Events, select Rules.
Click Create rule.
In Step 1: Create rule, under Event Source, select the dropdown list and select Build custom event pattern.
Copy the following pattern and paste it into the text box:
The pattern matches events generated by AWS Config when it checks the Amazon S3 bucket for public accessibility.
We’ll add a Lambda target later. For now, select your Amazon SNS topic created earlier, and then select Configure details.
Figure 9: The “Create rule” dialog
Give your rule a name and description. For this example, we’ll name ours AWSConfigFoundOpenBucket
Click Create rule.
Step 4: Create a Lambda Function
In this section, we’ll create a new Lambda function to examine an Amazon S3 bucket’s ACL and bucket policy. If the bucket ACL is found to allow public access, the Lambda function overwrites it to be private. If a bucket policy is found, the Lambda function creates an SNS message, puts the policy in the message body, and publishes it to the Amazon SNS topic we created. Bucket policies can be complex, and overwriting your policy may cause unexpected loss of access, so this Lambda function doesn’t attempt to alter your policy in any way.
Get the ARN of the Amazon SNS topic created earlier.
In the AWS Management Console, under Services, select Lambda to go to the Lambda Console.
From the Dashboard, select Create Function. Or, if you were taken directly to the Functions page, select the Create Function button in the upper-right.
On the Create function page:
Choose Author from scratch.
Provide a name for the function. We’re using AWSConfigOpenAccessResponder.
The Lambda function we’ve written is Python 3.6 compatible, so in the Runtime dropdown list, select Python 3.6.
Under Role, select Choose an existing role. Select the role you created in the previous section, and then select Create function.
Figure 10: The “Create function” dialog
We’ll now add a CloudWatch Event based on the rule we created earlier.
In the Add triggers section, select CloudWatch Events. A CloudWatch Events box should appear connected to the left side of the Lambda Function and have a note that states Configuration required.
Figure 11: CloudWatch Events in the “Add triggers” section
From the Rule dropdown box, choose the rule you created earlier, and then select Add.
Scroll up to the Designer section and select the name of your Lambda function.
Delete the default code and paste in the following code:
import boto3
from botocore.exceptions import ClientError
import json
import os
ACL_RD_WARNING = "The S3 bucket ACL allows public read access."
PLCY_RD_WARNING = "The S3 bucket policy allows public read access."
ACL_WRT_WARNING = "The S3 bucket ACL allows public write access."
PLCY_WRT_WARNING = "The S3 bucket policy allows public write access."
RD_COMBO_WARNING = ACL_RD_WARNING + PLCY_RD_WARNING
WRT_COMBO_WARNING = ACL_WRT_WARNING + PLCY_WRT_WARNING
def policyNotifier(bucketName, s3client):
try:
bucketPolicy = s3client.get_bucket_policy(Bucket = bucketName)
# notify that the bucket policy may need to be reviewed due to security concerns
sns = boto3.client('sns')
subject = "Potential compliance violation in " + bucketName + " bucket policy"
message = "Potential bucket policy compliance violation. Please review: " + json.dumps(bucketPolicy['Policy'])
# send SNS message with warning and bucket policy
response = sns.publish(
TopicArn = os.environ['TOPIC_ARN'],
Subject = subject,
Message = message
)
except ClientError as e:
# error caught due to no bucket policy
print("No bucket policy found; no alert sent.")
def lambda_handler(event, context):
# instantiate Amazon S3 client
s3 = boto3.client('s3')
resource = list(event['detail']['requestParameters']['evaluations'])[0]
bucketName = resource['complianceResourceId']
complianceFailure = event['detail']['requestParameters']['evaluations'][0]['annotation']
if(complianceFailure == ACL_RD_WARNING or complianceFailure == PLCY_RD_WARNING):
s3.put_bucket_acl(Bucket = bucketName, ACL = 'private')
elif(complianceFailure == PLCY_RD_WARNING or complianceFailure == PLCY_WRT_WARNING):
policyNotifier(bucketName, s3)
elif(complianceFailure == RD_COMBO_WARNING or complianceFailure == WRT_COMBO_WARNING):
s3.put_bucket_acl(Bucket = bucketName, ACL = 'private')
policyNotifier(bucketName, s3)
return 0 # done
Scroll down to the Environment variables section. This code uses an environment variable to store the Amazon SNS topic ARN.
For the key, enter TOPIC_ARN.
For the value, enter the ARN of the Amazon SNS topic created earlier.
Under Execution role, select Choose an existing role, and then select the role created earlier from the dropdown.
Leave everything else as-is, and then, at the top, select Save.
Step 5: Verify it Works
We now have the Lambda function, an Amazon SNS topic, AWS Config watching our Amazon S3 buckets, and a CloudWatch Rule to trigger the Lambda function if a bucket is found to be non-compliant. Let’s test them to make sure they work.
We have an Amazon S3 bucket, myconfigtestbucket that’s been created in the region monitored by AWS Config, as well as the associated Lambda function. This bucket has no public read or write access set in an ACL or a policy, so it’s compliant.
Figure 12: The “Config Dashboard”
Let’s change the bucket’s ACL to allow public listing of objects:
Figure 13: Screen shot of “Permissions” tab showing Everyone granted list access
After saving, the bucket now has public access. After several minutes, the AWS Config Dashboard notes that there is one non-compliant resource:
Figure 14: The “Config Dashboard” shown with a non-compliant resource
In the Amazon S3 Console, we can see that the bucket no longer has public listing of objects enabled after the invocation of the Lambda function triggered by the CloudWatch Rule created earlier.
Figure 15: The “Permissions” tab showing list access no longer allowed
Notice that the AWS Config Dashboard now shows that there are no longer any non-compliant resources:
Figure 16: The “Config Dashboard” showing zero non-compliant resources
Now, let’s try out the Amazon S3 bucket policy check by configuring a bucket policy that allows list access:
Figure 17: A bucket policy that allows list access
A few minutes after setting this bucket policy on the myconfigtestbucket bucket, AWS Config recognizes the bucket is no longer compliant. Because this is a bucket policy rather than an ACL, we publish a notification to the SNS topic we created earlier that lets us know about the potential policy violation:
Figure 18: Notification about potential policy violation
Knowing that the policy allows open listing of the bucket, we can now modify or delete the policy, after which AWS Config will recognize that the resource is compliant.
Conclusion
In this post, we demonstrated how you can use AWS Config to monitor for Amazon S3 buckets with open read and write access ACLs and policies. We also showed how to use Amazon CloudWatch, Amazon SNS, and Lambda to overwrite a public bucket ACL, or to alert you should a bucket have a suspicious policy. You can use the CloudFormation template to deploy this solution in multiple regions quickly. With this approach, you will be able to easily identify and secure open Amazon S3 bucket ACLs and policies. Once you have deployed this solution to multiple regions you can aggregate the results using an AWS Config aggregator. See this post to learn more.
If you have feedback about this blog post, submit comments in the Comments section below. If you have questions about this blog post, start a new thread on the AWS Config forum or contact AWS Support.
Want more AWS Security news? Follow us on Twitter.
First, nothing will break now or after April 11, 2019. GCM device tokens are completely interchangeable with the newer Firebase Cloud Messaging (FCM) device tokens. If you have existing GCM tokens, you’ll still be able to use them to send notifications. This statement is also true for GCM tokens that you generate in the future.
On the back end, we’ve already migrated Amazon SNS and Amazon Pinpoint to the server endpoint for FCM (https://fcm.googleapis.com/fcm/send). As a developer, you don’t need to make any changes as a result of this deprecation.
We created the following mini-FAQ to address some of the questions you may have as a developer who uses Amazon SNS or Amazon Pinpoint.
If I migrate to FCM from GCM, can I still use Amazon Pinpoint and Amazon SNS?
Yes. Your ability to connect to your applications and send messages through both Amazon SNS and Amazon Pinpoint doesn’t change. We’ll update the documentation for Amazon SNS and Amazon Pinpoint soon to reflect these changes.
If I don’t migrate to FCM from GCM, can I still use Amazon Pinpoint and Amazon SNS?
Yes. If you do nothing, your existing credentials and GCM tokens will still be valid. All applications that you previously set up to use Amazon Pinpoint or Amazon SNS will continue to work normally. When you call the API for Amazon Pinpoint or Amazon SNS, we initiate a request to the FCM server endpoint directly.
What are the differences between Amazon SNS and Amazon Pinpoint?
Amazon SNS makes it easy for developers to set up, operate, and send notifications at scale, affordably and with a high degree of flexibility. Amazon Pinpoint has many of the same messaging capabilities as Amazon SNS, with the same levels of scalability and flexibility.
The main difference between the two services is that Amazon Pinpoint provides both transactional and targeted messaging capabilities. By using Amazon Pinpoint, marketers and developers can not only send transactional messages to their customers, but can also segment their audiences, create campaigns, and analyze both application and message metrics.
Amazon Simple Notification Service (SNS) now supports VPC Endpoints (VPCE) via AWS PrivateLink. You can use VPC Endpoints to privately publish messages to SNS topics, from an Amazon Virtual Private Cloud (VPC), without traversing the public internet. When you use AWS PrivateLink, you don’t need to set up an Internet Gateway (IGW), Network Address Translation (NAT) device, or Virtual Private Network (VPN) connection. You don’t need to use public IP addresses, either.
VPC Endpoints doesn’t require code changes and can bring additional security to Pub/Sub Messaging use cases that rely on SNS. VPC Endpoints helps promote data privacy and is aligned with assurance programs, including the Health Insurance Portability and Accountability Act (HIPAA), FedRAMP, and others discussed below.
VPC Endpoints for SNS in action
Here’s how VPC Endpoints for SNS works. The following example is based on a banking system that processes mortgage applications. This banking system, which has been deployed to a VPC, publishes each mortgage application to an SNS topic. The SNS topic then fans out the mortgage application message to two subscribing AWS Lambda functions:
Save-Mortgage-Application stores the application in an Amazon DynamoDB table. As the mortgage application contains personally identifiable information (PII), the message must not traverse the public internet.
Save-Credit-Report checks the applicant’s credit history against an external Credit Reporting Agency (CRA), then stores the final credit report in an Amazon S3 bucket.
The following diagram depicts the underlying architecture for this banking system:
To protect applicants’ data, the financial institution responsible for developing this banking system needed a mechanism to prevent PII data from traversing the internet when publishing mortgage applications from their VPC to the SNS topic. Therefore, they created a VPC endpoint to enable their publisher Amazon EC2 instance to privately connect to the SNS API. As shown in the diagram, when the VPC endpoint is created, an Elastic Network Interface (ENI) is automatically placed in the same VPC subnet as the publisher EC2 instance. This ENI exposes a private IP address that is used as the entry point for traffic destined to SNS. This ensures that traffic between the VPC and SNS doesn’t leave the Amazon network.
Set up VPC Endpoints for SNS
The process for creating a VPC endpoint to privately connect to SNS doesn’t require code changes: access the VPC Management Console, navigate to the Endpoints section, and create a new Endpoint. Three attributes are required:
The SNS service name.
The VPC and Availability Zones (AZs) from which you’ll publish your messages.
The Security Group (SG) to be associated with the endpoint network interface. The Security Group controls the traffic to the endpoint network interface from resources in your VPC. If you don’t specify a Security Group, the default Security Group for your VPC will be associated.
The SNS API is served through HTTP Secure (HTTPS), and encrypts all messages in transit with Transport Layer Security (TLS) certificates issued by Amazon Trust Services (ATS). The certificates verify the identity of the SNS API server when encrypted connections are established. The certificates help establish proof that your SNS API client (SDK, CLI) is communicating securely with the SNS API server. A Certificate Authority (CA) issues the certificate to a specific domain. Hence, when a domain presents a certificate that’s issued by a trusted CA, the SNS API client knows it’s safe to make the connection.
Summary
VPC Endpoints can increase the security of your pub/sub messaging use cases by allowing you to publish messages to SNS topics, from instances in your VPC, without traversing the internet. Setting up VPC Endpoints for SNS doesn’t require any code changes because the SNS API address remains the same.
VPC Endpoints for SNS is now available in all AWS Regions where AWS PrivateLink is available. For information on pricing and regional availability, visit the VPC pricing page. For more information and on-boarding, see Publishing to Amazon SNS Topics from Amazon Virtual Private Cloud in the SNS documentation.
If you have comments about this post, submit them in the Comments section below. If you have questions about anything in this post, start a new thread on the Amazon SNS forum or contact AWS Support.
Want more AWS Security news? Follow us on Twitter.
With the advent of AWS PrivateLink, you can provide services to AWS customers directly in their Virtual Private Networks by offering cross-account SaaS solutions on private IP addresses rather than over the Internet.
Traffic that flows to the services you provide does so over private AWS networking rather than over the Internet, offering security and performance enhancements, as well as convenience. PrivateLink can tie in with the AWS Marketplace, facilitating billing and providing a straightforward consumption model to your customers.
The use cases are myriad, but, for this blog post, we’ll demonstrate a fictional order-processing resource. The resource accepts JSON data over a RESTful API, simulating an interface. This could easily be an existing application being considered for a PrivateLink-based consumption model. Consumers of this resource send JSON payloads representing new orders and the system responds with order IDs corresponding to newly-created orders in the system. In a real-world scenario, additional APIs, such as authentication, might also represent critical aspects of the system. This example will not demonstrate these additional APIs because they could be consumed over PrivateLink in a similar fashion to the API constructed in the example.
I’ll demonstrate how to expose the resource on a private IP address in a customer’s VPC. I’ll also explain an architecture leveraging PrivateLink and provide detailed instructions for how to set up such a service. Finally, I’ll provide an example of how a customer might consume such a service. I’ll focus not only on how to architect the solution, but also the considerations that drive architectural choices.
Solution Overview
N.B.: Only two subnets and Availability Zones are shown per VPC for simplicity. Resources must cover all Availability Zones per Region, so that the application is available to all consumers in the region. The instructions in this post, which pertain to resources sitting in us-east-1 will detail the deployment of subnets in all six Availability Zones for this region.
This solution exposes an application’s HTTP-based API over PrivateLink in a provider’s AWS account. The application is a stateless web server running on Amazon Elastic Compute Cloud (EC2) instances. The provider places instances within a virtual private network (VPC) consisting of one private subnet per Availability Zone (AZ). Each AZ contains a subnet. Instances populate each subnet inside of Auto Scaling Groups (ASGs), maintaining a desired count per subnet. There is one ASG per subnet to ensure that the service is available in each AZ. An internal Network Load Balancer (NLB) sits in front of the entire fleet of application instances and an endpoint service is connected with the NLB.
In the customer’s AWS account, they create an endpoint that consumes the endpoint service from the provider’s account. The endpoint exposes an Elastic Network Interface (ENI) in each subnet the customer desires. Each ENI is assigned an IP address within the CIDR block associated with the subnet, for any number of subnets in any number of AZs within the region, for each customer.
PrivateLink facilitates cross-account access to services so the customer can use the provider’s service, feeding it data that exist within the customer’s account while using application logic and systems that run in the provider’s account. The routing between accounts is over private networking rather than over the Internet.
Though this example shows a simple, stateless service running on EC2 and sitting behind an NLB, many kinds of AWS services can be exposed through PrivateLink and can serve as pathways into a provider’s application, such as Amazon Kinesis Streams, Amazon EC2 Container Service, Amazon EC2 Systems Manager, and more.
Using PrivateLink to Establish a Service for Consumption
Building a service to be consumed through PrivateLink involves a few steps:
Build a VPC covering all AZs in region with private subnets
Create a NLB, listener, and target group for instances
Create a launch configuration and ASGs to manage the deployment of Amazon
EC2 instances in each subnet
Launch an endpoint service and connect it with the NLB
Tie endpoint-request approval with billing systems or the AWS Marketplace
Provide the endpoint service in multiple regions
Step 1: Build a VPC and private subnets
Start by determining the network you will need to serve the application. Keep in mind, that you will need to serve the application out of each AZ within any region you choose. Customers will expect to consume your service in multiple AZs because AWS recommends they architect their own applications to span across AZs for fault-tolerance purposes.
Additionally, anything less than full coverage across all AZs in a single region will not facilitate straightforward consumption of your service because AWS does not guarantee that a single AZ will carry the same name across accounts. In fact, AWS randomizes AZ names across accounts to ensure even distribution of independent workloads. Telling customers, for example, that you provide a service in us-east-1a may not give them sufficient information to connect with your service.
The solution is to serve your application in all AZs within a region because this guarantees that no matter what AZs a customer chooses for endpoint creation, that customer is guaranteed to find a running instance of your application with which to connect.
You can lay the foundations for doing this by creating a subnet in each AZ within the region of your choice. The subnets can be private because the service, exposed via PrivateLink, will not provide any publicly routable APIs.
This example uses the us-east-1 region. If you use a different region, the number of AZs may vary, which will change the number of subnets required, and thus the size of the IP address range for your VPC may require adjustments.
The example above creates a VPC with 128 IP addresses starting at 10.3.0.0. Each subnet will contain 16 IP addresses, using a total of 96 addresses in the space. Allocating a sufficient block of addresses requires some planning (though you can make adjustments later if needed). I’d suggest an equally-sized address space in each subnet because the provided service should embody the same performance, availability, and functionality regardless of which AZ your customers choose. Each subnet will need a sufficient address space to accommodate the number of instances you run within it. Additionally, you will need enough space to allow for one IP address per subnet to assign to that subnet’s NLB node’s Elastic Network Interface (ENI).
In this simple example, 16 IP addresses per subnet are enough because we will configure ASGs to maintain two instances each and the NLB requires one ENI. Each subnet reserves five IP addresses for internal purposes, for a total of eight IP addresses needed in each subnet to support the service.
Next, create the private subnets for each Availability Zone. The following demonstrates the creation of the first subnet, which sits in the us-east-1a AZ:
Repeat this step for each remaining AZ. If using the us-east-1 region, you will need to create private subnets in all AZs as follows:
For the purpose of this example, the subnets can leverage the default route table, as it contains a single rule for routing requests to private IP addresses in the VPC, as follows:
In a real-world case, additional routing may be required. For example, you may need additional routes to support VPC peering to access dependencies in other VPCs, connectivity to on-premises resources over DirectConnect or VPN, Internet-accessible dependencies via NAT, or other scenarios.
Security Group Creation
Instances will need to be placed in a security group that allows traffic from the NLB nodes that sit in each subnet.
All instances running the service should be in a security group accepting TCP traffic on the traffic port from any other IP address in the VPC. This will allow the NLB to forward traffic to those instances because the NLB nodes sit in the VPC and are assigned IP addresses in the subnets. In this example, the order processing server running on each instance exposes a service on port 3000, so the security group rule covers this port.
Create a security group for instances:
aws ec2 create-security-group \
--group-name "service-sg" \
--description "Security group for service instances" \
--vpc-id "vpc-2cadab54"
Step 2: Create a Network Load Balancer, Listener, and Target Group
The service integrates with PrivateLink using an internal NLB which sits in front of instances that run the service.
Step 3: Create a Launch Configuration and Auto Scaling Groups
Each private subnet in the VPC will require its own ASG in order to ensure that there is always a minimum number of instances in each subnet.
A single ASG spanning all subnets will not guarantee that every subnet contains the appropriate number of instances. For example, while a single ASG could be configured to work across six subnets and maintain twelve instances, there is no guarantee that each of the six subnets will contain two instances. To guarantee the appropriate number of instances on a per-subnet basis, each subnet must be configured with its own ASG.
New instances should be automatically created within each ASG based on a single launch configuration. The launch configuration should be set up to use an existing Amazon Machine Image (AMI).
This post presupposes you have an AMI that can be used to create new instances that serve the application. There are only a few basic assumptions to how this image is configured:
1. The image containes a web server that serves traffic (in this case, on port 3000) 2. The image is configured to automatically launch the web server as a daemon when the instance starts.
Create a launch configuration for the ASGs, providing the AMI ID, the ID of the security group created in previous steps (above), a key for access, and an instance type:
Repeat this process to create an ASG in each remaining subnet, using the same launch configuration and target group.
In this example, only two instances are created in each subnet. In a real-world scenario, additional instances would likely be recommended for both availability and scale. The ASGs use the provided launch configuration as a template for creating new instances.
When creating the ASGs, the ARN of the target group for the NLB is provided. This way, the ASGs automatically register newly-created instances with the target group so that the NLB can begin sending traffic to them.
Step 4: Launch an endpoint service and connect with NLB
Now, expose the service via PrivateLink with an endpoint service, providing the ARN of the NLB:
This endpoint service is configured to require acceptance. This means that new consumers who attempt to add endpoints that consume it will have to wait for the provider to allow access. This provides an opportunity to control access and integrate with billing systems that monetize the provided service.
Step 5: Tie endpoint request approval with billing system or the AWS Marketplace
If you’re maintaining your service as a private service, any account that is intended to have access must be whitelisted before it can find the endpoint service and create an endpoint to consume it.
For more information on listing a PrivateLink service in the AWS Marketplace, see How to List Your Product in AWS Marketplace (https://aws.amazon.com/blogs/apn/how-to-list-your-product-in-aws-marketplace/).
Most production-ready services offered through PrivateLink will require acceptance of Endpoint requests before customers can consume them. Typically, some level of automation around processing approvals is helpful. PrivateLink can publish on a Simple Notification Service (SNS) topic when customers request approval.
Setting this up requires two steps:
1. Create a new SNS topic 2. Create an endpoint connection notification that publishes to the SNS topic.
Each is discussed below.
Create an SNS Topic
First, create a new SNS Topic that can receive messages relating to endpoint service access requests:
This creates a new topic with the name “service-notification-topic”. Endpoint request approval systems can subscribe to this Topic so that acceptance can be automated.
Next, create a new Endpoint Connection Notification, so that messages will be published to the topic when new Endpoints connect and need to have access requests approved:
A billing system may ultimately tie in with request approval. This can also be done manually, which may be less useful, but is illustrative. As an example, assume that a customer account has already requested an endpoint to consume the service. The customer can be accepted manually, as follows:
At this point, the consumer can begin consuming the service.
Step 6: Take the Service Across Regions
In distributing SaaS via PrivateLink, providers may have to have to think about how to make their services available in different regions because Endpoint Services are only available within the region where they are created. Customers who attempt to consume Endpoint Services will not be able to create Endpoints across regions.
Rather than saddling consumers with the responsibility of making the jump across regions, we recommend providers work to make services available where their customers consume. They are in a better position to adapt their architectures to multiple regions than customers who do not know the internals of how providers have designed their services.
There are several architectural options that can support multi-region adaptation. Selection among them will depend on a number of factors, including read-to-write ratio, latency requirements, budget, amenability to re-architecture, and preference for simplicity.
Generally, the challenge in providing multi-region SaaS is in instantiating stateful components in multiple regions because the data on which such components depend are hard to replicate, synchronize, and access with low latency over large geographical distances.
Of all stateful components, perhaps the most frequently encountered will be databases. Some solutions for overcoming this challenge with respect to databases are as follows:
1. Provide a master in a single region; provide read replicas in every region. 2. Provide a master in every region; assign each tenant to one master only. 3. Create a full multi-master architecture; replicate data efficiently. 4. Rely on a managed service for replicating data cross-regionally (e.g., DynamoDB Global Tables).
Stateless components can be provisioned in multiple regions more easily. In this example, you will have to re-create all of the VPC resources—including subnets, Routing Tables, Security Groups, and Endpoint Services—as well as all EC2 resources—including instances, NLBs, Listeners, Target Groups, ASGs, and Launch Configurations—in each additional region. Because of the complexity in doing so, in addition to the significant need to keep regional configurations in-sync, you may wish to explore an orchestration tool such as CloudFormation, rather than the command line.
Regardless of what orchestration tooling you choose, you will need to copy your AMI to each region in which you wish to deploy it. Once available, you can build out your service in that region much as you did in the first one.
This copies the AMI used to provide the service in us-east-1 into us-east-2. Repeat the process for each region you wish to enable.
Consuming a Service via PrivateLink
To consume a service over PrivateLink, a customer must create a new Endpoint in their VPC within a Security Group that allows traffic on the traffic port.
Start by creating a Security Group to apply to a new Endpoint:
aws ec2 create-security-group \ --group-name "consumer-sg" \ --description "Security group for service consumers" \ --vpc-id "vpc-2cadab54"
Next, create an endpoint in the VPC, placing it in the Security Group:
The response will include an attribute called VpcEndpoint.DnsEntries. The service can be accessed at each of the DNS names in the output under any of the entries there. Before the consumer can access the endpoint service, the provider has to accept the Endpoint.
Access Endpoint Via Custom DNS Names
When creating a new Endpoint, the consumer will receive named endpoint addresses in each AZ where the Endpoint is created, plus a named endpoint that is AZ-agnostic. For example:
The consumer can use Route53 to provide a custom DNS name for the service. This not only allows for using cleaner service names, but also enables the consumer to leverage the traffic management features of Route53, such as fail-over routing.
First, the the consumer must enable DNS Hostnames and DNS Support on the VPC within which the Endpoint was created. The consumer should start by enabling DNS Hostnames:
After the VPC is properly configured to work with Route53, the consumer should either select an existing hosted zone or create a new one. Assuming one has not already been created, the consumer should create one as follows:
In the request, the consumer specifies the DNS name, VPC ID, region, and flags the hosted zone as private. Additionally, the consumer must provide a “caller reference” which is a unique ID of the request that can be used to identify it in subsequent actions if the request fails.
Next, the consumer should create a JSON file corresponding to a batch of record change requests. In this file, the consumer can specify the name of the endpoint, as well as a CNAME pointing to the AZ-agnostic DNS name of the Endpoint:
At this point, the Endpoint can be consumed at http://order-processor.endpoints.internal.
Conclusion
AWS PrivateLink is an exciting way to expose SaaS services to customers. This article demonstrated how to expose an existing application on EC2 via PrivateLink in a customer’s VPC, as well as recommended architecture. Finally, it walked through the steps that a customer would have to go through to consume the service.
This post courtesy of Michael Edge, Sr. Cloud Architect – AWS Professional Services
Applications built using a microservices architecture typically result in a number of independent, loosely coupled microservices communicating with each other, synchronously via their APIs and asynchronously via events. These microservices are often owned by different product teams, and these teams may segregate their resources into different AWS accounts for reasons that include security, billing, and resource isolation. This can sometimes result in the following challenges:
Cross-account deployment: A single pipeline must deploy a microservice into multiple accounts; for example, a microservice must be deployed to environments such as DEV, QA, and PROD, all in separate accounts.
Cross-account lookup: During deployment, a resource deployed into one AWS account may need to refer to a resource deployed in another AWS account.
Cross-account communication: Microservices executing in one AWS account may need to communicate with microservices executing in another AWS account.
In this post, I look at ways to address these challenges using a sample application composed of a web application supported by two serverless microservices. The microservices are owned by different product teams and deployed into different accounts using AWS CodePipeline, AWS CloudFormation, and the Serverless Application Model (SAM). At runtime, the microservices communicate using an event-driven architecture that requires asynchronous, cross-account communication via an Amazon Simple Notification Service (Amazon SNS) topic.
Sample application
First, look at the sample application I use to demonstrate these concepts. In the following overview diagram, you can see the following:
The entire application consists of three main services:
A Booking microservice, owned by the Booking account.
An Airmiles microservice, owned by the Airmiles account.
A web application that uses the services exposed by both microservices, owned by the Web Channel account.
The Booking microservice creates flight bookings and publishes booking events to an SNS topic.
The Airmiles microservice consumes booking events from the SNS topic and uses the booking event to calculate the airmiles associated with the flight booking. It also supports querying airmiles for a specific flight booking.
The web application allows an end user to make flight bookings, view flights bookings, and view the airmiles associated with a flight booking.
In the sample application, the Booking and Airmiles microservices are implemented using AWS Lambda. Together with Amazon API Gateway, Amazon DynamoDB, and SNS, the sample application is completely serverless.
Sample Serverless microservices application
The typical booking flow would be triggered by an end user making a flight booking using the web application, which invokes the Booking microservice via its REST API. The Booking microservice persists the flight booking and publishes the booking event to an SNS topic to enable sharing of the booking with other interested consumers. In this sample application, the Airmiles microservice subscribes to the SNS topic and consumes the booking event, using the booking information to calculate the airmiles. In line with microservices best practices, both the Booking and Airmiles microservices store their information in their own DynamoDB tables, and expose an API (via API Gateway) that is used by the web application.
Setup
Before you delve into the details of the sample application, get the source code and deploy it.
Cross-account deployment of Lambda functions using CodePipeline has been previously discussed by my colleague Anuj Sharma in his post, Building a Secure Cross-Account Continuous Delivery Pipeline. This sample application builds upon the solution proposed by Anuj, using some of the same scripts and a similar account structure. To make it feasible for you to deploy the sample application, I’ve reduced the number of accounts needed down to three accounts by consolidating some of the services. In the following diagram, you can see the services used by the sample application require three accounts:
Tools: A central location for the continuous delivery/deployment services such as CodePipeline and AWS CodeBuild. To reduce the number of accounts required by the sample application, also deploy the AWS CodeCommit repositories here, though typically they may belong in a separate Dev account.
Booking: Account for the Booking microservice.
Airmiles: Account for the Airmiles microservice.
Without consolidation, the sample application may require up to 10 accounts: one for Tools, and three accounts each for Booking, Airmiles and Web Application (to support the DEV, QA, and PROD environments).
Account structure for sample application
To follow the rest of this post, clone the repository in step 1 below. To deploy the application on AWS, follow steps 2 and 3:
Follow the instructions in the repository README to build the CodePipeline pipelines and deploy the microservices and web application.
Challenge 1: Cross-account deployment using CodePipeline
Though the Booking pipeline executes in the Tools account, it deploys the Booking Lambda functions into the Booking account.
In the sample application code repository, open the ToolsAcct/code-pipeline.yaml CloudFormation template.
Scroll down to the Pipeline resource and look for the DeployToTest pipeline stage (shown below). There are two AWS Identity and Access Management (IAM) service roles used in this stage that allow cross-account activity. Both of these roles exist in the Booking account:
Under Actions.RoleArn, find the service role assumed by CodePipeline to execute this pipeline stage in the Booking account. The role referred to by the parameter NonProdCodePipelineActionServiceRole allows access to the CodePipeline artifacts in the S3 bucket in the Tools account, and also access to the AWS KMS key needed to encrypt/decrypt the artifacts.
Under Actions.Configuration.RoleArn, find the service role assumed by CloudFormation when it carries out the CHANGE_SET_REPLACE action in the Booking account.
These roles are created in the CloudFormation template NonProdAccount/toolsacct-codepipeline-cloudformation-deployer.yaml.
Challenge 2: Cross-account stack lookup using custom resources
Asynchronous communication is a fairly common pattern in microservices architectures. A publishing microservice publishes an event that consumers may be interested in, without any concern for who those consumers may be.
In the case of the sample application, the publisher is the Booking microservice, publishing a flight booking event onto an SNS topic that exists in the Booking account. The consumer is the Airmiles microservice in the Airmiles account. To enable the two microservices to communicate, the Airmiles microservice must look up the ARN of the Booking SNS topic at deployment time in order to set up a subscription to it.
To enable CloudFormation templates to be reused, you are not hardcoding resource names in the templates. Because you allow CloudFormation to generate a resource name for the Booking SNS topic, the Airmiles microservice CloudFormation template must look up the SNS topic name at stack creation time. It’s not possible to use cross-stack references, as these can’t be used across different accounts.
However, you can use a CloudFormation custom resource to achieve the same outcome. This is discussed in the next section. Using a custom resource to look up stack exports in another stack does not create a dependency between the two stacks, unlike cross-stack references. A stack dependency would prevent one stack being deleted if another stack depended upon it. For more information, see Fn::ImportValue.
Using a Lambda function as a custom resource to look up the booking SNS topic
The sample application uses a Lambda function as a custom resource. This approach is discussed in AWS Lambda-backed Custom Resources. Walk through the sample application and see how the custom resource is used to list the stack export variables in another account and return these values to the calling AWS CloudFormation stack. Examine each of the following aspects of the custom resource:
Deploying the custom resource.
Custom resource IAM role.
A calling CloudFormation stack uses the custom resource.
The custom resource assumes a role in another account.
The custom resource obtains the stack exports from all stacks in the other account.
The custom resource returns the stack exports to the calling CloudFormation stack.
The custom resource handles all the event types sent by the calling CloudFormation stack.
Step1: Deploying the custom resource
The custom Lambda function is deployed using SAM, as are the Lambda functions for the Booking and Airmiles microservices. See the CustomLookupExports resource in Custom/custom-lookup-exports.yml.
Step2: Custom resource IAM role
The CustomLookupExports resource in Custom/custom-lookup-exports.yml executes using the CustomLookupLambdaRole IAM role. This role allows the custom Lambda function to assume a cross account role that is created along with the other cross account roles in the NonProdAccount/toolsacct-codepipeline-cloudformation-deployer.yml. See the resource CustomCrossAccountServiceRole.
Step3: The CloudFormation stack uses the custom resource
The Airmiles microservice is created by the Airmiles CloudFormation template Airmiles/sam-airmile.yml, a SAM template that uses the custom Lambda resource to look up the ARN of the Booking SNS topic. The custom resource is specified by the CUSTOMLOOKUP resource, and the PostAirmileFunction resource uses the custom resource to look up the ARN of the SNS topic and create a subscription to it.
Because the Airmiles Lambda function is going to subscribe to an SNS topic in another account, it must grant the SNS topic in the Booking account permissions to invoke the Airmiles Lambda function in the Airmiles account whenever a new event is published. Permissions are granted by the LambdaResourcePolicy resource.
Step4: The custom resource assumes a role in another account
When the Lambda custom resource is invoked by the Airmiles CloudFormation template, it must assume a role in the Booking account (see Step 2) in order to query the stack exports in that account.
This can be seen in Custom/custom-lookup-exports.py, where the AWS Simple Token Service (AWS STS) is used to obtain a temporary access key to allow access to resources in the account referred to by the environment variable: ‘CUSTOM_CROSS_ACCOUNT_ROLE_ARN’. This environment variable is defined in the Custom/custom-lookup-exports.yml CloudFormation template, and refers to the role created in Step 2.
Step5: The custom resource obtains the stack exports from all stacks in the other account
The function get_exports() in Custom/custom-lookup-exports.py uses the AWS SDK to list all the stack exports in the Booking account.
Step 6: The custom resource returns the stack exports to the calling CloudFormation stack
The calling CloudFormation template, Airmiles/sam-airmile.yml, uses the custom resource to look up a stack export with the name of booking-lambda-BookingTopicArn. This is exported by the CloudFormation template Booking/sam-booking.yml.
Step7: The custom resource handles all the event types sent by the calling CloudFormation stack
Custom resources used in a stack are called whenever the stack is created, updated, or deleted. They must therefore handle CREATE, UPDATE, and DELETE stack events. If your custom resource fails to send a SUCCESS or FAILED notification for each of these stack events, your stack may become stuck in a state such as CREATE_IN_PROGRESS or UPDATE_ROLLBACK_IN_PROGRESS. To handle this cleanly, use the crhelper custom resource helper. This strongly encourages you to handle the CREATE, UPDATE, and DELETE CloudFormation stack events.
Challenge 3: Cross-account SNS subscription
The SNS topic is specified as a resource in the Booking/sam-booking.yml CloudFormation template. To allow an event published to this topic to trigger the Airmiles Lambda function, permissions must be granted on both the Booking SNS topic and the Airmiles Lambda function. This is discussed in the next section.
Permissions on booking SNS topic
SNS topics support resource-based policies, which allow a policy to be attached directly to a resource specifying who can access the resource. This policy can specify which accounts can access a resource, and what actions those accounts are allowed to perform. This is the same approach as used by a small number of AWS services, such as Amazon S3, KMS, Amazon SQS, and Lambda. In Booking/sam-booking.yml, the SNS topic policy allows resources in the Airmiles account (referenced by the parameter NonProdAccount in the following snippet) to subscribe to the Booking SNS topic:
The Airmiles microservice is created by the Airmiles/sam-airmile.yml CloudFormation template. The template uses SAM to specify the Lambda functions together with their associated API Gateway configurations. SAM hides much of the complexity of deploying Lambda functions from you.
For instance, by adding an ‘Events’ resource to the PostAirmileFunction in the CloudFormation template, the Airmiles Lambda function is triggered by an event published to the Booking SNS topic. SAM creates the SNS subscription, as well as the permissions necessary for the SNS subscription to trigger the Lambda function.
However, the Lambda permissions generated automatically by SAM are not sufficient for cross-account SNS subscription, which means you must specify an additional Lambda permissions resource in the CloudFormation template. LambdaResourcePolicy, in the following snippet, specifies that the Booking SNS topic is allowed to invoke the Lambda function PostAirmileFunction in the Airmiles account.
In this post, I showed you how product teams can use CodePipeline to deploy microservices into different AWS accounts and different environments such as DEV, QA, and PROD. I also showed how, at runtime, microservices in different accounts can communicate securely with each other using an asynchronous, event-driven architecture. This allows product teams to maintain their own AWS accounts for billing and security purposes, while still supporting communication with microservices in other accounts owned by other product teams.
Acknowledgments
Thanks are due to the following people for their help in preparing this post:
Kevin Yung for the great web application used in the sample application
Jay McConnell for crhelper, the custom resource helper used with the CloudFormation custom resources
Amazon EC2 Spot Instances are spare compute capacity in the AWS Cloud available to you at steep discounts compared to On-Demand prices. The only difference between On-Demand Instances and Spot Instances is that Spot Instances can be interrupted by Amazon EC2 with two minutes of notification when EC2 needs the capacity back.
Customers have been taking advantage of Spot Instance interruption notices available via the instance metadata service since January 2015 to orchestrate their workloads seamlessly around any potential interruptions. Examples include saving the state of a job, detaching from a load balancer, or draining containers. Needless to say, the two-minute Spot Instance interruption notice is a powerful tool when using Spot Instances.
In January 2018, the Spot Instance interruption notice also became available as an event in Amazon CloudWatch Events. This allows targets such as AWS Lambda functions or Amazon SNS topics to process Spot Instance interruption notices by creating a CloudWatch Events rule to monitor for the notice.
In this post, I walk through an example use case for taking advantage of Spot Instance interruption notices in CloudWatch Events to automatically deregister Spot Instances from an Elastic Load Balancing Application Load Balancer.
When any of the Spot Instances receives an interruption notice, Spot Fleet sends the event to CloudWatch Events. The CloudWatch Events rule then notifies both targets, the Lambda function and SNS topic. The Lambda function detaches the Spot Instance from the Application Load Balancer target group, taking advantage of nearly a full two minutes of connection draining before the instance is interrupted. The SNS topic also receives a message, and is provided as an example for the reader to use as an exercise.
To complete this walkthrough, have the AWS CLI installed and configured, as well as the ability to launch CloudFormation stacks.
Launch the stack
Go ahead and launch the CloudFormation stack. You can check it out from GitHub, or grab the template directly. In this post, I use the stack name “spot-spin-cwe“, but feel free to use any name you like. Just remember to change it in the instructions.
Here are the details of the architecture being launched by the stack.
IAM permissions
Give permissions to a few components in the architecture:
The Lambda function
The CloudWatch Events rule
The Spot Fleet
The Lambda function needs basic Lambda function execution permissions so that it can write logs to CloudWatch Logs. You can use the AWS managed policy for this. It also needs to describe EC2 tags as well as deregister targets within Elastic Load Balancing. You can create a custom policy for these.
Finally, Spot Fleet needs permissions to request Spot Instances, tag, and register targets in Elastic Load Balancing. You can tap into an AWS managed policy for this.
Because you are taking advantage of the two-minute Spot Instance notice, you can tune the Elastic Load Balancing target group deregistration timeout delay to match. When a target is deregistered from the target group, it is put into connection draining mode for the length of the timeout delay: 120 seconds to equal the two-minute notice.
To capture the Spot Instance interruption notice being published to CloudWatch Events, create a rule with two targets: the Lambda function and the SNS topic.
The Lambda function does the heavy lifting for you. The details of the CloudWatch event are published to the Lambda function, which then uses boto3 to make a couple of AWS API calls. The first call is to describe the EC2 tags for the Spot Instance, filtering on a key of “TargetGroupArn”. If this tag is found, the instance is then deregistered from the target group ARN stored as the value of the tag.
import boto3
def handler(event, context):
instanceId = event['detail']['instance-id']
instanceAction = event['detail']['instance-action']
try:
ec2client = boto3.client('ec2')
describeTags = ec2client.describe_tags(Filters=[{'Name': 'resource-id','Values':[instanceId],'Name':'key','Values':['loadBalancerTargetGroup']}])
except:
print("No action being taken. Unable to describe tags for instance id:", instanceId)
return
try:
elbv2client = boto3.client('elbv2')
deregisterTargets = elbv2client.deregister_targets(TargetGroupArn=describeTags['Tags'][0]['Value'],Targets=[{'Id':instanceId}])
except:
print("No action being taken. Unable to deregister targets for instance id:", instanceId)
return
print("Detaching instance from target:")
print(instanceId, describeTags['Tags'][0]['Value'], deregisterTargets, sep=",")
return
SNS topic
Finally, you’ve created an SNS topic as an example target. For example, you could subscribe an email address to the SNS topic in order to receive email notifications when a Spot Instance interruption notice is received.
To proceed to creating your Spot Fleet request, use some of the resources that the CloudFormation stack created, to populate the Spot Fleet request launch configuration. You can find the values in the outputs values of the CloudFormation stack:
You can confirm that the Spot Fleet request was fulfilled by checking that ActivityStatus is “fulfilled”, or by checking that FulfilledCapacity is greater than or equal to TargetCapacity, while describing the request:
In order to test, you can take advantage of the fact that any interruption action that Spot Fleet takes on a Spot Instance results in a Spot Instance interruption notice being provided. Therefore, you can simply decrease the target size of your Spot Fleet from 2 to 1. The instance that is interrupted receives the interruption notice:
As soon as the interruption notice is published to CloudWatch Events, the Lambda function triggers and detaches the instance from the target group, effectively putting the instance in a draining state.
In conclusion, Amazon EC2 Spot Instance interruption notices are an extremely powerful tool when taking advantage of Amazon EC2 Spot Instances in your workloads, for tasks such as saving state, draining connections, and much more. I’d love to hear how you are using them in your own environment!
Chad Schmutzer Solutions Architect
Chad Schmutzer is a Solutions Architect at Amazon Web Services based in Pasadena, CA. As an extension of the Amazon EC2 Spot Instances team, Chad helps customers significantly reduce the cost of running their applications, growing their compute capacity and throughput without increasing budget, and enabling new types of cloud computing applications.
AWS has added 16 more AWS services to its Payment Card Industry Data Security Standard (PCI DSS) compliance program, giving you more options, flexibility, and functionality to process and store sensitive payment card data in the AWS Cloud. The services were audited by Coalfire to ensure that they meet strict PCI DSS standards.
AWS now offers 58 services that are officially PCI DSS compliant, giving administrators more service options for implementing a PCI-compliant cardholder environment.
AWS has updated its certifications against ISO 9001, ISO 27001, ISO 27017, and ISO 27018 standards, bringing the total to 67 services now under ISO compliance. We added the following 29 services this cycle:
AWS maintains certifications through extensive audits of its controls to ensure that information security risks that affect the confidentiality, integrity, and availability of company and customer information are appropriately managed.
You can download copies of the AWS ISO certificates that contain AWS’s in-scope services and Regions, and use these certificates to jump-start your own certification efforts:
Today we are launching our 18th AWS Region, our fourth in Europe. Located in the Paris area, AWS customers can use this Region to better serve customers in and around France.
The Paris Region will benefit from three AWS Direct Connect locations. Telehouse Voltaire is available today. AWS Direct Connect will also become available at Equinix Paris in early 2018, followed by Interxion Paris.
All AWS infrastructure regions around the world are designed, built, and regularly audited to meet the most rigorous compliance standards and to provide high levels of security for all AWS customers. These include ISO 27001, ISO 27017, ISO 27018, SOC 1 (Formerly SAS 70), SOC 2 and SOC 3 Security & Availability, PCI DSS Level 1, and many more. This means customers benefit from all the best practices of AWS policies, architecture, and operational processes built to satisfy the needs of even the most security sensitive customers.
AWS is certified under the EU-US Privacy Shield, and the AWS Data Processing Addendum (DPA) is GDPR-ready and available now to all AWS customers to help them prepare for May 25, 2018 when the GDPR becomes enforceable. The current AWS DPA, as well as the AWS GDPR DPA, allows customers to transfer personal data to countries outside the European Economic Area (EEA) in compliance with European Union (EU) data protection laws. AWS also adheres to the Cloud Infrastructure Service Providers in Europe (CISPE) Code of Conduct. The CISPE Code of Conduct helps customers ensure that AWS is using appropriate data protection standards to protect their data, consistent with the GDPR. In addition, AWS offers a wide range of services and features to help customers meet the requirements of the GDPR, including services for access controls, monitoring, logging, and encryption.
From Our Customers Many AWS customers are preparing to use this new Region. Here’s a small sample:
Societe Generale, one of the largest banks in France and the world, has accelerated their digital transformation while working with AWS. They developed SG Research, an application that makes reports from Societe Generale’s analysts available to corporate customers in order to improve the decision-making process for investments. The new AWS Region will reduce latency between applications running in the cloud and in their French data centers.
SNCF is the national railway company of France. Their mobile app, powered by AWS, delivers real-time traffic information to 14 million riders. Extreme weather, traffic events, holidays, and engineering works can cause usage to peak at hundreds of thousands of users per second. They are planning to use machine learning and big data to add predictive features to the app.
Radio France, the French public radio broadcaster, offers seven national networks, and uses AWS to accelerate its innovation and stay competitive.
Les Restos du Coeur, a French charity that provides assistance to the needy, delivering food packages and participating in their social and economic integration back into French society. Les Restos du Coeur is using AWS for its CRM system to track the assistance given to each of their beneficiaries and the impact this is having on their lives.
AlloResto by JustEat (a leader in the French FoodTech industry), is using AWS to to scale during traffic peaks and to accelerate their innovation process.
AWS Consulting and Technology Partners We are already working with a wide variety of consulting, technology, managed service, and Direct Connect partners in France. Here’s a partial list:
AWS in France We have been investing in Europe, with a focus on France, for the last 11 years. We have also been developing documentation and training programs to help our customers to improve their skills and to accelerate their journey to the AWS Cloud.
As part of our commitment to AWS customers in France, we plan to train more than 25,000 people in the coming years, helping them develop highly sought after cloud skills. They will have access to AWS training resources in France via AWS Academy, AWSome days, AWS Educate, and webinars, all delivered in French by AWS Technical Trainers and AWS Certified Trainers.
Use it Today The EU (Paris) Region is open for business now and you can start using it today!
Today we launched our 17th Region globally, and the second in China. The AWS China (Ningxia) Region, operated by Ningxia Western Cloud Data Technology Co. Ltd. (NWCD), is generally available now and provides customers another option to run applications and store data on AWS in China.
Operating Partner To comply with China’s legal and regulatory requirements, AWS has formed a strategic technology collaboration with NWCD to operate and provide services from the AWS China (Ningxia) Region. Founded in 2015, NWCD is a licensed datacenter and cloud services provider, based in Ningxia, China. NWCD joins Sinnet, the operator of the AWS China China (Beijing) Region, as an AWS operating partner in China. Through these relationships, AWS provides its industry-leading technology, guidance, and expertise to NWCD and Sinnet, while NWCD and Sinnet operate and provide AWS cloud services to local customers. While the cloud services offered in both AWS China Regions are the same as those available in other AWS Regions, the AWS China Regions are different in that they are isolated from all other AWS Regions and operated by AWS’s Chinese partners separately from all other AWS Regions. Customers using the AWS China Regions enter into customer agreements with Sinnet and NWCD, rather than with AWS.
Use it Today The AWS China (Ningxia) Region, operated by NWCD, is open for business, and you can start using it now! Starting today, Chinese developers, startups, and enterprises, as well as government, education, and non-profit organizations, can leverage AWS to run their applications and store their data in the new AWS China (Ningxia) Region, operated by NWCD. Customers already using the AWS China (Beijing) Region, operated by Sinnet, can select the AWS China (Ningxia) Region directly from the AWS Management Console, while new customers can request an account at www.amazonaws.cn to begin using both AWS China Regions.
Messaging holds the parts of a distributed application together, while also adding resiliency and enabling the implementation of highly scalable architectures. For example, earlier this year, Amazon Simple Queue Service (SQS) and Amazon Simple Notification Service (SNS) supported the processing of customer orders on Prime Day, collectively processing 40 billion messages at a rate of 10 million per second, with no customer-visible issues.
SQS and SNS have been used extensively for applications that were born in the cloud. However, many of our larger customers are already making use of open-sourced or commercially-licensed message brokers. Their applications are mission-critical, and so is the messaging that powers them. Our customers describe the setup and on-going maintenance of their messaging infrastructure as “painful” and report that they spend at least 10 staff-hours per week on this chore.
New Amazon MQ Today we are launching Amazon MQ – a managed message broker service for Apache ActiveMQ that lets you get started in minutes with just three clicks! As you may know, ActiveMQ is a popular open-source message broker that is fast & feature-rich. It offers queues and topics, durable and non-durable subscriptions, push-based and poll-based messaging, and filtering.
As a managed service, Amazon MQ takes care of the administration and maintenance of ActiveMQ. This includes responsibility for broker provisioning, patching, failure detection & recovery for high availability, and message durability. With Amazon MQ, you get direct access to the ActiveMQ console and industry standard APIs and protocols for messaging, including JMS, NMS, AMQP, STOMP, MQTT, and WebSocket. This allows you to move from any message broker that uses these standards to Amazon MQ–along with the supported applications–without rewriting code.
You can create a single-instance Amazon MQ broker for development and testing, or an active/standby pair that spans AZs, with quick, automatic failover. Either way, you get data replication across AZs and a pay-as-you-go model for the broker instance and message storage.
Amazon MQ is a full-fledged part of the AWS family, including the use of AWS Identity and Access Management (IAM) for authentication and authorization to use the service API. You can use Amazon CloudWatch metrics to keep a watchful eye metrics such as queue depth and initiate Auto Scaling of your consumer fleet as needed.
Launching an Amazon MQ Broker To get started, I open up the Amazon MQ Console, select the desired AWS Region, enter a name for my broker, and click on Next step:
Then I choose the instance type, indicate that I want to create a standby , and click on Create broker (I can select a VPC and fine-tune other settings in the Advanced settings section):
My broker will be created and ready to use in 5-10 minutes:
The URLs and endpoints that I use to access my broker are all available at a click:
I can access the ActiveMQ Web Console at the link provided:
The broker publishes instance, topic, and queue metrics to CloudWatch. Here are the instance metrics:
Available Now Amazon MQ is available now and you can start using it today in the US East (Northern Virginia), US East (Ohio), US West (Oregon), EU (Ireland), EU (Frankfurt), and Asia Pacific (Sydney) Regions.
The AWS Free Tier lets you use a single-AZ micro instance for up to 750 hours and to store up to 1 gigabyte each month, for one year. After that, billing is based on instance-hours and message storage, plus charges Internet data transfer if the broker is accessed from outside of AWS.
Contributed by: Stephen Liedig, Senior Solutions Architect, ANZ Public Sector, and Otavio Ferreira, Manager, Amazon Simple Notification Service
Want to make your cloud-native applications scalable, fault-tolerant, and highly available? Recently, we wrote a couple of posts about using AWS messaging services Amazon SQS and Amazon SNS to address messaging patterns for loosely coupled communication between highly cohesive components. For more information, see:
Today, AWS is releasing a new message filtering functionality for SNS. This new feature simplifies the pub/sub messaging architecture by offloading the filtering logic from subscribers, as well as the routing logic from publishers, to SNS.
In this post, we walk you through the new message filtering feature, and how to use it to clean up unnecessary logic in your components, and reduce the number of topics in your architecture.
Topic-based filtering
SNS is a fully managed pub/sub messaging service that lets you fan out messages to large numbers of recipients at one time, using topics. SNS topics support a variety of subscription types, allowing you to push messages to SQS queues, AWS Lambda functions, HTTP endpoints, email addresses, and mobile devices (SMS, push).
In the above scenario, every subscriber receives the same message published to the topic, allowing them to process the message independently. For many use cases, this is sufficient.
However, in more complex scenarios, the subscriber may only be interested in a subset of the messages being published. The onus, in that case, is on each subscriber to ensure that they are filtering and only processing those messages in which they are actually interested.
To avoid this additional filtering logic on each subscriber, many organizations have adopted a practice in which the publisher is now responsible for routing different types of messages to different topics. However, as depicted in the following diagram, this topic-based filtering practice can lead to overly complicated publishers, topic proliferation, and additional overhead in provisioning and managing your SNS topics.
Attribute-based filtering
To leverage the new message filtering capability, SNS requires the publisher to set message attributes and each subscriber to set a subscription attribute (a subscription filter policy). When the publisher posts a new message to the topic, SNS attempts to match the incoming message attributes to the filter policy set on each subscription, to determine whether a particular subscriber is interested in that incoming event. If there is a match, SNS then pushes the message to the subscriber in question. The new attribute-based message filtering approach is depicted in the following diagram.
Message filtering in action
Look at how message filtering works. The following example is based on a sports merchandise ecommerce website, which publishes a variety of events to an SNS topic. The events range from checkout events (triggered when orders are placed or canceled) to buyers’ navigation events (triggered when product pages are visited). The code below is based on the existing AWS SDK for Python.
First, create the single SNS topic to which all shopping events are published.
Next, subscribe the endpoints that will be listening to those shopping events. The first subscriber is an SQS queue that is processed by a payment gateway, while the second subscriber is a Lambda function that indexes the buyer’s shopping interests against a search engine.
A subscription filter policy is set as a subscription attribute, by the subscription owner, as a simple JSON object, containing a set of key-value pairs. This object defines the kind of event in which the subscriber is interested.
You’re now ready to start publishing events with attributes!
Message attributes allow you to provide structured metadata items (such as time stamps, geospatial data, event type, signatures, and identifiers) about the message. Message attributes are optional and separate from, but sent along with, the message body. You can include up to 10 message attributes with your message.
The first message published in this example is related to an order that has been placed on the ecommerce website. The message attribute “event_type” with the value “order_placed” matches only the filter policy associated with the payment gateway subscription. Therefore, only the SQS queue subscribed to the SNS topic is notified about this checkout event.
The second message published is related to a buyer’s navigation activity on the ecommerce website. The message attribute “event_type” with the value “product_page_visited” matches only the filter policy associated with the search engine subscription. Therefore, only the Lambda function subscribed to the SNS topic is notified about this navigation event.
The following diagram represents the architecture for this ecommerce website, with the message filtering mechanism in action. As described earlier, checkout events are pushed only to the SQS queue, whereas navigation events are pushed to the Lambda function only.
Message filtering criteria
It is important to remember the following things about subscription filter policy matching:
A subscription filter policy either matches an incoming message, or it doesn’t. It’s Boolean logic.
For a filter policy to match a message, the message must contain all the attribute keys listed in the policy.
Attributes of the message not mentioned in the filtering policy are ignored.
The value of each key in the filter policy is an array containing one or more values. The policy matches if any of the values in the array match the value in the corresponding message attribute.
If the value in the message attribute is an array, then the filter policy matches if the intersection of the policy array and the message array is non-empty.
The matching is exact (character-by-character), without case-folding or any other string normalization.
The values being matched follow JSON rules: Strings enclosed in quotes, numbers, and the unquoted keywords true, false, and null.
Number matching is at the string representation level. Example: 300, 300.0, and 3.0e2 aren’t considered equal.
When should I use message filtering?
We recommend using message filtering and grouping subscribers into a single topic only when all of the following is true:
Subscribers are semantically related to each other
Subscribers consume similar types of events
Subscribers are supposed to share the same access permissions on the topic
Technically, you could get away with creating a single topic for your entire domain to handle all event processing, even unrelated use cases, but this wouldn’t be recommended. This option could result in an unnecessarily large topic, which could potentially impact your message delivery latency. Also, you would lose the ability to implement fine-grained access control on your topics.
Finally, if you already use SNS, but had to add filtering logic in your subscribers or routing logic in your publishers (topic-based filtering), you can now immediately benefit from message filtering. This new approach lets you clean up any unnecessary logic in your components, and reduce the number of topics in your architecture.
Summary
As we’ve shown in this post, the new message filtering capability in Amazon SNS gives you a great amount of flexibility in your messaging pattern. It allows you to really simplify your pub/sub infrastructure requirements.
Message filtering can be implemented easily with existing AWS SDKs by applying message and subscription attributes across all SNS supported protocols (Amazon SQS, AWS Lambda, HTTP, SMS, email, and mobile push). It’s now available in all AWS commercial regions, at no extra charge.
Here’s a few ideas for next steps to get you started:
Add filter policies to your subscriptions on the SNS console,
New Pricing Model (20-40% Reduction) Today we are making a change to the AWS IoT pricing model that will make it an even better value for you. Most customers will see a price reduction of 20-40%, with some receiving a significantly larger discount depending on their workload.
The original model was based on a charge for the number of messages that were sent to or from the service. This all-inclusive model was a good starting point, but also meant that some customers were effectively paying for parts of AWS IoT that they did not actually use. For example, some customers have devices that ping AWS IoT very frequently, with sparse rule sets that fire infrequently. Our new model is more fine-grained, with independent charges for each component (all prices are for devices that connect to the US East (Northern Virginia) Region):
Connectivity – Metered in 1 minute increments and based on the total time your devices are connected to AWS IoT. Priced at $0.08 per million minutes of connection (equivalent to $0.042 per device per year for 24/7 connectivity). Your devices can send keep-alive pings at 30 second to 20 minute intervals at no additional cost.
Messaging – Metered by the number of messages transmitted between your devices and AWS IoT. Pricing starts at $1 per million messages, with volume pricing falling as low as $0.70 per million. You may send and receive messages up to 128 kilobytes in size. Messages are metered in 5 kilobyte increments (up from 512 bytes previously). For example, an 8 kilobyte message is metered as two messages.
Rules Engine – Metered for each time a rule is triggered, and for the number of actions executed within a rule, with a minimum of one action per rule. Priced at $0.15 per million rules-triggered and $0.15 per million actions-executed. Rules that process a message in excess of 5 kilobytes are metered at the next multiple of the 5 kilobyte size. For example, a rule that processes an 8 kilobyte message is metered as two rules.
Device Shadow & Registry Updates – Metered on the number of operations to access or modify Device Shadow or Registry data, priced at $1.25 per million operations. Device Shadow and Registry operations are metered in 1 kilobyte increments of the Device Shadow or Registry record size. For example, an update to a 1.5 kilobyte Shadow record is metered as two operations.
The AWS Free Tier now offers a generous allocation of connection minutes, messages, triggered rules, rules actions, Shadow, and Registry usage, enough to operate a fleet of up to 50 devices. The new prices will take effect on January 1, 2018 with no effort on your part. At that time, the updated prices will be published on the AWS IoT Pricing page.
AWS IoT at re:Invent We have an entire IoT track at this year’s AWS re:Invent. Here is a sampling:
The AWS US East/West Region has received a Provisional Authority to Operate (P-ATO) from the Joint Authorization Board (JAB) at the Federal Risk and Authorization Management Program (FedRAMP) Moderate baseline.
Though AWS has maintained an AWS US East/West Region Agency-ATO since early 2013, this announcement represents AWS’s carefully deliberated move to the JAB for the centralized maintenance of our P-ATO for 10 services already authorized. This also includes the addition of 10 new services to our FedRAMP program (see the complete list of services below). This doubles the number of FedRAMP Moderate services available to our customers to enable increased use of the cloud and support modernized IT missions. Our public sector customers now can leverage this FedRAMP P-ATO as a baseline for their own authorizations and look to the JAB for centralized Continuous Monitoring reporting and updates. In a significant enhancement for our partners that build their solutions on the AWS US East/West Region, they can now achieve FedRAMP JAB P-ATOs of their own for their Platform as a Service (PaaS) and Software as a Service (SaaS) offerings.
In line with FedRAMP security requirements, our independent FedRAMP assessment was completed in partnership with a FedRAMP accredited Third Party Assessment Organization (3PAO) on our technical, management, and operational security controls to validate that they meet or exceed FedRAMP’s Moderate baseline requirements. Effective immediately, you can begin leveraging this P-ATO for the following 20 services in the AWS US East/West Region:
Amazon Aurora (MySQL)*
Amazon CloudWatch Logs*
Amazon DynamoDB
Amazon Elastic Block Store
Amazon Elastic Compute Cloud
Amazon EMR*
Amazon Glacier*
Amazon Kinesis Streams*
Amazon RDS (MySQL, Oracle, Postgres*)
Amazon Redshift
Amazon Simple Notification Service*
Amazon Simple Queue Service*
Amazon Simple Storage Service
Amazon Simple Workflow Service*
Amazon Virtual Private Cloud
AWS CloudFormation*
AWS CloudTrail*
AWS Identity and Access Management
AWS Key Management Service
Elastic Load Balancing
* Services with first-time FedRAMP Moderate authorizations
We continue to work with the FedRAMP Project Management Office (PMO), other regulatory and compliance bodies, and our customers and partners to ensure that we are raising the bar on our customers’ security and compliance needs.
Contributed by Zak Islam, Senior Manager, Software Development, AWS Messaging
Amazon Simple Notification Service (Amazon SNS) is a fully managed AWS service that makes it easy to decouple your application components and fan-out messages. SNS provides topics (similar to topics in message brokers such as RabbitMQ or ActiveMQ) that you can use to create 1:1, 1:N, or N:N producer/consumer design patterns. For more information about how to send messages from SNS to Amazon SQS, AWS Lambda, or HTTP(S) endpoints in the same account, see Sending Amazon SNS Messages to Amazon SQS Queues.
SNS can be used to send messages within a single account or to resources in different accounts to create administrative isolation. This enables administrators to grant only the minimum level of permissions required to process a workload (for example, limiting the scope of your application account to only send messages and to deny deletes). This approach is commonly known as the “principle of least privilege.” If you are interested, read more about AWS’s multi-account security strategy.
This is great from a security perspective, but why would you want to share messages between accounts? It may sound scary, but it’s a common practice to isolate application components (such as producer and consumer) to operate using different AWS accounts to lock down privileges in case credentials are exposed. In this post, I go slightly deeper and explore how to set up your SNS topic so that it can route messages to SQS queues that are owned by a separate AWS account.
Potential use cases
First, look at a common order processing design pattern:
This is a simple architecture. A web server submits an order directly to an SNS topic, which then fans out messages to two SQS queues. One SQS queue is used to track all incoming orders for audits (such as anti-entropy, comparing the data of all replicas and updating each replica to the newest version). The other is used to pass the request to the order processing systems.
Imagine now that a few years have passed, and your downstream processes no longer scale, so you are kicking around the idea of a re-architecture project. To thoroughly test your system, you need a way to replay your production messages in your development system. Sure, you can build a system to replicate and replay orders from your production environment in your development environment. Wouldn’t it be easier to subscribe your development queues to the production SNS topic so you can test your new system in real time? That’s exactly what you can do here.
Here’s another use case. As your business grows, you recognize the need for more metrics from your order processing pipeline. The analytics team at your company has built a metrics aggregation service and ingests data via a central SQS queue. Their architecture is as follows:
Again, it’s a fairly simple architecture. All data is ingested via SQS queues (master_ingest_queue, in this case). You subscribe the master_ingest_queue, running under the analytics team’s AWS account, to the topic that is in the order management team’s account.
Making it work
Now that you’ve seen a few scenarios, let’s dig into the details. There are a couple of ways to link an SQS queue to an SNS topic (subscribe a queue to a topic):
The queue owner can create a subscription to the topic.
The topic owner can subscribe a queue in another account to the topic.
Queue owner subscription
What happens when the queue owner subscribes to a topic? In this case, assume that the topic owner has given permission to the subscriber’s account to call the Subscribe API action using the topic ARN (Amazon Resource Name). For the examples below, also assume the following:
Topic_Owner is the identifier for the account that owns the topic MainTopic
Queue_Owner is the identifier for the account that owns the queue subscribed to the main topic
To enable the subscriber to subscribe to a topic, the topic owner must add the sns:Subscribe and topic ARN to the topic policy via the AWS Management Console, as follows:
After this has been set up, the subscriber (using account Queue_Owner) can call Subscribe to link the queue to the topic. After the queue has been successfully subscribed, SNS starts to publish notifications. In this case, neither the topic owner nor the subscriber have had to process any kind of confirmation message.
Topic owner subscription
The second way to subscribe an SQS queue to an SNS topic is to have the Topic_Owner account initiate the subscription for the queue from account Queue_Owner. In this case, SNS first sends a confirmation message to the queue. To confirm the subscription, a user who can read messages from the queue must visit the URL specified in the SubscribeURL value in the message. Until the subscription is confirmed, no notifications published to the topic are sent to the queue. To confirm a subscription, you can use the SQS console or the ReceiveMessage API action.
What’s next?
In this post, I covered a few simple use cases but the principles can be extended to complex systems as well. As you architect new systems and refactor existing ones, think about where you can leverage queues (SQS) and topics (SNS) to build a loosely coupled system that can be quickly and easily extended to meet your business need.
Today we released Dedicated IP Pools for Amazon Simple Email Service (SES). With dedicated IP pools, you can specify which dedicated IP addresses to use for sending different types of email. Dedicated IP pools let you use your SES for different tasks. For instance, you can send transactional emails from one set of IPs and you can send marketing emails from another set of IPs.
If you’re not familiar with Amazon SES these concepts may not make much sense. We haven’t had the chance to cover SES on this blog since 2016, which is a shame, so I want to take a few steps back and talk about the service as a whole and some of the enhancements the team has made over the past year. If you just want the details on this new feature I strongly recommend reading the Amazon Simple Email Service Blog.
What is SES?
So, what is SES? If you’re a customer of Amazon.com you know that we send a lot of emails. Bought something? You get an email. Order shipped? You get an email. Over time, as both email volumes and types increased Amazon.com needed to build an email platform that was flexible, scalable, reliable, and cost-effective. SES is the result of years of Amazon’s own work in dealing with email and maximizing deliverability.
In short: SES gives you the ability to send and receive many types of email with the monitoring and tools to ensure high deliverability.
Receiving and reacting to emails is easy too. You can set up rulesets that forward received emails to Amazon Simple Storage Service (S3), Amazon Simple Notification Service (SNS), or AWS Lambda – you could even trigger a Amazon Lex bot through Lambda to communicate with your customers over email. SES is a powerful tool for building applications. The image below shows just a fraction of the capabilities:
Deliverability 101
Deliverability is the percentage of your emails that arrive in your recipients’ inboxes. Maintaining deliverability is a shared responsibility between AWS and the customer. AWS takes the fight against spam very seriously and works hard to make sure services aren’t abused. To learn more about deliverability I recommend the deliverability docs. For now, understand that deliverability is an important aspect of email campaigns and SES has many tools that enable a customer to manage their deliverability.
Dedicated IPs and Dedicated IP pools
When you’re starting out with SES your emails are sent through a shared IP. That IP is responsible for sending mail on behalf of many customers and AWS works to maintain appropriate volume and deliverability on each of those IPs. However, when you reach a sufficient volume shared IPs may not be the right solution.
By creating a dedicated IP you’re able to fully control the reputations of those IPs. This makes it vastly easier to troubleshoot any deliverability or reputation issues. It’s also useful for many email certification programs which require a dedicated IP as a commitment to maintaining your email reputation. Using the shared IPs of the Amazon SES service is still the right move for many customers but if you have sustained daily sending volume greater than hundreds of thousands of emails per day you might want to consider a dedicated IP. One caveat to be aware of: if you’re not sending a sufficient volume of email with a consistent pattern a dedicated IP can actually hurt your reputation. Dedicated IPs are $24.95 per address per month at the time of this writing – but you can find out more at the pricing page.
Before you can use a Dedicated IP you need to “warm” it. You do this by gradually increasing the volume of emails you send through a new address. Each IP needs time to build a positive reputation. In March of this year SES released the ability to automatically warm your IPs over the course of 45 days. This feature is on by default for all new dedicated IPs.
Customers who send high volumes of email will typically have multiple dedicated IPs. Today the SES team released dedicated IP pools to make managing those IPs easier. Now when you send email you can specify a configuration set which will route your email to an IP in a pool based on the pool’s association with that configuration set.
One of the other major benefits of this feature is that it allows customers who previously split their email sending across several AWS accounts (to manage their reputation for different types of email) to consolidate into a single account.
Today we’re releasing a beta of a new tool, SAM Local, that makes it easy to build and test your serverless applications locally. In this post we’ll use SAM local to build, debug, and deploy a quick application that allows us to vote on tabs or spaces by curling an endpoint. AWS introduced Serverless Application Model (SAM) last year to make it easier for developers to deploy serverless applications. If you’re not already familiar with SAM my colleague Orr wrote a great post on how to use SAM that you can read in about 5 minutes. At it’s core, SAM is a powerful open source specification built on AWS CloudFormation that makes it easy to keep your serverless infrastructure as code – and they have the cutest mascot.
SAM Local takes all the good parts of SAM and brings them to your local machine.
It lets you develop and test your AWS Lambda functions locally with sam local and Docker.
It lets you start a local Amazon API Gateway from a SAM template, and quickly iterate on your functions with hot-reloading.
It lets you quickly validate your SAM template and even integrate that validation with linters or IDEs
It provides interactive debugging support for your Lambda functions
There are a couple of ways to install SAM Local but the easiest is through NPM. A quick npm install -g aws-sam-local should get us going but if you want the latest version you can always install straight from the source: go get github.com/awslabs/aws-sam-local (this will create a binary named aws-sam-local, not sam).
I like to vote on things so let’s write a quick SAM application to vote on Spaces versus Tabs. We’ll use a very simple, but powerful, architecture of API Gateway fronting a Lambda function and we’ll store our results in DynamoDB. In the end a user should be able to curl our API curl https://SOMEURL/ -d '{"vote": "spaces"}' and get back the number of votes.
Let’s start by writing a simple SAM template.yaml:
So we create a [dynamo_i] table that we expose to our Lambda function through an environment variable called TABLE_NAME.
To test that this template is valid I’ll go ahead and call sam validate to make sure I haven’t fat-fingered anything. It returns Valid! so let’s go ahead and get to work on our Lambda function.
import os
import os
import json
import boto3
votes_table = boto3.resource('dynamodb').Table(os.getenv('TABLE_NAME'))
def lambda_handler(event, context):
print(event)
if event['httpMethod'] == 'GET':
resp = votes_table.scan()
return {'body': json.dumps({item['id']: int(item['votes']) for item in resp['Items']})}
elif event['httpMethod'] == 'POST':
try:
body = json.loads(event['body'])
except:
return {'statusCode': 400, 'body': 'malformed json input'}
if 'vote' not in body:
return {'statusCode': 400, 'body': 'missing vote in request body'}
if body['vote'] not in ['spaces', 'tabs']:
return {'statusCode': 400, 'body': 'vote value must be "spaces" or "tabs"'}
resp = votes_table.update_item(
Key={'id': body['vote']},
UpdateExpression='ADD votes :incr',
ExpressionAttributeValues={':incr': 1},
ReturnValues='ALL_NEW'
)
return {'body': "{} now has {} votes".format(body['vote'], resp['Attributes']['votes'])}
So let’s test this locally. I’ll need to create a real DynamoDB database to talk to and I’ll need to provide the name of that database through the enviornment variable TABLE_NAME. I could do that with an env.json file or I can just pass it on the command line. First, I can call: $ echo '{"httpMethod": "POST", "body": "{\"vote\": \"spaces\"}"}' |\ TABLE_NAME="vote-spaces-tabs" sam local invoke "VoteSpacesTabs" to test the Lambda – it returns the number of votes for spaces so theoritically everything is working. Typing all of that out is a pain so I could generate a sample event with sam local generate-event api and pass that in to the local invocation. Far easier than all of that is just running our API locally. Let’s do that: sam local start-api. Now I can curl my local endpoints to test everything out. I’ll run the command: $ curl -d '{"vote": "tabs"}' http://127.0.0.1:3000/ and it returns: “tabs now has 12 votes”. Now, of course I did not write this function perfectly on my first try. I edited and saved several times. One of the benefits of hot-reloading is that as I change the function I don’t have to do any additional work to test the new function. This makes iterative development vastly easier.
Let’s say we don’t want to deal with accessing a real DynamoDB database over the network though. What are our options? Well we can download DynamoDB Local and launch it with java -Djava.library.path=./DynamoDBLocal_lib -jar DynamoDBLocal.jar -sharedDb. Then we can have our Lambda function use the AWS_SAM_LOCAL environment variable to make some decisions about how to behave. Let’s modify our function a bit:
import os
import json
import boto3
if os.getenv("AWS_SAM_LOCAL"):
votes_table = boto3.resource(
'dynamodb',
endpoint_url="http://docker.for.mac.localhost:8000/"
).Table("spaces-tabs-votes")
else:
votes_table = boto3.resource('dynamodb').Table(os.getenv('TABLE_NAME'))
Now we’re using a local endpoint to connect to our local database which makes working without wifi a little easier.
SAM local even supports interactive debugging! In Java and Node.js I can just pass the -d flag and a port to immediately enable the debugger. For Python I could use a library like import epdb; epdb.serve() and connect that way. Then we can call sam local invoke -d 8080 "VoteSpacesTabs" and our function will pause execution waiting for you to step through with the debugger.
Alright, I think we’ve got everything working so let’s deploy this!
First I’ll call the sam package command which is just an alias for aws cloudformation package and then I’ll use the result of that command to sam deploy.
$ sam package --template-file template.yaml --s3-bucket MYAWESOMEBUCKET --output-template-file package.yaml
Uploading to 144e47a4a08f8338faae894afe7563c3 90570 / 90570.0 (100.00%)
Successfully packaged artifacts and wrote output template to file package.yaml.
Execute the following command to deploy the packaged template
aws cloudformation deploy --template-file package.yaml --stack-name
$ sam deploy --template-file package.yaml --stack-name VoteForSpaces --capabilities CAPABILITY_IAM
Waiting for changeset to be created..
Waiting for stack create/update to complete
Successfully created/updated stack - VoteForSpaces
Which brings us to our API: .
I’m going to hop over into the production stage and add some rate limiting in case you guys start voting a lot – but otherwise we’ve taken our local work and deployed it to the cloud without much effort at all. I always enjoy it when things work on the first deploy!
We hope that SAM Local makes it easier for you to test, debug, and deploy your serverless apps. We have a CONTRIBUTING.md guide and we welcome pull requests. Please tweet at us to let us know what cool things you build. You can see our What’s New post here and the documentation is live here.
We’re pleased to announce the addition of open and click tracking metrics to Amazon SES. These metrics will help you measure the effectiveness of the email campaigns you send using Amazon SES.
We’re also adding the ability to publish email sending metrics to Amazon Simple Notification Service (Amazon SNS) using event publishing. This feature gives you greater control over the sending notifications you receive through Amazon SNS.
What’s new in this release?
When you send an email using Amazon SES, we now collect metrics related to opens and clicks. Opens, in this sense, refers to the number of users who successfully received your email and opened it in their email clients; clicks refers to the number of users who received an email and clicked one or more links in it.
Additionally, you can now use event publishing to push email sending notifications—including open and click notifications—using Amazon SNS. Previously, you could send account-level notifications through Amazon SNS. These notifications were pretty limited: you could only receive notifications about bounces, complaints, and deliveries, and you would receive notifications about all of these events across your entire Amazon SES account. Now you can use event publishing to send notifications about deliveries, opens, clicks, bounces, and complaints. Furthermore, you can set up event publishing so that you only receive notifications about emails sent using the configuration sets you specify in those emails.
Why should I use open and click tracking?
Whether you are sending marketing emails, transactional emails, or notifications, you need to know how effective your communications are. The email sending metrics feature of Amazon SES gives you data about entire email response funnel—the total number of emails that were sent, bounced, viewed, and clicked. You can then transform those insights into action.
For example, the open and click tracking feature can help you identify the customers who are most interested in receiving the messages you send. By narrowing down your list of recipients and focusing on your most engaged customers, you can save money (by sending fewer messages), improve the response rates of your marketing campaigns (by targeting only the customers who are most interested in what you have to say), and protect your sender reputation (by reducing the number of bounces and complaints against your sending domain).
How do I enable open and click tracking?
If you’ve set up Sending Metrics in the past, then you can easily add open and click tracking to your existing configuration sets. On the Configuration Sets page, choose the configuration set that contains your sending event destination; edit the event destination, check the boxes for Open and Click (as shown in the image below), and then choose Save.
How does open and click tracking work?
Amazon SES makes very minor changes to your emails in order to make open and click tracking work. At the bottom of each message, we insert a 1 pixel by 1 pixel transparent GIF image. Each email includes a unique link to this image file; when the image is opened, we can tell exactly which message was opened and by whom.
To track clicks, we set up a redirect for each link in the message. When a recipient clicks a link, they are sent to an Amazon SES server, and are immediately forwarded to the destination address. As with open tracking, each of these redirect links is unique, allowing us to easily determine which recipient clicked the link, when they clicked it, and the email from which they arrived at the link.
Can I disable click tracking?
You can disable click tracking by adding a special tag to the anchor tags in your HTML. For example, if you were linking to the AWS home page, a normal anchor link would look something like this:
<a href="https://aws.amazon.com/">Amazon Web Services</a>
To disable click tracking for that same link, you would modify to look like this:
<a ses:no-track href="https://aws.amazon.com/">Amazon Web Services</a>
Because the ses:no-track attribute is non-standard HTML, we automatically remove it from the version of the email that arrives in your recipients’ inboxes.
How do I use event publishing with Amazon SNS?
If you’ve set up event destinations in the past, then the process of setting up an Amazon SNS event destination will be very familiar. You can add an Amazon SNS destination to an existing configuration set, or create a new configuration set that uses Amazon SNS as its event destination. To learn more, see “Set Up an Amazon SNS Event Destination for Amazon SES Event Publishing” in our Developer Guide.
We’re excited about this release. Let us know what you think of these new features in the SES Forum, or in the comments for this post.
The collective thoughts of the interwebz
By continuing to use the site, you agree to the use of cookies. more information
The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.