Tag Archives: autonomous

Researchers Use a Blockchain to Boost Anonymous Torrent Sharing

Post Syndicated from Ernesto original https://torrentfreak.com/researchers-use-a-blockchain-to-boost-anonymous-torrent-sharing-180129/

The Tribler client has been around for over a decade. We first covered it in 2006 and since then it’s developed into a truly decentralized BitTorrent client.

Even if all torrent sites were shut down today, Tribler users would still be able to find and add new content.

The project is not run by regular software developers but by a team of quality researchers at Delft University of Technology. There are currently more than 45 masters students, various thesis students, five dedicated scientific developers, and several professors involved.

Simply put, Triber aims to make the torrent ecosystem truly decentralized and anonymous. A social network of peers that can survive even if all torrent sites ceased to exist.

“Search and download torrents with less worries or censorship,” Triber’s tagline reads.

Like many other BitTorrent clients, Tribler has a search box at the top of the application. However, the search results that appear when users type in a keyword don’t come from a central index. Instead, they come directly from other peers.

Thriber’s search results

With the latest release, Tribler 7.0, the project adds another element to the mix, it’s very own blockchain. This blockchain keeps track of how much people are sharing and rewards them accordingly.

“Tribler is a torrent client for social people, who help each other. You can now earn tokens by helping others. It is specifically designed to prevent freeriding and detect hit-and-run peers.” Tribler leader Dr. Johan Pouwelse tells TF.

“You help other Tribler users by seeding and by enhancing their privacy. In return, you get faster downloads, as your tokens show you contribute to the community.”

Pouwelse, who aims to transform BitTorrent into an ethical Darknet, just presented the latest release at Stanford University. In addition, the Internet Engineering Task Force is also considering the blockchain implementation as an official Internet standard.

This recognition from academics and technology experts is welcome, of course, but Triber’s true power comes from the users. The client has gathered a decent userbase of the years but there sure is plenty room for improvement on this front.

The anonymity aspect is perhaps one of the biggest selling points and Pouwelse believes that this will greatly benefit from the blockchain implementation.

Triber provides users with pseudo anonymity by routing the transfers through other users. However, this means that the amount of bandwith used by the application inceases as well. Thus far, this hasn’t worked very well, which resulted in slow anonymous downloads.

“With the integrated blockchain release today we think we can start fixing the problem of both underseeded swarms and fast proxies,” Dr. Pouwelse says.

“Our solution is basically very simple, only social people get decent performance on Tribler. This means in a few years we will end up with only users that act nice. Others leave.”

Tribler’s trust stats

Tribler provides users with quite a bit of flexibility on the anonymity site. The feature can be turned off completely, or people can choose a protection layer ranging from one to four hops.

What’s also important to note is that users don’t operate as exit nodes by default. The IP-addresses of the exit nodes are public ouitside the network and can be monitored, so that would only increase liability.

So who are the exit-nodes in this process then? According to Pouwelse’s rather colorful description, these appear to be volunteers that run their code through a VPN a or a VPS server.

“The past years we have created an army of bots we call ‘Self-replicating Autonomous Entities’. These are Terminator-style self-replicating pieces of code which have their own Bitcoin wallet to go out there and buy servers to run more copies of themselves,” he explains.

“They utilize very primitive genetic evolution to improve survival, buy a VPN for protection, earn credits using our experimental credit mining preview release, and sell our bandwidth tokens on our integrated decentral market for cold hard Bitcoin cash to renew the cycle of life for the next month billing cycle of their VPS provider.”

Some might question why there’s such a massive research project dedicated to building an anonymous BitTorrent network. What are the benefits to society?

The answer is clear, according to Pouwelse. The ethical darknet they envision will be a unique micro-economy where sharing is rewarded, without having to expose one’s identity.

“We are building the Internet of Trust. The Internet can do amazing things, it even created honesty among drugs dealers,” he says, referring to the infamous Silk Road.

“Reliability rating of drugs lords gets you life imprisonment. That’s not something we want. We are creating our own trustworthy micro-economy for bandwidth tokens and real Bitcoins,” he adds.

People who are interested in taking Tribler for a spin can download the latest version from the official website.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and more. We also have VPN discounts, offers and coupons

Europol Hits Huge 500,000 Subscriber Pirate IPTV Operation

Post Syndicated from Andy original https://torrentfreak.com/europol-hits-huge-500000-subscriber-pirate-iptv-operation-180111/

Live TV is in massive demand but accessing all content in a particular region can be a hugely expensive proposition, with tradtional broadcasting monopolies demanding large subscription fees.

For millions around the world, this ‘problem’ can be easily circumvented. Pirate IPTV operations, which supply thousands of otherwise subscription channels via the Internet, are on the increase. They’re accessible for just a few dollars, euros, or pounds per month, slashing bills versus official providers on a grand scale.

This week, however, police forces around Europe coordinated to target what they claim is one of the world’s largest illicit IPTV operations. The investigation was launched last February by Europol and on Tuesday coordinated actions were carried out in Cyprus, Bulgaria, Greece, and the Netherlands.

Three suspects were arrested in Cyprus – two in Limassol (aged 43 and 44) and one in Larnaca (aged 53). All are alleged to be part of an international operation to illegally broadcast around 1,200 channels of pirated content worldwide. Some of the channels offered were illegally sourced from Sky UK, Bein Sports, Sky Italia, and Sky DE

If initial reports are to be believed, the reach of the IPTV service was huge. Figures usually need to be taken with a pinch of salt but information suggests the service had more than 500,000 subscribers, each paying around 10 euros per month. (Note: how that relates to the alleged five million euros per year in revenue is yet to be made clear)

Police action was spread across the continent, with at least nine separate raids, including in the Netherlands where servers were uncovered. However, it was determined that these were in place to hide the true location of the operation’s main servers. Similar ‘front’ servers were also deployed in other regions.

The main servers behind the IPTV operation were located in Petrich, a small town in Blagoevgrad Province, southwestern Bulgaria. No details have been provided by the authorities but TF is informed that the website of a local ISP, Megabyte-Internet, from where pirate IPTV has been broadcast for at least the past several months, disappeared on Tuesday. It remains offline this morning.

The company did not respond to our request for comment and there’s no suggestion that it’s directly involved in any illegal activity. However, its Autonomous System (AS) number reveals linked IPTV services, none of which appear to be operational today. The ISP is also listed on sites where ‘pirate’ IPTV channel playlists are compiled by users.

According to sources in Cyprus, police requested permission from the Larnaca District Court to detain the arrested individuals for eight days. However, local news outlet Philenews said that any decision would be postponed until this morning, since one of the three suspects, an English Cypriot, required an interpreter which caused a delay.

In addition to prosecutors and defense lawyers, two Dutch investigators from Europol were present in court yesterday. The hearing lasted for six hours and was said to be so intensive that the court stenographer had to be replaced due to overwork.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and more. We also have VPN discounts, offers and coupons

AWS IoT, Greengrass, and Machine Learning for Connected Vehicles at CES

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/aws-iot-greengrass-and-machine-learning-for-connected-vehicles-at-ces/

Last week I attended a talk given by Bryan Mistele, president of Seattle-based INRIX. Bryan’s talk provided a glimpse into the future of transportation, centering around four principle attributes, often abbreviated as ACES:

Autonomous – Cars and trucks are gaining the ability to scan and to make sense of their environments and to navigate without human input.

Connected – Vehicles of all types have the ability to take advantage of bidirectional connections (either full-time or intermittent) to other cars and to cloud-based resources. They can upload road and performance data, communicate with each other to run in packs, and take advantage of traffic and weather data.

Electric – Continued development of battery and motor technology, will make electrics vehicles more convenient, cost-effective, and environmentally friendly.

Shared – Ride-sharing services will change usage from an ownership model to an as-a-service model (sound familiar?).

Individually and in combination, these emerging attributes mean that the cars and trucks we will see and use in the decade to come will be markedly different than those of the past.

On the Road with AWS
AWS customers are already using our AWS IoT, edge computing, Amazon Machine Learning, and Alexa products to bring this future to life – vehicle manufacturers, their tier 1 suppliers, and AutoTech startups all use AWS for their ACES initiatives. AWS Greengrass is playing an important role here, attracting design wins and helping our customers to add processing power and machine learning inferencing at the edge.

AWS customer Aptiv (formerly Delphi) talked about their Automated Mobility on Demand (AMoD) smart vehicle architecture in a AWS re:Invent session. Aptiv’s AMoD platform will use Greengrass and microservices to drive the onboard user experience, along with edge processing, monitoring, and control. Here’s an overview:

Another customer, Denso of Japan (one of the world’s largest suppliers of auto components and software) is using Greengrass and AWS IoT to support their vision of Mobility as a Service (MaaS). Here’s a video:

AWS at CES
The AWS team will be out in force at CES in Las Vegas and would love to talk to you. They’ll be running demos that show how AWS can help to bring innovation and personalization to connected and autonomous vehicles.

Personalized In-Vehicle Experience – This demo shows how AWS AI and Machine Learning can be used to create a highly personalized and branded in-vehicle experience. It makes use of Amazon Lex, Polly, and Amazon Rekognition, but the design is flexible and can be used with other services as well. The demo encompasses driver registration, login and startup (including facial recognition), voice assistance for contextual guidance, personalized e-commerce, and vehicle control. Here’s the architecture for the voice assistance:

Connected Vehicle Solution – This demo shows how a connected vehicle can combine local and cloud intelligence, using edge computing and machine learning at the edge. It handles intermittent connections and uses AWS DeepLens to train a model that responds to distracted drivers. Here’s the overall architecture, as described in our Connected Vehicle Solution:

Digital Content Delivery – This demo will show how a customer uses a web-based 3D configurator to build and personalize their vehicle. It will also show high resolution (4K) 3D image and an optional immersive AR/VR experience, both designed for use within a dealership.

Autonomous Driving – This demo will showcase the AWS services that can be used to build autonomous vehicles. There’s a 1/16th scale model vehicle powered and driven by Greengrass and an overview of a new AWS Autonomous Toolkit. As part of the demo, attendees drive the car, training a model via Amazon SageMaker for subsequent on-board inferencing, powered by Greengrass ML Inferencing.

To speak to one of my colleagues or to set up a time to see the demos, check out the Visit AWS at CES 2018 page.

Some Resources
If you are interested in this topic and want to learn more, the AWS for Automotive page is a great starting point, with discussions on connected vehicles & mobility, autonomous vehicle development, and digital customer engagement.

When you are ready to start building a connected vehicle, the AWS Connected Vehicle Solution contains a reference architecture that combines local computing, sophisticated event rules, and cloud-based data processing and storage. You can use this solution to accelerate your own connected vehicle projects.

Jeff;

VPN Provider Jailed For Five Years After Helping Thousands Breach China’s Firewall

Post Syndicated from Andy original https://torrentfreak.com/vpn-provider-jailed-for-five-years-after-helping-thousands-breach-chinas-firewall-171222/

The Chinese government’s grip on power is matched by its determination to control access to information. To that end, it seeks to control what people in China can see on the Internet, thereby limiting the effect of outside influences on society.

The government tries to reach these goals by use of the so-called Great Firewall, a complex system that grants access to some foreign resources while denying access to others. However, technologically advanced citizens are able to bypass this state censorship by using circumvention techniques including Virtual Private Networks (VPNs).

While large numbers of people use such services, in January 2017 the government gave its clearest indication yet that it would begin to crack down on people offering Great Firewall-evading tools.

Operating such a service without a corresponding telecommunications business license constitutes an offense, the government said. Now we have a taste of how serious the government is on this matter.

According to an announcement from China’s Procuratorate Daily, Wu Xiangyang, a resident of the Guangxi autonomous region, has just been jailed for five-and-a-half years and fined 500,000 yuan ($75,920) for building and selling access to VPNs without an appropriate license.

It’s alleged that between 2013 and June 2017, Wu Xiangyang sold VPN server access to the public via his own website, FangouVPN / Where Dog VPN, and Taobao, a Chinese online shopping site similar to eBay and Amazon.

The member accounts provided by the man allowed customers to browse foreign websites, without being trapped behind China’s Great Firewall. He also sold custom hardware routers that came read-configured to use the VPN service, granting access to the wider Internet, contrary to the wishes of Chinese authorities.

Prosecutors say that the illegal VPN business had revenues of 792,638 yuan (US$120,377) and profits of around 500,000 yuan ($75,935). SCMP reports that the company previously boasted on Twitter at having 8,000 foreigners and 5,000 businesses using its services to browse blocked websites.

This is at least the second big sentence handed down to a Chinese citizen for providing access to VPNs. Back in September, it was revealed that Deng Jiewei, a 26-year-old from the city of Dongguan in the Guangdong province, had been jailed for nine months after offering a similar service to the public for around a year.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and more. We also have VPN discounts, offers and coupons

What is HAMR and How Does It Enable the High-Capacity Needs of the Future?

Post Syndicated from Andy Klein original https://www.backblaze.com/blog/hamr-hard-drives/

HAMR drive illustration

During Q4, Backblaze deployed 100 petabytes worth of Seagate hard drives to our data centers. The newly deployed Seagate 10 and 12 TB drives are doing well and will help us meet our near term storage needs, but we know we’re going to need more drives — with higher capacities. That’s why the success of new hard drive technologies like Heat-Assisted Magnetic Recording (HAMR) from Seagate are very relevant to us here at Backblaze and to the storage industry in general. In today’s guest post we are pleased to have Mark Re, CTO at Seagate, give us an insider’s look behind the hard drive curtain to tell us how Seagate engineers are developing the HAMR technology and making it market ready starting in late 2018.

What is HAMR and How Does It Enable the High-Capacity Needs of the Future?

Guest Blog Post by Mark Re, Seagate Senior Vice President and Chief Technology Officer

Earlier this year Seagate announced plans to make the first hard drives using Heat-Assisted Magnetic Recording, or HAMR, available by the end of 2018 in pilot volumes. Even as today’s market has embraced 10TB+ drives, the need for 20TB+ drives remains imperative in the relative near term. HAMR is the Seagate research team’s next major advance in hard drive technology.

HAMR is a technology that over time will enable a big increase in the amount of data that can be stored on a disk. A small laser is attached to a recording head, designed to heat a tiny spot on the disk where the data will be written. This allows a smaller bit cell to be written as either a 0 or a 1. The smaller bit cell size enables more bits to be crammed into a given surface area — increasing the areal density of data, and increasing drive capacity.

It sounds almost simple, but the science and engineering expertise required, the research, experimentation, lab development and product development to perfect this technology has been enormous. Below is an overview of the HAMR technology and you can dig into the details in our technical brief that provides a point-by-point rundown describing several key advances enabling the HAMR design.

As much time and resources as have been committed to developing HAMR, the need for its increased data density is indisputable. Demand for data storage keeps increasing. Businesses’ ability to manage and leverage more capacity is a competitive necessity, and IT spending on capacity continues to increase.

History of Increasing Storage Capacity

For the last 50 years areal density in the hard disk drive has been growing faster than Moore’s law, which is a very good thing. After all, customers from data centers and cloud service providers to creative professionals and game enthusiasts rarely go shopping looking for a hard drive just like the one they bought two years ago. The demands of increasing data on storage capacities inevitably increase, thus the technology constantly evolves.

According to the Advanced Storage Technology Consortium, HAMR will be the next significant storage technology innovation to increase the amount of storage in the area available to store data, also called the disk’s “areal density.” We believe this boost in areal density will help fuel hard drive product development and growth through the next decade.

Why do we Need to Develop Higher-Capacity Hard Drives? Can’t Current Technologies do the Job?

Why is HAMR’s increased data density so important?

Data has become critical to all aspects of human life, changing how we’re educated and entertained. It affects and informs the ways we experience each other and interact with businesses and the wider world. IDC research shows the datasphere — all the data generated by the world’s businesses and billions of consumer endpoints — will continue to double in size every two years. IDC forecasts that by 2025 the global datasphere will grow to 163 zettabytes (that is a trillion gigabytes). That’s ten times the 16.1 ZB of data generated in 2016. IDC cites five key trends intensifying the role of data in changing our world: embedded systems and the Internet of Things (IoT), instantly available mobile and real-time data, cognitive artificial intelligence (AI) systems, increased security data requirements, and critically, the evolution of data from playing a business background to playing a life-critical role.

Consumers use the cloud to manage everything from family photos and videos to data about their health and exercise routines. Real-time data created by connected devices — everything from Fitbit, Alexa and smart phones to home security systems, solar systems and autonomous cars — are fueling the emerging Data Age. On top of the obvious business and consumer data growth, our critical infrastructure like power grids, water systems, hospitals, road infrastructure and public transportation all demand and add to the growth of real-time data. Data is now a vital element in the smooth operation of all aspects of daily life.

All of this entails a significant infrastructure cost behind the scenes with the insatiable, global appetite for data storage. While a variety of storage technologies will continue to advance in data density (Seagate announced the first 60TB 3.5-inch SSD unit for example), high-capacity hard drives serve as the primary foundational core of our interconnected, cloud and IoT-based dependence on data.

HAMR Hard Drive Technology

Seagate has been working on heat assisted magnetic recording (HAMR) in one form or another since the late 1990s. During this time we’ve made many breakthroughs in making reliable near field transducers, special high capacity HAMR media, and figuring out a way to put a laser on each and every head that is no larger than a grain of salt.

The development of HAMR has required Seagate to consider and overcome a myriad of scientific and technical challenges including new kinds of magnetic media, nano-plasmonic device design and fabrication, laser integration, high-temperature head-disk interactions, and thermal regulation.

A typical hard drive inside any computer or server contains one or more rigid disks coated with a magnetically sensitive film consisting of tiny magnetic grains. Data is recorded when a magnetic write-head flies just above the spinning disk; the write head rapidly flips the magnetization of one magnetic region of grains so that its magnetic pole points up or down, to encode a 1 or a 0 in binary code.

Increasing the amount of data you can store on a disk requires cramming magnetic regions closer together, which means the grains need to be smaller so they won’t interfere with each other.

Heat Assisted Magnetic Recording (HAMR) is the next step to enable us to increase the density of grains — or bit density. Current projections are that HAMR can achieve 5 Tbpsi (Terabits per square inch) on conventional HAMR media, and in the future will be able to achieve 10 Tbpsi or higher with bit patterned media (in which discrete dots are predefined on the media in regular, efficient, very dense patterns). These technologies will enable hard drives with capacities higher than 100 TB before 2030.

The major problem with packing bits so closely together is that if you do that on conventional magnetic media, the bits (and the data they represent) become thermally unstable, and may flip. So, to make the grains maintain their stability — their ability to store bits over a long period of time — we need to develop a recording media that has higher coercivity. That means it’s magnetically more stable during storage, but it is more difficult to change the magnetic characteristics of the media when writing (harder to flip a grain from a 0 to a 1 or vice versa).

That’s why HAMR’s first key hardware advance required developing a new recording media that keeps bits stable — using high anisotropy (or “hard”) magnetic materials such as iron-platinum alloy (FePt), which resist magnetic change at normal temperatures. Over years of HAMR development, Seagate researchers have tested and proven out a variety of FePt granular media films, with varying alloy composition and chemical ordering.

In fact the new media is so “hard” that conventional recording heads won’t be able to flip the bits, or write new data, under normal temperatures. If you add heat to the tiny spot on which you want to write data, you can make the media’s coercive field lower than the magnetic field provided by the recording head — in other words, enable the write head to flip that bit.

So, a challenge with HAMR has been to replace conventional perpendicular magnetic recording (PMR), in which the write head operates at room temperature, with a write technology that heats the thin film recording medium on the disk platter to temperatures above 400 °C. The basic principle is to heat a tiny region of several magnetic grains for a very short time (~1 nanoseconds) to a temperature high enough to make the media’s coercive field lower than the write head’s magnetic field. Immediately after the heat pulse, the region quickly cools down and the bit’s magnetic orientation is frozen in place.

Applying this dynamic nano-heating is where HAMR’s famous “laser” comes in. A plasmonic near-field transducer (NFT) has been integrated into the recording head, to heat the media and enable magnetic change at a specific point. Plasmonic NFTs are used to focus and confine light energy to regions smaller than the wavelength of light. This enables us to heat an extremely small region, measured in nanometers, on the disk media to reduce its magnetic coercivity,

Moving HAMR Forward

HAMR write head

As always in advanced engineering, the devil — or many devils — is in the details. As noted earlier, our technical brief provides a point-by-point short illustrated summary of HAMR’s key changes.

Although hard work remains, we believe this technology is nearly ready for commercialization. Seagate has the best engineers in the world working towards a goal of a 20 Terabyte drive by 2019. We hope we’ve given you a glimpse into the amount of engineering that goes into a hard drive. Keeping up with the world’s insatiable appetite to create, capture, store, secure, manage, analyze, rapidly access and share data is a challenge we work on every day.

With thousands of HAMR drives already being made in our manufacturing facilities, our internal and external supply chain is solidly in place, and volume manufacturing tools are online. This year we began shipping initial units for customer tests, and production units will ship to key customers by the end of 2018. Prepare for breakthrough capacities.

The post What is HAMR and How Does It Enable the High-Capacity Needs of the Future? appeared first on Backblaze Blog | Cloud Storage & Cloud Backup.

Is blockchain a security topic? (Opensource.com)

Post Syndicated from jake original https://lwn.net/Articles/740929/rss

At Opensource.com, Mike Bursell looks at blockchain security from the angle of trust. Unlike cryptocurrencies, which are pseudonymous typically, other kinds of blockchains will require mapping users to real-life identities; that raises the trust issue.

What’s really interesting is that, if you’re thinking about moving to a permissioned blockchain or distributed ledger with permissioned actors, then you’re going to have to spend some time thinking about trust. You’re unlikely to be using a proof-of-work system for making blocks—there’s little point in a permissioned system—so who decides what comprises a “valid” block that the rest of the system should agree on? Well, you can rotate around some (or all) of the entities, or you can have a random choice, or you can elect a small number of über-trusted entities. Combinations of these schemes may also work.

If these entities all exist within one trust domain, which you control, then fine, but what if they’re distributors, or customers, or partners, or other banks, or manufacturers, or semi-autonomous drones, or vehicles in a commercial fleet? You really need to ensure that the trust relationships that you’re encoding into your implementation/deployment truly reflect the legal and IRL [in real life] trust relationships that you have with the entities that are being represented in your system.

And the problem is that, once you’ve deployed that system, it’s likely to be very difficult to backtrack, adjust, or reset the trust relationships that you’ve designed.”

AWS Contributes to Milestone 1.0 Release and Adds Model Serving Capability for Apache MXNet

Post Syndicated from Ana Visneski original https://aws.amazon.com/blogs/aws/aws-contributes-to-milestone-1-0-release-and-adds-model-serving-capability-for-apache-mxnet/

Post by Dr. Matt Wood

Today AWS announced contributions to the milestone 1.0 release of the Apache MXNet deep learning engine including the introduction of a new model-serving capability for MXNet. The new capabilities in MXNet provide the following benefits to users:

1) MXNet is easier to use: The model server for MXNet is a new capability introduced by AWS, and it packages, runs, and serves deep learning models in seconds with just a few lines of code, making them accessible over the internet via an API endpoint and thus easy to integrate into applications. The 1.0 release also includes an advanced indexing capability that enables users to perform matrix operations in a more intuitive manner.

  • Model Serving enables set up of an API endpoint for prediction: It saves developers time and effort by condensing the task of setting up an API endpoint for running and integrating prediction functionality into an application to just a few lines of code. It bridges the barrier between Python-based deep learning frameworks and production systems through a Docker container-based deployment model.
  • Advanced indexing for array operations in MXNet: It is now more intuitive for developers to leverage the powerful array operations in MXNet. They can use the advanced indexing capability by leveraging existing knowledge of NumPy/SciPy arrays. For example, it supports MXNet NDArray and Numpy ndarray as index, e.g. (a[mx.nd.array([1,2], dtype = ‘int32’]).

2) MXNet is faster: The 1.0 release includes implementation of cutting-edge features that optimize the performance of training and inference. Gradient compression enables users to train models up to five times faster by reducing communication bandwidth between compute nodes without loss in convergence rate or accuracy. For speech recognition acoustic modeling like the Alexa voice, this feature can reduce network bandwidth by up to three orders of magnitude during training. With the support of NVIDIA Collective Communication Library (NCCL), users can train a model 20% faster on multi-GPU systems.

  • Optimize network bandwidth with gradient compression: In distributed training, each machine must communicate frequently with others to update the weight-vectors and thereby collectively build a single model, leading to high network traffic. Gradient compression algorithm enables users to train models up to five times faster by compressing the model changes communicated by each instance.
  • Optimize the training performance by taking advantage of NCCL: NCCL implements multi-GPU and multi-node collective communication primitives that are performance optimized for NVIDIA GPUs. NCCL provides communication routines that are optimized to achieve high bandwidth over interconnection between multi-GPUs. MXNet supports NCCL to train models about 20% faster on multi-GPU systems.

3) MXNet provides easy interoperability: MXNet now includes a tool for converting neural network code written with the Caffe framework to MXNet code, making it easier for users to take advantage of MXNet’s scalability and performance.

  • Migrate Caffe models to MXNet: It is now possible to easily migrate Caffe code to MXNet, using the new source code translation tool for converting Caffe code to MXNet code.

MXNet has helped developers and researchers make progress with everything from language translation to autonomous vehicles and behavioral biometric security. We are excited to see the broad base of users that are building production artificial intelligence applications powered by neural network models developed and trained with MXNet. For example, the autonomous driving company TuSimple recently piloted a self-driving truck on a 200-mile journey from Yuma, Arizona to San Diego, California using MXNet. This release also includes a full-featured and performance optimized version of the Gluon programming interface. The ease-of-use associated with it combined with the extensive set of tutorials has led significant adoption among developers new to deep learning. The flexibility of the interface has driven interest within the research community, especially in the natural language processing domain.

Getting started with MXNet
Getting started with MXNet is simple. To learn more about the Gluon interface and deep learning, you can reference this comprehensive set of tutorials, which covers everything from an introduction to deep learning to how to implement cutting-edge neural network models. If you’re a contributor to a machine learning framework, check out the interface specs on GitHub.

To get started with the Model Server for Apache MXNet, install the library with the following command:

$ pip install mxnet-model-server

The Model Server library has a Model Zoo with 10 pre-trained deep learning models, including the SqueezeNet 1.1 object classification model. You can start serving the SqueezeNet model with just the following command:

$ mxnet-model-server \
  --models squeezenet=https://s3.amazonaws.com/model-server/models/squeezenet_v1.1/squeezenet_v1.1.model \
  --service dms/model_service/mxnet_vision_service.py

Learn more about the Model Server and view the source code, reference examples, and tutorials here: https://github.com/awslabs/mxnet-model-server/

-Dr. Matt Wood

BitBarista: a fully autonomous corporation

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/bitbarista/

To some people, the idea of a fully autonomous corporation might seem like the beginning of the end. However, while the BitBarista coffee machine prototype can indeed run itself without any human interference, it also teaches a lesson about ethical responsibility and the value of quality.

BitBarista

Bitcoin coffee machine that engages coffee drinkers in the value chain

Autonomous corporations

If you’ve played Paperclips, you get it. And in case you haven’t played Paperclips, I will only say this: give a robot one job and full control to complete the task, and things may turn in a very unexpected direction. Or, in the case of Rick and Morty, they end in emotional breakdown.

BitBarista

While the fully autonomous BitBarista resides primarily on the drawing board, the team at the University of Edinburgh’s Center for Design Informatics have built a proof-of-concept using a Raspberry Pi and a Delonghi coffee maker.

BitBarista fully autonomous coffee machine using Raspberry Pi

Recently described by the BBC as ‘a coffee machine with a life of its own, dispensing coffee to punters with an ethical preference’, BitBarista works in conjunction with customers to source coffee and complete maintenance tasks in exchange for BitCoin payments. Customers pay for their coffee in BitCoin, and when BitBarista needs maintenance such as cleaning, water replenishment, or restocking, it can pay the same customers for completing those tasks.

BitBarista fully autonomous coffee machine using Raspberry Pi

Moreover, customers choose which coffee beans the machine purchases based on quality, price, environmental impact, and social responsibility. BitBarista also collects and displays data on the most common bean choices.

BitBarista fully autonomous coffee machine using Raspberry Pi

So not only is BitBarista a study into the concept of full autonomy, it’s also a means of data collection about the societal preference of cost compared to social and environmental responsibility.

For more information on BitBarista, visit the Design Informatics and PETRAS websites.

Home-made autonomy

Many people already have store-bought autonomous technology within their homes, such as the Roomba vacuum cleaner or the Nest Smart Thermostat. And within the maker community, many more still have created such devices using sensors, mobile apps, and microprocessors such as the Raspberry Pi. We see examples using the Raspberry Pi on a daily basis, from simple motion-controlled lights and security cameras to advanced devices using temperature sensors and WiFi technology to detect the presence of specific people.

How to Make a Smart Security Camera with a Raspberry Pi Zero

In this video, we use a Raspberry Pi Zero W and a Raspberry Pi camera to make a smart security camera! The camera uses object detection (with OpenCV) to send you an email whenever it sees an intruder. It also runs a webcam so you can view live video from the camera when you are away.

To get started building your own autonomous technology, you could have a look at our resources Laser tripwire and Getting started with picamera. These will help you build a visitor register of everyone who crosses the threshold a specific room.

Or build your own Raspberry Pi Zero W Butter Robot for the lolz.

The post BitBarista: a fully autonomous corporation appeared first on Raspberry Pi.

New – AWS Direct Connect Gateway – Inter-Region VPC Access

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/new-aws-direct-connect-gateway-inter-region-vpc-access/

As I was preparing to write this post, I took a nostalgic look at the blog post I wrote when we launched AWS Direct Connect back in 2012. We created Direct Connect after our enterprise customers asked us to allow them to establish dedicated connections to an AWS Region in pursuit of enhanced privacy, additional data transfer bandwidth, and more predictable data transfer performance. Starting from one AWS Region and a single colo, Direct Connect is now available in every public AWS Region and accessible from dozens of colos scattered across the world (over 60 locations at last count). Our customers have taken to Direct Connect wholeheartedly and we have added features such as Link Aggregation, Amazon EFS support, CloudWatch monitoring, and HIPAA eligibility. In the past five weeks alone we have added Direct Connect locations in Houston (Texas), Vancouver (Canada), Manchester (UK), Canberra (Australia), and Perth (Australia).

Today we are making Direct Connect simpler and more powerful with the addition of the Direct Connect Gateway. We are also giving Direct Connect customers in any Region the ability to create public virtual interfaces that receive our global IP routes and enable access to the public endpoints for our services and updating the Direct Connect pricing model.

Let’s take a look at each one!

New Direct Connect Gateway
You can use the new Direct Connect Gateway to establish connectivity that spans Virtual Private Clouds (VPCs) spread across multiple AWS Regions. You no longer need to establish multiple BGP sessions for each VPC; this reduces your administrative workload as well as the load on your network devices.

This feature also allows you to connect to any of the participating VPCs from any Direct Connect location, further reducing your costs for making using AWS services on a cross-region basis.

Here is a diagram that illustrates the simplification that you can achieve with a Direct Connect Gateway (each “lock” icon represents a Virtual Private Gateway). Start with this:

And end up like this:

The VPCs that reference a particular Direct Connect Gateway must have IP address ranges that do not overlap. Today, the VPCs must all be in the same AWS account; we plan to make this more flexible in the future.

Each Gateway is a global object that exists across all of the public AWS Regions. All communication between the Regions via the Gateways takes place across the AWS network backbone.

Creating a Direct Connect Gateway
You can create a Direct Connect Gateway from the Direct Connect Console or by calling the CreateDirectConnectGateway function from your code. I’ll use the Console!

I open the Direct Connect Console and click on Direct Connect Gateways to get started:

The list is empty since I don’t have any Gateways yet. Click on Create Direct Connect Gateway to change that:

I give my Gateway a name, enter a private ASN for my network, then click on Create. The ASN (Autonomous System Number) must be in one of the ranges defined as private in RFC 6996:

My new Gateway will appear in the other AWS Regions within a moment or two:

I have a Direct Connect Connection in Ohio that I will use to create my VIF:

Now I create a private VIF that references the Gateway and the Connection:

It is ready to use within seconds:

I already have a pair of VPCs with non-overlapping CIDRs, and a Virtual Private Gateway attached to each one. Here are the VPCs (since this is a demo I’ll show both in the same Region for convenience):

And the Virtual Private Gateways:

I return to the Direct Connect Console and navigate to the Direct Connect Gateways. I select my Gateway and choose Associate Virtual Private Gateway from the Actions menu:

Then I select both of my Virtual Private Gateways and click on Associate:

If, as would usually be the case, my VPCs are in distinct AWS Regions, the same procedure would apply. For this blog post it was easier to show you the operations once rather than twice.

The Virtual Gateway association is complete within a minute or so (the state starts out as associating):

When the state transitions to associated, traffic can flow between your on-premises network and your VPCs, over your AWS Direct Connect connection, regardless of the AWS Regions where your VPCs reside.

Public Virtual Interfaces for Service Endpoints
You can now create Public Virtual Interfaces that will allow you to access AWS public service endpoints for AWS services running in any AWS Region (except AWS China Region) over Direct Connect. These interfaces receive (via BGP) Amazon’s global IP routes. You can create these interfaces in the Direct Connect Console; start by selecting the Public option:

After you create it you will need to associate it with a VPC.

Updated Pricing Model
In light of the ever-expanding number of AWS Regions and AWS Direct Connect locations, data transfer pricing is now based on the location of the Direct Connect and the source AWS Region. The new pricing is simpler that the older model which was based on AWS Direct Connect locations.

Now Available
This new feature is available today and you can start to use it right now. You can create and use Direct Connect Gateways at no charge; you pay the usual Direct Connect prices for port hours and data transfer.

Jeff;

 

Twitter makers love Halloween

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/twitter-love-halloween/

Halloween is almost upon us! In honour of one of the maker community’s favourite howlidays, here are some posts from enthusiastic makers on Twitter to get you inspired and prepared for the big event.

Lorraine’s VR Puppet

Lorraine Underwood on Twitter

Using a @Raspberry_Pi with @pimoroni tilt hat to make a cool puppet for #Halloween https://t.co/pOeTFZ0r29

Made with a Pimoroni Pan-Tilt HAT, a Raspberry Pi, and some VR software on her phone, Lorraine Underwood‘s puppet is going to be a rather fitting doorman to interact with this year’s trick-or-treaters. Follow her project’s progress as she posts it on her blog.

Firr’s Monster-Mashing House

Firr on Twitter

Making my house super spooky for Halloween! https://t.co/w553l40BT0

Harnessing the one song guaranteed to earworm its way into my mind this October, Firr has upgraded his house to sing for all those daring enough to approach it this coming All Hallows’ Eve.

Firr used resources from Adafruit, along with three projectors, two Raspberry Pis, and some speakers, to create this semi-interactive display.

While the eyes can move on their own, a joystick can be added for direct control. Firr created a switch that goes between autonomous animation and direct control.

Find out more on the htxt.africa website.

Justin’s Snake Eyes Pumpkin

Justin Smith on Twitter

First #pumpkin of the season for Friday the 13th! @PaintYourDragon’s snake eyes bonnet for the #RaspberryPi to handle the eye animation. https://t.co/TSlUUxYP5Q

The Animated Snake Eyes Bonnet is definitely one of the freakiest products to come from the Adafruit lab, and it’s the perfect upgrade for any carved pumpkin this Halloween. Attach the bonnet to a Raspberry Pi 3, or the smaller Zero or Zero W, and thus add animated eyes to your scary orange masterpiece, as Justin Smith demonstrates in his video. The effect will terrify even the bravest of trick-or-treaters! Just make sure you don’t light a candle in there too…we’re not sure how fire-proof the tech is.

And then there’s this…

EmmArarrghhhhhh on Twitter

Squishy eye keyboard? Anyone? Made with @Raspberry_Pi @pimoroni’s Explorer HAT Pro and a pile of stuff from @Poundland 😂👀‼️ https://t.co/qLfpLLiXqZ

Yeah…the line between frightening and funny is never thinner than on Halloween.

Make and share this Halloween!

For more Halloween project ideas, check out our free resources including Scary ‘Spot the difference’ and the new Pioneers-inspired Pride and Prejudice‘ for zombies.

Halloween Pride and Prejudice Zombies Raspberry Pi

It is a truth universally acknowledged that a single man in possession of the zombie virus must be in want of braaaaaaains.

No matter whether you share your Halloween builds on Twitter, Facebook, G+, Instagram, or YouTube, we want to see them — make sure to tag us in your posts. We also have a comment section below this post, so go ahead and fill it with your ideas, links to completed projects, and general chat about the world of RasBOOrry Pi!

…sorry, that’s a hideous play on words. I apologise.

The post Twitter makers love Halloween appeared first on Raspberry Pi.

FRED-209 Nerf gun tank

Post Syndicated from Janina Ander original https://www.raspberrypi.org/blog/nerf-gun-tank-fred-209/

David Pride, known to many of you as an active member of our maker community, has done it again! His FRED-209 build combines a Nerf gun, 3D printing, a Raspberry Pi Zero, and robotics to make one neat remotely controlled Nerf tank.

FRED-209 – 3D printed Raspberry Pi Nerf Tank

Uploaded by David Pride on 2017-09-17.

A Nerf gun for FRED-209

David says he worked on FRED-209 over the summer in order to have some fun with Nerf guns, which weren’t around when he was a kid. He purchased an Elite Stryfe model at a car boot sale, and took it apart to see what made it tick. Then he set about figuring out how to power it with motors and a servo.

Nerf Elite Stryfe components for the FRED-209 Nerf tank of David Pride

To control the motors, David used a ZeroBorg add-on board for the Pi Zero, and he set up a PlayStation 3 controller to pilot his tank. These components were also part of a robot that David entered into the Pi Wars competition, so he had already written code for them.

3D printing for FRED-209

During prototyping for his Nerf tank, which David named after ED-209 from RoboCop, he used lots of eBay loot and several 3D-printed parts. He used the free OpenSCAD software package to design the parts he wanted to print. If you’re a novice at 3D printing, you might find the printing advice he shares in the write-up on his blog very useful.

3D-printed lid of FRED-209 nerf gun tank by David Pride

David found the 3D printing of the 24cm-long lid of FRED-209 tricky

On eBay, David found some cool-looking chunky wheels, but these turned out to be too heavy for the motors. In the end, he decided to use a Rover 5 chassis, which changed the look of FRED-209 from ‘monster truck’ to ‘tank’.

FRED-209 Nerf tank by David Pride

Next step: teach it to use stairs

The final result looks awesome, and David’s video demonstrates that it shoots very accurately as well. A make like this might be a great defensive project for our new apocalypse-themed Pioneers challenge!

Taking FRED-209 further

David will be uploading code and STL files for FRED-209 soon, so keep an eye on his blog or Twitter for updates. He’s also bringing the Nerf tank to the Cotswold Raspberry Jam this weekend. If you’re attending the event, make sure you catch him and try FRED-209 out yourself.

Never one to rest on his laurels, David is already working on taking his build to the next level. He wants to include a web interface controller and a camera, and is working on implementing OpenCV to give the Nerf tank the ability to autonomously detect targets.

Pi Wars 2018

I have a feeling we might get to see an advanced version of David’s project at next year’s Pi Wars!

The 2018 Pi Wars have just been announced. They will take place on 21-22 April at the Cambridge Computer Laboratory, and you have until 3 October to apply to enter the competition. What are you waiting for? Get making! And as always, do share your robot builds with us via social media.

The post FRED-209 Nerf gun tank appeared first on Raspberry Pi.

Self-Driving Cars Should Be Open Source

Post Syndicated from Bozho original https://techblog.bozho.net/self-driving-cars-open-source/

Self-driving cars are (will be) the pinnacle of consumer products automation – robot vacuum cleaners, smart fridges and TVs are just toys compared to self-driving cars. Both in terms of technology and in terms of impact. We aren’t yet on level 5 self driving cars , but they are behind the corner.

But as software engineers we know how fragile software is. And self-driving cars are basically software, so we can see all the risks involved with putting our lives in the hands anonymous (from our point of view) developers and unknown (to us) processes and quality standards. One may argue that this has been the case for every consumer product ever, but with software is different – software is way more complex than anything else.

So I have an outrageous proposal – self-driving cars should be open source. We have to be able to verify and trust the code that’s navigating our helpless bodies around the highways. Not only that, but we have to be able to verify if it is indeed that code that is currently running in our car, and not something else.

In fact, let me extend that – all cars should be open source. Before you say “but that will ruin the competitive advantage of manufacturers and will be deadly for business”, I don’t actually care how they trained their neural networks, or what their datasets are. That’s actually the secret sauce of the self-driving car and in my view it can remain proprietary and closed. What I’d like to see open-sourced is everything else. (Under what license – I’d be fine to even have it copyrighted and so not “real” open source, but that’s a separate discussion).

Why? This story about remote carjacking using the entertainment system of a Jeep is a scary example. Attackers that reverse engineer the car software can remotely control everything in the car. Why did that happen? Well, I guess it’s complicated and we have to watch the DEFCON talk.

And also read the paper, but a paragraph in wikipedia about the CAN bus used in most cars gives us a hint:

CAN is a low-level protocol and does not support any security features intrinsically. There is also no encryption in standard CAN implementations, which leaves these networks open to man-in-the-middle packet interception. In most implementations, applications are expected to deploy their own security mechanisms; e.g., to authenticate incoming commands or the presence of certain devices on the network. Failure to implement adequate security measures may result in various sorts of attacks if the opponent manages to insert messages on the bus. While passwords exist for some safety-critical functions, such as modifying firmware, programming keys, or controlling antilock brake actuators, these systems are not implemented universally and have a limited number of seed/key pair

I don’t know in what world it makes sense to even have a link between the entertainment system and the low-level network that operates the physical controls. As apparent from the talk, the two systems are supposed to be air-gapped, but in reality they aren’t.

Rookie mistakes were abound – unauthenticated “execute” method, running as root, firmware is not signed, hard-coded passwords, etc. How do we know that there aren’t tons of those in all cars out there right now, and in the self-driving cars of the future (which will likely use the same legacy technologies of the current cars)? Recently I heard a negative comment about the source code of one of the self-driving cars “players”, and I’m pretty sure there are many of those rookie mistakes.

Why this is this even more risky for self-driving cars? I’m not an expert in car programming, but it seems like the attack surface is bigger. I might be completely off target here, but on a typical car you’d have to “just” properly isolate the CAN bus. With self-driving cars the autonomous system that watches the surrounding and makes decisions on what to do next has to be connected to the CAN bus. With Tesla being able to send updates over the wire, the attack surface is even bigger (although that’s actually a good feature – to be able to patch all cars immediately once a vulnerability is discovered).

Of course, one approach would be to introduce legislation that regulates car software. It might work, but it would rely on governments to to proper testing, which won’t always be the case.

The alternative is to open-source it and let all the white-hats find your issues, so that you can close them before the car hits the road. Not only that, but consumers like me will feel safer, and geeks would be able to verify whether the car is really running the software it claims to run by verifying the fingerprints.

Richard Stallman might be seen as a fanatic when he advocates against closed source software, but in cases like … cars, his concerns seem less extreme.

“But the Jeep vulnerability was fixed”, you may say. And that might be seen as being the way things are – vulnerabilities appear, they get fixed, life goes on. No person was injured because of the bug, right? Well, not yet. And “gaining control” is the extreme scenario – there are still pretty bad scenarios, like being able to track a car through its GPS, or cause panic by controlling the entertainment system. It might be over wifi, or over GPRS, or even by physically messing with the car by inserting a flash drive. Is open source immune to those issues? No, but it has proven to be more resilient.

One industry where the problem of proprietary software on a product that the customer bought is … tractors. It turns out farmers are hacking their tractors, because of multiple issues and the inability of the vendor to resolve them in a timely manner. This is likely to happen to cars soon, when only authorized repair shops are allowed to touch anything on the car. And with unauthorized repair shops the attack surface becomes even bigger.

In fact, I’d prefer open source not just for cars, but for all consumer products. The source code of a smart fridge or a security camera is trivial, it would rarely mean sacrificing competitive advantage. But refrigerators get hacked, security cameras are active part of botnets, the “internet of shit” is getting ubiquitous. A huge amount of these issues are dumb, beginner mistakes. We have the right to know what shit we are running – in our frdges, DVRs and ultimatey – cars.

Your fridge may soon by spying on you, your vacuum cleaner may threaten your pet in demand of “ransom”. The terrorists of the future may crash planes without being armed, can crash vans into crowds without being in the van, and can “explode” home equipment without being in the particular home. And that’s not just a hypothetical.

Will open source magically solve the issue? No. But it will definitely make things better and safer, as it has done with operating systems and web servers.

The post Self-Driving Cars Should Be Open Source appeared first on Bozho's tech blog.

Darth Beats: Star Wars LEGO gets a musical upgrade

Post Syndicated from Janina Ander original https://www.raspberrypi.org/blog/darth-beats/

Dan Aldred, Raspberry Pi Certified Educator and creator of the website TeCoEd, has built Darth Beats by managing to fit a Pi Zero W and a Pimoroni Speaker pHAT into a LEGO Darth Vader alarm clock! The Pi force is strong with this one.

Darth Beats MP3 Player

Pimoroni Speaker pHAT and Raspberry Pi Zero W embedded into a Lego Darth Vader Alarm clock to create – “Darth Beats MP3 Player”. Video demonstrating all the features and functions of the project. Alarm Clock – https://goo.gl/VSMhG4 Speaker pHAT – https://shop.pimoroni.com/products/speaker-phat

Darth Beats inspiration: I have a very good feeling about this!

As we all know, anything you love gets better when you add something else you love: chocolate ice cream + caramel sauce, apple tart + caramel sauce, pizza + caramel sau— okay, maybe not anything, but you get what I’m saying.

The formula, in the form of “LEGO + Star Wars”, applies to Dan’s LEGO Darth Vader alarm clock. His Darth Vader, however, was sitting around on a shelf, just waiting to be hacked into something even cooler. Then one day, inspiration struck: Dan decided to aim for exponential awesomeness by integrating Raspberry Pi and Pimoroni technology to turn Vader into an MP3 player.

Darth Beats assembly: always tell me the mods!

The space inside the LEGO device measures a puny 6×3×3 cm, so cramming in the Zero W and the pHAT was going to be a struggle. But Dan grabbed his dremel and set to work, telling himself to “do or do not. There is no try.”

Darth Beats dremel

I find your lack of space disturbing.

He removed the battery compartment, and added two additional buttons in its place. Including the head, his Darth Beats has seven buttons, which means it is fully autonomous as a music player.

Darth Beats back buttons

Almost ready to play a silly remix of Yoda quotes

Darth Beats can draw its power from a wall socket, or from a portable battery pack, as shown in Dan’s video. Dan used the GPIO Zero Python library to set up ‘on’ and ‘off’ switches, and buttons for skipping tracks and controlling volume.

For more details on the build process, read his blog, and check out his video log:

Making Darth Beats

Short video showing you how I created the “Darth Beats MP3 Player”.

Accessing Darth Beats: these are the songs you’re looking for

When you press the ‘on’ switch, the Imperial March sounds before Darth Beats asks “What is thy bidding, my master?”. Then the device is ready to play music. Dan accomplished this by using Cron to run his scripts as soon as the Zero W boots up. MP3 files are played with the help of the Pygame library.

Of course, over time it would become boring to only be able to listen to songs that are stored on the Zero W. However, Dan got around this issue by accessing the Zero W remotely. He set up an online file upload system to add and remove MP3 files from the player. To do this, he used Droopy, an file sharing server software package written by Pierre Duquesne.

IT’S A TRAP!

There’s no reason to use this quote, but since it’s the Star Wars line I use most frequently, I’m adding it here anyway. It’s my post, and I can do what I want!

As you can imagine, there’s little that gets us more excited at Pi Towers than a Pi-powered Star Wars build. Except maybe a Harry Potter-themed project? What are your favourite geeky builds? Are you maybe even working on one yourself? Be sure to send us nerdy joy by sharing your links in the comments!

The post Darth Beats: Star Wars LEGO gets a musical upgrade appeared first on Raspberry Pi.

Landmine-clearing Pi-powered C-Turtle

Post Syndicated from Janina Ander original https://www.raspberrypi.org/blog/landmine-c-turtle/

In an effort to create a robot that can teach itself to navigate different terrains, scientists at Arizona State University have built C-Turtle, a Raspberry Pi-powered autonomous cardboard robot with turtle flippers. This is excellent news for people who live in areas with landmines: C-Turtle is a great alternative to current landmine-clearing robots, since it is much cheaper, and much easier to assemble.

C-Turtle ASU

Photo by Charlie Leight/ASU Now

Why turtle flippers?

As any user of Python will tell you*, turtles are amazing. Moreover, as the evolutionary biologist of the C-Turtle team, Andrew Jansen, will tell you, considering their bulk** turtles move very well on land with the help of their flippers. Consequently, the team tried out prototypes with cardboard flippers imitating the shape of turtle flippers. Then they compared their performance to that of prototypes with rectangular or oval ‘flippers’. And 157 million years of evolution*** won out: the robots with turtle flippers were best at moving forward.

C-Turtle ASU

Field testing with Assistant Professor Heni Ben Amor, one of the C-Turtle team’s leaders (Photo by Charlie Leight/ASU Now)

If it walks like a C-Turtle…

But the scientists didn’t just slap turtle flippers on their robot and then tell it to move like a turtle! Instead, they implemented machine learning algorithms on the Pi Zero that serves as C-Turtle’s brain, and then simply let the robot do its thing. Left to its own devices, it used the reward and punishment mechanisms of its algorithms to learn the most optimal way of propelling itself forward. And lo and behold, C-Turtle taught itself to move just like a live turtle does!

Robotic C-Turtle

This is “Robotic C-Turtle” by ASU Now on Vimeo, the home for high quality videos and the people who love them.

Landmine clearance with C-Turtle

Robots currently used to clear landmines are very expensive, since they are built to withstand multiple mine explosions. Conversely, the total cost of C-Turtle comes to about $70 (~£50) – that’s cheap enough to make it disposable. It is also more easily assembled, it doesn’t need to be remotely controlled, and it can learn to navigate new terrains. All this makes it perfect for clearing minefields.

BBC Click on Twitter

Meet C-Turtle, the landmine detecting robot. VIDEO https://t.co/Kjc6WxRC8I

C-Turtles in space?****

The researchers hope that robots similar to C-Turtle can used for space exploration. They found that the C-Turtle prototypes that had performed very well in the sandpits in their lab didn’t really do as well when they were released in actual desert conditions. By analogy, robots optimized for simulated planetary conditions might not actually perform well on-site. The ASU scientists imagine that C-Turtle materials and a laser cutter for the cardboard body could be carried on board a Mars mission. Then Martian C-Turtle design could be optimized after landing, and the robot could teach itself how best to navigate real Martian terrain.

There are already Raspberry Pis in space – imagine if they actually made it to Mars! Dave would never recover

Congrats to Assistant Professors Heni Ben Amor and Daniel Aukes, and to the rest of the C-Turtle team, on their achievement! We at Pi Towers are proud that our little computer is part of this amazing project.

C-Turtle ASU

Photo by Charlie Leight/ASU Now

* Check out our Turtley amazing resource to find out why!

** At a length of 7ft, leatherback sea turtles can weigh 1,500lb!

*** That’s right: turtles survived the extinction of the dinosaurs!

**** Is anyone else thinking of Great A’Tuin right now? Anyone? Just me? Oh well.

The post Landmine-clearing Pi-powered C-Turtle appeared first on Raspberry Pi.

Roombas will Spy on You

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2017/07/roombas_will_sp.html

The company that sells the Roomba autonomous vacuum wants to sell the data about your home that it collects.

Some questions:

What happens if a Roomba user consents to the data collection and later sells his or her home — especially furnished — and now the buyers of the data have a map of a home that belongs to someone who didn’t consent, Mr. Gidari asked. How long is the data kept? If the house burns down, can the insurance company obtain the data and use it to identify possible causes? Can the police use it after a robbery?

EDITED TO ADD (6/29): Roomba is backtracking — for now.

US Army Researching Bot Swarms

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2017/07/us_army_researc.html

The US Army Research Agency is funding research into autonomous bot swarms. From the announcement:

The objective of this CRA is to perform enabling basic and applied research to extend the reach, situational awareness, and operational effectiveness of large heterogeneous teams of intelligent systems and Soldiers against dynamic threats in complex and contested environments and provide technical and operational superiority through fast, intelligent, resilient and collaborative behaviors. To achieve this, ARL is requesting proposals that address three key Research Areas (RAs):

RA1: Distributed Intelligence: Establish the theoretical foundations of multi-faceted distributed networked intelligent systems combining autonomous agents, sensors, tactical super-computing, knowledge bases in the tactical cloud, and human experts to acquire and apply knowledge to affect and inform decisions of the collective team.

RA2: Heterogeneous Group Control: Develop theory and algorithms for control of large autonomous teams with varying levels of heterogeneity and modularity across sensing, computing, platforms, and degree of autonomy.

RA3: Adaptive and Resilient Behaviors: Develop theory and experimental methods for heterogeneous teams to carry out tasks under the dynamic and varying conditions in the physical world.

Slashdot thread.

And while we’re on the subject, this is an excellent report on AI and national security.

Dubai Deploying Autonomous Robotic Police Cars

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2017/07/dubai_deploying.html

It’s hard to tell how much of this story is real and how much is aspirational, but it really is only a matter of time:

About the size of a child’s electric toy car, the driverless vehicles will patrol different areas of the city to boost security and hunt for unusual activity, all the while scanning crowds for potential persons of interest to police and known criminals.

Julia language for Raspberry Pi

Post Syndicated from Ben Nuttall original https://www.raspberrypi.org/blog/julia-language-raspberry-pi/

Julia is a free and open-source general purpose programming language made specifically for scientific computing. It combines the ease of writing in high-level languages like Python and Ruby with the technical power of MATLAB and Mathematica and the speed of C. Julia is ideal for university-level scientific programming and it’s used in research.

Julia language logo

Some time ago Viral Shah, one of the language’s co-creators, got in touch with us at the Raspberry Pi Foundation to say his team was working on a port of Julia to the ARM platform, specifically for the Raspberry Pi. Since then, they’ve done sterling work to add support for ARM. We’re happy to announce that we’ve now added Julia to the Raspbian repository, and that all Raspberry Pi models are supported!

Not only did the Julia team port the language itself to the Pi, but they also added support for GPIO, the Sense HAT and Minecraft. What I find really interesting is that when they came to visit and show us a demo, they took a completely different approach to the Sense HAT than I’d seen before: Simon, one of the Julia developers, started by loading the Julia logo into a matrix within the Jupyter notebook and then displayed it on the Sense HAT LED matrix. He then did some matrix transformations and the Sense HAT showed the effect of these manipulations.

Viral says:

The combination of Julia’s performance and Pi’s hardware unlocks new possibilities. Julia on the Pi will attract new communities and drive applications in universities, research labs and compute modules. Instead of shipping the data elsewhere for advanced analytics, it can simply be processed on the Pi itself in Julia.

Our port to ARM took a while, since we started at a time when LLVM on ARM was not fully mature. We had a bunch of people contributing to it – chipping away for a long time. Yichao did a bunch of the hard work, since he was using it for his experiments. The folks at the Berkeley Race car project also put Julia and JUMP on their self-driving cars, giving a pretty compelling application. We think we will see many more applications.

I organised an Intro to Julia session for the Cambridge Python user group earlier this week, and rather than everyone having to install Julia, Jupyter and all the additional modules on their own laptops, we just set up a room full of Raspberry Pis and prepared an SD card image. This was much easier and also meant we could use the Sense HAT to display output.

Intro to Julia language session at Raspberry Pi Foundation
Getting started with Julia language on Raspbian
Julia language logo on the Sense HAT LED array

Simon kindly led the session, and before long we were using Julia to generate the Mandelbrot fractal and display it on the Sense HAT:

Ben Nuttall on Twitter

@richwareham’s Sense HAT Mandelbrot fractal with @JuliaLanguage at @campython https://t.co/8FK7Vrpwwf

Naturally, one of the attendees, Rich Wareham, progressed to the Julia set – find his code here: gist.github.com/bennuttall/…

Last year at JuliaCon, there were two talks about Julia on the Pi. You can watch them on YouTube:

Install Julia on your Raspberry Pi with:

sudo apt update
sudo apt install julia

You can install the Jupyter notebook for Julia with:

sudo apt install julia libzmq3-dev python3-zmq
sudo pip3 install jupyter
julia -e 'Pkg.add("IJulia");'

And you can easily install extra packages from the Julia console:

Pkg.add("SenseHat")

The Julia team have also created a resources website for getting started with Julia on the Pi: juliaberry.github.io

Julia team visiting Pi Towers

There never was a story of more joy / Than this of Julia and her Raspberry Pi

Many thanks to Viral Shah, Yichao Yu, Tim Besard, Valentin Churavy, Jameson Nash, Tony Kelman, Avik Sengupta and Simon Byrne for their work on the port. We’re all really excited to see what people do with Julia on Raspberry Pi, and we look forward to welcoming Julia programmers to the Raspberry Pi community.

The post Julia language for Raspberry Pi appeared first on Raspberry Pi.

"Fast and Furious 8: Fate of the Furious"

Post Syndicated from Robert Graham original http://blog.erratasec.com/2017/04/fast-and-furious-8-fate-of-furious.html

So “Fast and Furious 8” opened this weekend to world-wide box office totals of $500,000,000. I thought I’d write up some notes on the “hacking” in it. The tl;dr version is this: yes, while the hacking is a bit far fetched, it’s actually more realistic than the car chase scenes, such as winning a race with the engine on fire while in reverse.

[SPOILERS]


Car hacking


The most innovative cyber-thing in the movie is the car hacking. In one scene, the hacker takes control of the cars in a parking structure, and makes them rain on to the street. In another scene, the hacker takes control away from drivers, with some jumping out of their moving cars in fear.

How real is this?

Well, today, few cars have a mechanical link between the computer and the steering wheel. No amount of hacking will fix the fact that this component is missing.

With that said, most new cars have features that make hacking possible. I’m not sure, but I’d guess more than half of new cars have internet connections (via the mobile phone network), cameras (for backing up, but also looking forward for lane departure warnings), braking (for emergencies), and acceleration.

In other words, we are getting really close.

As this Wikipedia article describes, there are levels for autonomous cars. At level 2 or 3, cars get automated steering, either for parking or for staying in the lane. Level 3 autonomy is especially useful, as it means you can sit back and relax while your car is sitting in a traffic jam. Higher levels of autonomy are still decades away, but most new cars, even the cheapest low end cars, will be level 3 within 5 years. That they make traffic jams bearable makes this an incredibly attractive feature.

Thus, while this scene is laughable today, it’ll be taken seriously in 10 years. People will look back on how smart this movie was at predicting the future.

Car hacking, part 2

Quite apart from the abilities of cars, let’s talk about the abilities of hackers.

The recent ShadowBrokers dump of NSA hacking tools show that hackers simply don’t have a lot of range. Hacking one car is easy — hacking all different models, makes, and years of cars is far beyond the ability of any hacking group, even the NSA.

I mean, a single hack may span more than one car model, and even across more than one manufacturer, because they buy such components from third-party manufacturers. Most cars that have cameras buy them from MobileEye, which was recently acquired by Intel.  As I blogged before, both my Parrot drone and Tesla car have the same WiFi stack, and both could be potential hacked with the same vulnerability. So hacking many cars at once isn’t totally out of the question.

It’s just that hacking all the different cars in a garage is completely implausible.

God’s Eye

The plot of the last two movies as been about the “God’s Eye”, a device that hacks into every camera and satellite to view everything going on in the world.

First of all, all hacking is software. The idea of stealing a hardware device in order enable hacking is therefore (almost) always fiction. There’s one corner case where a quantum chip factoring RSA would enable some previously impossible hacking, but it still can’t reach out and hack a camera behind a firewall.

Hacking security cameras around the world is indeed possible, though. The Mirai botnet of last year demonstrated this. It wormed its way form camera to camera, hacking hundreds of thousands of cameras that weren’t protected by firewalls. It used these devices as simply computers, to flood major websites, taking them offline. But it could’ve also used the camera features, to upload pictures and video’s to the hacker controlling these cameras.

However, most security cameras are behind firewalls, and can’t be reached. Building a “Gody’s Eye” view of the world, to catch a target every time they passed in front of a camera, would therefore be unrealistic.

Moreover, they don’t have either the processing power nor the bandwidth to work like that. It takes heavy number crunching in order to detect faces, or even simple things like license plates, within videos. The cameras don’t have that. Instead, cameras could upload the videos/pictures to supercomputers controlled by the hypothetical hacker, but the bandwidth doesn’t exist. The Internet is being rapidly upgraded, but still, Internet links are built for low-bandwidth webpages, not high-bandwidth streaming from millions of sources.

This rapidly changing. Cameras are rapidly being upgraded with “neural network” chips that will have some rudimentary capabilities to recognize things like license plates, or the outline of a face that could then be uploaded for more powerful number crunching elsewhere. Your car’s cameras already have this, for backup warnings and lane departure warnings, soon all security cameras will have something like this. Likewise, the Internet is steadily being upgraded to replace TV broadcast, where everyone can stream from Netflix all the time, so high-bandwidth streams from cameras will become more of the norm.

Even getting behind a firewall to the camera will change in the future, as owners will simply store surveillance video in the cloud instead of locally. Thus, the hypothetical hacker would only need to hack a small number of surveillance camera companies instead of a billion security cameras.

Evil villain lair: ghost airplane

The evil villain in the movie (named “Cipher”, or course) has her secret headquarters on an airplane that flies along satellite “blind spots” so that it can’t be tracked.

This is nonsense. Low resolution satellites, like NOAA satellites tracking the weather, cover the entire planet (well, as far as such airplanes are concerned, unless you are landing in Antartica). While such satellites might not see the plane, they can track the contrail (I mean, chemtrail). Conversely high resolution satellites miss most of the planet. If they haven’t been tasked to aim at something, they won’t see it. And they can’t be aimed at you unless they already know where you are. Sure, there are moving blind spots where even tasked satellites can’t find you, but it’s unlikely they’d be tracking you anyway.

Since the supervillain was a hacker, the airplane was full of computers. This is nonsense. Any compute power I need as a hacker is better left on the Earth’s surface, either by hacking cloud providers (like Amazon AWS, Microsoft Azure, or Rackspace), or by hiding data centers in Siberia and Tibet. All I need is satellite communication to the Internet from my laptop to be a supervillain. Indeed, I’m unlikely to get the bandwidth I need to process things on the plane. Instead, I’ll need to process everything on the Earth anyway, and send the low-bandwidth results to the plane.

In any case, if I were writing fiction, I’d have nuclear-powered airplanes that stayed aloft for months, operating out of remote bases in the Himalayas or Antartica.

EMP pulses

Small EMP pulse weapons exist, that’s not wholly fictional.

However, an EMP with the features, power, and effects in the movie is, of course, fictional. EMPs, even non-nuclear ones, are abused in films/TV so much that the Wikipedia pages on them spend a lot of time debunking them.

It would be cool if, one day, they used EMP realistically. In this movie, real missile-tipped with non-nuclear explosively-pumped flux compression generators could’ve been used for the same effect. Of course, simple explosives that blow up electronics also work.

Since hacking is the goto deus ex machina these days, they could’ve just had the hackers disable the power instead of using the EMP to do it.

Conclusion

In the movie, the hero uses his extraordinary driving skills to blow up a submarine. Given this level of willing disbelief, the exaggerated hacking is actually the least implausible bits of the movie. Indeed, as technology changes, making some of this more possible, the movie might be seen as predicting the future.