Tag Archives: bing

DNS over HTTPS in Firefox

Post Syndicated from corbet original https://lwn.net/Articles/756262/rss

The Mozilla blog has an
article
describing the addition of DNS over HTTPS (DoH) as an optional
feature in the Firefox browser. “DoH support has been added to
Firefox 62 to improve the way Firefox interacts with DNS. DoH uses
encrypted networking to obtain DNS information from a server that is
configured within Firefox. This means that DNS requests sent to the DoH
cloud server are encrypted while old style DNS requests are not
protected.
” The configured server is hosted by Cloudflare, which
has posted this
privacy agreement
about the service.

New – Pay-per-Session Pricing for Amazon QuickSight, Another Region, and Lots More

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/new-pay-per-session-pricing-for-amazon-quicksight-another-region-and-lots-more/

Amazon QuickSight is a fully managed cloud business intelligence system that gives you Fast & Easy to Use Business Analytics for Big Data. QuickSight makes business analytics available to organizations of all shapes and sizes, with the ability to access data that is stored in your Amazon Redshift data warehouse, your Amazon Relational Database Service (RDS) relational databases, flat files in S3, and (via connectors) data stored in on-premises MySQL, PostgreSQL, and SQL Server databases. QuickSight scales to accommodate tens, hundreds, or thousands of users per organization.

Today we are launching a new, session-based pricing option for QuickSight, along with additional region support and other important new features. Let’s take a look at each one:

Pay-per-Session Pricing
Our customers are making great use of QuickSight and take full advantage of the power it gives them to connect to data sources, create reports, and and explore visualizations.

However, not everyone in an organization needs or wants such powerful authoring capabilities. Having access to curated data in dashboards and being able to interact with the data by drilling down, filtering, or slicing-and-dicing is more than adequate for their needs. Subscribing them to a monthly or annual plan can be seen as an unwarranted expense, so a lot of such casual users end up not having access to interactive data or BI.

In order to allow customers to provide all of their users with interactive dashboards and reports, the Enterprise Edition of Amazon QuickSight now allows Reader access to dashboards on a Pay-per-Session basis. QuickSight users are now classified as Admins, Authors, or Readers, with distinct capabilities and prices:

Authors have access to the full power of QuickSight; they can establish database connections, upload new data, create ad hoc visualizations, and publish dashboards, all for $9 per month (Standard Edition) or $18 per month (Enterprise Edition).

Readers can view dashboards, slice and dice data using drill downs, filters and on-screen controls, and download data in CSV format, all within the secure QuickSight environment. Readers pay $0.30 for 30 minutes of access, with a monthly maximum of $5 per reader.

Admins have all authoring capabilities, and can manage users and purchase SPICE capacity in the account. The QuickSight admin now has the ability to set the desired option (Author or Reader) when they invite members of their organization to use QuickSight. They can extend Reader invites to their entire user base without incurring any up-front or monthly costs, paying only for the actual usage.

To learn more, visit the QuickSight Pricing page.

A New Region
QuickSight is now available in the Asia Pacific (Tokyo) Region:

The UI is in English, with a localized version in the works.

Hourly Data Refresh
Enterprise Edition SPICE data sets can now be set to refresh as frequently as every hour. In the past, each data set could be refreshed up to 5 times a day. To learn more, read Refreshing Imported Data.

Access to Data in Private VPCs
This feature was launched in preview form late last year, and is now available in production form to users of the Enterprise Edition. As I noted at the time, you can use it to implement secure, private communication with data sources that do not have public connectivity, including on-premises data in Teradata or SQL Server, accessed over an AWS Direct Connect link. To learn more, read Working with AWS VPC.

Parameters with On-Screen Controls
QuickSight dashboards can now include parameters that are set using on-screen dropdown, text box, numeric slider or date picker controls. The default value for each parameter can be set based on the user name (QuickSight calls this a dynamic default). You could, for example, set an appropriate default based on each user’s office location, department, or sales territory. Here’s an example:

To learn more, read about Parameters in QuickSight.

URL Actions for Linked Dashboards
You can now connect your QuickSight dashboards to external applications by defining URL actions on visuals. The actions can include parameters, and become available in the Details menu for the visual. URL actions are defined like this:

You can use this feature to link QuickSight dashboards to third party applications (e.g. Salesforce) or to your own internal applications. Read Custom URL Actions to learn how to use this feature.

Dashboard Sharing
You can now share QuickSight dashboards across every user in an account.

Larger SPICE Tables
The per-data set limit for SPICE tables has been raised from 10 GB to 25 GB.

Upgrade to Enterprise Edition
The QuickSight administrator can now upgrade an account from Standard Edition to Enterprise Edition with a click. This enables provisioning of Readers with pay-per-session pricing, private VPC access, row-level security for dashboards and data sets, and hourly refresh of data sets. Enterprise Edition pricing applies after the upgrade.

Available Now
Everything I listed above is available now and you can start using it today!

You can try QuickSight for 60 days at no charge, and you can also attend our June 20th Webinar.

Jeff;

 

Monitoring your Amazon SNS message filtering activity with Amazon CloudWatch

Post Syndicated from Rachel Richardson original https://aws.amazon.com/blogs/compute/monitoring-your-amazon-sns-message-filtering-activity-with-amazon-cloudwatch/

This post is courtesy of Otavio Ferreira, Manager, Amazon SNS, AWS Messaging.

Amazon SNS message filtering provides a set of string and numeric matching operators that allow each subscription to receive only the messages of interest. Hence, SNS message filtering can simplify your pub/sub messaging architecture by offloading the message filtering logic from your subscriber systems, as well as the message routing logic from your publisher systems.

After you set the subscription attribute that defines a filter policy, the subscribing endpoint receives only the messages that carry attributes matching this filter policy. Other messages published to the topic are filtered out for this subscription. In this way, the native integration between SNS and Amazon CloudWatch provides visibility into the number of messages delivered, as well as the number of messages filtered out.

CloudWatch metrics are captured automatically for you. To get started with SNS message filtering, see Filtering Messages with Amazon SNS.

Message Filtering Metrics

The following six CloudWatch metrics are relevant to understanding your SNS message filtering activity:

  • NumberOfMessagesPublished – Inbound traffic to SNS. This metric tracks all the messages that have been published to the topic.
  • NumberOfNotificationsDelivered – Outbound traffic from SNS. This metric tracks all the messages that have been successfully delivered to endpoints subscribed to the topic. A delivery takes place either when the incoming message attributes match a subscription filter policy, or when the subscription has no filter policy at all, which results in a catch-all behavior.
  • NumberOfNotificationsFilteredOut – This metric tracks all the messages that were filtered out because they carried attributes that didn’t match the subscription filter policy.
  • NumberOfNotificationsFilteredOut-NoMessageAttributes – This metric tracks all the messages that were filtered out because they didn’t carry any attributes at all and, consequently, didn’t match the subscription filter policy.
  • NumberOfNotificationsFilteredOut-InvalidAttributes – This metric keeps track of messages that were filtered out because they carried invalid or malformed attributes and, thus, didn’t match the subscription filter policy.
  • NumberOfNotificationsFailed – This last metric tracks all the messages that failed to be delivered to subscribing endpoints, regardless of whether a filter policy had been set for the endpoint. This metric is emitted after the message delivery retry policy is exhausted, and SNS stops attempting to deliver the message. At that moment, the subscribing endpoint is likely no longer reachable. For example, the subscribing SQS queue or Lambda function has been deleted by its owner. You may want to closely monitor this metric to address message delivery issues quickly.

Message filtering graphs

Through the AWS Management Console, you can compose graphs to display your SNS message filtering activity. The graph shows the number of messages published, delivered, and filtered out within the timeframe you specify (1h, 3h, 12h, 1d, 3d, 1w, or custom).

SNS message filtering for CloudWatch Metrics

To compose an SNS message filtering graph with CloudWatch:

  1. Open the CloudWatch console.
  2. Choose Metrics, SNS, All Metrics, and Topic Metrics.
  3. Select all metrics to add to the graph, such as:
    • NumberOfMessagesPublished
    • NumberOfNotificationsDelivered
    • NumberOfNotificationsFilteredOut
  4. Choose Graphed metrics.
  5. In the Statistic column, switch from Average to Sum.
  6. Title your graph with a descriptive name, such as “SNS Message Filtering”

After you have your graph set up, you may want to copy the graph link for bookmarking, emailing, or sharing with co-workers. You may also want to add your graph to a CloudWatch dashboard for easy access in the future. Both actions are available to you on the Actions menu, which is found above the graph.

Summary

SNS message filtering defines how SNS topics behave in terms of message delivery. By using CloudWatch metrics, you gain visibility into the number of messages published, delivered, and filtered out. This enables you to validate the operation of filter policies and more easily troubleshoot during development phases.

SNS message filtering can be implemented easily with existing AWS SDKs by applying message and subscription attributes across all SNS supported protocols (Amazon SQS, AWS Lambda, HTTP, SMS, email, and mobile push). CloudWatch metrics for SNS message filtering is available now, in all AWS Regions.

For information about pricing, see the CloudWatch pricing page.

For more information, see:

[$] XFS online filesystem scrubbing and repair

Post Syndicated from jake original https://lwn.net/Articles/754504/rss

In a filesystem track session at the 2018 Linux Storage, Filesystem, and
Memory-Management Summit (LSFMM), Darrick Wong talked about the online
scrubbing and repair features he has been working on. His target has mostly been
XFS, but he has concurrently been working on scrubbing for ext4.
Part of what he wanted to discuss was the possibility of standardizing some
of these interfaces across different filesystem types.

Some notes on eFail

Post Syndicated from Robert Graham original https://blog.erratasec.com/2018/05/some-notes-on-efail.html

I’ve been busy trying to replicate the “eFail” PGP/SMIME bug. I thought I’d write up some notes.

PGP and S/MIME encrypt emails, so that eavesdroppers can’t read them. The bugs potentially allow eavesdroppers to take the encrypted emails they’ve captured and resend them to you, reformatted in a way that allows them to decrypt the messages.

Disable remote/external content in email

The most important defense is to disable “external” or “remote” content from being automatically loaded. This is when HTML-formatted emails attempt to load images from remote websites. This happens legitimately when they want to display images, but not fill up the email with them. But most of the time this is illegitimate, they hide images on the webpage in order to track you with unique IDs and cookies. For example, this is the code at the end of an email from politician Bernie Sanders to his supporters. Notice the long random number assigned to track me, and the width/height of this image is set to one pixel, so you don’t even see it:

Such trackers are so pernicious they are disabled by default in most email clients. This is an example of the settings in Thunderbird:

The problem is that as you read email messages, you often get frustrated by the fact the error messages and missing content, so you keep adding exceptions:

The correct defense against this eFail bug is to make sure such remote content is disabled and that you have no exceptions, or at least, no HTTP exceptions. HTTPS exceptions (those using SSL) are okay as long as they aren’t to a website the attacker controls. Unencrypted exceptions, though, the hacker can eavesdrop on, so it doesn’t matter if they control the website the requests go to. If the attacker can eavesdrop on your emails, they can probably eavesdrop on your HTTP sessions as well.

Some have recommended disabling PGP and S/MIME completely. That’s probably overkill. As long as the attacker can’t use the “remote content” in emails, you are fine. Likewise, some have recommend disabling HTML completely. That’s not even an option in any email client I’ve used — you can disable sending HTML emails, but not receiving them. It’s sufficient to just disable grabbing remote content, not the rest of HTML email rendering.

I couldn’t replicate the direct exfiltration

There rare two related bugs. One allows direct exfiltration, which appends the decrypted PGP email onto the end of an IMG tag (like one of those tracking tags), allowing the entire message to be decrypted.

An example of this is the following email. This is a standard HTML email message consisting of multiple parts. The trick is that the IMG tag in the first part starts the URL (blog.robertgraham.com/…) but doesn’t end it. It has the starting quotes in front of the URL but no ending quotes. The ending will in the next chunk.

The next chunk isn’t HTML, though, it’s PGP. The PGP extension (in my case, Enignmail) will detect this and automatically decrypt it. In this case, it’s some previous email message I’ve received the attacker captured by eavesdropping, who then pastes the contents into this email message in order to get it decrypted.

What should happen at this point is that Thunderbird will generate a request (if “remote content” is enabled) to the blog.robertgraham.com server with the decrypted contents of the PGP email appended to it. But that’s not what happens. Instead, I get this:

I am indeed getting weird stuff in the URL (the bit after the GET /), but it’s not the PGP decrypted message. Instead what’s going on is that when Thunderbird puts together a “multipart/mixed” message, it adds it’s own HTML tags consisting of lines between each part. In the email client it looks like this:

The HTML code it adds looks like:

That’s what you see in the above URL, all this code up to the first quotes. Those quotes terminate the quotes in the URL from the first multipart section, causing the rest of the content to be ignored (as far as being sent as part of the URL).

So at least for the latest version of Thunderbird, you are accidentally safe, even if you have “remote content” enabled. Though, this is only according to my tests, there may be a work around to this that hackers could exploit.

STARTTLS

In the old days, email was sent plaintext over the wire so that it could be passively eavesdropped on. Nowadays, most providers send it via “STARTTLS”, which sorta encrypts it. Attackers can still intercept such email, but they have to do so actively, using man-in-the-middle. Such active techniques can be detected if you are careful and look for them.
Some organizations don’t care. Apparently, some nation states are just blocking all STARTTLS and forcing email to be sent unencrypted. Others do care. The NSA will passively sniff all the email they can in nations like Iraq, but they won’t actively intercept STARTTLS messages, for fear of getting caught.
The consequence is that it’s much less likely that somebody has been eavesdropping on you, passively grabbing all your PGP/SMIME emails. If you fear they have been, you should look (e.g. send emails from GMail and see if they are intercepted by sniffing the wire).

You’ll know if you are getting hacked

If somebody attacks you using eFail, you’ll know. You’ll get an email message formatted this way, with multipart/mixed components, some with corrupt HTML, some encrypted via PGP. This means that for the most part, your risk is that you’ll be attacked only once — the hacker will only be able to get one message through and decrypt it before you notice that something is amiss. Though to be fair, they can probably include all the emails they want decrypted as attachments to the single email they sent you, so the risk isn’t necessarily that you’ll only get one decrypted.
As mentioned above, a lot of attackers (e.g. the NSA) won’t attack you if its so easy to get caught. Other attackers, though, like anonymous hackers, don’t care.
Somebody ought to write a plugin to Thunderbird to detect this.

Summary

It only works if attackers have already captured your emails (though, that’s why you use PGP/SMIME in the first place, to guard against that).
It only works if you’ve enabled your email client to automatically grab external/remote content.
It seems to not be easily reproducible in all cases.
Instead of disabling PGP/SMIME, you should make sure your email client hast remote/external content disabled — that’s a huge privacy violation even without this bug.

Notes: The default email client on the Mac enables remote content by default, which is bad:

Съвместима ли е таксата за радио и телевизия с правото на ЕС

Post Syndicated from nellyo original https://nellyo.wordpress.com/2018/05/13/fee_psm/

През март  2018 г. Oberverwaltungsgericht Rheinland-Pfalz (Върховен административен съд на Рейнланд-Пфалц – OVG Rheinland-Pfalz) решава, че таксата за радио и телевизия в Германия е съвместима с правото на ЕС (дело № 7 A 11938/17) . Съдът отхвърля тезата, че таксата е несъвместима с правото на ЕС, тъй като предоставя на обществените радио- и телевизионни доставчици на медийни услуги несправедливо предимство пред техните частни конкуренти.

Съдът посочва, че през 2016 г. Bundesverwaltungsgericht (Федерален административен съд – BVerwG) вече е установил съответствието на таксата  – в новата й форма, въведена през 2013 г. – с правото на ЕС (решение от 18 март 2016 г., BVerwG 6 С 6.15). Съгласно това решение въвеждането на таксата  не изисква съгласието на Европейската комисия и е с съвместимо с Директивата за аудиовизуалните медийни услуги.  Обществените и частните радио- и телевизионни оператори  неизбежно ще бъдат финансирани по различни начини. Това обаче не означава непременно, че обществените радио- и телевизионни оператори са получили несправедливо предимство, тъй като за разлика от частните радио- и телевизионни оператори те са подложени на много по-ограничителни правила за рекламиране и следователно са финансово зависими от таксата.

Междувременно Landgericht Tübingen (Районен съд в Тюбинген, решение от 3 август 2017 г., дело № 5 T 246/17 и др.) е постановил, че таксата  нарушава правото на ЕС  – и в резултат има подадено преюдициално запитване до Съда на ЕС –  дело  С-492/17.

 

Преюдициални въпроси:

1)

Несъвместим ли е с правото на Съюза националният Gesetz vom 18.10.2011 zur Geltung des Rundfunkbeitragsstaatsvertrags (RdFunkBeitrStVtrBW) vom 17 Dezember 2010 (Закон от 18 октомври 2011 г. за прилагане на Държавния договор за вноската за радио- и телевизионно разпространение от 17 декември 2010 г., наричан по-нататък „RdFunkBeitrStVtrBW“) на провинция Баден-Вюртемберг, последно изменен с член 4 от Neunzehnter Rundfunkänderungsstaatsvertrag (Деветнадесети държавен договор за изменение на Държавните договори за радио- и телевизионно разпространение) от 3 декември 2015 г. (Закон от 23 февруари 2016 г., GBl. стр. 126, 129), поради това че вноската, събирана от 1 януари 2013 г. съгласно този закон безусловно по принцип от всяко живеещо в германската федерална провинция Баден-Вюртемберг пълнолетно лице в полза на радио- и телевизионните оператори SWR и ZDF, представлява помощ, която противоречи на правото на Съюза и предоставя по-благоприятно третиране само в полза на тези обществени радио- и телевизионни оператори спрямо частни радио- и телевизионни оператори? Трябва ли членове 107 и 108 ДФЕС да се тълкуват в смисъл, че за Закона за вноската за радио- и телевизионно разпространение е трябвало да се получи разрешението на Комисията и поради липсата на разрешение той е невалиден?

2)

Трябва ли член 107 ДФЕС, съответно член 108 ДФЕС да се тълкува в смисъл, че в обхвата му попада правна уредба, установена в националния закон „RdFunkBeitrStVtrBW“, която предвижда, че по принцип от всяко живеещо в Баден-Вюртемберг пълнолетно лице безусловно се събира вноска в полза само на държавни/обществени радио- и телевизионни оператори, поради това че тази вноска съдържа противоречаща на правото на Съюза и предоставяща по-благоприятно третиране помощ с цел изключването по технически причини на оператори от държави от Европейския съюз, доколкото вноските са предназначени да се използват за създаването на конкурентен начин на пренос (монопол върху DVB-T2), без да е предвидено той да се използва от чуждестранни оператори? Трябва ли член 107 ДФЕС, съответно член 108 ДФЕС да се тълкува в смисъл, че в обхвата му попадат не само преки субсидии, но и други релевантни от икономическа гледна точка привилегии (право на издаване на изпълнителен лист, правомощия за предприемане на действия както в качеството на стопанско предприятие, така и в качеството на орган, поставяне в по-благоприятно положение при изчисляването на дълговете)?

3)

Съвместимо ли е с принципа на равно третиране и със забраната за предоставящи привилегии помощи положение, при което на основание национален закон на провинция Баден-Вюртемберг германски телевизионен оператор, който се урежда от нормите на публичното право и има предоставени правомощия на орган, но същевременно се конкурира с частни радио- и телевизионни оператори на рекламния пазар, е привилегирован в сравнение с тези оператори поради това че не трябва като частните конкуренти да иска по общия съдебен ред да му бъде издаден изпълнителен лист за вземанията му срещу зрителите, преди да може да пристъпи към принудително изпълнение, а самият той има право, без участието на съд, да издаде титул, който същевременно му дава право на принудително изпълнение?

4)

Съвместимо ли е с член 10 от ЕКПЧ /член [11] от Хартата на основните права (свобода на информация) положение, при което държава членка предвижда в национален закон на провинция Баден-Вюртемберг, че телевизионен оператор, на който са предоставени правомощия на орган, има право да изисква плащането на вноска от всяко живеещо в зоната на радио- и телевизионното излъчване пълнолетно лице за целите на финансирането на точно този оператор, при неплащането на която е предвидена глоба, независимо дали това лице въобще разполага с приемник или само използва услугите на други, а именно чуждестранни или други, частни оператори?

5)

Съвместим ли е националният закон „RdFunkBeitrStVtrBW“, и по-специално членове 2 и 3, с установените в правото на Съюза принципи на равно третиране и на недопускане на дискриминация в положение, при което вноската, която следва да се плаща безусловно от всеки жител за целите на финансирането на обществен телевизионен оператор, налага на всяко лице, което само отглежда детето си, тежест в размер, многократно по-висок от сумата, дължима от лице, което живее в общо жилище с други хора? Следва ли Директива 2004/113/ЕО (1) да се тълкува в смисъл, че спорната вноска също попада в обхвата ѝ и че e достатъчно да е налице косвено поставяне в по-неблагоприятно положение, след като с оглед на реалните дадености 90 % от жените понасят по-голяма тежест?

6)

Съвместим ли националният закон „RdFunkBeitrStVtrBW“, и по-специално членове 2 и 3, с установените в правото на Съюза принципи на равно третиране и на недопускане на дискриминация в положение, при което вноската, която следва да се плаща безусловно от всеки жител за целите на финансирането на обществен телевизионен оператор, за нуждаещите се от второ жилище лица по свързана с работата причина е двойно по-голяма, отколкото за други работници?

7)

Съвместим ли е националният закон „RdFunkBeitrStVtrBW“, и по-специално членове 2 и 3, с установените в правото на Съюза принципи на равно третиране и на недопускане на дискриминация и със свободата на установяване, ако вноската, която следва да се плаща безусловно от всеки жител за целите на финансирането на обществен телевизионен оператор, е уредена по такъв начин, че при еднаква възможност за приемане на радио- и телевизионно разпространение непосредствено преди границата със съседна държава от ЕС германски гражданин дължи вноската само поради мястото си на пребиваване, докато германският гражданин, живущ непосредствено от другата страна на границата, не дължи вноската, също както гражданинът на друга държава — членка на ЕС, който по свързани с работата причини трябва да се установи непосредствено от другата страна на вътрешна граница на ЕС, понася тежестта на вноската, но не и гражданинът на ЕС, живущ непосредствено преди границата, дори и никой от двамата да не се интересува от приемането на излъчванията на германския оператор?

Коментар по въпрос №4:  допуснат е въпрос за съвместимост с чл.10 от Конвенцията за правата на човека. Съдът за правата на човека вече се е произнасял, има съображения за недопустимост по сходно дело отпреди десетина години –  ето тук съм писала – вж Faccio v Italy – но нека да се произнесе и Съдът на ЕС.

И – отново за характера на таксата: ако  плащат и хората без приемник, това очевидно не е такса в смисъл цена за услуга, а данъчно вземане, по мое мнение това е тенденцията.

Чакаме решението на Съда на ЕС. Нека да се развива и множи практиката.

The plan for merging CoreOS into Red Hat

Post Syndicated from corbet original https://lwn.net/Articles/754058/rss

The CoreOS blog is carrying an
article
describing the path forward now that CoreOS is owned by Red
Hat. “Since Red Hat’s acquisition of CoreOS was announced, we
received questions on the fate of Container Linux. CoreOS’s first project,
and initially its namesake, pioneered the lightweight, ‘over-the-air’
automatically updated container native operating system that fast rose in
popularity running the world’s containers. With the acquisition, Container
Linux will be reborn as Red Hat CoreOS, a new entry into the Red Hat
ecosystem. Red Hat CoreOS will be based on Fedora and Red Hat Enterprise
Linux sources and is expected to ultimately supersede Atomic Host as Red
Hat’s immutable, container-centric operating system.
” Some
information can also be found in this
Red Hat press release
.

Raspberry Pi in your favourite films and TV shows

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/raspberry-pi-films-tv/

If, like us, you’ve been bingeflixing your way through Netflix’s new show, Lost in Space, you may have noticed a Raspberry Pi being used as futuristic space tech.

Raspberry Pi Netflix Lost in Space

Danger, Will Robinson, that probably won’t work

This isn’t the first time a Pi has been used as a film or television prop. From Mr. Robot and Disney Pixar’s Big Hero 6 to Mr. Robot, Sense8, and Mr. Robot, our humble little computer has become quite the celeb.

Raspberry Pi Charlie Brooker Election Wipe
Raspberry Pi Big Hero 6
Raspberry Pi Netflix

Raspberry Pi Spy has been working hard to locate and document the appearance of the Raspberry Pi in some of our favourite shows and movies. He’s created this video covering 2010-2017:

Raspberry Pi TV and Film Appearances 2012-2017

Since 2012 the Raspberry Pi single board computer has appeared in a number of movies and TV shows. This video is a run through of those appearances where the Pi has been used as a prop.

For 2018 appearances and beyond, you can find a full list on the Raspberry Pi Spy website. If you’ve spotted an appearance that’s not on the list, tell us in the comments!

The post Raspberry Pi in your favourite films and TV shows appeared first on Raspberry Pi.

Welcome Steven: Associate Front End Developer

Post Syndicated from Yev original https://www.backblaze.com/blog/welcome-steven-associate-front-end-developer/

The Backblaze web team is growing! As we add more features and work on our website we need more hands to get things done. Enter Steven, who joins us as an Associate Front End Developer. Steven is going to be getting his hands dirty and diving in to the fun-filled world of web development. Lets learn a bit more about Steven shall we?

What is your Backblaze Title?
Associate Front End Developer.

Where are you originally from?
The Bronx, New York born and raised.

What attracted you to Backblaze?
The team behind Backblaze made me feel like family from the moment I stepped in the door. The level of respect and dedication they showed me is the same respect and dedication they show their customers. Those qualities made wanting to be a part of Backblaze a no brainer!

What do you expect to learn while being at Backblaze?
I expect to grow as a software developer and human being by absorbing as much as I can from the immensely talented people I’ll be surrounded by.

Where else have you worked?
I previously worked at The Greenwich Hotel where I was a front desk concierge and bellman. If the team at Backblaze is anything like the team I was a part of there then this is going to be a fun ride.

Where did you go to school?
I studied at Baruch College and Bloc.

What’s your dream job?
My dream job is one where I’m able to express 100% of my creativity.

Favorite place you’ve traveled?
Santiago, Dominican Republic.

Favorite hobby?
Watching my Yankees, Knicks or Jets play.

Of what achievement are you most proud?
Becoming a Software Developer…

Star Trek or Star Wars?
Star Wars! May the force be with you…

Coke or Pepsi?
… Water. Black iced tea? One of god’s finer creations.

Favorite food?
Mangu con Los Tres Golpes (Mashed Plantains with Fried Salami, Eggs & Cheese).

Why do you like certain things?
I like things that give me good vibes.

Anything else you’d like you’d like to tell us?
If you break any complex concept down into to its simplest parts you’ll have an easier time trying to fully grasp it.

Those are some serious words of wisdom from Steven. We look forward to him helping us get cool stuff out the door!

The post Welcome Steven: Associate Front End Developer appeared first on Backblaze Blog | Cloud Storage & Cloud Backup.

Introducing Microsoft Azure Sphere

Post Syndicated from corbet original https://lwn.net/Articles/751994/rss

Microsoft has issued a
press release
describing the security dangers involved with the
Internet of things (“a weaponized stove, baby monitors that spy, the
contents of your refrigerator being held for ransom
“) and introducing
“Microsoft Azure Sphere” as a combination of hardware and software to
address the problem. “Unlike the RTOSes common to MCUs today, our
defense-in-depth IoT OS offers multiple layers of security. It combines
security innovations pioneered in Windows, a security monitor, and a custom
Linux kernel to create a highly-secured software environment and a
trustworthy platform for new IoT experiences.

Securing messages published to Amazon SNS with AWS PrivateLink

Post Syndicated from Otavio Ferreira original https://aws.amazon.com/blogs/security/securing-messages-published-to-amazon-sns-with-aws-privatelink/

Amazon Simple Notification Service (SNS) now supports VPC Endpoints (VPCE) via AWS PrivateLink. You can use VPC Endpoints to privately publish messages to SNS topics, from an Amazon Virtual Private Cloud (VPC), without traversing the public internet. When you use AWS PrivateLink, you don’t need to set up an Internet Gateway (IGW), Network Address Translation (NAT) device, or Virtual Private Network (VPN) connection. You don’t need to use public IP addresses, either.

VPC Endpoints doesn’t require code changes and can bring additional security to Pub/Sub Messaging use cases that rely on SNS. VPC Endpoints helps promote data privacy and is aligned with assurance programs, including the Health Insurance Portability and Accountability Act (HIPAA), FedRAMP, and others discussed below.

VPC Endpoints for SNS in action

Here’s how VPC Endpoints for SNS works. The following example is based on a banking system that processes mortgage applications. This banking system, which has been deployed to a VPC, publishes each mortgage application to an SNS topic. The SNS topic then fans out the mortgage application message to two subscribing AWS Lambda functions:

  • Save-Mortgage-Application stores the application in an Amazon DynamoDB table. As the mortgage application contains personally identifiable information (PII), the message must not traverse the public internet.
  • Save-Credit-Report checks the applicant’s credit history against an external Credit Reporting Agency (CRA), then stores the final credit report in an Amazon S3 bucket.

The following diagram depicts the underlying architecture for this banking system:
 
Diagram depicting the architecture for the example banking system
 
To protect applicants’ data, the financial institution responsible for developing this banking system needed a mechanism to prevent PII data from traversing the internet when publishing mortgage applications from their VPC to the SNS topic. Therefore, they created a VPC endpoint to enable their publisher Amazon EC2 instance to privately connect to the SNS API. As shown in the diagram, when the VPC endpoint is created, an Elastic Network Interface (ENI) is automatically placed in the same VPC subnet as the publisher EC2 instance. This ENI exposes a private IP address that is used as the entry point for traffic destined to SNS. This ensures that traffic between the VPC and SNS doesn’t leave the Amazon network.

Set up VPC Endpoints for SNS

The process for creating a VPC endpoint to privately connect to SNS doesn’t require code changes: access the VPC Management Console, navigate to the Endpoints section, and create a new Endpoint. Three attributes are required:

  • The SNS service name.
  • The VPC and Availability Zones (AZs) from which you’ll publish your messages.
  • The Security Group (SG) to be associated with the endpoint network interface. The Security Group controls the traffic to the endpoint network interface from resources in your VPC. If you don’t specify a Security Group, the default Security Group for your VPC will be associated.

Help ensure your security and compliance

SNS can support messaging use cases in regulated market segments, such as healthcare provider systems subject to the Health Insurance Portability and Accountability Act (HIPAA) and financial systems subject to the Payment Card Industry Data Security Standard (PCI DSS), and is also in-scope with the following Assurance Programs:

The SNS API is served through HTTP Secure (HTTPS), and encrypts all messages in transit with Transport Layer Security (TLS) certificates issued by Amazon Trust Services (ATS). The certificates verify the identity of the SNS API server when encrypted connections are established. The certificates help establish proof that your SNS API client (SDK, CLI) is communicating securely with the SNS API server. A Certificate Authority (CA) issues the certificate to a specific domain. Hence, when a domain presents a certificate that’s issued by a trusted CA, the SNS API client knows it’s safe to make the connection.

Summary

VPC Endpoints can increase the security of your pub/sub messaging use cases by allowing you to publish messages to SNS topics, from instances in your VPC, without traversing the internet. Setting up VPC Endpoints for SNS doesn’t require any code changes because the SNS API address remains the same.

VPC Endpoints for SNS is now available in all AWS Regions where AWS PrivateLink is available. For information on pricing and regional availability, visit the VPC pricing page.
For more information and on-boarding, see Publishing to Amazon SNS Topics from Amazon Virtual Private Cloud in the SNS documentation.

If you have comments about this post, submit them in the Comments section below. If you have questions about anything in this post, start a new thread on the Amazon SNS forum or contact AWS Support.

Want more AWS Security news? Follow us on Twitter.

Another Branch Prediction Attack

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2018/03/another_branch_.html

When Spectre and Meltdown were first announced earlier this year, pretty much everyone predicted that there would be many more attacks targeting branch prediction in microprocessors. Here’s another one:

In the new attack, an attacker primes the PHT and running branch instructions so that the PHT will always assume a particular branch is taken or not taken. The victim code then runs and makes a branch, which is potentially disturbing the PHT. The attacker then runs more branch instructions of its own to detect that disturbance to the PHT; the attacker knows that some branches should be predicted in a particular direction and tests to see if the victim’s code has changed that prediction.

The researchers looked only at Intel processors, using the attacks to leak information protected using Intel’s SGX (Software Guard Extensions), a feature found on certain chips to carve out small sections of encrypted code and data such that even the operating system (or virtualization software) cannot access it. They also described ways the attack could be used against address space layout randomization and to infer data in encryption and image libraries.

Research paper.

March Machine Learning Madness!

Post Syndicated from Randall Hunt original https://aws.amazon.com/blogs/aws/march-machine-learning-madness/

Mid-march in the USA means millions of people watching, and betting on, college basketball (I live here but I didn’t make the rules). As the NCAA college championship continues I wanted to briefly highlight the work of Wesley Pasfield one of our Professional Services Machine Learning Specialists. Wesley was able to take data from kenpom.com and College Basketball Reference to build a model predicting the outcome of March Madness using the Amazon SageMaker built-in XGBoost algorithm.

Wesley walks us through grabbing the data, performing an exploratory data analysis (EDA in the data science lingo), reshaping the data for the xgboost algorithm, using the SageMaker SDK to create a training job for two different models, and finally creating a SageMaker inference endpoint for serving predictions at https://cbbpredictions.com/. Check out part one of the post and part two.

Pretty cool right? Why not open the notebook and give the xgboost algorithm a try? Just know that there are a few caveats to the predictions so don’t go making your champion prediction just yet!

Randall

Real-Time Hotspot Detection in Amazon Kinesis Analytics

Post Syndicated from Randall Hunt original https://aws.amazon.com/blogs/aws/real-time-hotspot-detection-in-amazon-kinesis-analytics/

Today we’re releasing a new machine learning feature in Amazon Kinesis Data Analytics for detecting “hotspots” in your streaming data. We launched Kinesis Data Analytics in August of 2016 and we’ve continued to add features since. As you may already know, Kinesis Data Analytics is a fully managed real-time processing engine for streaming data that lets you write SQL queries to derive meaning from your data and output the results to Kinesis Data Firehose, Kinesis Data Streams, or even an AWS Lambda function. The new HOTSPOT function adds to the existing machine learning capabilities in Kinesis that allow customers to leverage unsupervised streaming based machine learning algorithms. Customers don’t need to be experts in data science or machine learning to take advantage of these capabilities.

Hotspots

The HOTSPOTS function is a new Kinesis Data Analytics SQL function you can use to idenitfy relatively dense regions in your data without having to explicity build and train complicated machine learning models. You can identify subsections of your data that need immediate attention and take action programatically by streaming the hotspots out to a Kinesis Data stream, to a Firehose delivery stream, or by invoking a AWS Lambda function.

There are a ton of really cool scenarios where this could make your operations easier. Imagine a ride-share program or autonomous vehicle fleet communicating spatiotemporal data about traffic jams and congestion, or a datacenter where a number of servers start to overheat indicating an HVAC issue. HOTSPOTS is not limited to spatiotemporal data and you could apply it across many problem domains.

The function follows some simple syntax and accepts the DOUBLE, INTEGER, FLOAT, TINYINT, SMALLINT, REAL, and BIGINT data types.

The HOTSPOT function takes a cursor as input and returns a JSON string describing the hotspot. This will be easier to understand with an example.

Using Kinesis Data Analytics to Detect Hotspots

Let’s take a simple data set from NY Taxi and Limousine Commission that tracks yellow cab pickup and dropoff locations. Most of this data is already on S3 and publicly accessible at s3://nyc-tlc/. We will create a small python script to load our Kinesis Data Stream with Taxi records which will feed our Kinesis Data Analytics. Finally we’ll output all of this to a Kinesis Data Firehose connected to an Amazon Elasticsearch Service cluster for visualization with Kibana. I know from living in New York for 5 years that we’ll probably find a hotspot or two in this data.

First, we’ll create an input Kinesis stream and start sending our NYC Taxi Ride data into it. I just wrote a quick python script to read from one of the CSV files and used boto3 to push the records into Kinesis. You can put the record in whatever way works for you.

 

import csv
import json
import boto3
def chunkit(l, n):
    """Yield successive n-sized chunks from l."""
    for i in range(0, len(l), n):
        yield l[i:i + n]

kinesis = boto3.client("kinesis")
with open("taxidata2.csv") as f:
    reader = csv.DictReader(f)
    records = chunkit([{"PartitionKey": "taxis", "Data": json.dumps(row)} for row in reader], 500)
    for chunk in records:
        kinesis.put_records(StreamName="TaxiData", Records=chunk)

Next, we’ll create the Kinesis Data Analytics application and add our input stream with our taxi data as the source.

Next we’ll automatically detect the schema.

Now we’ll create a quick SQL Script to detect our hotspots and add that to the Real Time Analytics section of our application.

CREATE OR REPLACE STREAM "DESTINATION_SQL_STREAM" (
    "pickup_longitude" DOUBLE,
    "pickup_latitude" DOUBLE,
    HOTSPOTS_RESULT VARCHAR(10000)
); 
CREATE OR REPLACE PUMP "STREAM_PUMP" AS INSERT INTO "DESTINATION_SQL_STREAM" 
    SELECT "pickup_longitude", "pickup_latitude", "HOTSPOTS_RESULT" FROM
        TABLE(HOTSPOTS(
            CURSOR(SELECT STREAM * FROM "SOURCE_SQL_STREAM_001"),
            1000,
            0.013,
            20
        )
    );


Our HOTSPOTS function takes an input stream, a window size, scan radius, and a minimum number of points to count as a hotspot. The values for these are application dependent but you can tinker with them in the console easily until you get the results you want. There are more details about the parameters themselves in the documentation. The HOTSPOTS_RESULT returns some useful JSON that would let us plot bounding boxes around our hotspots:

{
  "hotspots": [
    {
      "density": "elided",
      "minValues": [40.7915039, -74.0077401],
      "maxValues": [40.7915041, -74.0078001]
    }
  ]
}

 

When we have our desired results we can save the script and connect our application to our Amazon Elastic Search Service Firehose Delivery Stream. We can run an intermediate lambda function in the firehose to transform our record into a format more suitable for geographic work. Then we can update our mapping in Elasticsearch to index the hotspot objects as Geo-Shapes.

Finally, we can connect to Kibana and visualize the results.

Looks like Manhattan is pretty busy!

Available Now
This feature is available now in all existing regions with Kinesis Data Analytics. I think this is a really interesting new feature of Kinesis Data Analytics that can bring immediate value to many applications. Let us know what you build with it on Twitter or in the comments!

Randall

Message Filtering Operators for Numeric Matching, Prefix Matching, and Blacklisting in Amazon SNS

Post Syndicated from Christie Gifrin original https://aws.amazon.com/blogs/compute/message-filtering-operators-for-numeric-matching-prefix-matching-and-blacklisting-in-amazon-sns/

This blog was contributed by Otavio Ferreira, Software Development Manager for Amazon SNS

Message filtering simplifies the overall pub/sub messaging architecture by offloading message filtering logic from subscribers, as well as message routing logic from publishers. The initial launch of message filtering provided a basic operator that was based on exact string comparison. For more information, see Simplify Your Pub/Sub Messaging with Amazon SNS Message Filtering.

Today, AWS is announcing an additional set of filtering operators that bring even more power and flexibility to your pub/sub messaging use cases.

Message filtering operators

Amazon SNS now supports both numeric and string matching. Specifically, string matching operators allow for exact, prefix, and “anything-but” comparisons, while numeric matching operators allow for exact and range comparisons, as outlined below. Numeric matching operators work for values between -10e9 and +10e9 inclusive, with five digits of accuracy right of the decimal point.

  • Exact matching on string values (Whitelisting): Subscription filter policy   {"sport": ["rugby"]} matches message attribute {"sport": "rugby"} only.
  • Anything-but matching on string values (Blacklisting): Subscription filter policy {"sport": [{"anything-but": "rugby"}]} matches message attributes such as {"sport": "baseball"} and {"sport": "basketball"} and {"sport": "football"} but not {"sport": "rugby"}
  • Prefix matching on string values: Subscription filter policy {"sport": [{"prefix": "bas"}]} matches message attributes such as {"sport": "baseball"} and {"sport": "basketball"}
  • Exact matching on numeric values: Subscription filter policy {"balance": [{"numeric": ["=", 301.5]}]} matches message attributes {"balance": 301.500} and {"balance": 3.015e2}
  • Range matching on numeric values: Subscription filter policy {"balance": [{"numeric": ["<", 0]}]} matches negative numbers only, and {"balance": [{"numeric": [">", 0, "<=", 150]}]} matches any positive number up to 150.

As usual, you may apply the “AND” logic by appending multiple keys in the subscription filter policy, and the “OR” logic by appending multiple values for the same key, as follows:

  • AND logic: Subscription filter policy {"sport": ["rugby"], "language": ["English"]} matches only messages that carry both attributes {"sport": "rugby"} and {"language": "English"}
  • OR logic: Subscription filter policy {"sport": ["rugby", "football"]} matches messages that carry either the attribute {"sport": "rugby"} or {"sport": "football"}

Message filtering operators in action

Here’s how this new set of filtering operators works. The following example is based on a pharmaceutical company that develops, produces, and markets a variety of prescription drugs, with research labs located in Asia Pacific and Europe. The company built an internal procurement system to manage the purchasing of lab supplies (for example, chemicals and utensils), office supplies (for example, paper, folders, and markers) and tech supplies (for example, laptops, monitors, and printers) from global suppliers.

This distributed system is composed of the four following subsystems:

  • A requisition system that presents the catalog of products from suppliers, and takes orders from buyers
  • An approval system for orders targeted to Asia Pacific labs
  • Another approval system for orders targeted to European labs
  • A fulfillment system that integrates with shipping partners

As shown in the following diagram, the company leverages AWS messaging services to integrate these distributed systems.

  • Firstly, an SNS topic named “Orders” was created to take all orders placed by buyers on the requisition system.
  • Secondly, two Amazon SQS queues, named “Lab-Orders-AP” and “Lab-Orders-EU” (for Asia Pacific and Europe respectively), were created to backlog orders that are up for review on the approval systems.
  • Lastly, an SQS queue named “Common-Orders” was created to backlog orders that aren’t related to lab supplies, which can already be picked up by shipping partners on the fulfillment system.

The company also uses AWS Lambda functions to automatically process lab supply orders that don’t require approval or which are invalid.

In this example, because different types of orders have been published to the SNS topic, the subscribing endpoints have had to set advanced filter policies on their SNS subscriptions, to have SNS automatically filter out orders they can’t deal with.

As depicted in the above diagram, the following five filter policies have been created:

  • The SNS subscription that points to the SQS queue “Lab-Orders-AP” sets a filter policy that matches lab supply orders, with a total value greater than $1,000, and that target Asia Pacific labs only. These more expensive transactions require an approver to review orders placed by buyers.
  • The SNS subscription that points to the SQS queue “Lab-Orders-EU” sets a filter policy that matches lab supply orders, also with a total value greater than $1,000, but that target European labs instead.
  • The SNS subscription that points to the Lambda function “Lab-Preapproved” sets a filter policy that only matches lab supply orders that aren’t as expensive, up to $1,000, regardless of their target lab location. These orders simply don’t require approval and can be automatically processed.
  • The SNS subscription that points to the Lambda function “Lab-Cancelled” sets a filter policy that only matches lab supply orders with total value of $0 (zero), regardless of their target lab location. These orders carry no actual items, obviously need neither approval nor fulfillment, and as such can be automatically canceled.
  • The SNS subscription that points to the SQS queue “Common-Orders” sets a filter policy that blacklists lab supply orders. Hence, this policy matches only office and tech supply orders, which have a more streamlined fulfillment process, and require no approval, regardless of price or target location.

After the company finished building this advanced pub/sub architecture, they were then able to launch their internal procurement system and allow buyers to begin placing orders. The diagram above shows six example orders published to the SNS topic. Each order contains message attributes that describe the order, and cause them to be filtered in a different manner, as follows:

  • Message #1 is a lab supply order, with a total value of $15,700 and targeting a research lab in Singapore. Because the value is greater than $1,000, and the location “Asia-Pacific-Southeast” matches the prefix “Asia-Pacific-“, this message matches the first SNS subscription and is delivered to SQS queue “Lab-Orders-AP”.
  • Message #2 is a lab supply order, with a total value of $1,833 and targeting a research lab in Ireland. Because the value is greater than $1,000, and the location “Europe-West” matches the prefix “Europe-“, this message matches the second SNS subscription and is delivered to SQS queue “Lab-Orders-EU”.
  • Message #3 is a lab supply order, with a total value of $415. Because the value is greater than $0 and less than $1,000, this message matches the third SNS subscription and is delivered to Lambda function “Lab-Preapproved”.
  • Message #4 is a lab supply order, but with a total value of $0. Therefore, it only matches the fourth SNS subscription, and is delivered to Lambda function “Lab-Cancelled”.
  • Messages #5 and #6 aren’t lab supply orders actually; one is an office supply order, and the other is a tech supply order. Therefore, they only match the fifth SNS subscription, and are both delivered to SQS queue “Common-Orders”.

Although each message only matched a single subscription, each was tested against the filter policy of every subscription in the topic. Hence, depending on which attributes are set on the incoming message, the message might actually match multiple subscriptions, and multiple deliveries will take place. Also, it is important to bear in mind that subscriptions with no filter policies catch every single message published to the topic, as a blank filter policy equates to a catch-all behavior.

Summary

Amazon SNS allows for both string and numeric filtering operators. As explained in this post, string operators allow for exact, prefix, and “anything-but” comparisons, while numeric operators allow for exact and range comparisons. These advanced filtering operators bring even more power and flexibility to your pub/sub messaging functionality and also allow you to simplify your architecture further by removing even more logic from your subscribers.

Message filtering can be implemented easily with existing AWS SDKs by applying message and subscription attributes across all SNS supported protocols (Amazon SQS, AWS Lambda, HTTP, SMS, email, and mobile push). SNS filtering operators for numeric matching, prefix matching, and blacklisting are available now in all AWS Regions, for no extra charge.

To experiment with these new filtering operators yourself, and continue learning, try the 10-minute Tutorial Filter Messages Published to Topics. For more information, see Filtering Messages with Amazon SNS in the SNS documentation.

What John Oliver gets wrong about Bitcoin

Post Syndicated from Robert Graham original http://blog.erratasec.com/2018/03/what-john-oliver-gets-wrong-about.html

John Oliver covered bitcoin/cryptocurrencies last night. I thought I’d describe a bunch of things he gets wrong.

How Bitcoin works

Nowhere in the show does it describe what Bitcoin is and how it works.
Discussions should always start with Satoshi Nakamoto’s original paper. The thing Satoshi points out is that there is an important cost to normal transactions, namely, the entire legal system designed to protect you against fraud, such as the way you can reverse the transactions on your credit card if it gets stolen. The point of Bitcoin is that there is no way to reverse a charge. A transaction is done via cryptography: to transfer money to me, you decrypt it with your secret key and encrypt it with mine, handing ownership over to me with no third party involved that can reverse the transaction, and essentially no overhead.
All the rest of the stuff, like the decentralized blockchain and mining, is all about making that work.
Bitcoin crazies forget about the original genesis of Bitcoin. For example, they talk about adding features to stop fraud, reversing transactions, and having a central authority that manages that. This misses the point, because the existing electronic banking system already does that, and does a better job at it than cryptocurrencies ever can. If you want to mock cryptocurrencies, talk about the “DAO”, which did exactly that — and collapsed in a big fraudulent scheme where insiders made money and outsiders didn’t.
Sticking to Satoshi’s original ideas are a lot better than trying to repeat how the crazy fringe activists define Bitcoin.

How does any money have value?

Oliver’s answer is currencies have value because people agree that they have value, like how they agree a Beanie Baby is worth $15,000.
This is wrong. A better way of asking the question why the value of money changes. The dollar has been losing roughly 2% of its value each year for decades. This is called “inflation”, as the dollar loses value, it takes more dollars to buy things, which means the price of things (in dollars) goes up, and employers have to pay us more dollars so that we can buy the same amount of things.
The reason the value of the dollar changes is largely because the Federal Reserve manages the supply of dollars, using the same law of Supply and Demand. As you know, if a supply decreases (like oil), then the price goes up, or if the supply of something increases, the price goes down. The Fed manages money the same way: when prices rise (the dollar is worth less), the Fed reduces the supply of dollars, causing it to be worth more. Conversely, if prices fall (or don’t rise fast enough), the Fed increases supply, so that the dollar is worth less.
The reason money follows the law of Supply and Demand is because people use money, they consume it like they do other goods and services, like gasoline, tax preparation, food, dance lessons, and so forth. It’s not like a fine art painting, a stamp collection or a Beanie Baby — money is a product. It’s just that people have a hard time thinking of it as a consumer product since, in their experience, money is what they use to buy consumer products. But it’s a symmetric operation: when you buy gasoline with dollars, you are actually selling dollars in exchange for gasoline. That you call one side in this transaction “money” and the other “goods” is purely arbitrary, you call gasoline money and dollars the good that is being bought and sold for gasoline.
The reason dollars is a product is because trying to use gasoline as money is a pain in the neck. Storing it and exchanging it is difficult. Goods like this do become money, such as famously how prisons often use cigarettes as a medium of exchange, even for non-smokers, but it has to be a good that is fungible, storable, and easily exchanged. Dollars are the most fungible, the most storable, and the easiest exchanged, so has the most value as “money”. Sure, the mechanic can fix the farmers car for three chickens instead, but most of the time, both parties in the transaction would rather exchange the same value using dollars than chickens.
So the value of dollars is not like the value of Beanie Babies, which people might buy for $15,000, which changes purely on the whims of investors. Instead, a dollar is like gasoline, which obey the law of Supply and Demand.
This brings us back to the question of where Bitcoin gets its value. While Bitcoin is indeed used like dollars to buy things, that’s only a tiny use of the currency, so therefore it’s value isn’t determined by Supply and Demand. Instead, the value of Bitcoin is a lot like Beanie Babies, obeying the laws of investments. So in this respect, Oliver is right about where the value of Bitcoin comes, but wrong about where the value of dollars comes from.

Why Bitcoin conference didn’t take Bitcoin

John Oliver points out the irony of a Bitcoin conference that stopped accepting payments in Bitcoin for tickets.
The biggest reason for this is because Bitcoin has become so popular that transaction fees have gone up. Instead of being proof of failure, it’s proof of popularity. What John Oliver is saying is the old joke that nobody goes to that popular restaurant anymore because it’s too crowded and you can’t get a reservation.
Moreover, the point of Bitcoin is not to replace everyday currencies for everyday transactions. If you read Satoshi Nakamoto’s whitepaper, it’s only goal is to replace certain types of transactions, like purely electronic transactions where electronic goods and services are being exchanged. Where real-life goods/services are being exchanged, existing currencies work just fine. It’s only the crazy activists who claim Bitcoin will eventually replace real world currencies — the saner people see it co-existing with real-world currencies, each with a different value to consumers.

Turning a McNugget back into a chicken

John Oliver uses the metaphor of turning a that while you can process a chicken into McNuggets, you can’t reverse the process. It’s a funny metaphor.
But it’s not clear what the heck this metaphor is trying explain. That’s not a metaphor for the blockchain, but a metaphor for a “cryptographic hash”, where each block is a chicken, and the McNugget is the signature for the block (well, the block plus the signature of the last block, forming a chain).
Even then that metaphor as problems. The McNugget produced from each chicken must be unique to that chicken, for the metaphor to accurately describe a cryptographic hash. You can therefore identify the original chicken simply by looking at the McNugget. A slight change in the original chicken, like losing a feather, results in a completely different McNugget. Thus, nuggets can be used to tell if the original chicken has changed.
This then leads to the key property of the blockchain, it is unalterable. You can’t go back and change any of the blocks of data, because the fingerprints, the nuggets, will also change, and break the nugget chain.
The point is that while John Oliver is laughing at a silly metaphor to explain the blockchain becuase he totally misses the point of the metaphor.
Oliver rightly says “don’t worry if you don’t understand it — most people don’t”, but that includes the big companies that John Oliver name. Some companies do get it, and are producing reasonable things (like JP Morgan, by all accounts), but some don’t. IBM and other big consultancies are charging companies millions of dollars to consult with them on block chain products where nobody involved, the customer or the consultancy, actually understand any of it. That doesn’t stop them from happily charging customers on one side and happily spending money on the other.
Thus, rather than Oliver explaining the problem, he’s just being part of the problem. His explanation of blockchain left you dumber than before.

ICO’s

John Oliver mocks the Brave ICO ($35 million in 30 seconds), claiming it’s all driven by YouTube personalities and people who aren’t looking at the fundamentals.
And while this is true, most ICOs are bunk, the  Brave ICO actually had a business model behind it. Brave is a Chrome-like web-browser whose distinguishing feature is that it protects your privacy from advertisers. If you don’t use Brave or a browser with an ad block extension, you have no idea how bad things are for you. However, this presents a problem for websites that fund themselves via advertisements, which is most of them, because visitors no longer see ads. Brave has a fix for this. Most people wouldn’t mind supporting the websites they visit often, like the New York Times. That’s where the Brave ICO “token” comes in: it’s not simply stock in Brave, but a token for micropayments to websites. Users buy tokens, then use them for micropayments to websites like New York Times. The New York Times then sells the tokens back to the market for dollars. The buying and selling of tokens happens without a centralized middleman.
This is still all speculative, of course, and it remains to be seen how successful Brave will be, but it’s a serious effort. It has well respected VC behind the company, a well-respected founder (despite the fact he invented JavaScript), and well-respected employees. It’s not a scam, it’s a legitimate venture.

How to you make money from Bitcoin?

The last part of the show is dedicated to describing all the scam out there, advising people to be careful, and to be “responsible”. This is garbage.
It’s like my simple two step process to making lots of money via Bitcoin: (1) buy when the price is low, and (2) sell when the price is high. My advice is correct, of course, but useless. Same as “be careful” and “invest responsibly”.
The truth about investing in cryptocurrencies is “don’t”. The only responsible way to invest is to buy low-overhead market index funds and hold for retirement. No, you won’t get super rich doing this, but anything other than this is irresponsible gambling.
It’s a hard lesson to learn, because everyone is telling you the opposite. The entire channel CNBC is devoted to day traders, who buy and sell stocks at a high rate based on the same principle as a ponzi scheme, basing their judgment not on the fundamentals (like long term dividends) but animal spirits of whatever stock is hot or cold at the moment. This is the same reason people buy or sell Bitcoin, not because they can describe the fundamental value, but because they believe in a bigger fool down the road who will buy it for even more.
For things like Bitcoin, the trick to making money is to have bought it over 7 years ago when it was essentially worthless, except to nerds who were into that sort of thing. It’s the same tick to making a lot of money in Magic: The Gathering trading cards, which nerds bought decades ago which are worth a ton of money now. Or, to have bought Apple stock back in 2009 when the iPhone was new, when nerds could understand the potential of real Internet access and apps that Wall Street could not.
That was my strategy: be a nerd, who gets into things. I’ve made a good amount of money on all these things because as a nerd, I was into Magic: The Gathering, Bitcoin, and the iPhone before anybody else was, and bought in at the point where these things were essentially valueless.
At this point with cryptocurrencies, with the non-nerds now flooding the market, there little chance of making it rich. The lottery is probably a better bet. Instead, if you want to make money, become a nerd, obsess about a thing, understand a thing when its new, and cash out once the rest of the market figures it out. That might be Brave, for example, but buy into it because you’ve spent the last year studying the browser advertisement ecosystem, the market’s willingness to pay for content, and how their Basic Attention Token delivers value to websites — not because you want in on the ICO craze.

Conclusion

John Oliver spends 25 minutes explaining Bitcoin, Cryptocurrencies, and the Blockchain to you. Sure, it’s funny, but it leaves you worse off than when it started. It admits they “simplify” the explanation, but they simplified it so much to the point where they removed all useful information.

Join the AWS Quest – Help me to Rebuild Ozz!

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/join-the-aws-quest-help-me-to-rebuild-ozz/

If you have been watching my weekly videos, you may have noticed an orange robot in the background from time to time. That’s Ozz, my robot friend and helper. Built from the ground up in my home laboratory, Ozz is an invaluable part of the AWS blogging process!

Sadly, when we announced we are adding the AWS Podcast to the blog, Ozz literally went to pieces and all I have left is a large pile of bricks and some great memories of our time together. From what I can tell, Ozz went haywire over this new development due to excessive enthusiasm!

Ozz, perhaps anticipating that this could happen at some point, buried a set of clues (each pointing to carefully protected plans) in this blog, in the AWS Podcast, and in other parts of the AWS site. If we can find and decode these plans, we can rebuild Ozz, better, stronger, and faster. Unfortunately, due to concerns about the ultra-competitive robot friend market, Ozz concealed each of the plans inside a set of devious, brain-twisting puzzles. You are going to need to look high, low, inside, outside, around, and through the clues in order to figure this one out. You may even need to phone a friend or two.

Your mission, should you choose to accept it, is to find these clues, decode the plans, and help me to rebuild Ozz. The information that I have is a bit fuzzy, but I think there are 20 or so puzzles, each one describing one part of Ozz. If we can solve them all, we’ll get together on Twitch later this month and put Ozz back together.

Are you with me on this? Let’s do it!

Jeff;

PipeCam: the low-cost underwater camera

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/pipecam-low-cost-underwater-camera/

Fred Fourie is building a low-cost underwater camera for shallow deployment, and his prototypes are already returning fascinating results. You can build your own PipeCam, and explore the undiscovered depths with a Raspberry Pi and off-the-shelf materials.

PipeCam underwater Raspberry Pi Camera

Materials and build

In its latest iteration, PipeCam consists of a 110mm PVC waste pipe with fittings and a 10mm perspex window at one end. Previous prototypes have also used plumbing materials for the body, but this latest version employs heavy-duty parts that deliver the good seal this project needs.

PipeCam underwater Raspberry Pi Camera

In testing, Fred and a friend determined that the rig could withstand 4 bar of pressure. This is enough to protect the tech inside at the depths Fred plans for, and a significant performance improvement on previous prototypes.

PipeCam underwater Raspberry Pi Camera
PipeCam underwater Raspberry Pi Camera

Inside the pipe are a Raspberry Pi 3, a camera module, and a real-time clock add-on board. A 2.4Ah rechargeable lead acid battery powers the set-up via a voltage regulator.

Using foam and fibreboard, Fred made a mount that holds everything in place and fits snugly inside the pipe.

PipeCam underwater Raspberry Pi Camera
PipeCam underwater Raspberry Pi Camera
PipeCam underwater Raspberry Pi Camera

PipeCam will be subject to ocean currents, not to mention the attentions of sea creatures, so it’s essential to make sure that everything is held securely inside the pipe – something Fred has learned from previous versions of the project.

Software

It’s straightforward to write time-lapse code for a Raspberry Pi using Python and one of our free online resources, but Fred has more ambitious plans for PipeCam. As well as a Python script to control the camera, Fred made a web page to display the health of the device. It shows battery level and storage availability, along with the latest photo taken by the camera. He also made adjustments to the camera’s exposure settings using raspistill. You can see the effect in this side-by-side comparison of the default python-picam image and the edited raspistill one.

PipeCam underwater Raspberry Pi Camera
PipeCam underwater Raspberry Pi Camera

Underwater testing

Fred has completed the initial first test of PipeCam, running the device under water for an hour in two-metre deep water off the coast near his home. And the results? Well, see for yourself:

PipeCam underwater Raspberry Pi Camera
PipeCam underwater Raspberry Pi Camera
PipeCam underwater Raspberry Pi Camera

PipeCam is a work in progress, and you can read Fred’s build log at the project’s Hackaday.io page, so be sure to follow along.

The post PipeCam: the low-cost underwater camera appeared first on Raspberry Pi.