Tag Archives: biomedical/devices

Automakers Pivot to Produce Ventilators, Respirators, and Face Masks

Post Syndicated from Lawrence Ulrich original https://spectrum.ieee.org/cars-that-think/biomedical/devices/coronavirus-news-automakers-ford-gm-pivot-produce-ventilators-respirators-face-masks

The sudden arrival of the new coronavirus has caused shortages of ventilators, face masks, and respirators. And those shortages have now sparked automakers, quite unexpectedly, to enter the business of manufacturing critical medical equipment.

On the surface, it makes little sense: What do the makers of Mustangs and Chevrolet Volts know about ventilators? Automakers have been first to admit—not much at all.

“We’re not the experts here, but we can help the experts,” Mike Levine, Ford spokesman, said in a phone interview.

Instead of reinventing the wheel, automakers are leveraging their expertise in fast manufacturing, logistics, and supply-chain operations. Ford CEO Jim Hackett has said it currently takes GE about 27 hours to build a ventilator, but estimates Ford can cut production time in half, to around 13 hours.

Lessons Learned by NYC Makers Producing Personal Protective Equipment for Medics

Post Syndicated from Stephen Cass original https://spectrum.ieee.org/tech-talk/biomedical/devices/lessons-learned-nyc-makers-producing-personal-protective-equipment-medics

A coalition of 14 makerspaces, hospitals, and unions has organized to create and distribute face shields and other protective equipment to frontline nurses and doctors coping with a wave of COVID-19 cases in New York City.

They made their first delivery of 97 shields on 22 March, and currently have enough capacity to produce between 500 and 1,000 shields a day, according to Jake Lee, a computer science masters student at Columbia University and spokesperson for the coalition called NYC Makes PPE. And they’ve some tips for other engineers and makers itching to put their skills and facilities to use.

To Answer Dire Shortages, This Healthcare Team Designed, 3D-Printed, and Tested Their Own COVID-19 Swabs in One Week

Post Syndicated from Megan Scudellari original https://spectrum.ieee.org/the-human-os/biomedical/devices/healthcare-team-designed-3dprinted-tested-covid19-swabs-one-week

Last Wednesday, Todd Goldstein was working on other projects. Then physicians in the New York-based hospital system where he works, hard hit by a surge in COVID-19 cases, told him they were worried about running out of supplies.

Specifically, they needed more nasal test swabs. A nasopharyngeal swab for COVID-19 is no ordinary Q-tip. These specialty swabs cannot be made of cotton, nor have wood handles. They must be long and skinny to fit up behind the nose into the upper part of the throat.

Goldstein, director of 3D Design and Innovation at Northwell Health, a network of 23 hospitals and 800 outpatient facilities, thought, “Well, we can make that.” He quickly organized a collaboration with Summer Decker and Jonathan Ford of the University of South Florida, and 3D-printing manufacturer Formlabs. In one week, the group designed, made, tested, and are now distributing 3D-printed COVID-19 test swabs.

Scientists Use Stem Cells to Treat COVID-19 Patients in China

Post Syndicated from Amy Nordrum original https://spectrum.ieee.org/the-human-os/biomedical/devices/stem-cells-covid19-china

More than 100 COVID-19 patients at a hospital in Beijing are receiving injections of mesenchymal stem cells to help them fend off the disease. The experimental treatment is part of an ongoing clinical trial, which coordinators say has shown early promise in alleviating COVID-19 symptoms.

However, other experts criticize the trial’s design and caution that there’s not sufficient evidence to show that the treatment works for COVID-19. They say other treatments have far greater potential than stem cells in aiding patients during the pandemic.  

Researchers have so far reported results from only seven patients treated with stem cells at Beijing You’an Hospital. Each patient suffered from COVID-19 symptoms including fevers and difficulty breathing. They each received a single infusion of mesenchymal stem cells sometime between 23 January and 16 February. A few days later, investigators say, all symptoms disappeared in all seven patients. They reported no side effects.

The team published those results in the journal Aging & Disease on 13 March. In an accompanying editorial, Ashok Shetty of Texas A&M University’s Institute for Regenerative Medicine wrote “the overall improvement was quite extraordinary” but stated that larger clinical trials were needed to validate the findings.

Jahar Bhattacharya, a professor of physiology and cellular biophysics and medicine at Columbia University, who was not involved in the work, says injecting mesenchymal stem cells into a patient’s bloodstream remains an unproven treatment for COVID-19 patients and could cause harmful side effects.

“You are injecting large numbers of cells in a patient’s veins,” Bhattacharya says. “If those cells go and clog the lungs, and cause damage because of the clogging—well, that’s not good at all.”

He adds that the study’s sample size is much too small to draw any meaningful conclusions about the treatment’s efficacy at this stage. “Folks do all kinds of things and they’ll say—we got a result,” Bhattacharya says. “It’s very risky to go by any of those.”

Kunlin Jin, a lead author in the trial and professor of pharmacology and neuroscience at the University of North Texas Health Science Center, says his group now has unpublished data from 31 additional COVID-19 patients who received the treatment. In every case, he claims, their symptoms improved after treatment. “I think the results are very promising,” he says.

According to Jin, 120 COVID-19 patients are now receiving mesenchymal stem cell injections in Beijing for the trial.

COVID-19 is the disease caused by the new coronavirus. There is currently no treatment and researchers around the world are scrambling to identify existing drugs or compounds that could be effective against it.

Jin’s team isn’t alone in considering the use of stem cells to treat COVID-19 patients. Another mesenchymal stem cell trial registered to clinicaltrials.gov aims to enroll 20 COVID-19 patients across four hospitals in China. The Australia-based firm Mesoblast says it’s evaluating its stem cell therapy for use against COVID-19. And in the United States, the Biomedical Advanced Research and Development Authority recently contacted the company Athersys to request information about its stem cell treatment called MultiStem for its potential as a COVID-19 therapy.   

Mesenchymal stem cells (a term some experts criticize as too broad) can be isolated from different kinds of tissues and, once injected into a patient, grow into a wide variety of cells. They have not been approved for COVID-19 therapeutic use by the U.S. Food and Drug Administration.

The new coronavirus invades the body through a spike protein that lives on the surface of virus cells. The S protein, as it’s called, binds to a receptor called angiotensin-converting enzyme 2 (ACE2) on a healthy cell’s surface. Once attached, the cells fuse and the virus is able to infect the healthy cell.

ACE2 receptors are present on cells in many places throughout the body, and especially in the lungs. Cells in the lungs are also some of the first to encounter the virus, since the primary form of transmission is thought to be breathing in droplets after an infected person has coughed or sneezed.

However, cells from other parts of the body—including those which produce mesenchymal stem cells—lack ACE2 receptors, which makes them immune to the virus.

In many COVID-19 cases, a patient’s immune system responds to the virus so strongly, it harms healthy cells in the process. Jin explains that, once mesenchymal stem cells are injected into the blood, these cells can travel to the lungs and secrete growth factor and other cytokines—anti-inflammatory substances that modulate the immune system so it doesn’t go into overdrive.

But Lawrence Goldstein, director of UC San Diego’s stem cell program, says it’s not clear from the trial how many of the injected cells actually made it to the lungs, or how long they stayed there. He criticized the classification of patients in the study as “common,” “severe,” or “critically severe,” saying those categories weren’t well defined (Jin says these labels are defined by the National Health Commission of China). And Goldstein noted the lack of information about the properties of the stem cells used in the trial.  

“It’s pretty weak,” Goldstein says of the trial design.

Steven Peckman, deputy director of UCLA’s Broad Stem Cell Research Center, adds: “Researchers and clinicians should use a critical eye when reviewing such reports and avoid the ‘therapeutic misconception,’ namely, a willingness to view experimental interventions as both safe and effective without the support of compelling scientific evidence.”  

Jin himself doesn’t think most COVID-19 patients should receive stem cell infusions. “I think for the moderate patients, maybe don’t need the stem cell treatment,” he says. “For life-threatening cases, I think it’s essential to use mesenchymal stem cell treatment if no other drug is available.”

Goldstein says other potential treatments for COVID-19—such as drugs that modulate the body’s immune system—appear much more promising than stem cells. Many such drugs have been shown to be safe and effective at regulating the immune system and are already approved by regulatory authorities. It’s also easier to use drugs to treat a large number of patients compared with stem cell infusions.  

“When you’ve got a hundred things you want to try, it’s not obvious that this one is on the short list,” Goldstein says of stem cell trials for COVID-19. “It’s a higher priority to test well-known immune modulators than to test these cells.”

“Brita Filter for Blood” Aims to Remove Harmful Cytokines for COVID-19 Patients

Post Syndicated from Mark Anderson original https://spectrum.ieee.org/the-human-os/biomedical/devices/blood-filtration-tech-removes-harmful-cytokines-covid19-patients

In a number of critical cases of COVID-19, a hyper-vigilant immune response is triggered in patients that, if untreated, can itself prove fatal. Fortunately, some pharmaceutical treatments are available—although it’s not yet fully understood how well they might work in addressing the new coronavirus.

Meanwhile, a new blood filtration technology has successfully treated other, similar hyper-vigilant immune syndromes for people who underwent heart surgeries and the critically ill. Which could make it a possibly effective therapy (albeit still not FDA-approved) for some severe COVID-19 cases.

Inflammation, says Phillip Chan—an M.D./PhD and CEO of the New Jersey-based company CytoSorbents—is the body’s way of dealing with infection and injury. It’s why burns and sprained ankles turn red and swell up. “That’s the body’s way of bringing oxygen and nutrients to heal,” he said.

When the Most Important Technology Is Teamwork

Post Syndicated from Mark Pesce original https://spectrum.ieee.org/biomedical/devices/when-most-important-technology-teamwork

I get to meet plenty of smart people through my work as a mentor to entrepreneurs, but few have proven as talented as Mobin Nomvar, cofounder of Sydney startup Automated Process Synthesis Co., which develops machine-learning software for chemical-process engineering. When he first started his company, Nomvar knew a lot about coding, more about chemistry, but little about the biological processes going on within his own body.

You see, as he settled into the sedentary role of full-time managing director, his waistline expanded. So he studied the problem and planned to burn through the fat he’d accumulated by starving his body of carbohydrates, forcing it to metabolize fat instead of sugar for energy. But having never dieted before, he had no idea what to expect. As an engineer, he wanted a number he could measure to gauge how well he was doing. Blood-glucose level would be just the ticket, he thought.

Many millions of diabetics make that measurement every day, sometimes several times a day, by pricking a finger and swiping a drop of blood onto a test strip. Nomvar asked himself: Could there be a less painful way?

He suspected he might find one with a measurement of his body’s bioimpedance. For 20 years, researchers had published promising findings that showed it was possible to measure blood-glucose levels this way, but never with the accuracy of blood-based measurements.

Could a bioimpedance-based blood-glucose sensor be improved and perhaps commercialized? Nomvar built a prototype, strapped it on, and ate a bowl of carbohydrate-packed rice. Then he watched the measurements tick upward—validation enough to keep going. When he reached the limit of his understanding, he assembled a team to help: an expert in bioimpedance, a chemical engineer, and a software designer—people with the sorts of complementary talents needed to develop such a gizmo.

Together they reviewed the science and read the relevant literature, and only then went back to Nomvar’s prototype, seeking more signal from its sensor. Finding the needed signal turned out to be easier than they’d expected, though they had to borrow a US $50,000 commercial bioimpedance unit to confirm the results from the crude prototype, constructed at a thousandth the cost.

Sensitive bioimpedance measurements turned out to be necessary, but not sufficient. Many different body processes affect bioimpedance, and isolating the effects of changing glucose levels appeared nearly impossible. Indeed, trying to clean up the signal using machine learning produced only more noise. Every team member had a go at a solution, drawing from their expertise to tune the algorithm. A week-long burst of activity from one teammate got them over the line, resulting in a device that outperforms every other noninvasive technique that’s ever been used to measure blood glucose.

In just over three months, they perfected their ring-shaped sensor. Slipped over a finger and paired with the proper algorithm, it can measure blood glucose continuously and inexpensively. As the number of diabetics globally passes half a billion, such a device could have quite a large market—if it successfully makes it through the clinical testing needed to certify it as both accurate and safe. Many medical wonders fail to overcome that hurdle, and Nomvar’s work so far is just the first step in what could be a very long race.

It’s a step Nomvar admits he couldn’t have taken alone. But his team—diverse, experienced, and capable—had the strengths needed to succeed.

This article appears in the April 2020 print issue as “Don’t Go It Alone.”

Pop-Up Open Source Medical Hardware Projects Won’t Stop Coronavirus, but Might Be Useful Anyway. Here’s why

Post Syndicated from Lucas Laursen original https://spectrum.ieee.org/the-human-os/biomedical/devices/open-source-hardware-against-coronavirus

Halfway to the moon and bleeding oxygen into space, the Apollo 13 spacecraft and its occupants seemed in dire straits. But the astronauts modified their CO2 scrubbers with a duct-tape-and-plastic-bag solution cooked up by NASA engineers and made famous in the 1995 movie. Now, in support of medical workers facing hardware shortages due to the coronavirus pandemic, several networks of volunteers are developing similarly MacGyver’d respiratory equipment using easy-to-find or printable parts.

Several such groups have taken on the open source mantle, and their stories illustrate some of the strengths and weaknesses of the wider open source movement.

One fast-moving team managed to use a 3D printer to produce 100 replacement valves for an Italian hospital’s intensive care unit, but was concerned that it might face legal threats from the original equipment manufacturer.

Another ;group is targeting a long list of supplies and devices, such as homemade hand sanitizer, 3D-printed face shields, nasal cannulas and ventilator machines. One company is prototyping an open-source oxygen concentrator. Some efforts are much lower-tech: One Indiana hospital asked volunteers to help sew facemasks following CDC guidelines.

The core idea is nothing new: anesthetist John Dingley and colleagues published free instructions for a low-cost emergency ventilator in 2010. But it may feel more urgent now that people are reading headlines about equipment shortages at hospitals in even the richest countries in the world.

One reason there often aren’t many manufacturers of a given medical device is the cost of getting the devices tested and approved for medical use. Even if the individual units don’t cost much, getting a medical device to market the usual way costs anywhere from $31 million to around $94 million, depending on the complexity and application, according to a 2010 estimate.

There are also issues with whether 3D-printed parts can be cleaned properly. Many ad hoc fixes won’t be as durable as products produced with an eye toward longer-term cost-effectiveness.

Still, moonshot-gone-wrong solutions may obtain expedited review from medical regulators for narrow uses, as is the case with the Open Source Ventilator Ireland group, which told Forbes it is getting a sped-up examination from Ireland’s regulator.

Michigan Technological University engineering professor Joshua M. Pearce, one of the editors of a forthcoming special issue of the journal HardwareX focusing on open source COVID-19 medical hardware, predicts that the U.S. Food and Drug Administration (FDA) will likely also waive some licensing requirements in the event of massive shortages.

“In the end I think it comes down to the Golden Rule: Do onto others as you would have them do onto you,” Pearce says. “I know I would be happy to have the option of even a partially tested open source ventilator if I had COVID19, needed it, and all the hospital systems were used.”

If volunteer medical device makers get past legal hurdles, they will also need to get in sync with patients and medical staff about what really works. 

The final users’ needs have often been “a minor part of the decision-making process” in commercial device development, wrote University of Pisa bioengineer Carmelo De Maria and colleagues in a chapter on open-source medical devices in the Clinical Engineering Handbook.

“Sometimes those people don’t have any competence in medical devices and they risk creating confusion,” De Maria says.

Already, some members of the Open Source COVID19 Medical Supplies group on Facebook have weighed in with that kind of criticism. One wrote: “None of the mask designs I’ve seen people printing here will do anything to stop the virus.” Another group member, a healthcare worker, pooh-poohed a thread devoted to an automatic bag valve, writing: “There is no real-life scenario an automated Ambubag would be useful. Everyone designing these can turn their skills elsewhere.”

That feedback, visible to any potential contributors, might help steer the group toward more viable solutions. One recent post, for example, suggested concentrating amateur efforts on lower-tech devices aimed at less critical patients, to free up first-line hardware for the most critical patients.

A different issue is coordinating all the digital Good Samaritans. One recently formed group, called Helpful Engineering, reported having over 3000 registered volunteers as of 19 March, and over 11,000 people on Slack, the messaging platform. (And you, newly remote worker, thought your office Slack was getting noisy.)

The speed with which people can talk about, and even design something online may be tantalizing, but it might not reflect how fast the output can spread in the real world. In the Clinical Engineering Handbook, De Maria and colleagues write that the growing ease with which people can make their own medical hardware makes it even more important to create accompanying rules and methods for validating do-it-yourself devices.

De Maria helped build Ubora, a platform where makers can document the work they have done to show their device’s efficacy.

“Open Source can create a reliable prototype but [when] you want to go to the next level you need another type of approach that has to take your brilliant idea, do an experiment together with experts before going to the patients,” De Maria says. 

Generating widely affordable, easily buildable devices that withstand rigorous testing and are legal to distribute, even with the speed of open source and goodwill and skills of thousands of volunteers, may not happen as quickly as we need it to in order to suppress this pandemic.

That doesn’t make the effort a waste. Think of all the engineers who were inspired by the story of Apollo 13’s improvised scrubbers, and the institutional knowledge NASA gained for future missions. If the lessons of the hardware push in response to today’s COVID-19 outbreak stay in the open, they will be useful in the longer term.

With that in mind, De Maria and colleagues are challenging open source hardware makers with a competition calling for European-compliant medical designs that will be well-documented using Ubora. The first deadline is 30 April and awards won’t be presented until June.

“We created the competition looking for a solution but in perspective,” De Maria says. Creating and validating systematic solutions will take months, not weeks.

While some smaller open source components have already received government approval for so-called “compassionate use” and spare parts such as those valves are welcome, it may be too late for them to make much of a difference in places still on the wrong side of the COVID-19 growth curve.

The real reward is saving lives in future pandemics.

Says Pearce: “I am operating under the assumption that… anything we do now will help for the next pandemic.”

IEEE Spectrum updated this story with quotes from De Maria.

An Official WHO Coronavirus App Will Be a “Waze for COVID-19”

Post Syndicated from Eliza Strickland original https://spectrum.ieee.org/the-human-os/biomedical/devices/who-official-coronavirus-app-waze-covid19

There’s no shortage of information about the coronavirus pandemic: News sites cover every development, and sites like the Johns Hopkins map constantly update the number of global cases (246,276 as of this writing).

But for the most urgent questions, there seem to be no answers. Is it possible that I caught the virus when I went out today? Did I cross paths with someone who’s infected? How prevalent is the coronavirus in my local community? And if I’m feeling sick, where can I go to get tested or find treatment?

A group of doctors and engineers have come together to create an app that will answer such questions. Daniel Kraft, the U.S.-based physician who’s leading the charge, says his group has “gotten the green light” from the World Health Organization (WHO) to build the open-source app, and that it will be an official WHO app to help people around the world cope with COVID-19, the official name of the illness caused by the new coronavirus.

Could Supercomputers and Rapid Treatment Trials Slow Down Coronavirus?

Post Syndicated from Mark Anderson original https://spectrum.ieee.org/the-human-os/biomedical/devices/could-supercomputers-and-rapid-treatment-trials-slow-down-coronavirus

Supercomputer-aided development of possible antiviral therapies, rapid lab testing of other prospective treatments, and grants to develop new vaccine technologies: Coronavirus responses such as these may still be long shots when it comes to quickly containing the pandemic. But these long shots represent one possible hope for ultimately turning the tide and stopping the virus’s rapid development and spread,. (Another possible hope emerges from recent case reports out of China suggesting that many of the worst COVID-19 cases feature a hyperactive immune response called a “cytokine storm”—a physical phenomenon for which reliable tests and some effective therapies are currently available.)

As part of the direct attack on SARS-CoV-2—the virus that causes COVID-19—virtual and real-world tests of potential therapies represent a technology-focused angle for drug and vaccine research. And unlike traditional pharmaceutical R&D, where clinical trial timetables mean that drugs can take as long as 10 years to reach the marketplace, these accelerated efforts could yield results within about a year or so.

For instance, new supercomputer simulations have revealed a list of 77 potential so-called repurposed drugs targeted at this strain of coronavirus.

Researchers say the results are preliminary, and that they expect most initial findings will ultimately not  work in lab tests. But they’re reaching the lab testing stage now because supercomputers have made it possible to sort through leagues of candidate therapies in days using simulations that previously took weeks or months.

Says Jeremy Smith, professor of biochemistry and cellular and molecular biology at the University of Tennessee, Knoxville, the genetic sequencing of the new coronavirus provided the clue that he and fellow researcher Micholas Dean Smith (no relation) used to move ahead in their research.

“They found it was related to the SARS virus,” Smith says. “It probably evolved from it. It’s a close cousin. It’s like a younger brother or sister.”

And since the proteins that SARS makes have been well studied, researchers had a veritable recipe book of very likely SARS-CoV-2 proteins that might be targets for potential drugs to destroy or disable.

“We know what makes up all the proteins now,” says Smith. “So you try and find drugs to stop the proteins from doing what the virus wants them to do.”

Smith said working with a short timetable of months not years means limiting the therapies available to be tested. There are, for starters, thousands of molecules naturally occurring in plants and microbes and have been part of human diets for many years. Meanwhile, other molecules have already been developed by pharmaceutical companies for other drugs for other conditions.

“Many of them are already approved by the regulatory agencies, such as the FDA in the U.S., which means their safety has already been tested—for another disease,” Smith says. “It should be much quicker to get the approval to use it on lots of people. That’s the first stage. If that doesn’t work, then we’d have to go and design a new one. Then you’d have your 10-15 years and $1 billion dollar of investment on average. Hopefully, that’d be shortened in this case. But you don’t know.”

According to Smith, the reason SARS-CoV-2 is called a coronavirus is because of the protein spikes on the outside of the virus make it look like the sun’s corona. Here is where the supercomputing came in.

Using Oak Ridge National Laboratory’s Summit supercomputer (currently ranked the world’s fastest at 0.2 peak exaflops), the two co-authors ran detailed simulations of the spikes in the presence of 9000 different compounds that could potentially be repurposed as COVID-19 drugs.

They ultimately ranked 8000 of those compounds from best to worst in terms of gumming up the coronavirus’s spikes—which would, ideally, stop it from infecting other cells.

Running this molecular dynamics sequence on standard computers might take a month. But on Summit, the computation took a day, Smith recalls.

He said they’re now working with the University of Tennessee Health Sciences Center in Memphis and as well as possibly other wet-lab partners to test some of the top-performing compounds from their simulations on real-world SARS-CoV-2 virus particles.

And because the supercomputer simulation can run so quickly, Smith said they’re considering taking the next step of the process.

“There’s some communication [with the wet lab]: ‘This compound works, this one doesn’t,’” he said. “‘We have a partial response from this one, a good response from that.’ And you would even use things like artificial intelligence at some point to correlate properties of compounds that are having effects.”

How soon before the scientists could take this next step?

“It could be next week, next month or next year,” he said, “Depending on the results.”

On another front, the Bill and Melinda Gates Foundation has underwritten both an “accelerator” fund for promising new COVID-19 treatments as well as an injector device for a SARS-CoV-2 vaccine scheduled to begin clinical trials next month. (The company developing the vaccine—Innovio Pharmaceuticals in Plymouth Meeting, Penn.—has announced an ambitious timetable in which it expects to see “one million doses” by the end of this year.)

One of the first announced funded projects by the “accelerator” (which has been co-funded by Wellcome in the U.K. and Mastercard) is a wet-lab test conducted by the Rega Institute for Medical Research in Leuven, Belgium.

Unlike the Summit supercomputer research, the Rega effort involves rapid chemical testing of 15,000 antiviral compounds (from other approved antiviral therapies) on the SARS-CoV-2 virus.

An official from the Gates Foundation, contacted by IEEE Spectrum, said they could not currently provide any further information about the research or the accelerator program; we were referred instead to a blog post by the Foundation’s CEO Mark Suzman.

“We’re optimistic about the progress that will be made with this new approach,” Suzman wrote. “Because we’ve seen what can come of similar co-operation and coordination in other parts of our work to combat epidemics.”

Big Data Helps Taiwan Fight Coronavirus

Post Syndicated from Emily Waltz original https://spectrum.ieee.org/the-human-os/biomedical/devices/big-data-helps-taiwan-fight-coronavirus

In late January, as the novel coronavirus began spreading through China, computer scientists modeling the outbreak ranked Taiwan the region with the second highest risk of importation of the virus. The island sits just 130 km off the coast of mainland China and shuttles thousands of passengers to and from the mainland daily.

But so far Taiwan reports that it has largely mitigated the spread of the pathogen. Fewer than 50 cases of the coronavirus, which causes the disease COVID-19, had been confirmed on the island as of March 11. South Korea, by contrast, had confirmed nearly 8,000 cases.

Taiwan owes its success largely to the emergency implementation of big data analytics and new technologies, according to a recent report in the Journal of the American Medical Association (JAMA)authored by individuals in California and Taipei.

Taiwan officials from the beginning of the viral outbreak “did a very detailed mapping of who got it from whom,” and were able to stop a lot of transmission early, says Chih-Hung Jason Wang, director of the Center for Policy, Outcomes and Prevention at Stanford University, who co-authored the opinion article.

Notably, officials integrated Taiwan’s national health insurance database with its immigration and customs database. This enabled the government to track the 14-day travel histories and symptoms of its citizens, nearly all of whom have an identifying national health insurance (NHI) card. All hospitals, clinics and pharmacies were given access to this information for each patient.

Taiwan restricted entry for foreign travelers from the most affected regions, and for those allowed entry, officials tracked them with mobile technologies. Foreign visitors are asked to scan a QR code that takes them to an online health declaration form where they provide contact information and symptoms. People placed under quarantine are given government-issued mobile phones and monitored with calls and visits.

“They incentivized people to be truthful” on their health declaration forms, says Wang. “If you are placed in the high risk group, the government will help you get care. If you get sick by yourself, you’ll have to wander around the hospital trying to get help.”

Taiwan also relied on old-fashioned face-to-face check-ins. Households were grouped into wards, or sections, and a chief was named for each ward. “So [authorities] will say to the chief, ‘There’s a person under quarantine in your ward, why don’t you go check on them and bring them some food,’” says Wang. “In an epidemic, you have to be nice to people, otherwise they’ll hide their symptoms.”

To manage resources, Taiwanese officials used IT to estimate the region’s supply of masks, negative pressure isolation rooms, and other health provisions. They set price limits on masks and rationed them using individuals’ NHI cards and an online ordering mechanism. Soldiers were sent to work at mask factories to ramp up production.

Overseeing all the action is the National Health Command Center. “They set that up in a compound on the seventh floor of Taiwan’s Centers for Disease Control,” says Wang. “There are data analysts in there and reporters; it can host up to a hundred people 24/7.”

These actions are part of Taiwan’s emergency epidemic response plan, which it devised after the 2003 SARS outbreak in China. Under Taiwan’s Communicable Disease Control Act, in the event of a crisis, officials can activate the plan, giving the government powers it wouldn’t normally have.

Taiwanese officials activated the emergency plan January 20 and since then have implemented over 124 action items, according to the JAMA report.

Penalties for noncompliance with the temporary orders are steep. Profiteering off prevention products like masks, or spreading false information about COVID-19 can bring a penalty of years in jail and fines over a hundred thousand US dollars. One couple was fined USD $10,000 for breaking a 14-day quarantine rule. Three Hong Kong visitors who “disappeared for a week” were tracked down, fined USD $2,350 each, and transferred to designated quarters for medical isolation, according to the JAMA report.

Taiwan’s heavy-handed government actions might not go over well in a country such as the United States. But Wang says the measures, so far, have been well received in Taiwan, in part because they were planned ahead and implemented on a temporary basis.

He and his coauthors write that it is unclear “whether the intensive nature of these policies can be maintained until the end of the epidemic and continue to be well-received by the public.”

Taiwan’s emergency measures have probably not halted community-based transmission of COVID-19. Like the rest of the world, the number of officially confirmed cases in Taiwan is likely far fewer than the true number on the ground, since there are people who have the disease and don’t know it, or have such mild symptoms that they don’t seek care or get tested. “It’s impossible not to have more cases,” says Wang.

Software and Genetic Sequencing Track the Coronavirus’s Path

Post Syndicated from Emily Waltz original https://spectrum.ieee.org/the-human-os/biomedical/devices/genetic-sequencing-and-online-software-tools-track-caronaviruss-path

As the deadly new coronavirus permeates the planet, scientists are using genetic sequencing and an open-source software tool to track its transmission. 

The software tool, called Nextstrain, can’t predict where the virus is going next. But it can tell us where new cases of the virus are coming from. That’s crucial information for health officials globally, who are trying to determine whether new cases are arriving in their countries through international travel, or being transmitted locally.

This type of analysis, called genomic epidemiology, “is extremely valuable to public health,” says James Hadfield, a computational scientist working on Nextstrain. “The sooner we can turn around this data, the better the response can be.”

The novel coronavirus, which causes the respiratory disease COVID-19, first emerged in December in China, where it has infected over 80,000 people. It has since spread to more than 85 countries [PDF], with the largest concentrations of cases so far in South Korea, Iran, and Italy. More than 250 cases had been confirmed in the United States at press time. 

How Computer Scientists Are Trying to Predict the Coronavirus’ Next Moves

Post Syndicated from Emily Waltz original https://spectrum.ieee.org/the-human-os/biomedical/devices/predicting-the-coronavirus-next-moves

Computer scientists tracking the deadly coronavirus epidemic have been working diligently to predict the virus’ next moves. The novel virus, which causes a respiratory illness dubbed COVID-19, has taken the lives of more than 2,100 people. It first emerged in December in the Chinese city of Wuhan, and has since infected more than 75,000 people, mostly in China. The numbers of new cases have begun to drop in China, but concern is growing over expanding outbreaks of COVID-19 in Singapore, Japan, South Korea, Hong Kong, and Thailand. 

Alessandro Vespignani, a computer scientist at Northeastern University in Boston who has developed predictive models of the epidemic, spoke with IEEE Spectrum about computational efforts to thwart a global pandemic. His team has developed a tool, called EpiRisk, that estimates the probability that infected individuals will spread the disease to other areas of the world via travel. The tool also tracks the effectiveness of travel bans.

Wearable Patch Uses Machine Learning to Detect Sleep Apnea

Post Syndicated from Michelle Hampson original https://spectrum.ieee.org/the-human-os/biomedical/devices/prototype-wearable-monitor-sleep-apnea-news

Journal Watch report logo, link to report landing page

Getting screened for sleep apnea often means spending a night in a special clinic hooked up to sensors that measure your brain activity, eye movement, and blood oxygen levels. But for long-term, more convenient monitoring of sleep apnea, a team of researchers has developed a wearable device that tracks a user’s breathing. The device, described in a study published 20 January in the IEEE Journal of Biomedical and Health Informatics, uses a unique combination of bioimpedance (a measurement of electrical signals passing through the body) and machine learning algorithms.

Researchers Can Now Interrogate Body-on-Chip

Post Syndicated from Megan Scudellari original https://spectrum.ieee.org/the-human-os/biomedical/devices/bodyonchip-darpa-challenge

Scientists have just announced the completion of a lofty DARPA challenge to integrate 10 human organs-on-chips in an automated system to study how drugs work in the body. The technology provides an alternative to testing drugs on humans or other animals.

Referred to as the “Interrogator” by its developers, the system links up to ten different human organ chips—miniaturized microfluidic devices containing living cells that mimic the function of the organs they represent, such as intestine, heart or lung—and maintains their function for up to three weeks. In two experiments, the system successfully predicted how a human body metabolizes specific drugs.

The technology, described in two papers published this week in the journal Nature Biomedical Engineering, was developed by Donald Ingber and colleagues at Harvard’s Wyss Institute for Biologically Inspired Engineering.

“This is a wonderful technology for the field of organ-on-a-chip,” says Yu Shrike Zhang, a bioengineer at Harvard University Medical School and Brigham and Women’s Hospital in Boston, who was not involved in the research. A platform that automates the culturing, linking, and maintenance of multiple human organ-on-chips, all while inside a sterile incubator, “represents a great technological advancement,” says Zhang, who last year wrote about the promises and challenges of organ-on-a-chip systems for IEEE Spectrum.

In 2010, Ingber and colleagues reported the first human organ-on-a-chip, a human lung. Each chip, roughly the size of a computer memory stick, is composed of a clear polymer containing hollow channels: one channel is lined with endothelial cellsthe same cells that line human blood vessels, and another hosts organ-specific cells, such as liver or kidney cells.

After creating numerous individual organ chips, Ingber received a 2012 DARPA grant to try to integrate 10 organs-on-chips and use them to study how drugs are absorbed and metabolized in the body.

Eight years and three prototypes later, the team succeeded. The most recent version of the platform took four years to develop, says Richard Novak, a senior staff engineer at the Wyss Institute who built the machine. Within that time, a whole year was needed to develop a user interface that biologists with no programming experience could easily operate.

“It enables a really complex experiment to be set up in two minutes,” says Novak.

The “Interrogator,” as Novak fondly calls it, consists of a robotic system that pipettes liquids—such as a blood substitute and/or a drug of choice—into the channels; a peristaltic pump to move those liquids through the microfluidic chips; custom software with an easy drag-n-drop interface; and a mobile microscope to monitor the chips and their connections without having to manually reach in and take out each chip for examination, as was done with older systems.

Best of all, says Novak, the whole machine fits into a standard laboratory incubator, which maintains living cells at constant temperature and light conditions.

Finally, the team was ready to interrogate the Interrogator. Could the system truly mimic the human body in a drug test? To find out, the scientists connected a human gut chip, liver chip, and kidney chip, then added nicotine to the gut chip to simulate a person orally swallowing the drug (such as if a person were chewing nicotine gum). The time it took the nicotine to reach each tissue, and the maximum nicotine concentrations in each tissue, closely matched levels previously measured in patients.

In a second test, the researchers linked liver, kidney, and bone marrow chips and administered cisplatin, a common chemotherapy drug. Once again, the drug was metabolized and cleared by the kidney and liver at levels that closely matched those measured in patients. Cells in the kidney chip even expressed the same biological markers of injury as a living kidney does during chemotherapy treatment.

“Compared against clinical studies, they matched up really nicely,” says Novak. The team is now using their linked organ chips to study the gut microbiome and influenza transmission. The Interrogator technology IP has been licensed by a Wyss Institute spin-off company, Boston-based Emulate, which Ingber founded.

How Do Neural Implants Work?

Post Syndicated from Emily Waltz original https://spectrum.ieee.org/the-human-os/biomedical/devices/what-is-neural-implant-neuromodulation-brain-implants-electroceuticals-neuralink-definition-examples

It sounds like science fiction, but a neural implant could, many years from now, read and edit a person’s thoughts. Neural implants are already being used to treat disease, rehabilitate the body after injury, improve memory, communicate with prosthetic limbs, and more. 

The U.S. Department of Defense and the U.S. National Institutes of Health (NIH) have devoted hundreds of millions of dollars in funding toward this sector. Independent research papers on the topic appear in top journals almost weekly.

Here, we describe types of neural implants, explain how neural implants work, and provide examples demonstrating what these devices can do. 

AI-Designed ‘Living Robots’ Crawl, Heal Themselves

Post Syndicated from Megan Scudellari original https://spectrum.ieee.org/the-human-os/biomedical/devices/aidesigned-living-robots-crawl-heal-themselves

Biological organisms have certain useful attributes that synthetic robots do not, such as the abilities to heal, adapt to new situations, and reproduce. Yet molding biological tissues into robots or tools has been exceptionally difficult to do: Experimental techniques, such as altering a genome to make a microbe perform a specific task, are hard to control and not scalable.

Now, a team of scientists at the University of Vermont and Tufts University in Massachusetts has used a supercomputer to design novel lifeforms with specific functions, then built those organisms out of frog cells.

The new, AI-designed biological bots crawl around a petri dish and heal themselves. Surprisingly, the biobots also spontaneously self-organize and clear their dish of small trash pellets.

Are Your Students Bored? This AI Could Tell You

Post Syndicated from Emily Waltz original https://spectrum.ieee.org/the-human-os/biomedical/devices/ai-tracks-emotions-in-the-classroom

Journal Watch report logo, link to report landing page

A professor finishes a lecture and checks his computer. A software program shows that most students lost interest about 30 minutes into the lecture—around the time he went on a tangent. The professor makes a note to stop going on tangents.

The technology for this fictional classroom scene doesn’t yet exist, but scientists are working toward making it a reality. In a paper published this month in IEEE Transactions on Visualization and Computer Graphics, researchers described an artificial intelligence (AI) system that analyzes students’ emotions based on video recordings of the students’ facial expressions.

The system “provides teachers with a quick and convenient measure of the students’ engagement level in a class,” says Huamin Qu, a computer scientist at the Hong Kong University of Science and Technology, who co-authored the paper. “Knowing whether the lectures are too hard and when students get bored can help improve teaching.”

Cyberattacks on Medical Devices Are on the Rise—and Manufacturers Must Respond

Post Syndicated from Nach Davé original https://spectrum.ieee.org/the-human-os/biomedical/devices/cyber-attacks-on-medical-devices-are-on-the-riseand-manufacturers-must-respond

This is a guest post. The views expressed here are solely those of the author and do not represent positions of IEEE Spectrum or the IEEE.

Cyberattacks are increasingly common in the health care industry. As the number of networked medical devices increases, so does the urgency for makers of these devices to understand and mitigate threats to device security.

In an increasingly interconnected and digital world, more and more medical devices contain embedded computer systems, which can be vulnerable to security breaches that affect how these devices operate. In March 2019, the U.S. Food and Drug Administration (FDA) issued a warning about two security flaws affecting dozens of implantable cardioverter defibrillators.

Such warnings underscore the importance of a cybersecurity-minded approach to device development.

Cyberattacks can be initiated by the introduction of malware into the equipment or by unauthorized access to configuration settings and data—not only in the devices themselves, but also in the hospital or other networks to which they are connected.

Attacks on networked medical devices, and the data they collect and transmit, can be costly. Patient safety is a critical concern, especially with devices such as defibrillators and insulin pumps that could cause patient harm or death if they malfunction.

Hacking of data from networked devices can also reveal commercially valuable information, such as:

  • Patient health data, which can be sold, used to run phishing schemes, or be combined with other mined data to facilitate identity theft
  • Product performance data, which can be sold to competitors or manipulated to undermine the device maker’s safety and efficacy claims
  • Data from other devices connected to the same network, which can have system-wide impacts

Judging the risk of an attack

There are a number of factors that contribute to cybersecurity risks in the medical device sector. These factors include:

  • Use of off-the-shelf software
  • Advances in the Internet of Things (IoT), which blur the lines between public and private data and make it easier for health information to be shared electronically
  • Proliferation of wearable and at-home medical devices, as well as telehealth offerings
  • Lack of a mandate for health care facilities to retire from use devices that are no longer supported by the manufacturer
  • Limited collaboration between the makers of medical devices and the health care delivery organizations that implement those devices

Over the past few years, the FDA has been vocal about the need for increased cybersecurity for medical devices. Since the FDA published its first premarket cybersecurity guidance in 2014, the agency has issued two other guidance documents. In 2016, the FDA published a postmarket guidance, which provides recommendations on how manufacturers should respond to new cybersecurity threats for marketed devices. In October 2018, the FDA issued an updated draft premarket guidance that also includes some postmarket recommendations.

Device makers shoulder the bulk of the responsibility for ensuring device security. However, hospitals and other health care delivery organizations are charged with evaluating their respective network security setups and protecting their systems. The FDA advises that health care delivery organizations work closely with medical manufacturers to understand what changes might be necessary to keep device security up to date.

In January 2019, the Health Care & Public Sector Coordinating Councils issued a joint security plan that provides recommendations for managing the security of medical devices throughout the product lifecycle. Under this plan, health care providers and purchasers of connected medical devices would be able to remotely access a cybersecurity bill of materials (CBOM) that would list all commercial hardware and all software embedded in the device. The plan would also require device manufacturers to notify customers before ending technical support for older devices.

What can medical device manufacturers do?

Rising cybersecurity threats have prompted medical device manufacturers to incorporate increasingly sophisticated methods of protecting their devices. Unfortunately, these security measures may sometimes make the device more difficult to use or disruptive to clinical workflow, causing end users to create workarounds that put the security of the devices at risk.

For device manufacturers, the challenge lies in considering how cybersecurity requirements will impact device usage and determining where tradeoffs can be made. Manufacturers should work with the full spectrum of stakeholders, including health care providers, device users, and patients, to ensure that measures taken to increase security don’t interfere with device usage.

As security decisions are being made, device manufacturers should take into account the following critical considerations:

  • What is the intended use of the device?
    This includes not only where and by whom the device will be used, but also when and how often it will be used. Security controls should be tailored to the end users and to their environments.
  • What are the risks?
    What is at risk if the device is compromised? The more serious the risk to patient safety, the more stringent and rigorous the security requirements should be.
  • How likely is a cybersecurity breach?
    While the likelihood of a cybersecurity breach may be difficult to quantify, manufacturers should consider what knowledge and access would be required to carry out an attack and how valuable the data collected by the device might be to potential hackers.

Device manufacturers should incorporate security and usability considerations into an effective cybersecurity plan during the earliest stages of design and development to help prevent costly changes or delays downstream. This requires collaboration between R&D, IT, and product engineering teams to ensure that devices are designed with the right threats in mind.

An effective cybersecurity plan should incorporate both premarket and postmarket phases and address risk management from device conception to disposal. Software-enabled devices will require a plan for maintaining security throughout the device lifecycle. The cybersecurity plan should also include a process for monitoring and managing the ongoing security of the device in the face of emerging vulnerabilities.

Many device industry giants—including BD, Abbott, Siemens, Philips, Medtronic, Johnson & Johnson, Boston Scientific, and Strykerv—have pledged to publicly share vulnerability information in the event of a cybersecurity breach on their devices. Industry-wide transparency is critical, but it can also be challenging because of the inherent tension between sharing vulnerability information and protecting intellectual property.

In October 2018, the FDA announced a memorandum of agreement with the U.S. Department of Homeland Security to improve collaboration and sharing of information to address medical device cybersecurity risks. Moreover, the U.S. Department of Health and Human Services’ Office of Inspector General has issued a report calling for the FDA to establish written procedures for securely sharing sensitive information about cybersecurity events with key stakeholders.

For manufacturers of networked medical devices, cybersecurity is becoming an increasingly important aspect of regulatory oversight and may even be a point of competitive differentiation. In fact, a recent survey showed that 62 percent of customers value cybersecurity more than ease of use in a medical device. As the responsibility of risk management ultimately lies with the medical device manufacturers who are bringing innovations to market, making cybersecurity a priority is a must.

Nach Davé is vice president of development strategy at Premier Research, where he advises medical device manufacturers on cybersecurity matters related to U.S. and European regulatory requirements.

With DNA Data Storage, 3D-Printed Bunnies Carry Their Own Blueprints

Post Syndicated from Emily Waltz original https://spectrum.ieee.org/the-human-os/biomedical/devices/dna-of-things

Every living thing contains DNA that provides the codes for its existence, and now inanimate objects can have that, too.

In a paper published today in Nature Biotechnology, researchers described how they 3D printed a bunny-shaped trinket that contained DNA encoding the digital instructions for its fabrication. That means that tomorrow, or a thousand years from now, someone could, with merely a piece of that bunny, decode the DNA stored in it, and learn exactly what the trinket looked like, or even 3D print a clone.

The experiment demonstrates that digital information can be stored as DNA in free-form objects. One might call it the DNA of things. 

Liquid Electrodes Morph Into Flexible Wires for Neural Stimulation

Post Syndicated from Megan Scudellari original https://spectrum.ieee.org/the-human-os/biomedical/devices/liquid-electrodes-form-malleable-wires-inside-the-body

Our nervous system is specialized to produce and conduct electrical currents, so it’s no surprise that gentle electric stimulation has healing powers. Neural stimulation—also known as neuromodulation, bioelectronic medicine, or electroceuticals—is currently used to treat pain, epilepsy, and migraines, and is being explored as a way to combat paralysis, inflammation, and even hair loss. Muscle stimulation can also bestow superhuman reflexes and improve short-term memory.

But to reach critical areas of the body, such as the brain or the spine, many treatments require surgically implanted devices, such as a cuff that wraps around the spinal cord. Implanting such a device can involve cutting through muscle and nerves (and may require changing a battery every few years).

Now, a team of biomedical engineers has created a type of electrode that can be injected into the body as a liquid, then harden into a stretchy, taffy-like substance. In a paper in the journal Advanced Healthcare Materials, the multi-institutional team used their “injectrodes” to stimulate the nervous systems of rats and pigs, with comparable results to existing implant technologies.