Tag Archives: Biomedical

How Do Neural Implants Work?

Post Syndicated from Emily Waltz original https://spectrum.ieee.org/the-human-os/biomedical/devices/what-is-neural-implant-neuromodulation-brain-implants-electroceuticals-neuralink-definition-examples

It sounds like science fiction, but a neural implant could, many years from now, read and edit a person’s thoughts. Neural implants are already being used to treat disease, rehabilitate the body after injury, improve memory, communicate with prosthetic limbs, and more. 

The U.S. Department of Defense and the U.S. National Institutes of Health (NIH) have devoted hundreds of millions of dollars in funding toward this sector. Independent research papers on the topic appear in top journals almost weekly.

Here, we describe types of neural implants, explain how neural implants work, and provide examples demonstrating what these devices can do. 

AI-Designed ‘Living Robots’ Crawl, Heal Themselves

Post Syndicated from Megan Scudellari original https://spectrum.ieee.org/the-human-os/biomedical/devices/aidesigned-living-robots-crawl-heal-themselves

Biological organisms have certain useful attributes that synthetic robots do not, such as the abilities to heal, adapt to new situations, and reproduce. Yet molding biological tissues into robots or tools has been exceptionally difficult to do: Experimental techniques, such as altering a genome to make a microbe perform a specific task, are hard to control and not scalable.

Now, a team of scientists at the University of Vermont and Tufts University in Massachusetts has used a supercomputer to design novel lifeforms with specific functions, then built those organisms out of frog cells.

The new, AI-designed biological bots crawl around a petri dish and heal themselves. Surprisingly, the biobots also spontaneously self-organize and clear their dish of small trash pellets.

Are Your Students Bored? This AI Could Tell You

Post Syndicated from Emily Waltz original https://spectrum.ieee.org/the-human-os/biomedical/devices/ai-tracks-emotions-in-the-classroom

Journal Watch report logo, link to report landing page

A professor finishes a lecture and checks his computer. A software program shows that most students lost interest about 30 minutes into the lecture—around the time he went on a tangent. The professor makes a note to stop going on tangents.

The technology for this fictional classroom scene doesn’t yet exist, but scientists are working toward making it a reality. In a paper published this month in IEEE Transactions on Visualization and Computer Graphics, researchers described an artificial intelligence (AI) system that analyzes students’ emotions based on video recordings of the students’ facial expressions.

The system “provides teachers with a quick and convenient measure of the students’ engagement level in a class,” says Huamin Qu, a computer scientist at the Hong Kong University of Science and Technology, who co-authored the paper. “Knowing whether the lectures are too hard and when students get bored can help improve teaching.”

10 Tantalizing Tech Milestones to Look for in 2020

Post Syndicated from The IEEE Spectrum editorial staff original https://spectrum.ieee.org/biomedical/bionics/10-tantalizing-tech-milestones-to-look-for-in-2020

graphic link to special report landing page
  • Mind-Controlled Bionic Limbs Will Debut in the Boston Marathon

    MIT researchers have developed a way of controlling bionic limbs with thoughts alone. First tried in humans in 2016, the method will be hitting new strides in 2020, when Brandon Korona, a veteran who lost his leg in Afghanistan, uses his new bionic limb to compete in the Boston Marathon. The mind-control technique involves reconstructing muscles near the base of the amputation site and linking them so that the muscles contract and extend in unison. This dynamic interaction and the electrical impulses it generates make it possible for the limb’s processor, which controls the bionic joints, to exchange signals with the brain. This exchange tells the brain where a joint is, how fast it is moving, and what size load it is bearing.

  • Artificial Diamonds Will Really Shine

    Diamonds can cost a lot, in money and even blood, given the sometimes shady ethics of the trade. A solution may lie in lab-grown diamonds. Production of these artificial gems will ramp up considerably in 2020, when one of the world’s largest diamond companies, De Beers Group, opens a manufacturing facility in Oregon that will produce about 500,000 rough carats per year. There, mixed gases and hundreds of chemical substrates will be added to reactors and subjected to high temperatures, transforming carbon into its diamond form. It takes about two weeks to make a 1-carat sparkler, which will retail for about US $800.

  • Huge Pumped-Storage Project Breaks Ground in Montana

    As the electric grid increasingly relies on wind turbines and solar panels, it requires ever more backup energy to make up for shortfalls on windless or cloudy days. To help address this need, Absaroka Energy will begin construction on a new pumped- storage hydroelectric facility this year, harnessing three massive reservoirs inside the Gordon Butte mountain, in Montana. When electricity is needed, the reservoirs will release water onto three turbine generators below, which together can generate 400 megawatts of electricity. Surplus electricity will be used to pump water back into the reservoirs. The new system uses separate motors to control the pumps, as well as separate turbines and generators. Isolating the components gives the system about 80 percent efficiency.

  • Will a Facebook-Backed Cryptocurrency Overcome Legal Hurdles?

    In July 2019, Facebook and 27 other companies announced plans to release a worldwide cryptocurrency, called Libra. The Libra Association aims to create a safe, stable currency, one that could be especially convenient for the 1.7 billion people globally who don’t have bank accounts. However, the announcement has prompted concerns about how Libra might be used for money laundering and the privatization of money, among other issues. The Libra Association says it is taking proper measures for security and data privacy, an assertion repeated by Facebook CEO Mark Zuckerberg at hearings before the U.S. Congress last October. Meanwhile, seven major companies, including PayPal, Visa, and Mastercard, have left the group. But the association says it still plans to roll out Libra in 2020.

  • Tesla’s 2020 Roadster to Hit the Streets

    Here’s some news to get any gearhead’s heart racing: Elon Musk claims that the 2020 Tesla Roadster will be able to rocket from 0 to 97 kilometers per hour (60 miles per hour) in a mere 1.9 seconds. This new machine— not to be confused with Tesla’s 2008–2012 Roadster—will have two motors in the rear and one in the front and offer the option of rocket thrusters powered by compressed air. Aside from the excitement surrounding the Roadster’s acceleration and top speed (which will exceed 200 mph), perhaps the most important spec is range. Currently, the longest range of an electric car is around 600 km (375 miles), but the Roadster will be good for 1,000 km (620 miles).

  • Rolls-Royce to Fly Record-Breaking Electric Plane

    In the first quarter of 2020, Rolls- Royce will unveil ACCEL, which it says is the fastest all-electric plane ever designed. The company claims its one-seat racing plane should exceed 480 kilometers per hour (300 miles per hour), smashing the current record of 340 km/h, set in 2017 by a Siemens plane. Rolls-Royce and its partners had to monitor more than 20,000 data points per second to optimize the plane’s battery system. An active cooling system allows the battery to discharge at high rates. Look to the skies over Britain to see this plane in action.

  • Lockheed Martin Takes Another Step Toward Compact, Convenient Nuclear Fusion

    Controlled nuclear fusion has been the object of many a failed quest over the past 60 years. Though it could go far to solve the world’s energy needs, the technical demands of fusion power are stupendous. Lockheed Martin has a patent pending on a reactor design that it says has a real chance at success. The reactor is compact, relying on magnetic fields to confine the hydrogen plasma and on electromagnetic fields to ignite and sustain the plasma. This process causes hydrogen atoms to fuse into helium, releasing torrents of energy. Throughout 2020, the company will test the fifth prototype, T5, which it says is significantly more powerful than earlier versions. The tests will show whether the design can handle the immense heat and pressure from the highly energized plasma inside.

  • A New Job for a Robot: Mowing

    In 2020, the long wait for a lawn-mowing counterpart to the Roomba will finally be over. iRobot plans to launch Terra, which can mow a lawn in straight, even rows without any human oversight. To navigate, the robot relies on a handful of radio- frequency beacons strategically placed throughout the yard, keeping at least three beacons within its line of sight at all times. By measuring the time it takes for signals to travel between itself and the beacons, Terra can locate itself on a preprogrammed map of the lawn. If anyone tries to steal this hard-working robot, antitheft software registers that the machine has left the premises and renders it inoperable.

  • GE Unveils a Bigger, Better Wind Turbine

    In 2020, GE Renewable Energy will seek certification for its Haliade-X offshore wind turbine, whose rated capacity of 12 megawatts would make it the largest and most powerful on the market. It boasts 107-meter-long blades made of a composite of glass and carbon fiber in a resin matrix. The massive area swept by those blades will let the turbine capture up to 67 gigawatt-hours annually, enough clean energy to power 16,000 households and save up to 42,000 metric tons of CO2. Assuming certification in 2020, sales are expected to commence in 2021.

  • Google and Apple Compete for the Attention of Gamers

    Gamers will be busy with two gaming services from Apple and Google. Critical to the new services—which launched recently and are expected to sweep the industry in the coming year—is the expansion of bandwidth, in the form of faster Wi-Fi and the emerging 5G capability, both of which greatly reduce lag. For US $4.99 per month, players can access more than 100 games through Apple Arcade, with more being rolled out each month. Google Stadia is available for $9.99 per month, with the option to purchase additional games at up to 4K resolution and at 60 frames per second. While Google Stadia games can be played on a variety of devices, Apple Arcade is, unsurprisingly, available only on Apple devices.

Caltech’s Brain-Controlled Exoskeleton Will Help Paraplegics Walk

Post Syndicated from Evan Ackerman original https://spectrum.ieee.org/biomedical/bionics/caltechs-braincontrolled-exoskeleton-will-help-paraplegics-walk

graphic link to special report landing page

Bipedal robots have long struggled to walk as humans do—balancing on two legs and moving with that almost-but-not-quite falling forward motion that most of us have mastered by the time we’re a year or two old. It’s taken decades of work, but robots are starting to get comfortable with walking, putting them in a position to help people in need.

Roboticists at the California Institute of Technology have launched an initiative called RoAMS (Robotic Assisted Mobility Science), which uses the latest research in robotic walking to create a new kind of medical exoskeleton. With the ability to move dynamically, using neurocontrol interfaces, these exoskeletons will allow users to balance and walk without the crutches that are necessary with existing medical exoskeletons. This might not seem like much, but consider how often you find yourself standing up and using your hands at the same time.

“The only way we’re going to get exoskeletons into the real world helping people do everyday tasks is through dynamic locomotion,” explains Aaron Ames, a professor of civil and mechanical engineering at Caltech and colead of the RoAMS initiative. “We’re imagining deploying these exoskeletons in the home, where a user might want to do things like make a sandwich and bring it to the couch. And on the clinical side, there are a lot of medical benefits to standing upright and walking.”

The Caltech researchers say their exoskeleton is ready for a major test: They plan to demonstrate dynamic walking through neurocontrol this year.

Getting a bipedal exoskeleton to work so closely with a human is a real challenge. Ames explains that researchers have a deep and detailed understanding of how their robotic creations operate, but biological systems still present many unknowns. “So how do we get a human to successfully interface with these devices?” he asks.

There are other challenges as well. Ashraf S. Gorgey, an associate professor of physical medicine and rehabilitation at Virginia Commonwealth University, in Richmond, who has researched exoskeletons, says factors such as cost, durability, versatility, and even patients’ desire to use the device are just as important as the technology itself. But he adds that as a research system, Caltech’s approach appears promising: “Coming up with an exoskeleton that can provide balance to patients, I think that’s huge.”

One of Ames’s colleagues at Caltech, Joel Burdick, is developing a spinal stimulator that can potentially help bypass spinal injuries, providing an artificial connection between leg muscles and the brain. The RoAMS initiative will attempt to use this technology to exploit the user’s own nerves and muscles to assist with movement and control of the exoskeleton—even for patients with complete paraplegia. Coordinating nerves and muscles with motion can also be beneficial for people undergoing physical rehabilitation for spinal cord injuries or stroke, where walking with the support and assistance of an exoskeleton can significantly improve recovery, even if the exoskeleton does most of the work.

“You want to train up that neurocircuitry again, that firing of patterns that results in locomotion in the corresponding muscles,” explains Ames. “And the only way to do that is have the user moving dynamically like they would if they weren’t injured.”

Caltech is partnering with a French company called Wandercraft to transfer this research to a clinical setting. Wandercraft has developed an exoskeleton that has received clinical approval in Europe, where it has already enabled more than 20 paraplegic patients to walk. In 2020, the RoAMS initiative will focus on directly coupling brain or spine interfaces with Wandercraft’s exoskeleton to achieve stable dynamic walking with integrated neurocontrol, which has never been done before.

Ames notes that these exoskeletons are designed to meet very specific challenges. For now, their complexity and cost will likely make them impractical for most people with disabilities to use, especially when motorized wheelchairs can more affordably fulfill many of the same functions. But he is hoping that the RoAMS initiative is the first step toward bringing the technology to everyone who needs it, providing an option for situations that a wheelchair or walker can’t easily handle.

“That’s really what RoAMS is about,” Ames says. “I think this is something where we can make a potentially life-changing difference for people in the not-too-distant future.”

This article appears in the January 2020 print issue as “This Exoskeleton Will Obey Your Brain.”

How Chicken Beat Beef in America

Post Syndicated from Vaclav Smil original https://spectrum.ieee.org/biomedical/ethics/how-chicken-beat-beef-in-america

For generations, beef was the United States’ dominant meat, followed by pork. When annual beef consumption peaked in 1976 at about 40 kilograms (boneless weight) per capita, it accounted for nearly half of all meat. Chicken had just a 20 percent share. But chicken caught up by 2010, and in 2018 chicken’s share came to 36 percent of the total, nearly 20 percentage points higher than beef. The average American now eats 30 kg of boneless chicken every year, bought overwhelmingly as cut-up or processed parts (from boneless breast to Chicken McNuggets).

The United States’ constant obsession with diet, in this case the fear of dietary cholesterol and saturated fat in red meat, has been a factor in the shift. The differences, however, are not ­striking: 100 grams of lean beef has 1.5 grams of saturated fat, compared with 1 gram in skinless chicken breast—which actually has more cholesterol. But the main reason for chicken’s ascendance has been its lower price, which reflects its metabolic advantage: No other domesticated land animal can convert feed to meat as efficiently as broilers. Modern breeding advances have had a lot to do with this efficiency.

During the 1930s, the average feeding efficiency for broilers (at about 5 units of feed per unit of live weight) was no better than for pigs. That rate was halved by the mid-1980s, and the latest U.S. Department of Agriculture’s feed-to-meat ratios show that it now takes only about 1.7 units of feed (standardized in terms of feed corn) to produce a unit of broiler live weight, compared with nearly 5 units of feed for hogs and almost 12 units for cattle.

Because edible weight as a share of live weight differs substantially among the leading meat species (about 60 percent for chicken, 53 percent for pork, and only about 40 percent for beef), recalculations in terms of feeding efficiencies per unit of edible meat are even more revealing. Recent ratios have been 3 to 4 units of feed per unit of edible meat for broilers, 9 to 10 for pork, and 20 to 30 for beef. These ratios correspond to average feed-to-meat conversion efficiencies of, respectively, 15, 10, and 4 percent.

In addition, broilers have been bred to mature faster and to put on an unprecedented amount of weight. Traditional free-running birds were slaughtered at the age of one year, when they weighed only about 1 kg. The average weight of American broilers rose from 1.1 kg in 1925 to nearly 2.7 kg in 2018, while the typical feeding span was cut from 112 days in 1925 to just 47 days in 2018.

Consumers benefit while the birds suffer. They gain weight so rapidly because they can eat as much as they want while being kept in darkness and in strict confinement. Because consumers prefer lean breast meat, the selection for excessively large breasts shifts the bird’s center of gravity forward, impairs its natural movement, and puts stress on its legs and heart. But the bird cannot move anyway: According to the National Chicken Council, a broiler is allotted just 560 to 650 square centimeters, an area only slightly larger than a sheet of standard A4 paper. As long periods of darkness improve growth, broilers mature under light intensities resembling twilight. This condition disrupts their normal circadian and behavioral rhythms.

On one side, you have shortened lives (less than seven weeks for a bird whose normal life span is up to eight years) with malformed bodies in dark confinement; on the other, in late 2019 you got retail prices of about US $2.94 per pound ($6.47 per kilogram) for boneless breast compared with $4.98/lb. for round beef roast and $8.22/lb. for choice sirloin steak.

But chicken’s rule hasn’t yet gone global: Thanks to its dominance in China and in Europe, pork is still about 10 percent ahead worldwide. Still, broilers mass-produced in confinement will, almost certainly, come out on top within a decade or two.

This article appears in the January 2020 print issue as “Why Chicken Rules.”

Quantum Dots Encode Vaccine History in the Skin

Post Syndicated from Megan Scudellari original https://spectrum.ieee.org/the-human-os/biomedical/imaging/quantum-dots-encode-vaccine-history-in-skin

I remember a faded yellow booklet, about the size of a wallet, that my mother used to pull out once a year at the doctor’s office to record my vaccines. Today, nurses document my children’s vaccination history in electronic health records that will likely follow them to adulthood.

To eradicate a disease—such as polio or measles—healthcare workers need to know who was vaccinated and when. Yet in developing countries, vaccination records are sparse and, in some cases, non-existent. For example, during a rural vaccination campaign, a healthcare worker may mark a child’s fingernail with a Sharpie, which can wash or scrape off within days.

Now, a team of MIT bioengineers has developed a way to keep invisible vaccine records under the skin. Delivered through a microneedle patch, biocompatible quantum dots embed in the skin and fluoresce under near-infrared light—creating a glowing trace that can be detected at least five years after vaccination. The work is described today in the journal Science Translational Medicine.  

Cyberattacks on Medical Devices Are on the Rise—and Manufacturers Must Respond

Post Syndicated from Nach Davé original https://spectrum.ieee.org/the-human-os/biomedical/devices/cyber-attacks-on-medical-devices-are-on-the-riseand-manufacturers-must-respond

This is a guest post. The views expressed here are solely those of the author and do not represent positions of IEEE Spectrum or the IEEE.

Cyberattacks are increasingly common in the health care industry. As the number of networked medical devices increases, so does the urgency for makers of these devices to understand and mitigate threats to device security.

In an increasingly interconnected and digital world, more and more medical devices contain embedded computer systems, which can be vulnerable to security breaches that affect how these devices operate. In March 2019, the U.S. Food and Drug Administration (FDA) issued a warning about two security flaws affecting dozens of implantable cardioverter defibrillators.

Such warnings underscore the importance of a cybersecurity-minded approach to device development.

Cyberattacks can be initiated by the introduction of malware into the equipment or by unauthorized access to configuration settings and data—not only in the devices themselves, but also in the hospital or other networks to which they are connected.

Attacks on networked medical devices, and the data they collect and transmit, can be costly. Patient safety is a critical concern, especially with devices such as defibrillators and insulin pumps that could cause patient harm or death if they malfunction.

Hacking of data from networked devices can also reveal commercially valuable information, such as:

  • Patient health data, which can be sold, used to run phishing schemes, or be combined with other mined data to facilitate identity theft
  • Product performance data, which can be sold to competitors or manipulated to undermine the device maker’s safety and efficacy claims
  • Data from other devices connected to the same network, which can have system-wide impacts

Judging the risk of an attack

There are a number of factors that contribute to cybersecurity risks in the medical device sector. These factors include:

  • Use of off-the-shelf software
  • Advances in the Internet of Things (IoT), which blur the lines between public and private data and make it easier for health information to be shared electronically
  • Proliferation of wearable and at-home medical devices, as well as telehealth offerings
  • Lack of a mandate for health care facilities to retire from use devices that are no longer supported by the manufacturer
  • Limited collaboration between the makers of medical devices and the health care delivery organizations that implement those devices

Over the past few years, the FDA has been vocal about the need for increased cybersecurity for medical devices. Since the FDA published its first premarket cybersecurity guidance in 2014, the agency has issued two other guidance documents. In 2016, the FDA published a postmarket guidance, which provides recommendations on how manufacturers should respond to new cybersecurity threats for marketed devices. In October 2018, the FDA issued an updated draft premarket guidance that also includes some postmarket recommendations.

Device makers shoulder the bulk of the responsibility for ensuring device security. However, hospitals and other health care delivery organizations are charged with evaluating their respective network security setups and protecting their systems. The FDA advises that health care delivery organizations work closely with medical manufacturers to understand what changes might be necessary to keep device security up to date.

In January 2019, the Health Care & Public Sector Coordinating Councils issued a joint security plan that provides recommendations for managing the security of medical devices throughout the product lifecycle. Under this plan, health care providers and purchasers of connected medical devices would be able to remotely access a cybersecurity bill of materials (CBOM) that would list all commercial hardware and all software embedded in the device. The plan would also require device manufacturers to notify customers before ending technical support for older devices.

What can medical device manufacturers do?

Rising cybersecurity threats have prompted medical device manufacturers to incorporate increasingly sophisticated methods of protecting their devices. Unfortunately, these security measures may sometimes make the device more difficult to use or disruptive to clinical workflow, causing end users to create workarounds that put the security of the devices at risk.

For device manufacturers, the challenge lies in considering how cybersecurity requirements will impact device usage and determining where tradeoffs can be made. Manufacturers should work with the full spectrum of stakeholders, including health care providers, device users, and patients, to ensure that measures taken to increase security don’t interfere with device usage.

As security decisions are being made, device manufacturers should take into account the following critical considerations:

  • What is the intended use of the device?
    This includes not only where and by whom the device will be used, but also when and how often it will be used. Security controls should be tailored to the end users and to their environments.
  • What are the risks?
    What is at risk if the device is compromised? The more serious the risk to patient safety, the more stringent and rigorous the security requirements should be.
  • How likely is a cybersecurity breach?
    While the likelihood of a cybersecurity breach may be difficult to quantify, manufacturers should consider what knowledge and access would be required to carry out an attack and how valuable the data collected by the device might be to potential hackers.

Device manufacturers should incorporate security and usability considerations into an effective cybersecurity plan during the earliest stages of design and development to help prevent costly changes or delays downstream. This requires collaboration between R&D, IT, and product engineering teams to ensure that devices are designed with the right threats in mind.

An effective cybersecurity plan should incorporate both premarket and postmarket phases and address risk management from device conception to disposal. Software-enabled devices will require a plan for maintaining security throughout the device lifecycle. The cybersecurity plan should also include a process for monitoring and managing the ongoing security of the device in the face of emerging vulnerabilities.

Many device industry giants—including BD, Abbott, Siemens, Philips, Medtronic, Johnson & Johnson, Boston Scientific, and Strykerv—have pledged to publicly share vulnerability information in the event of a cybersecurity breach on their devices. Industry-wide transparency is critical, but it can also be challenging because of the inherent tension between sharing vulnerability information and protecting intellectual property.

In October 2018, the FDA announced a memorandum of agreement with the U.S. Department of Homeland Security to improve collaboration and sharing of information to address medical device cybersecurity risks. Moreover, the U.S. Department of Health and Human Services’ Office of Inspector General has issued a report calling for the FDA to establish written procedures for securely sharing sensitive information about cybersecurity events with key stakeholders.

For manufacturers of networked medical devices, cybersecurity is becoming an increasingly important aspect of regulatory oversight and may even be a point of competitive differentiation. In fact, a recent survey showed that 62 percent of customers value cybersecurity more than ease of use in a medical device. As the responsibility of risk management ultimately lies with the medical device manufacturers who are bringing innovations to market, making cybersecurity a priority is a must.

Nach Davé is vice president of development strategy at Premier Research, where he advises medical device manufacturers on cybersecurity matters related to U.S. and European regulatory requirements.

With DNA Data Storage, 3D-Printed Bunnies Carry Their Own Blueprints

Post Syndicated from Emily Waltz original https://spectrum.ieee.org/the-human-os/biomedical/devices/dna-of-things

Every living thing contains DNA that provides the codes for its existence, and now inanimate objects can have that, too.

In a paper published today in Nature Biotechnology, researchers described how they 3D printed a bunny-shaped trinket that contained DNA encoding the digital instructions for its fabrication. That means that tomorrow, or a thousand years from now, someone could, with merely a piece of that bunny, decode the DNA stored in it, and learn exactly what the trinket looked like, or even 3D print a clone.

The experiment demonstrates that digital information can be stored as DNA in free-form objects. One might call it the DNA of things. 

Liquid Electrodes Morph Into Flexible Wires for Neural Stimulation

Post Syndicated from Megan Scudellari original https://spectrum.ieee.org/the-human-os/biomedical/devices/liquid-electrodes-form-malleable-wires-inside-the-body

Our nervous system is specialized to produce and conduct electrical currents, so it’s no surprise that gentle electric stimulation has healing powers. Neural stimulation—also known as neuromodulation, bioelectronic medicine, or electroceuticals—is currently used to treat pain, epilepsy, and migraines, and is being explored as a way to combat paralysis, inflammation, and even hair loss. Muscle stimulation can also bestow superhuman reflexes and improve short-term memory.

But to reach critical areas of the body, such as the brain or the spine, many treatments require surgically implanted devices, such as a cuff that wraps around the spinal cord. Implanting such a device can involve cutting through muscle and nerves (and may require changing a battery every few years).

Now, a team of biomedical engineers has created a type of electrode that can be injected into the body as a liquid, then harden into a stretchy, taffy-like substance. In a paper in the journal Advanced Healthcare Materials, the multi-institutional team used their “injectrodes” to stimulate the nervous systems of rats and pigs, with comparable results to existing implant technologies.

DARPA Seeks Pathogen Detectors That Use CRISPR to Run 1,000 Tests at Once

Post Syndicated from Emily Waltz original https://spectrum.ieee.org/the-human-os/biomedical/diagnostics/darpa-wants-scifi-pathogen-detectors

The U.S. Department of Defense has put out a call to researchers to develop devices that detect pathogenic threats by performing up to 1,000 diagnostic tests in fewer than 15 minutes.

The devices ideally would determine the presence of a pathogen, and useful details about it, such as whether it’s a drug resistant variety, the severity of the infection, and any co-infections.

The Defense Advanced Research Projects Agency, or DARPA, which makes investments in breakthrough technologies on the military’s behalf, will oversee the initiative. 

Scientists have endeavored to make this sort of diagnose-anything, “Star Trek”-inspired device previously, without a lot of success. But DARPA is betting that new technology that leverages gene-editing techniques can achieve this goal.

If the project budget is approved by the White House, DARPA will be able to award more than US $60 million to proposers. An information session will be held in Atlanta on 11 December. DARPA program manager Renee Wegrzyn spoke with IEEE Spectrum about her vision for the these powerful devices. 

Wireless E-Skin Patch Conveys a Gentle Touch

Post Syndicated from Megan Scudellari original https://spectrum.ieee.org/the-human-os/biomedical/devices/wireless-eskin-patch-conveys-a-gentle-touch

A mother smiles at her toddler via a live video feed, then runs her fingers along the computer screen. Miles away, the boy feels the strokes of her hand on his back.

A man with a lower-arm amputation picks up a beer can with his prosthetic hand and feels the artificial fingers make contact with the can.

A gamer’s animated character is struck on the arm and shoulder by an opponent, and the gamer feels pressure on her corresponding body parts.

These are real-life applications of a new electronic skin technology from the lab of John Rogers and his colleagues at Northwestern University, detailed in a paper published today in the journal Nature. The soft, lightweight sheet of electronics is wireless, battery-free, sticks right to the skin, and re-creates a sensation of touch.

Expert Discusses Key Challenges for the Next Generation of Wearables

Post Syndicated from Michael Koziol original https://spectrum.ieee.org/the-human-os/biomedical/devices/wireless-wearables-for-biochemistry-still-need-a-handful-of-improvements

For decades, pedometers have counted our steps and offered insights into mobility. More recently, smartwatches have begun to track a suite of vital signs in real-time. There is, however, a third category of information—in addition to mobility and vitals—that could be monitored by wearable devices: biochemistry.

To be clear, there are real-time biochemistry monitoring devices available like the FreeStyle Libre, which can monitor blood glucose in people with diabetes for 14 days at a time, relatively unobtrusively. But Joseph Wang, a professor of nanoengineering at the University of California, San Diego thinks there’s still room for improvement. During a talk about biochemistry wearables at ApplySci’s 12th Wearable Tech + Digital Health + Neurotech event at Harvard on 14 November, Wang outlined some of the key challenges to making such wearables as ubiquitous and unobtrusive as the Apple Watch.

Wang identified three engineering problems that must be tackled: flexibility, power, and treatment delivery. He also discussed potential solutions that his research team has identified for each of these problems.

New AI System Predicts Seizures With Near-Perfect Accuracy

Post Syndicated from Michelle Hampson original https://spectrum.ieee.org/the-human-os/biomedical/diagnostics/this-new-ai-system-can-predict-seizures-with-nearperfect-accuracy

For the roughly 50 million people worldwide with epilepsy, the exchange of electrical signals between cells in their brain can sometimes go haywire and cause a seizure—often with little to no warning. Two researchers at the University of Louisiana at Lafayette have developed a new AI-powered model that can predict the occurrence of seizures up to one hour before onset with 99.6 percent accuracy.

“Due to unexpected seizure times, epilepsy has a strong psychological and social effect on patients,” explains Hisham Daoud, a researcher who co-developed the new model.

Detecting seizures ahead of time could greatly improve the quality of life for patients with epilepsy and provide them with enough time to take action, he says. Notably, seizures are controllable with medication in up to 70 percent of these patients.

Bionic Pacemaker Controlled By Neural Network Reverses Heart Failure in Rats

Post Syndicated from Emily Waltz original https://spectrum.ieee.org/the-human-os/biomedical/devices/bionic-pacemaker-neural-network-heart-rats

For more than 60 years, the pacemaker—a device implanted in the chest that delivers electrical pulses to the heart—has served as the ticker’s ticker, producing a steady beat for hearts that can’t do it on their own.

The device has prolonged countless lives, but even the most sophisticated pacemakers ignore a significant biological fact: Healthy hearts don’t beat steadily like a metronome. They speed up as we inhale and and slow down as we exhale. 

Focusing on this natural variation, called respiratory sinus arrhythmia, may be the key to improving the pacemaker. “Devices have to listen to feedback from the body,” says Julian Paton, a professor at the University of Bristol, in the UK, who is leading some of the research in this area. “We need smarter devices.”

In a paper published this week in the Journal of Physiology, Paton and his colleagues describe a smarter pacemaker that puts natural variation back into a failing heart, helping it to work more efficiently. 

The device reads the electrical signals generated by each breath, and paces the heart accordingly. In rats with heart failure, the device increased the amount of blood their hearts could pump by 20%, compared with monotonic pacemaking, according to the study. ​

“People are beginning to think about ways in which pacemakers could become more intelligent, but there’s nothing on the market that has demonstrated such a profound increase in heart rate,” says Paton.

Current pacemakers adjust heart rate by responding to changes in the body in relatively rudimentary ways, such as with accelerometers or by detecting increases in body temperature. Some newer devices can pace the heart based on respiration. But those devices track average respiration over a period of time, says Paton. “That’s not what we’re doing. We’re modulating the heart based on every breath,” he says.

The device features a neural-network-based analog chip developed by Paton’s coauthor Alain Nogaret at the University of Bath. In the rat experiments, it recorded electrical activity from the rat’s diaphragm muscles, which contract during inhalation. The chip interprets the signals conveyed to it by a lead in real time using Hodgkin-Huxley equations—mathematical modeling of how action potentials in neurons are initiated and propagated. The device then delivers electrical stimulation to the left atria of the heart, prompting it to beat in sync with breathing. 

The advantage of using an analog device, compared with digital, is that it can respond quickly to changes in input from the body, says Paton. The device is scalable and can be miniaturized to the size of a postage stamp.

If the research progresses to humans, Paton says his team will not need to record signals from the diaphragm muscle. Instead, they will be able to integrate the device into conventional pacemakers, and gauge breathing by measuring electrical changes in chest resistance. 

Paton’s work is among several approaches researchers are taking to modernize the pacemaker. Other groups aim to power pacemakers more efficiently, including powering them with the heart itself, and making them out of graphene so they can run on light. Some groups are developing optical pacemakers using a genetic engineering technique called optogenetics, rather than hardware, to trigger cardiac cell contraction.

Stevens engineers design fetal heart monitor that could detect early signs of pregnancy complications

Post Syndicated from Stevens Institute of Technology original https://spectrum.ieee.org/biomedical/devices/stevens-engineers-design-fetal-heart-monitor-that-could-detect-early-signs-of-pregnancy-complications

A baby’s heartbeat can be detected as early as six weeks into pregnancy. From around 12 weeks until birth, doctors will listen to the fetus’ heartbeat at every prenatal appointment to closely monitor the baby’s health. But what if fetal heart activity changes in between these appointments, while the doctor isn’t there to listen? Engineers at Stevens Institute of Technology have designed a wearable device that continuously monitors fetal activity—even from home—in order to detect early signs of complications and allow for prompt, potentially life-saving interventions.

“If we can monitor fetal heart rate continuously, when the mother is sleeping and so forth, there may be signs that show complications,” said Negar Tavassolian, assistant professor of electrical and computer engineering who is leading this research at the Schaefer School of Engineering and Science. “We can recognize these signs ahead of time and warn the mother to go see the doctor, whereas if she just relies on the doctor’s visits alone, then a lot of things can go wrong in between.”

The device is comprised of a few small patches that are applied to the belly along the abdominal wall. The main patch measures fetal heart rate and movement through

-cardiogram and gyro-cardiogram recordings, while the two adjacent patches are sensors used to negate external interference to the signal from sources other than the targeted fetal heartbeats. This might come from maternal activities such as motion, speech, organ activities, and even the mother’s heartbeat, and external environmental sounds.

“There have been several modalities [to monitor fetal activity] that have been proposed, but the missing part is that these modalities suffer from noise—that is, external interference,” said graduate student Chenxi Yang, who is working with Tavassolian on this research. “We believe that our technology can help with that, both in terms of sensing and algorithm development. We’re not inventing a new technology to substitute an old one; rather, we are combining old and new technologies and developing them to a new level.”

In earlier phases of the study, Tavassolian’s team used their technology for cardiovascular monitoring of adults. They have now expanded their work to detect the vibration of a fetal heart. While there are some other sensing technologies proposed using electrodes, there is nothing of this nature being widely used right now.

“What we want to monitor is the heartbeat of the fetus, the contractions of the mother, and the movement of the fetus. The heartbeat develops early, and we detect movement during later stages of pregnancy. So far, we have done tests later in pregnancy, but we want to see how early we can go,” said Yang.

Currently, trials are being conducted at a clinic at New York University–Langone Medical Center in healthy women with low-risk pregnancies in order to validate the accuracy of the metrics being measured—but the monitor would be especially helpful for use in high-risk pregnancies. Women who have had multiple

pregnancies have
a higher risk of miscarriages and stillbirths with each subsequent pregnancy. This is partially due to the older age of the mother and is also dependent upon the conditions of previous births.

The period after 32 weeks of gestation is a time when it is especially important to prevent pregnancy complications.

“Currently, the available interventions when a preterm birth is detected is relatively effective after 32 weeks of gestation,” said Tavassolian. “The survival rate of babies is high after 32 weeks, while it is not before 32 weeks. However, there is not sufficient early detection at this term. So it makes more sense to target

birth detection to this population as the first step because there are effective interventions after the detection. In this way, our proposed technology could be beneficial to the current point-of-care system. In the long run, we will then target earlier gestational weeks, which might give clinical and research values to the doctors in the long-term.”

If complications arise, a fetus may compensate for a loss of heart function with an increased heart rate. If this happens, the monitoring device could alert a mother to see her doctor before her next scheduled appointment.

Depending upon the nature of the potential complication, a number of interventions may be applied. Sometimes bed rest may be advised. If there is reduced activity

later stages of pregnancy, then a combination of medication and surgery may be needed. The key is to identify the onset of a compromise as early as possible, whether it be in the fetus’ heartbeat or movements, or in the mother’s contractions.

At this stage of research, Tavassolian’s team can accurately monitor fetal heart rate and movement while a mother is lying on her back. “We have validated the technologies separately,” said Tavassolian, “and now we need to utilize machine learning to diminish

. The next step is to analyze patterns to identify the onset of a compromise.”

“We are trying to objectively provide information for the doctors to help them determine the best way to prevent severe outcomes,” said Yang. “We are engineers, so we discuss [prenatal needs] with doctors, and they tell us their

needs from the medical aspect. They help us with the big picture of the design.”

Can Big Data Help Prevent Alzheimer’s Disease?

Post Syndicated from Megan Scudellari original https://spectrum.ieee.org/the-human-os/biomedical/diagnostics/can-big-data-solve-alzheimers

During the Framingham Heart Study, a long-term research study initiated in 1948 that collected health data from thousands of people, researchers discovered that high cholesterol and elevated blood pressure increase one’s risk of heart disease. Thanks to that insight, at-risk individuals can reduce their chances of developing the condition by taking drugs to lower cholesterol and blood pressure.

Could the same be done for Alzheimer’s disease, a notoriously opaque and complex progressive brain disease?

Drones: For When Medical Intervention Has to Get There Before an Ambulance Can

Post Syndicated from Emily Waltz original https://spectrum.ieee.org/the-human-os/biomedical/devices/drones-beat-new-york-city-ambulances

Medical drones carrying emergency supplies can reach 911 callers in New York City significantly faster than ambulances, according to new research.

The study pitted commercial drones against emergency medical service  (EMS) serving part of Brooklyn, New York. First responders from EMS arrived on the scene of emergencies in about 9.5 minutes on average during the study period, while the drones arrived in about 6.5 minutes. 

“Three minutes might very well represent the difference between life and death,” says Mark Hanna, a pediatric emergency medicine fellow at Maimonides Medical Center in Brooklyn, who orchestrated the study. Hanna presented his results last week at the American Academy of Pediatrics 2019 National Conference and Exhibition in New Orleans.

Racial Bias Found in Algorithms That Determine Health Care for Millions of Patients

Post Syndicated from Eliza Strickland original https://spectrum.ieee.org/the-human-os/biomedical/ethics/racial-bias-found-in-algorithms-that-determine-health-care-for-millions-of-patients

An algorithm that a major medical center used to identify patients for extra care has been shown to be racially biased. 

The algorithm screened patients for enrollment in an intensive care management program, which gave them access to a dedicated hotline for a nurse practitioner, help refilling prescriptions, and so forth. The screening was meant to identify those patients who would most benefit from the program. But the white patients flagged for enrollment had fewer chronic health conditions than the black patients who were flagged.

In other words, black patients had to reach a higher threshold of illness before they were considered for enrollment. Care was not actually going to those people who needed it most.

Alarmingly, the algorithm was performing its task correctly. The problem was with how the task was defined.

The findings, described in a paper that was just published in Science, point to a system-wide problem, says coauthor Ziad Obermeyer, a physician and researcher at the UC Berkeley School of Public Health. Similar screening tools are used throughout the country; according to industry estimates, these types of algorithms are making health decisions for 200 million people per year. 

You Want a Prosthetic Leg With a Tesla Coil and Spark Gaps? No Problem

Post Syndicated from Stephen Cass original https://spectrum.ieee.org/tech-talk/biomedical/bionics/you-want-a-prosthetic-leg-with-a-tesla-coil-and-spark-gaps-no-problem

Imagine performing complicated choreography with thousands of volts rippling up and down inside your leg, creating a ladder of buzzing miniature bolts of lightning. That’s what Viktoria Modesta does in a promotional art video released this week for Rolls Royce’s line of Black Badge cars. The video, which you can see at the bottom of this page, is in a “cybernetic glam” style that shows Modesta striding through futuristic settings until she transforms into the famous leaning woman ornament that adorns the front bonnet of Rolls Royces.

Modesta is a self-described bionic pop artist who often uses very elaborate versions of her prosthetic limb. To create her outfit for the video—including the 3D printed matching bodice—she turned to fashiontech designer Anouk Wipprecht (who wrote about her creation of a maker-friendly EEG headset in the June issue of IEEE Spectrum) and Sophie de Oliveira Barata of the Alternative Limb Project.

Modesta, Wipprecht, and de Oliveira Barata started visiting their local Rolls Royce dealerships and brainstorming about what Modesta’s look could be for the video. Wipprecht began thinking about using a Tesla coil to generate electric “wings,” and brought on two previous collaborators: Joe DiPrima (profiled in Spectrum’s May issue) and his brother John. The DiPrima’s are the founders of ArcAttack, which makes and performs with Tesla coils. ArcAttack often makes large coils, some of which have been installed as attractions in U.S. science museums. Soon the team began wondering if they could put a Jacob’s Ladder inside a hollow leg. (If you’ve ever seen an old-school mad scientist’s laboratory in a movie, you’re familiar with the rising spark effect of a Jacob’s Ladder).

But while “Jacob Ladders are cool things, they’re sort of unreliable. If you’re walking around with it and the wind starts blowing and stuff like that, it just breaks the arc. Maybe it might work like one out of five times,” says Joe DiPrima. Given that the video was designed to promote a car, “I thought that maybe we could design a Jacob’s Ladder worked more like a distributor cap in a car. So we have an actual mechanical switch that switches high voltage from the Tesla coil and energizes a specific spark gap. And so by doing that we make the effect bulletproof.” The result was a series of spark gaps which can fire in a Jacob’s Ladder-like way, but with the speed and pattern under the control of a programmable microcontroller. Wipprecht and DiPrima shared with IEEE Spectrum some behind-the-scenes footage of how they prototyped and built the leg for this video:

Making a wearable Tesla coil came with unusual challenges: “A Tesla coil doesn’t have a lot of capacitance when they’re super small. So they’re really sensitive to their surroundings as far as frequency is concerned and stuff like that,” says DiPrima—even a nearby hand can affect the coil. “One of the things that I did to make the frequency of the coil more stable is I put a capacitor string inside of it…that added 20 picofarads of capacitance, which is pretty significant for a coil that small.” As well as stabilizing the coil itself, the extra capacitance gave the design more flexibility with regard to the length of the wires used to connect to the spark gaps in the leg.

It was decided to fit the coil and the supported electronics into a shoe, so they worked with United Nude to make a custom pair that would let them fit everything into the heel. The development process took about six months and grew to include a number of other specialists, such as Alex Freire.

“I’m not a prosthetist,” says Wipprecht. For an artifical leg “there’s really specific needs, like the socket placement, the length of the feet, the balance.” Freire made the sockets and the feet which were then sent to de Oliveira Barata to complete the leg based on Wipprecht’s design sketches, which featured an open space for the spark electrodes. The feet are made of rubber, while the upper part of the prosthetic is made of carbon fiber, but much of the length is made from fiberglass. “That is the space where the electrical effects needed to happen, so it couldn’t be carbon fiber because that’s conductive,” says Wipprecht.

In the finished video, these effects have been enhanced using CGI, but it is still based on real sparks as a practical effect. The bodice Modesta wears is designed to evoke the engine of the Black Badge car. To create it, Wipprecht worked from a 3-D body scan of Modesta, and printed the form using a nylon material with a laser-sintering printer. The printed neck and hip parts were used to make a mold from which parts were cast, which where then layered with the same carbon fiber material used in Black Badge cars.