Tag Archives: Biomedical

Spermato-WHOA-a! Human Sperm Don’t Swim Like We Thought

Post Syndicated from Emily Waltz original https://spectrum.ieee.org/the-human-os/biomedical/imaging/spermatowhoaa-human-sperm-dont-swim-like-we-thought

For more than three centuries scientists have believed that human sperm swim by swishing their tails in a side-to-side, symmetrical motion. But that’s because we’ve been looking at them with 2D microscopes.

Using state-of-the-art 3D microscopy, a piezoelectric device, and mathematics, researchers in Mexico discovered how sperm really move: They spin, with a wonky asymmetrical wiggle. The researchers reported their discovery today in the journal Science Advances.

“It’s 2020 and we all thought we knew how sperm actually swim, and we couldn’t have been more wrong,” says Hermes Gadêlha, a senior lecturer in the Department of Engineering Mathematics at the University of Bristol. Gadêlha collaborated on the project with colleagues at the Image and Computer Vision Laboratory at the National Autonomous University of Mexico.

Handheld Vagus Nerve Stimulator Gets Emergency Approval for COVID-19 Use

Post Syndicated from Samuel K. Moore original https://spectrum.ieee.org/the-human-os/biomedical/devices/handheld-vagus-nerve-stimulator-gets-emergency-approval-for-covid19-use

The U.S. Food and Drug Administration has granted an emergency use authorization for treating suspected COVID-19 patients with a non-invasive vagus nerve stimulator. The handheld device, made by electroCore, in Basking Ridge, N.J., sends a train of electric pulses through the skin to a nerve in the neck. Research has shown this pulse train causes airways in the lungs to open and may also have a more general anti-inflammatory effect.

According to FDA’s authorization, the gammaCore Sapphire CV device can be used either at home or in a clinic or hospital to “acutely treat adult patients with known or suspected COVID-19 who are experiencing exacerbation of asthma-related [shortness of breath] and reduced airflow, and for whom approved drug therapies are not tolerated or provide insufficient symptom relief.”

Astronaut Bioengineers Human Cartilage in Space Using Magnetic Fields

Post Syndicated from Emily Waltz original https://spectrum.ieee.org/the-human-os/biomedical/devices/astronauts-bioengineer-human-cartilage-in-space

An astronaut aboard the International Space Station (ISS) has successfully assembled human cartilage using the power of magnetism. 

The feat was achieved using a magnetic levitation bioassembly device installed onboard the station. The machine enables clusters of human cells to assemble into tissue structures, without the use of a physical scaffold. The experiment was described in a paper published today in the journal Science Advances

“One could imagine not too far in the future that if we colonize Mars or do long-term space travel, we might want to do experiments where we build functional tissues in space, and test them in extraterrestrial environments,” says Utkan Demirci, a researcher at Stanford and an author of the paper.  

Imagine getting a space-related injury that rips off your skin or bone, and being able to patch it up with bioengineered tissue—like the movie “Ad Astra,” where people live, work and receive medical treatment on the red planet.

Survey Finds Americans Skeptical of Contact Tracing Apps

Post Syndicated from Jeremy Hsu original https://spectrum.ieee.org/the-human-os/biomedical/devices/survey-finds-americans-skeptical-of-contact-tracing-apps

Confusion and skepticism may confound efforts to make use of digital contact tracing technologies during the COVID-19 pandemic. A recent survey found that just 42 percent of American respondents support using so-called contact tracing apps—an indication of a lack of confidence that could weaken or even derail effective deployment of such technologies.

Crowdsourced Protein Modeling Efforts Focus on COVID-19

Post Syndicated from Payal Dhar original https://spectrum.ieee.org/the-human-os/biomedical/diagnostics/crowdsourced-protein-modeling-efforts-focus-on-covid19

IEEE COVID-19 coverage logo, link to landing page

Researchers have been banking on millions of citizen-scientists around the world to help identify new treatments for COVID-19. Much of that work is being done through distributed computing projects that utilize the surplus processing power of PCs to carry out various compute-intensive tasks. One such project is [email protected], which helped model how the spike protein of SARS-CoV-2 binds with the ACE2 receptor of human cells to cause infection. Started at Stanford University in 2000, [email protected] is currently based at the Washington University School of Medicine in St. Louis; it undertakes research into various cancers, and neurological and infectious diseases by studying the movement of proteins.

Proteins are made up of a sequence of amino acids that fold into specific structural forms. A protein’s shape is critical in its ability to undertake its specific function. Viruses have proteins that enable them to suppress a host’s immune system, invade cells, and replicate.

Greg Bowman, director of [email protected], says, “We’re basically building maps of what these viral proteins can do… [The distributed computing network] is like having people around the globe jump in their cars and drive around their local neighborhoods and send us back their GPS coordinates at regular intervals. If we can develop detailed maps of these important viral proteins, we can identify the best drug compounds or antibodies to interfere with the virus and its ability to infect and spread.”

After Covid-19 was declared a global pandemic, [email protected] prioritized research related to the new virus. The number of devices running its software shot up from some 30,000 to over 4 million as a result. Tech behemoths such as Microsoft, Amazon, AMD, Cisco, and others have loaned computing power to [email protected] The European Organization for Nuclear Research (CERN) has freed up 10,000 CPU cores to add to the project, and the Spanish premier soccer league La Liga has chipped in with its supercomputer that is otherwise dedicated to fighting piracy.

While [email protected] models how proteins fold, another distributed computing project called [email protected]—this one at the University of Washington Institute for Protein Design (IPD)—predicts the final folded shape of the protein. Though the projects are quite different, they are complementary.

“A big difference…is that the [email protected] distributed computing is…directly contributing to the design of new proteins… These calculations are trying to craft brand new proteins with new functions,” says Ian C. Haydon, science communications manager and former researcher at IPD. He adds that the [email protected] community, which comprises about 3.3 million instances of the software, has helped the research team come up with more than 2 million candidate antiviral proteins that recognize the coronavirus’s spike protein and bind very tightly to it. When that happens, the spike is no longer able to recognize or infect a human cell.

“At this point, we’ve tested more than 100,000 of what we think are the most promising options,” Haydon says. “We’re working with collaborators who were able to show that the best of these antiviral proteins…do keep the coronavirus from being able to infect human cells…. [What’s more,] they have a potency that looks at least as good if not better than the best known antibodies.”

There are many possible outcomes for this line of research, Haydon says. “Probably the fastest thing that could emerge… [is a] diagnostic…tool that would let you detect whether or not the virus is present.” Since this doesn’t have to go into a human body, the testing and approval process is likely to be quicker. “These proteins could [also] become a therapy that…slows down or blocks the virus from being able to replicate once it’s already in the human body… They may even be useful as prophylactic.”

Bio-Ink for 3-D Printing Inside the Body

Post Syndicated from Charles Q. Choi original https://spectrum.ieee.org/the-human-os/biomedical/devices/invivo-printing

Right now, almost 70,000 people in the United States alone are on active waiting lists for organ donations. The dream of bio-printing is that one day, instead of waiting for a donor, a patient could receive, say, a kidney  assembled on demand from living cells using 3-D printing techniques. But one problem with this dream is that bio-printing an organ outside the body necessarily requires surgery to implant it.  This may mean large incisions, which in turn adds the risk of infection and increased recovery time for patients. Doctors would also have to postpone surgery until the necessary implant was bio-printed, vital time patients might not have. 

A way around this problem could be provided by new bio-ink, composed of living cells suspended in a gel, that is safe for use inside people and could help enable 3-D printing in the body. Doctors could produce living parts inside patients through small incisions using minimally invasive surgical techniques. Such an option might prove safer and faster than major surgery.

DNA Databases in the U.S. and China Are Tools of Racial Oppression

Post Syndicated from Thor Benson original https://spectrum.ieee.org/tech-talk/biomedical/ethics/dna-databases-in-china-and-the-us-are-tools-of-racial-oppression

Two major world powers, the United States and China, have both collected an enormous number of DNA samples from their citizens, the premise being that these samples will help solve crimes that might have otherwise gone unsolved. While DNA evidence can often be crucial when it comes to determining who committed a crime, researchers argue these DNA databases also pose a major threat to human rights.

In the U.S., the Federal Bureau of Investigation (FBI) has a DNA database called the Combined DNA Index System (CODIS) that currently contains over 14 million DNA profiles. This database has a disproportionately high number of profiles of black men, because black Americans are arrested five times as much as white Americans. You don’t even have to be convicted of a crime for law enforcement to take and store your DNA; you simply have to have been arrested as a suspect.

Bradley Malin, co-director of the Center for Genetic Privacy and Identity in Community Settings at Vanderbilt University, tells IEEE that there are many issues that can arise from this database largely being composed of DNA profiles taken from people of color.

“I wouldn’t say that they are only collecting information on minorities, but when you have a skew towards the collection of information from these communities, when you solve a crime or you think you have solved a crime, then it is going to be a disproportionate number of people from the minority groups that are going to end up being implicated,” Malin says. “It’s a non-random collection of data, as an artifact, so that’s a problem. There’s clearly skew with respect to the information that they have.”

Some of the DNA in the FBI’s database is now being collected by immigration agencies that are collecting samples from undocumented immigrants at the border. Not only are we collecting a disproportionate amount of DNA from black Americans who have been arrested, we’re collecting it from immigrants who are detained while trying to come to America. Malin says this further skews the database and could cause serious problems.

“If you combine the information you’re getting on immigrant populations coming into the United States with information that the FBI already holds on minority populations, who’s being left out here? You’ve got big holes in terms of a lack of white, caucasian people within this country,” Malin says. “In the event that you have people who are suspected of a crime, the databases are going to be all about the immigrant, black, and Hispanic populations.”

Malin says immigration agencies are often separating families based on DNA because they will say someone is not part of a family if their DNA doesn’t match. That can mean people who have been adopted or live with a family will be separated from them.

Aside from the clear threat to privacy these databases represent, one of the problems with them is that they can contain contaminated samples, or samples can become contaminated, which can lead law enforcement to make wrongful arrests. Another problem is law enforcement can end up collecting DNA that is a near match to DNA contained in the database and end up harassing people they believe to be related to a criminal in order to find their suspect. Malin says there’s also no guarantee that these DNA samples will not end up being used in controversial ways we have yet to even consider.

“One of the problems you run into is scope creep,” Malin says. “Just because the way the law is currently architected says that it shouldn’t be used for other purposes doesn’t mean that that won’t happen in the future.”

As for China, a report that was published by the Australian Strategic Policy Institute in mid-June claims that China is operating the “world’s largest police-run DNA database” as part of its powerful surveillance state. Chinese authorities have collected DNA samples from possibly as many as 70 million men since 2017, and the total database is believed to contain as many as 140 million profiles. The country hopes to collect DNA from all of its male citizens, as it argues men are most likely to commit crimes.

DNA is reportedly often collected during what are represented as free physicals, and it’s also being collected from children at schools. There are reports of Chinese citizens being threatened with punishment by government officials if they refuse to give a DNA sample. Much of the DNA that’s been collected has been from Uighur Muslims that have been oppressed by the Chinese government and infamously forced into concentration camps in the Xinjiang province.

“You have a country that has historically been known to persecute certain populations,” Malin says. “If you are not just going to persecute a population based on the extent to which they publicly say that they are a particular group, there is certainly a potential to subjugate them on a biological basis.”

James Leibold, a nonresident senior fellow at the Australian Strategic Policy Institute and one of the authors of the report on China’s DNA database, tells Spectrum that he is worried that China building up and utilizing this database could normalize this type of behavior.

“Global norms around genomic data are currently in a state of flux. China is the only country in the world conducting mass harvesting of DNA data outside a major criminal investigation,” Leibold says. “It’s the only forensic DNA database in the world to contain troves of samples from innocent civilians.”

Lebold says ethnic minorities like the Uighurs aren’t the only ones threatened by this mass DNA collection. He says the database could be used against dissidents and any other people who the government sees as a threat.

“With a full genomic map of its citizenry, Chinese authorities could track down those engaged in politically subversive acts (protestors, petitioners, etc.) or even those engaged in ‘abnormal’ or unacceptable behavior (religious groups, drug users, gamblers, prostitutes, etc.),” Leibold says. “We know the Chinese police have planted evidence in the past, and now it is conceivable that they could use planted DNA to convict ‘enemies of the state.’”

As Leibold points out, world powers like China and the U.S. have the ability to change norms in terms of what kind of behavior from a major government is considered acceptable. Thusly, there are many risks to allowing these countries to normalize massive DNA databases. As often happens, what at first seems like a simple law enforcement tool can quickly become a dangerous weapon against marginalized people.

Entering a Building May Soon Involve a Thermal Scan and Facial Recognition

Post Syndicated from Emily Waltz original https://spectrum.ieee.org/the-human-os/biomedical/devices/entering-a-building-may-soon-involve-a-thermal-scan-and-facial-recognition

IEEE COVID-19 coverage logo, link to landing page

The temperature of your body is no longer considered private information. That’s the stance that businesses around the world are taking as they install thermal imaging cameras, often equipped with facial recognition technology, in their buildings in an attempt to cope with the COVID-19 pandemic.

Airports, office buildings, fast food restaurants, government offices, hospitals, shopping centers, universitiesall sorts of places are rapidly adopting the technology. It’s a movement one might call the automation of temperature checks. 

The goal is to spot—and turn away—anyone walking into an establishment with a fever. This theoretically reduces the spread of the virus and brings some peace of mind to people in the building. Or, at the very least, it provides some legal protection for the establishments, which can point to the technologies to show that they’ve taken measures to protect their occupants from the virus. 

Smart Home Devices Can Reveal Behaviors Associated With Dementia

Post Syndicated from Michelle Hampson original https://spectrum.ieee.org/tech-talk/biomedical/devices/smart-home-devices-can-reveal-the-health-status-of-individuals

Journal Watch report logo, link to report landing page

As people age, cognitive decline can happen in subtle ways that are not always immediately obvious to family members or friends. One solution for better detecting these subtle changes, however, could already be in the homes of many people, in the form of a smart home device.

In a recent study, researchers demonstrate that it’s possible to use data from smart home devices to detect behavioral differences between people who are experiencing cognitive decline and healthy individuals. The results, which could have broader implications for the monitoring of many different health conditions, were published 3 June in IEEE Journal of Biomedical and Health Informatics.

Gina Sprint, an Assistant Professor of Computer Science at Gonzaga University, is one of the researchers involved in the study. Sprint and her collaborators at Washington State University developed a novel algorithm for analyzing data from smart home devices; it’s called Behavior Change Detection for Groups (BCD-G). In particular, the algorithm analyzes behavioral patterns of residents across time.

In the study, 14 volunteers were monitored continuously in their homes for one month. Seven of these volunteers were living with dementia, while the other seven comprised a healthy control group of similar age and educational background. BCD-G was then used to assess the volunteers as they engaged in 16 types of activities, such as bathing, cooking, sleeping, working, and taking medications.

Using BCD-G to compare the two groups revealed some intriguing differences in behavior.

“First, the in-home walk speed of the cognitively impaired group was about half as fast as the age-matched healthy control group,” says Sprint. “Also, the cognitively impaired group had a greater variance in the duration of the activities they performed and what time they started the activities. They slept more during the day and at night, and lastly, they exhibited large behavioral differences related to how often and when they would leave their home, take their medications, and get dressed.”

While BCD-G proved useful for uncovering the behavioral patterns of people with dementia in this study, Sprint notes that the algorithm can be applied to a number of other health conditions. For example, BCD-G could be used to monitor patients recovering from a stroke or traumatic brain injury.

“Because BCD-G looks at changes across time points, it has potential to help with almost any condition where a clinician would want to know if someone is improving or declining,” explains Sprint.

Moving forward, her team plans to consult with clinicians to gather their feedback on BCD-G and further expand upon the tool. “Involving clinicians with frontline experience when creating algorithms like BCD-G is key to making machine learning applicable in the real-world,” she says. “Successful applications can assist clinicians in treatment planning and ultimately improve patients’ health.”

Ultraviolet revolution: Could “far-UV” light provide widespread, safe disinfection of airborne viruses?

Post Syndicated from Mark Anderson original https://spectrum.ieee.org/tech-talk/biomedical/devices/ultraviolet-revolution-could-faruv-light-provide-widespread-safe-disinfection-of-airborne-viruses

A short-wavelength ultraviolet light technology, beyond the decades-old mercury lamp, may be the most promising breed of UV yet studied for killing airborne coronavirus and other viruses and bacteria. Two studies—one now under peer review, and one reporting preliminary results from an ongoing experiment—bolster the case that this UV is safe for human eyes and skin.

If the initial promise of so-called “far-UV” pans out, prepare to hear the words “krypton-chlorine excimer lamp” more widely later this year and into 2021. That’s because KrCl lamps produce 222-nanometer UV efficiently enough that they might soon be broadly deployed for disinfection of hospitals, doctors offices, grocery stores, office buildings, shopping centers, airports, trains, airplanes, public transit, elevators or potentially anywhere that people gather in indoor spaces.

Or not. All safety and efficacy findings for far-UV are, for all their promise, still preliminary. And far-UV ultimately stands or falls on its own terms, apart from the well-established UV-C technologies—whose effectiveness against viruses and bacteria are well known, although direct exposure to longer-wavelength UV-C is also known to be harmful to human skin and eyes.

That difference only increases the possible leap forward that far-UV light fixtures could represent with respect to taming the coronavirus pandemic, says David Brenner, director of Columbia University’s Center for Radiological Research.

Brenner and collaborators have been studying far-UV’s sterilizing effects against microbes and viruses for more than a decade, he said in an interview this week.

“All the research we’ve been doing over the years was obviously not about COVID-19 or SARS-CoV-2,” he said. “We were focused on influenza, which in some sense is the same story: airborne transmission. So we had anticipated that by the next flu season, these things would start to be installed.”

According to a new study produced by Brenner’s group that is currently undergoing peer review, a lamp emitting far-UV light, bathing a room in 222-nm ultraviolet light at levels beneath the current industry threshold limit, would inactivate 99.9 percent of coronaviruses in the air in under 25 minutes. (The group’s work examined far-UV’s effect on other airborne coronaviruses, which they say will very likely have the same response as the SARS-CoV-2 novel coronavirus. Nevertheless, Brenner said, they’re now extending their work to include the effect of far-UV on the novel coronavirus, too.)

Far-UV light has a shorter wavelength than traditional UV-C, which means it carries more energy per photon. That effectively also translates to a shorter distance traveled through human and animal tissue — according to Brenner’s colleague Manuela Buonanno, associate research scientist at the Center for Radiological Research and specialist in far-UV’s effects on biological systems.

Buonanno said that the proteins in tissue cut the intensity of a 222-nm far-UV beam in half after traveling just 0.3 micrometers. Compare that to traditional UV-C light (with a 254-nm wavelength), whose tissue penetration depth is ten times longer, at 3 µm.

While far-UV won’t make it through even a fraction of the 5-to-10-micrometer-thick layer of dead skin on a person’s body, at least some UV-C light could make it through to live skin cells, where that UV-C might either kill them or render them cancerous.

The same goes for the eyes; direct exposure to regular UV-C can cause eye damage. However, Buonanno said, “We have an ongoing study in which mice are exposed to [far-UV] light five days a week, eight hours a day.” The 96 (hairless) mice in the study are given regular exams to discover if their skin has reacted to the radiation or if their eyes have been adversely affected.

Brenner shared a recent preliminary report after 43 weeks of far-UV exposure for the mice. “We see no difference between any of the [animals in the] exposure and the control [groups],” the interim report says. The research team, he said, will continue their mouse study for at least another few months—until they’ve collected data based on 60 weeks of daily far-UV exposure to the mice.

Thus far, the mouse finding is consistent with most human safety studies of far-UV, Brenner said, such as a letter in a recent issue of the journal Photodermatology, Photoimmunology & Photomedicine. In this study, Scottish scientists controverted a previous finding from 2015 which claimed that far-UV light can cause harm to human skin.

The new study performed computer simulations which found that the harm the 2015 paper discovered was most likely caused by longer-wavelength (UV-C) light that was secondarily generated by the far-UV lamp, casting the old finding into doubt.

“What needs to be done with 222-nm light is to have a filter,” Brenner said. “The companies that I’m aware of all do that. Which basically blocks out any of the 240- and 250-nm-wavelength light.”

Buonanno said that threshold levels of longer-wavelength UV light have yet to be established. If a far-UV lamp can filter out 99.9 percent of longer and more damaging UV-C rays, will that be enough? Or could the 0.1 percent of the other UV light that gets through still cause harm?

“We do not know yet,” Buonanno said. “We are planning a study to measure safety after exposure to other wavelengths—say from 225 to 255 nm—to address this question in a more systematic way.”

Brenner said that while KrCl eximer lamps are currently the only game in town for generating far-UV light, he remains hopeful that far-UV LEDs might soon be developed. LEDs have become available for wavelengths as short as 300 nm and lately even 250 nm light. But, he said, UV LEDs that can efficiently generate 230- or even 220-nm light have not yet been invented.

The main reason, according to Brenner: “Up till now there hasn’t been a huge demand for 230-nm LEDs. There hasn’t been that much work on it. But I’m very much hoping that folks—maybe your readers—will take this on board.”

First Human Trial for COVID-19 Antibody Drug Begins

Post Syndicated from Megan Scudellari original https://spectrum.ieee.org/the-human-os/biomedical/devices/first-human-trial-for-covid19-antibody-drug-begins

Just three months after the start of the pandemic, drugmaker Eli Lilly has announced the first human test of an antibody treatment designed to fight the novel coronavirus.

The potential drug, developed by Lilly, Vancouver-based biotech company AbCellera, and the Vaccine Research Center at the U.S. National Institute of Allergy and Infectious Disease, was identified by screening over 5 million immune cells in the blood of one of the first people in North America to recover after having contracted COVID-19.

The drug candidate is being tested in a randomized, placebo-controlled safety trial with 32 patients hospitalized for COVID-19 at major medical centers in the U.S.  

Biosensors May Hold the Key to Mass Coronavirus Testing

Post Syndicated from Tekla S. Perry original https://spectrum.ieee.org/view-from-the-valley/biomedical/diagnostics/biosensors-key-mass-coronavirus-testing

IEEE COVID-19 coverage logo, link to landing page

You prick your finger or swab your nose and dab a tiny sample of the fluid onto a semiconductor chip. Slot that chip into an inexpensive, handheld reader and, within a minute or so, its small screen displays a list of results—you are negative for the new coronavirus, positive for antibodies. The likelihood of false results is extremely low. You are cleared to enter your company’s building or fly on a plane.

Using Weak Electric Fields to Make Virus-Killing Face Masks

Post Syndicated from Megan Scudellari original https://spectrum.ieee.org/the-human-os/biomedical/devices/using-weak-electric-fields-to-make-viruskilling-face-masks

Face masks help limit the spread of COVID-19 and are currently recommended by governments worldwide. 

Now, engineers at Indiana University demonstrate for the first time that a fabric generating a weak electric field can inactivate coronaviruses. The electroceutical fabric, described in a ChemRxiv preprint that has not yet been peer-reviewed, could be used to make face masks and other personal protective equipment (PPE), the authors say.

The fabric was tested against a pig respiratory coronavirus and a human coronavirus that causes the common cold. It has not yet been tested against SARS-CoV-2, the virus that causes COVID-19.

“The work is of interest for the scientific community; it will open new [areas to] search to provide smart solutions to overcome the COVID-19 pandemic,” says Mahmoud Al Ahmad, an electrical engineer at the University of United Arab Emirates, who was not involved in the research. While the concept will require more development before being applied to PPE, he says, “it is an excellent start in this direction.”

Beyond masks, the findings raise the possibility of using weak electrical fields to curb the spread of viruses in many ways, such as purifying air in common spaces or disinfecting operating room surfaces, says study author Chandan Sen, director of the Indiana Center for Regenerative Medicine and Engineering at Indiana University School of Medicine. “Coronavirus is not the first or last virus that is going to disrupt our lives,” he says. “We’re thinking about bigger and broader approaches to utilize weak electric fields against virus infectivity.”

Sen’s lab has been co-developing the electroceutical fabric technology, under the proprietary name V.Dox Technology, with Arizona-based company Vomaris for the past six years. Sen retains a financial stake in the company.

The technology consists of a matrix pattern of silver and zinc dots printed onto a material, such as polyester or cotton. The dots form a battery generating a weak electric field: When exposed to a conductive medium, like gel or sweat, electrons transfer from the zinc to the silver in a REDOX reaction, generating a potential difference of 0.5 volts. The technology is FDA-cleared and commercialized for wound care, where it has been shown to treat bacterial biofilm infections.

To be used in masks, moisture will need to be applied in some fashion. According to Sen, approaches could include embedding a hydrogel so it activates the dots or inserting liquid-filled piping on periphery of the mask. Moisture from exhaled air will continue to keep the fabric moist.

When the COVID-19 pandemic began, Sen and his team began to wonder if the technology might affect viruses as well as bacteria. Past work in the literature suggested coronaviruses rely on electrostatic forces for attachment and genome assembly, and Sen hoped an electric field would disrupt those forces and therefore kill the virus.

In collaboration with IU geneticist Kenneth Cornetta, who performed some of the initial virus experiments in his laboratory, the team exposed a pig respiratory coronavirus to the electroceutical fabric for 1 or 5 minutes. After one minute, they found evidence that the virus particles had begun to destabilize and aggregate, becoming larger than before exposure. That suggests the weak electric field was causing “damaging structural alterations to the virions,” the authors write.

Next, the team tested the virus particles exposed to the fabric against cells in a dish. “The infectivity was gone,” says Sen.

The results indicate “promise for this strategy,” says Murugappan Muthukumar, a professor of polymer science and engineering at the University of Massachusetts, Amherst, who was not involved in the study. “The authors’ hypothesis that the electrostatic forces within the virus particles and between the virus particles and the fabric are important is correct and is a very good idea.”

Still, Muthukumar notes, it is difficult to extrapolate how the electric field affects the viral genome, and more work needs to be done to investigate the effects observed in the paper.

Since publishing the preprint, the team also tested the fabric against human coronavirus 229E, a cause of upper respiratory tract infections, and gotten similar results, adds Sen.

The team has submitted the data to the FDA in the hopes of receiving Emergency Use Authorization to use the fabric in face masks. The technology could even be incorporated into the manufacturing of N95 masks or as an insert, says Sen.

currently sells their wound-dressing kits for between $38 and $69 online. Sen says the technology is inexpensive to manufacture and could be used in PPE at a modest cost.

Independent of Vomaris, Sen’s laboratory is developing a tunable electroceutical called patterned electroceutical dressing, in which the field strength can be altered depending on need. The dressing has shown to be safe for patients with wounds, says Sen, and is currently in clinical testing. 

The Quest for a Bionic Breast

Post Syndicated from Edd Gent original https://spectrum.ieee.org/the-human-os/biomedical/bionics/quest-bionic-breast

As many as 100,000 breast cancer patients have one or both breasts removed in mastectomies every year in the United States. This surgery frequently leads to loss of breast sensation, which is thought to contribute to the high rates of sexual dysfunction among breast cancer survivors. But a bionic breast now under development could restore these important tactile sensations.

The project is the brainchild of Stacy Lindau, a gynecologist at the University of Chicago who specialises in the sexual function of women with cancer. She says she’s dealt with countless women over the past decade whose sex lives have been dramatically impacted by this loss of sensation.

A Better, Faster, Cheaper Test for COVID-19

Post Syndicated from Willie D. Jones original https://spectrum.ieee.org/news-from-around-ieee/biomedical/diagnostics/a-better-faster-cheaper-test-for-covid19

Since the outbreak of the COVID-19 pandemic, national and local governments have come to realize that although sheltering in place helps to “flatten the curve” of new cases, economic and other considerations mean we can’t stay home indefinitely. But if we are to regain some sense of normalcy, early detection of the novel coronavirus, SARS-CoV-2, will be essential to containing it—at least during the period between the easing of restrictions on gatherings and commercial activity and the development of a vaccine.

At this moment, the best diagnostic tests for SARS-CoV-2, based on real-time RT-PCR (rRT-PCR) assays, are sensitive, but they require expensive equipment and trained technicians. What’s more, there’s a relatively long turnaround time for getting an answer (at least 24 hours prep time after receipt of a sample, plus 6 hours to complete the actual test procedure).

Now a multidisciplinary group of researchers at the University of Minnesota, with expertise in magnetics, microbiology and electrical engineering, says it has developed a test that is relatively cheap, easy to use, and quick to deliver results. The group, led by Prof. Jian-Ping Wang, chair of the Department of Electrical & Computer Engineering, and Associate Professor Maxim C. Cheeran, from the Department of Veterinary Population Medicine, says it looks to have a commercially viable version of its prototype system available soon enough to help speed up the pace of pre-vaccine testing. IEEE Spectrum interviewed Wang, an IEEE Fellow, about his group’s portable testing system.

IEEE Spectrum: How would you describe your virus detection system in a sentence or two?

Wang: It’s a portable platform based on magnetic particle spectroscopy (MPS) that allows for rapid, sensitive detection of SARS-CoV-2 at the point of care. Eventually, it will be used for routine diagnosis in households.

Spectrum: Give us a quick primer on the science underlying the MPS testing technique.

Wang: MPS is a versatile platform for different bioassays that uses artificially designed magnetic nanoparticles that act as magnetic tracers when their surfaces are functionalized with test reagents such as antibodies, aptamers or peptides. Imagine them as tiny probes capturing target analytes from biofluid samples. For COVID-19 antigen detection, we functionalized our nanoparticles with polyclonal antibodies to two of the four structural proteins that are components of the coronavirus (nucleocapsid and spike proteins). The antibodies allow the nanoparticles to bind to epitopes, or receptor sites, on these particular proteins. The more binding that occurs, the greater the presence of the virus.

Spectrum: So, how does the MPS system answer the question “Does this person have coronavirus?”

Wang: The MPS platform’s job is to monitor and assess the real-time specific binding of the nanoparticles with these proteins. The quantity or concentration of the target analyte—in this case, the aforementioned proteins indicating the presence of coronavirus­—directly affects the responses of the nanoparticles to the system’s magnetic field. The magnitude of the difference in their behavior before and after the addition of the biofluid sample tells the tale. Because the biological tissues and fluids are nonmagnetic, there is negligible magnetic background noise from the biological samples. As a result, this volumetric-based immunoassay tool not only uncomplicated, but also accurate and effective with minimal sample preparation.

Spectrum: Take us through the steps of a testing cycle using this device.

Wang: No problem. But let’s back up a bit and note that our group has developed the MagiCoil Android app that processes information from the device’s microcontroller in real-time. And crucially, it also guides users on how to conduct a test from start to finish. The user interacts with the MPS handheld device using their smart phone, which communicates with the device via Bluetooth. Testing results are securely transmitted to cloud storage and could be readily shared between a patient and clinicians.

To run a test, the user begins by inserting a testing vial into the device and waiting as the system collects a baseline signal for 10 seconds. Then the user adds a biofluid sample into vial and waits again as the antigen and antibody bind for 10 minutes. The system will automatically read the ending signal for 10 seconds, then display the results.

Spectrum: How did you know this would work?

Wang: This epitope binding of the nanoparticles and target analytes form viral protein clusters, similar to what occurred when we applied this technique to the detection of the H1N1 nucleoprotein reported in our previous work.

Spectrum: What makes your team sure there won’t be a shortage of testing vials containing the functionalized nanoparticles (a situation comparable to the current shortage of reagents for COVID testing)?

Wang: For each test we use only a microgram of nanoparticles and a nanogram of reagents (antibodies, RNA fragments). We are already collaborating with nanoparticle companies, who supply us with high quality iron nitride nanoparticles for this application. Our group has also been seeking collaborations with biotechnology companies to secure sources of chemical reagents.

Spectrum: What challenges has your team faced and how did you overcome them?

Wang: Over the past decade, there was very little attention paid to filling the need in the market for a low noise, easy-to-use, portable bioassay kit for the detection of viruses—not until we began working on detecting Influenza A Virus subtype H1N1 in past year. We have steadily grown the team, accumulated experience in this research area, and optimized the MPS platform. In addition to full-time researchers, the MPS and MagiCoil team has benefited from the efforts of many talented graduate and undergraduate students from different areas. This work has resulted in the current version of the MPS device and the accompanying app.

I feel proud of my students for forging ahead on a project because they see it as an important bit of research and never giving up. Since the outbreak of COVID-19 pandemic, we saw how critical it was for us to speed up work on our project so we could contribute to the fight against the virus by making our MPS device available as soon as possible.

Spectrum: Your team’s aim has been to get this in doctors’ offices so anyone could walk in, get tested, and walk out knowing whether they’ve contracted the coronavirus. But in places like New York City, people have been urged to stay away from hospitals and clinics unless they are experiencing acute symptoms. How important is it to go beyond the clinical setting to household use so even asymptomatic people know their status?

Wang: From the outset, we wanted to make it inexpensive and easy to use so untrained people could conduct tests at home or out in the field in remote areas that are the antithesis of clinical situations. It will let large portions of the population afford to get regular updates on whether they have contracted the virus. And because it is capable of transmitting test results collected from distant locations to centrally located data analysis units, governments can have real-time epidemiological data at their fingertips. This would also significantly reduce the costs associated with tracking the spread of a disease and help health authorities more quickly evaluate and refine their disease control protocols.

Spectrum: How long before the system is commercially available?

Wang: We have just transformed the benchtop version of  the system into a handheld version [which, at 212- by-84-by-72-millimeters is about the size of an old-school brick cellphone]. We have carried out preliminary tests such as characterizing the minimum amount of magnetic nanoparticles detectable and the system’s overall antigen sensitivity. And we’re still homing in on the optimum concentration of antibody to be functionalized on the nanoparticles so they’ll be most effective.  

We anticipate that clinical trials will take an additional 3 to 5 months. At that point, we will work with local companies in Minnesota to mass produce MPS devices. The University of Minnesota Office for Technology Commercialization has been helping us lay the groundwork for founding a startup company in order to accelerate the process of commercializing this handheld device the instant we receive the necessary government approvals.

Spectrum: You mentioned antigen sensitivity. How much virus must there be in a sample for the MPS system to detect it?

Wang: We are currently evaluating what is the lowest concentration of virus our test can detect. But based on our experience with the H1N1 flu virus, it will be less than 150 virus particles.

Spectrum: I know it’s hard to say definitively, but give us a ballpark figure for the eventual price of the MPS testing system.

Wang: Based on our first prototype MSP device, we foresee the unit price starting at roughly US $100; the MagiCoil app, which  is already completed and available for download from the Google Play store, is free. Testing vials containing the functionalized magnetic nanoparticles targeting the coronavirus will cost between $2 and $5 each.

Eventually, we plan to make a second-generation MPS device that’s as small as today’s smart phones. That step will require expertise in the areas of microfluid channel design, printed microcoils, high moment magnetic nanoparticles, automatic biofluid sample loading and filtering, optimized circuit layouts, etc. We are open to collaborations with other groups (including, but certainly not limited to IEEE members) to make a better, lighter weight, sensitive, fully automatic MPS device.

Six Feet Is Not Always Enough: How Saliva Droplets Spread Through the Air

Post Syndicated from Megan Scudellari original https://spectrum.ieee.org/the-human-os/biomedical/imaging/six-feet-is-not-always-enough-how-saliva-droplets-spread-through-the-air

IEEE COVID-19 coverage logo, link to landing page

In Maryland, restaurant patrons stand inside bumper-style tables to keep six feet apart. In New York, sunbathers maintain distance by lounging in white chalk circles painted on a grassy field.

As the United States slowly begins opening public spaces, organizations are getting creative about how to encourage social distancing. But two new studies on the airborne spread of saliva droplets, which can harbor virus particles from respiratory diseases like COVID-19, suggest those six feet alone are not always enough.

COVID-19 Digital Contact Tracing: Apple and Google Work Together as MIT Tests Validity

Post Syndicated from Megan Scudellari original https://spectrum.ieee.org/the-human-os/biomedical/devices/covid19-digital-contact-tracing-apple-google-mit-tests-validity

IEEE COVID-19 coverage logo, link to landing page

In a rare act of cooperation, Google and Apple this month released specifications for software developers to build digital contact tracing apps for Apple and Google mobile operating systems, which jointly encompass the majority of smartphones around the world.

Digital contact tracing, which can automatically notify an individual if they’ve crossed paths with someone who tested positive for COVID-19, has been proposed as a way to augment manual contact tracing, which requires the painstaking work of thousands of trained workers per state to identify, track, and assist individuals exposed to the virus.

As digital contact tracing technologies advance, two questions rise to the surface: Will state health officials and individuals opt to use the technology? And, if so, how well will it work?

Back to Work: Wearables Track Social Distancing and Sick Employees in the Workplace

Post Syndicated from Emily Waltz original https://spectrum.ieee.org/the-human-os/biomedical/devices/wearables-track-social-distancing-sick-employees-workplace

As shuttered businesses make plans to resume on-site operations, many plan to outfit their employees with new, anti-pandemic gear: wearable tech that could prevent the spread of COVID-19 inside the workplace.

Ford employees are experimenting with smartwatches that vibrate when workers come within six feet of each other. The accounting firm PricewaterhouseCoopers (PwC) has developed an app that turns employees’ phones into contact tracing devices, notifying them when they’ve been exposed to a coworker with the novel coronavirus. 

Other employers are considering equipping their workforces with wearables—separate from their phones—that are capable of granular on-site and indoor location tracking and contact tracing. CarePredict recently rolled out such devices for senior living facilities

In fact, in a survey of 871 finance executives at companies in 24 countries, 21 percent said they were eyeing location tracking and contact tracing for their workforces, according to PwC, which conducted the survey and posted it online this week.  

Q&A: GE Healthcare’s Chief Medical Officer for Europe on Which Tech Is Helping Most in COVID-19 Response

Post Syndicated from Glenn Zorpette original https://spectrum.ieee.org/the-human-os/biomedical/imaging/qa-ge-healthcare-chief-medical-officer-europe-tech-covid19-response

When the last global pandemic broke out, in 1918, it ravaged a population with essentially no technological countermeasures. There were no diagnostic tests, no mechanical ventilators, and no antiviral or widely-available anti-inflammatory medications other than aspirin. The first inactivated-virus vaccines would not become available until 1936. An estimated 50 million people died.

For the current outbreak, a best-case scenario could limit fatalities to 1.3 million, according to projections by Imperial College London. That in a world with 7.8 billion people—more than four times as many as in 1918. Many factors will lessen mortality this time, chief among them better, more consistent implementation of social-distancing measures. But technology will also be a primary bulwark. Enormous sums are being spent to ramp up testing, diagnosis, modeling, treatment, vaccination, and other tech-based responses.