We’ve had some reports of people finding cases that pretend to be official Raspberry Pi products online — these are fakes, they’re violating our trademark, they’re not made very well, and they’re costing you and us money that would otherwise go to fund the Raspberry Pi Foundation’s charitable work. (Reminder, for those who are new to this stuff: we’re a not-for-profit, which means that every penny we makes goes to support our work in education, and that none of us gets to own a yacht.)
Making sure your accessories are legit
If you want to be certain that the Raspberry Pi accessories you buy are the real thing, make sure you’re purchasing from one of our Authorised Resellers: if you buy via our website, you’ll automatically be directed to the Authorised Resellers in your region. Lots of other vendors also sell the official case, so if you’re wondering whether yours is the real thing, we’ve found there are some easy ways to tell the difference.
A wellwisher sent us one of the fake cases (elegantly photographed by Fiacre above), which we passed around the office with a great deal of wincing, imagining what you guys might say if you got your hands on one and thought we’d made it. They’re really not very nice; the moulding’s awful, the fit’s bad, the colour’s off, and we’d be embarrassed if we had made something like this ourselves.
Asking the experts
We thought we’d ask the good people at T-Zero, who did all the work on the tooling and injection moulding for the real case (which is a considerably harder job than we’d imagined at first — you can read about the very bumpy road we had before finding T-Zero, who are amazing partners, in this post from days of yore), why the fake cases look so hideous. Simon Oliver, Grand Poobah of Plastics, wrote back:
Basically, what you are witnessing is very cheaply and quickly made tooling. The flash is just poor toolmaking. The rounded edges are due to the toolmaking method of milling everything, which is quick and cheap, but you can’t get definition of sharp corners because you have to have a radius in places. I have tried to explain it below, and you have to think in reverse for the tool.
Can you imagine how many electrodes are needed for the logo? The leaves around the top have to be laser-cut into an electrode to get the definition. See screen grabs of the tool and moulding — look how many sharp corners there are!
To properly make a tool for something this complicated, you need more electrodes than someone quickly copying a case like this would find economical. The official Raspberry Pi case needed 140 electrodes to produce the tool.
A few of the electrodes that went to make the injection moulding tool for the official case
Reverse-engineering by digitising existing components in a CAD will also loose definition, particularly in sharp corners, as the moulding process will form a small radius even if the tool is a sharp corner.
Plastic shrinks away from a 90 degree corner, leaving a smallish radius in any case. So your data from digitising will have a radius, and then [the producers] compound it by milling the lot.
Finally, the colour is off! It took ages to get your Raspberry Pi red correct. A lot of suppliers can’t repeat it; the current supplier had five attempts!
Thanks, Simon; and to everybody reading this, we hope it arms you with the confidence to make sure you’re buying a genuine product!
FYI
Before panic ensues, please note: we love third-party cases designed for Raspberry Pi. So much so that we sell a few of them in our store here in Cambridge.
The internet is full of innovative cases you can purchase, as well as wonderful 3D-printable alternatives you can make yourself, and as long as they aren’t breaking any trademark rules — using our logo, copying the work of others, pretending to be official when they’re not — that’s great!
If you’ve designed a case for any of the Raspberry Pi models, share it with us in the comments below, as we’d love to see your work. And if you see a case, or any other Raspberry Pi accessory, for sale that you think is breaking trademark rules or attempting to imitate our official products, please let us know.
The friendly people at Argon40, one of our Approved Resellers in Hong Kong, have an already-successful Kickstarter on the go for their Argon ONE Raspberry Pi case. I’ve got one of them on my desk at the moment. It’s a very pleasing object. “That’s quite nice,” enthuses Gordon, who isn’t very good at enthusing.
The Argon ONE: look at the shiny!
The Argon ONE is a nifty little aluminium-alloy case that offers well thought-through cable, power, and temperature management. We chatted to Joseph from Argon40 about the team’s development process, and he explained:
When we started the project, we initially designed the product to suit our needs based on our experiences of playing around with the Raspberry Pi. We wanted a case that is nice to look and at the same time has all the basic features that we loved about the Raspberry Pi: small footprint, access to GPIO, low power consumption. Then we looked into the nice-to-have stuff like good heat dissipation for better performance, a proper shut-down, and a form factor that is elegant but not extravagant.
Clicky magnets
What I find particularly satisfying about the Argon ONE is its GPIO access. It has a neat recess with clear pin labels and access to an inbuilt, colour-coded header that connects to your Pi’s GPIO pins. When you’re not using the pins, you probably want to keep them away from dust, spilled coffee, and the gross candy-corn M&Ms that Alex sometimes throws at you for literally no reason. The Argon ONE helps you out here: a cover fits perfectly over the GPIO recess, held in place by magnets that are just exactly strong enough for the job. Being a fidgeter, I find that this lends itself to compulsive clicking.
*click* *click* *click*
Injection moulding
We like the build quality here, especially at this price point (it’s HK$157, US$20, or GB£15, and early-bird pledges are cheaper). The Argon40 team was keen to use alumnium for the upper part of the case, for robustness and durability along with good looks; that proved a challenge, given that they wanted to keep the case affordable. “Fortunately, we found a factory that allowed us to do aluminum-alloy injection instead of going for the CNC option,” says Joseph.
“Have you tried turning if off and on again?”
The Raspberry Pi doesn’t have a power button, and we hear a lot from people who’d like it to. Happily, our community has come up with lots of ways to add one: this case, for example. Once you install Argon40’s shutdown script in Raspbian, pressing the case’s power button will run the script to shut the Pi down cleanly, then cut the power.
Find out more on Kickstarter — this campaign is well worth a look if you’re after a decent case. Back to Joseph for the last word, with which we heartily agree:
At the end of the day, our goal is for people to have their Raspberry Pis on top of their work desks, study tables, and workstations and in their living rooms, instead of keeping their barebones Pi tucked inside a drawer. Because as the saying goes, “Out of sight, out of mind,” which means that if they don’t see their Raspberry Pi, they won’t be able to tinker around with it or play with it to create projects.
3D printing has become far more accessible for hobbyists, with printer prices now in the hundreds instead of thousands of pounds. Last year, we covered some of the best 3D-printable cases for the Pi, and since then, Raspberry Pi enthusiasts have shared even more cool designs on sites such as MyMiniFactory and Thingiverse!
Here are ten of our recent favourites:
World Cup Sputnik
“With the World Cup now underway, I wanted a Russia-themed football sculpture to hang over the desk,” explains creator Ajax Jones. “What better than a football-styled Sputnik!”
The World Cup Sputnik comes complete with a Raspberry Pi that transmits the original Sputnik ‘beeps’ on an FM frequency, allowing co-workers to tune in for some 1960s nostalgia.
Radios
We see an abundance of musical Raspberry Pi projects online, and love looking out for the ones housed in interesting, unique cases like these:
The MiniZ is a streaming radio based on the Zenith Cube, created by Thingiverse user thisoldgeek.
This is a case for a small, retro radio powered by Logitech Media Server. It uses a Raspberry Pi Zero W and displays a radio dial (tunes via a knob), a clock, and ‘Now Playing’ album art.
For something a little more simple to use, Lukas2040‘s NFC radio for children comes with illustrated, NFC-tagged cards to allow his two-year-old daughter to pick her own music to play.
Gaming
Whether it’s console replicas or tabletop arcade cabinets, the internet is awash with gaming-themed Raspberry Pi projects. Here are a few of our favourites!
Iron man AIY case Neopixel Rings Adafruit 16 and 12 LEDS. 3d files and instructions for assembly here: https://www.thingiverse.com/thing:2950452 This is just a test to make sure the LEDs are working and the A.I. is working correctly. This took me about 3 weeks to design, print, and assemble.
This model is atlredninja‘s second version of an Ironman-themed AIY project: the first fits within a replica helmet. We’re looking forward to a possible third edition with legs. And a fourth that flies.
We can dream, can’t we?
Speaking of Marvel
How often have you looked at Thor’s hammer and thought to yourself “If only it had a Raspberry Pi inside…”
This case from furnibird is one of several pop culture–themed Raspberry Pi cases that the designer has created. Be sure to check out the others, including a Deathstar and Pac-Man.
3D-printable bird box
chickey‘s 3D-printable Raspberry Pi Bird Box squeezes a Raspberry Pi Zero W and a camera into the lid, turning this simple nesting box into a live-streaming nature cam.
The Raspberry Pi uploads images directly to a webpage, allowing you to check in on the feathered occupants from any computer or mobile device. Nifty.
Print a Raspberry Pi!
Using a 3D-printed Raspberry Pi in place of the real deal while you’re prototyping in the workshop may save you from accidentally damaging your tiny computer.
AlwaysComputing designed this Raspberry Pi Voxel Model using MagicaVoxel, stating “I like to tinker and play with the program MagicaVoxel. I find it therapeutic!”
What else?
What Raspberry Pi–themed 3D prints have you seen lately? Share your favourites with us in the comments, or on Twitter and Facebook.
Join us this month to learn about AWS services and solutions. New this month, we have a fireside chat with the GM of Amazon WorkSpaces and our 2nd episode of the “How to re:Invent” series. We’ll also cover best practices, deep dives, use cases and more! Join us and register today!
AWS re:Invent June 13, 2018 | 05:00 PM – 05:30 PM PT – Episode 2: AWS re:Invent Breakout Content Secret Sauce – Hear from one of our own AWS content experts as we dive deep into the re:Invent content strategy and how we maintain a high bar. Compute
Containers June 25, 2018 | 09:00 AM – 09:45 AM PT – Running Kubernetes on AWS – Learn about the basics of running Kubernetes on AWS including how setup masters, networking, security, and add auto-scaling to your cluster.
June 19, 2018 | 11:00 AM – 11:45 AM PT – Launch AWS Faster using Automated Landing Zones – Learn how the AWS Landing Zone can automate the set up of best practice baselines when setting up new
June 21, 2018 | 01:00 PM – 01:45 PM PT – Enabling New Retail Customer Experiences with Big Data – Learn how AWS can help retailers realize actual value from their big data and deliver on differentiated retail customer experiences.
June 28, 2018 | 01:00 PM – 01:45 PM PT – Fireside Chat: End User Collaboration on AWS – Learn how End User Compute services can help you deliver access to desktops and applications anywhere, anytime, using any device. IoT
June 27, 2018 | 11:00 AM – 11:45 AM PT – AWS IoT in the Connected Home – Learn how to use AWS IoT to build innovative Connected Home products.
Mobile June 25, 2018 | 11:00 AM – 11:45 AM PT – Drive User Engagement with Amazon Pinpoint – Learn how Amazon Pinpoint simplifies and streamlines effective user engagement.
June 26, 2018 | 11:00 AM – 11:45 AM PT – Deep Dive: Hybrid Cloud Storage with AWS Storage Gateway – Learn how you can reduce your on-premises infrastructure by using the AWS Storage Gateway to connecting your applications to the scalable and reliable AWS storage services. June 27, 2018 | 01:00 PM – 01:45 PM PT – Changing the Game: Extending Compute Capabilities to the Edge – Discover how to change the game for IIoT and edge analytics applications with AWS Snowball Edge plus enhanced Compute instances. June 28, 2018 | 11:00 AM – 11:45 AM PT – Big Data and Analytics Workloads on Amazon EFS – Get best practices and deployment advice for running big data and analytics workloads on Amazon EFS.
Last year, we released Amazon Connect, a cloud-based contact center service that enables any business to deliver better customer service at low cost. This service is built based on the same technology that empowers Amazon customer service associates. Using this system, associates have millions of conversations with customers when they inquire about their shipping or order information. Because we made it available as an AWS service, you can now enable your contact center agents to make or receive calls in a matter of minutes. You can do this without having to provision any kind of hardware. 2
There are several advantages of building your contact center in the AWS Cloud, as described in our documentation. In addition, customers can extend Amazon Connect capabilities by using AWS products and the breadth of AWS services. In this blog post, we focus on how to get analytics out of the rich set of data published by Amazon Connect. We make use of an Amazon Connect data stream and create an end-to-end workflow to offer an analytical solution that can be customized based on need.
Solution overview
The following diagram illustrates the solution.
In this solution, Amazon Connect exports its contact trace records (CTRs) using Amazon Kinesis. CTRs are data streams in JSON format, and each has information about individual contacts. For example, this information might include the start and end time of a call, which agent handled the call, which queue the user chose, queue wait times, number of holds, and so on. You can enable this feature by reviewing our documentation.
In this architecture, we use Kinesis Firehose to capture Amazon Connect CTRs as raw data in an Amazon S3 bucket. We don’t use the recent feature added by Kinesis Firehose to save the data in S3 as Apache Parquet format. We use AWS Glue functionality to automatically detect the schema on the fly from an Amazon Connect data stream.
The primary reason for this approach is that it allows us to use attributes and enables an Amazon Connect administrator to dynamically add more fields as needed. Also by converting data to parquet in batch (every couple of hours) compression can be higher. However, if your requirement is to ingest the data in Parquet format on realtime, we recoment using Kinesis Firehose recently launched feature. You can review this blog post for further information.
By default, Firehose puts these records in time-series format. To make it easy for AWS Glue crawlers to capture information from new records, we use AWS Lambda to move all new records to a single S3 prefix called flatfiles. Our Lambda function is configured using S3 event notification. To comply with AWS Glue and Athena best practices, the Lambda function also converts all column names to lowercase. Finally, we also use the Lambda function to start AWS Glue crawlers. AWS Glue crawlers identify the data schema and update the AWS Glue Data Catalog, which is used by extract, transform, load (ETL) jobs in AWS Glue in the latter half of the workflow.
You can see our approach in the Lambda code following.
from __future__ import print_function
import json
import urllib
import boto3
import os
import re
s3 = boto3.resource('s3')
client = boto3.client('s3')
def convertColumntoLowwerCaps(obj):
for key in obj.keys():
new_key = re.sub(r'[\W]+', '', key.lower())
v = obj[key]
if isinstance(v, dict):
if len(v) > 0:
convertColumntoLowwerCaps(v)
if new_key != key:
obj[new_key] = obj[key]
del obj[key]
return obj
def lambda_handler(event, context):
bucket = event['Records'][0]['s3']['bucket']['name']
key = urllib.unquote_plus(event['Records'][0]['s3']['object']['key'].encode('utf8'))
try:
client.download_file(bucket, key, '/tmp/file.json')
with open('/tmp/out.json', 'w') as output, open('/tmp/file.json', 'rb') as file:
i = 0
for line in file:
for object in line.replace("}{","}\n{").split("\n"):
record = json.loads(object,object_hook=convertColumntoLowwerCaps)
if i != 0:
output.write("\n")
output.write(json.dumps(record))
i += 1
newkey = 'flatfiles/' + key.replace("/", "")
client.upload_file('/tmp/out.json', bucket,newkey)
s3.Object(bucket,key).delete()
return "success"
except Exception as e:
print(e)
print('Error coping object {} from bucket {}'.format(key, bucket))
raise e
We trigger AWS Glue crawlers based on events because this approach lets us capture any new data frame that we want to be dynamic in nature. CTR attributes are designed to offer multiple custom options based on a particular call flow. Attributes are essentially key-value pairs in nested JSON format. With the help of event-based AWS Glue crawlers, you can easily identify newer attributes automatically.
We recommend setting up an S3 lifecycle policy on the flatfiles folder that keeps records only for 24 hours. Doing this optimizes AWS Glue ETL jobs to process a subset of files rather than the entire set of records.
After we have data in the flatfiles folder, we use AWS Glue to catalog the data and transform it into Parquet format inside a folder called parquet/ctr/. The AWS Glue job performs the ETL that transforms the data from JSON to Parquet format. We use AWS Glue crawlers to capture any new data frame inside the JSON code that we want to be dynamic in nature. What this means is that when you add new attributes to an Amazon Connect instance, the solution automatically recognizes them and incorporates them in the schema of the results.
After AWS Glue stores the results in Parquet format, you can perform analytics using Amazon Redshift Spectrum, Amazon Athena, or any third-party data warehouse platform. To keep this solution simple, we have used Amazon Athena for analytics. Amazon Athena allows us to query data without having to set up and manage any servers or data warehouse platforms. Additionally, we only pay for the queries that are executed.
Try it out!
You can get started with our sample AWS CloudFormation template. This template creates the components starting from the Kinesis stream and finishes up with S3 buckets, the AWS Glue job, and crawlers. To deploy the template, open the AWS Management Console by clicking the following link.
In the console, specify the following parameters:
BucketName: The name for the bucket to store all the solution files. This name must be unique; if it’s not, template creation fails.
etlJobSchedule: The schedule in cron format indicating how often the AWS Glue job runs. The default value is every hour.
KinesisStreamName: The name of the Kinesis stream to receive data from Amazon Connect. This name must be different from any other Kinesis stream created in your AWS account.
s3interval: The interval in seconds for Kinesis Firehose to save data inside the flatfiles folder on S3. The value must between 60 and 900 seconds.
sampledata: When this parameter is set to true, sample CTR records are used. Doing this lets you try this solution without setting up an Amazon Connect instance. All examples in this walkthrough use this sample data.
Select the “I acknowledge that AWS CloudFormation might create IAM resources.” check box, and then choose Create. After the template finishes creating resources, you can see the stream name on the stack Outputs tab.
If you haven’t created your Amazon Connect instance, you can do so by following the Getting Started Guide. When you are done creating, choose your Amazon Connect instance in the console, which takes you to instance settings. Choose Data streaming to enable streaming for CTR records. Here, you can choose the Kinesis stream (defined in the KinesisStreamName parameter) that was created by the CloudFormation template.
Now it’s time to generate the data by making or receiving calls by using Amazon Connect. You can go to Amazon Connect Cloud Control Panel (CCP) to make or receive calls using a software phone or desktop phone. After a few minutes, we should see data inside the flatfiles folder. To make it easier to try this solution, we provide sample data that you can enable by setting the sampledata parameter to true in your CloudFormation template.
You can navigate to the AWS Glue console by choosing Jobs on the left navigation pane of the console. We can select our job here. In my case, the job created by CloudFormation is called glueJob-i3TULzVtP1W0; yours should be similar. You run the job by choosing Run job for Action.
After that, we wait for the AWS Glue job to run and to finish successfully. We can track the status of the job by checking the History tab.
When the job finishes running, we can check the Database section. There should be a new table created called ctr in Parquet format.
To query the data with Athena, we can select the ctr table, and for Action choose View data.
Doing this takes us to the Athena console. If you run a query, Athena shows a preview of the data.
When we can query the data using Athena, we can visualize it using Amazon QuickSight. Before connecting Amazon QuickSight to Athena, we must make sure to grant Amazon QuickSight access to Athena and the associated S3 buckets in the account. For more information on doing this, see Managing Amazon QuickSight Permissions to AWS Resources in the Amazon QuickSight User Guide. We can then create a new data set in Amazon QuickSight based on the Athena table that was created.
After setting up permissions, we can create a new analysis in Amazon QuickSight by choosing New analysis.
Then we add a new data set.
We choose Athena as the source and give the data source a name (in this case, I named it connectctr).
Choose the name of the database and the table referencing the Parquet results.
Then choose Visualize.
After that, we should see the following screen.
Now we can create some visualizations. First, search for the agent.username column, and drag it to the AutoGraph section.
We can see the agents and the number of calls for each, so we can easily see which agents have taken the largest amount of calls. If we want to see from what queues the calls came for each agent, we can add the queue.arn column to the visual.
After following all these steps, you can use Amazon QuickSight to add different columns from the call records and perform different types of visualizations. You can build dashboards that continuously monitor your connect instance. You can share those dashboards with others in your organization who might need to see this data.
Conclusion
In this post, you see how you can use services like AWS Lambda, AWS Glue, and Amazon Athena to process Amazon Connect call records. The post also demonstrates how to use AWS Lambda to preprocess files in Amazon S3 and transform them into a format that recognized by AWS Glue crawlers. Finally, the post shows how to used Amazon QuickSight to perform visualizations.
You can use the provided template to analyze your own contact center instance. Or you can take the CloudFormation template and modify it to process other data streams that can be ingested using Amazon Kinesis or stored on Amazon S3.
Luis Caro is a Big Data Consultant for AWS Professional Services. He works with our customers to provide guidance and technical assistance on big data projects, helping them improving the value of their solutions when using AWS.
Peter Dalbhanjan is a Solutions Architect for AWS based in Herndon, VA. Peter has a keen interest in evangelizing AWS solutions and has written multiple blog posts that focus on simplifying complex use cases. At AWS, Peter helps with designing and architecting variety of customer workloads.
Previously, I showed you how to rotate Amazon RDS database credentials automatically with AWS Secrets Manager. In addition to database credentials, AWS Secrets Manager makes it easier to rotate, manage, and retrieve API keys, OAuth tokens, and other secrets throughout their lifecycle. You can configure Secrets Manager to rotate these secrets automatically, which can help you meet your compliance needs. You can also use Secrets Manager to rotate secrets on demand, which can help you respond quickly to security events. In this post, I show you how to store an API key in Secrets Manager and use a custom Lambda function to rotate the key automatically. I’ll use a Twitter API key and bearer token as an example; you can reference this example to rotate other types of API keys.
The instructions are divided into four main phases:
Store a Twitter API key and bearer token in Secrets Manager.
Create a custom Lambda function to rotate the bearer token.
Configure your application to retrieve the bearer token from Secrets Manager.
Configure Secrets Manager to use the custom Lambda function to rotate the bearer token automatically.
For the purpose of this post, I use the placeholder Demo/Twitter_Api_Key to denote the API key, the placeholder Demo/Twitter_bearer_token to denote the bearer token, and placeholder Lambda_Rotate_Bearer_Token to denote the custom Lambda function. Be sure to replace these placeholders with the resource names from your account.
Phase 1: Store a Twitter API key and bearer token in Secrets Manager
Twitter enables developers to register their applications and retrieve an API key, which includes a consumer_key and consumer_secret. Developers use these to generate a bearer token that applications can then use to authenticate and retrieve information from Twitter. At any given point of time, you can use an API key to create only one valid bearer token.
Start by storing the API key in Secrets Manager. Here’s how:
Figure 1: The “Store a new secret” button in the AWS Secrets Manager console
Select Other type of secrets (because you’re storing an API key).
Input the consumer_key and consumer_secret, and then select Next.
Figure 2: Select the consumer_key and the consumer_secret
Specify values for Secret Name and Description, then select Next. For this example, I use Demo/Twitter_API_Key.
Figure 3: Set values for “Secret Name” and “Description”
On the next screen, keep the default setting, Disable automatic rotation, because you’ll use the same API key to rotate bearer tokens programmatically and automatically. Applications and employees will not retrieve this API key. Select Next.
Figure 4: Keep the default “Disable automatic rotation” setting
Review the information on the next screen and, if everything looks correct, select Store. You’ve now successfully stored a Twitter API key in Secrets Manager.
Next, store the bearer token in Secrets Manager. Here’s how:
From the Secrets Manager console, select Store a new secret, select Other type of secrets, input details (access_token, token_type, and ARN of the API key) about the bearer token, and then select Next.
Figure 5: Add details about the bearer token
Specify values for Secret Name and Description, and then select Next. For this example, I use Demo/Twitter_bearer_token.
Figure 6: Again set values for “Secret Name” and “Description”
Keep the default rotation setting, Disable automatic rotation, and then select Next. You’ll enable rotation after you’ve updated the application to use Secrets Manager APIs to retrieve secrets.
Review the information and select Store. You’ve now completed storing the bearer token in Secrets Manager. I take note of the sample code provided on the review page. I’ll use this code to update my application to retrieve the bearer token using Secrets Manager APIs.
Figure 7: The sample code you can use in your app
Phase 2: Create a custom Lambda function to rotate the bearer token
While Secrets Manager supports rotating credentials for databases hosted on Amazon RDS natively, it also enables you to meet your unique rotation-related use cases by authoring custom Lambda functions. Now that you’ve stored the API key and bearer token, you’ll create a Lambda function to rotate the bearer token. For this example, I’ll create my Lambda function using Python 3.6.
Figure 8: In the Lambda console, select “Create function”
Select Author from scratch. For this example, I use the name Lambda_Rotate_Bearer_Token for my Lambda function. I also set the Runtime environment as Python 3.6.
Figure 9: Create a new function from scratch
This Lambda function requires permissions to call AWS resources on your behalf. To grant these permissions, select Create a custom role. This opens a console tab.
Select Create a new IAM Role and specify the value for Role Name. For this example, I use Role_Lambda_Rotate_Twitter_Bearer_Token.
Figure 10: For “IAM Role,” select “Create a new IAM role”
Next, to define the IAM permissions, copy and paste the following IAM policy in the View Policy Document text-entry field. Be sure to replace the placeholder ARN-OF-Demo/Twitter_API_Key with the ARN of your secret.
Figure 11: The IAM policy pasted in the “View Policy Document” text-entry field
Now, select Allow. This brings me back to the Lambda console with the appropriate Role selected.
Select Create function.
Figure 12: Select the “Create function” button in the lower-right corner
Copy the following Python code and paste it in the Function code section.
import base64
import json
import logging
import os
import boto3
from botocore.vendored import requests
logger = logging.getLogger()
logger.setLevel(logging.INFO)
def lambda_handler(event, context):
"""Secrets Manager Twitter Bearer Token Handler
This handler uses the master-user rotation scheme to rotate a bearer token of a Twitter app.
The Secret PlaintextString is expected to be a JSON string with the following format:
{
'access_token': ,
'token_type': ,
'masterarn':
}
Args:
event (dict): Lambda dictionary of event parameters. These keys must include the following:
- SecretId: The secret ARN or identifier
- ClientRequestToken: The ClientRequestToken of the secret version
- Step: The rotation step (one of createSecret, setSecret, testSecret, or finishSecret)
context (LambdaContext): The Lambda runtime information
Raises:
ResourceNotFoundException: If the secret with the specified arn and stage does not exist
ValueError: If the secret is not properly configured for rotation
KeyError: If the secret json does not contain the expected keys
"""
arn = event['SecretId']
token = event['ClientRequestToken']
step = event['Step']
# Setup the client and environment variables
service_client = boto3.client('secretsmanager', endpoint_url=os.environ['SECRETS_MANAGER_ENDPOINT'])
oauth2_token_url = os.environ['TWITTER_OAUTH2_TOKEN_URL']
oauth2_invalid_token_url = os.environ['TWITTER_OAUTH2_INVALID_TOKEN_URL']
tweet_search_url = os.environ['TWITTER_SEARCH_URL']
# Make sure the version is staged correctly
metadata = service_client.describe_secret(SecretId=arn)
if not metadata['RotationEnabled']:
logger.error("Secret %s is not enabled for rotation" % arn)
raise ValueError("Secret %s is not enabled for rotation" % arn)
versions = metadata['VersionIdsToStages']
if token not in versions:
logger.error("Secret version %s has no stage for rotation of secret %s." % (token, arn))
raise ValueError("Secret version %s has no stage for rotation of secret %s." % (token, arn))
if "AWSCURRENT" in versions[token]:
logger.info("Secret version %s already set as AWSCURRENT for secret %s." % (token, arn))
return
elif "AWSPENDING" not in versions[token]:
logger.error("Secret version %s not set as AWSPENDING for rotation of secret %s." % (token, arn))
raise ValueError("Secret version %s not set as AWSPENDING for rotation of secret %s." % (token, arn))
# Call the appropriate step
if step == "createSecret":
create_secret(service_client, arn, token, oauth2_token_url, oauth2_invalid_token_url)
elif step == "setSecret":
set_secret(service_client, arn, token, oauth2_token_url)
elif step == "testSecret":
test_secret(service_client, arn, token, tweet_search_url)
elif step == "finishSecret":
finish_secret(service_client, arn, token)
else:
logger.error("lambda_handler: Invalid step parameter %s for secret %s" % (step, arn))
raise ValueError("Invalid step parameter %s for secret %s" % (step, arn))
def create_secret(service_client, arn, token, oauth2_token_url, oauth2_invalid_token_url):
"""Get a new bearer token from Twitter
This method invalidates existing bearer token for the Twitter app and retrieves a new one from Twitter.
If a secret version with AWSPENDING stage exists, updates it with the newly retrieved bearer token and if
the AWSPENDING stage does not exist, creates a new version of the secret with that stage label.
Args:
service_client (client): The secrets manager service client
arn (string): The secret ARN or other identifier
token (string): The ClientRequestToken associated with the secret version
oauth2_token_url (string): The Twitter API endpoint to request a bearer token
oauth2_invalid_token_url (string): The Twitter API endpoint to invalidate a bearer token
Raises:
ValueError: If the current secret is not valid JSON
KeyError: If the secret json does not contain the expected keys
ResourceNotFoundException: If the current secret is not found
"""
# Make sure the current secret exists and try to get the master arn from the secret
try:
current_secret_dict = get_secret_dict(service_client, arn, "AWSCURRENT")
master_arn = current_secret_dict['masterarn']
logger.info("createSecret: Successfully retrieved secret for %s." % arn)
except service_client.exceptions.ResourceNotFoundException:
return
# create bearer token credentials to be passed as authorization string to Twitter
bearer_token_credentials = encode_credentials(service_client, master_arn, "AWSCURRENT")
# get the bearer token from Twitter
bearer_token_from_twitter = get_bearer_token(bearer_token_credentials,oauth2_token_url)
# invalidate the current bearer token
invalidate_bearer_token(oauth2_invalid_token_url,bearer_token_credentials,bearer_token_from_twitter)
# get a new bearer token from Twitter
new_bearer_token = get_bearer_token(bearer_token_credentials, oauth2_token_url)
# if a secret version with AWSPENDING stage exists, update it with the lastest bearer token
# if the AWSPENDING stage does not exist, then create the version with AWSPENDING stage
try:
pending_secret_dict = get_secret_dict(service_client, arn, "AWSPENDING", token)
pending_secret_dict['access_token'] = new_bearer_token
service_client.put_secret_value(SecretId=arn, ClientRequestToken=token, SecretString=json.dumps(pending_secret_dict), VersionStages=['AWSPENDING'])
logger.info("createSecret: Successfully invalidated the bearer token of the secret %s and updated the pending version" % arn)
except service_client.exceptions.ResourceNotFoundException:
current_secret_dict['access_token'] = new_bearer_token
service_client.put_secret_value(SecretId=arn, ClientRequestToken=token, SecretString=json.dumps(current_secret_dict), VersionStages=['AWSPENDING'])
logger.info("createSecret: Successfully invalidated the bearer token of the secret %s and and created the pending version." % arn)
def set_secret(service_client, arn, token, oauth2_token_url):
"""Validate the pending secret with that in Twitter
This method checks wether the bearer token in Twitter is the same as the one in the version with AWSPENDING stage.
Args:
service_client (client): The secrets manager service client
arn (string): The secret ARN or other identifier
token (string): The ClientRequestToken associated with the secret version
oauth2_token_url (string): The Twitter API endopoint to get a bearer token
Raises:
ResourceNotFoundException: If the secret with the specified arn and stage does not exist
ValueError: If the secret is not valid JSON or master credentials could not be used to login to DB
KeyError: If the secret json does not contain the expected keys
"""
# First get the pending version of the bearer token and compare it with that in Twitter
pending_secret_dict = get_secret_dict(service_client, arn, "AWSPENDING")
master_arn = pending_secret_dict['masterarn']
# create bearer token credentials to be passed as authorization string to Twitter
bearer_token_credentials = encode_credentials(service_client, master_arn, "AWSCURRENT")
# get the bearer token from Twitter
bearer_token_from_twitter = get_bearer_token(bearer_token_credentials, oauth2_token_url)
# if the bearer tokens are same, invalidate the bearer token in Twitter
# if not, raise an exception that bearer token in Twitter was changed outside Secrets Manager
if pending_secret_dict['access_token'] == bearer_token_from_twitter:
logger.info("createSecret: Successfully verified the bearer token of arn %s" % arn)
else:
raise ValueError("The bearer token of the Twitter app was changed outside Secrets Manager. Please check.")
def test_secret(service_client, arn, token, tweet_search_url):
"""Test the pending secret by calling a Twitter API
This method tries to use the bearer token in the secret version with AWSPENDING stage and search for tweets
with 'aws secrets manager' string.
Args:
service_client (client): The secrets manager service client
arn (string): The secret ARN or other identifier
token (string): The ClientRequestToken associated with the secret version
Raises:
ResourceNotFoundException: If the secret with the specified arn and stage does not exist
ValueError: If the secret is not valid JSON or pending credentials could not be used to login to the database
KeyError: If the secret json does not contain the expected keys
"""
# First get the pending version of the bearer token and compare it with that in Twitter
pending_secret_dict = get_secret_dict(service_client, arn, "AWSPENDING", token)
# Now verify you can search for tweets using the bearer token
if verify_bearer_token(pending_secret_dict['access_token'], tweet_search_url):
logger.info("testSecret: Successfully authorized with the pending secret in %s." % arn)
return
else:
logger.error("testSecret: Unable to authorize with the pending secret of secret ARN %s" % arn)
raise ValueError("Unable to connect to Twitter with pending secret of secret ARN %s" % arn)
def finish_secret(service_client, arn, token):
"""Finish the rotation by marking the pending secret as current
This method moves the secret from the AWSPENDING stage to the AWSCURRENT stage.
Args:
service_client (client): The secrets manager service client
arn (string): The secret ARN or other identifier
token (string): The ClientRequestToken associated with the secret version
Raises:
ResourceNotFoundException: If the secret with the specified arn and stage does not exist
"""
# First describe the secret to get the current version
metadata = service_client.describe_secret(SecretId=arn)
current_version = None
for version in metadata["VersionIdsToStages"]:
if "AWSCURRENT" in metadata["VersionIdsToStages"][version]:
if version == token:
# The correct version is already marked as current, return
logger.info("finishSecret: Version %s already marked as AWSCURRENT for %s" % (version, arn))
return
current_version = version
break
# Finalize by staging the secret version current
service_client.update_secret_version_stage(SecretId=arn, VersionStage="AWSCURRENT", MoveToVersionId=token, RemoveFromVersionId=current_version)
logger.info("finishSecret: Successfully set AWSCURRENT stage to version %s for secret %s." % (version, arn))
def encode_credentials(service_client, arn, stage):
"""Encodes the Twitter credentials
This helper function encodes the Twitter credentials (consumer_key and consumer_secret)
Args:
service_client (client):The secrets manager service client
arn (string): The secret ARN or other identifier
stage (stage): The stage identifying the secret version
Returns:
encoded_credentials (string): base64 encoded authorization string for Twitter
Raises:
KeyError: If the secret json does not contain the expected keys
"""
required_fields = ['consumer_key','consumer_secret']
master_secret_dict = get_secret_dict(service_client, arn, stage)
for field in required_fields:
if field not in master_secret_dict:
raise KeyError("%s key is missing from the secret JSON" % field)
encoded_credentials = base64.urlsafe_b64encode(
'{}:{}'.format(master_secret_dict['consumer_key'], master_secret_dict['consumer_secret']).encode('ascii')).decode('ascii')
return encoded_credentials
def get_bearer_token(encoded_credentials, oauth2_token_url):
"""Gets a bearer token from Twitter
This helper function retrieves the current bearer token from Twitter, given a set of credentials.
Args:
encoded_credentials (string): Twitter credentials for authentication
oauth2_token_url (string): REST API endpoint to request a bearer token from Twitter
Raises:
KeyError: If the secret json does not contain the expected keys
"""
headers = {
'Authorization': 'Basic {}'.format(encoded_credentials),
'Content-Type': 'application/x-www-form-urlencoded;charset=UTF-8',
}
data = 'grant_type=client_credentials'
response = requests.post(oauth2_token_url, headers=headers, data=data)
response_data = response.json()
if response_data['token_type'] == 'bearer':
bearer_token = response_data['access_token']
return bearer_token
else:
raise RuntimeError('unexpected token type: {}'.format(response_data['token_type']))
def invalidate_bearer_token(oauth2_invalid_token_url, bearer_token_credentials, bearer_token):
"""Invalidates a Bearer Token of a Twitter App
This helper function invalidates a bearer token of a Twitter app.
If successful, it returns the invalidated bearer token, else None
Args:
oauth2_invalid_token_url (string): The Twitter API endpoint to invalidate a bearer token
bearer_token_credentials (string): encoded consumer key and consumer secret to authenticate with Twitter
bearer_token (string): The bearer token to be invalidated
Returns:
invalidated_bearer_token: The invalidated bearer token
Raises:
ResourceNotFoundException: If the secret with the specified arn and stage does not exist
ValueError: If the secret is not valid JSON
KeyError: If the secret json does not contain the expected keys
"""
headers = {
'Authorization': 'Basic {}'.format(bearer_token_credentials),
'Content-Type': 'application/x-www-form-urlencoded;charset=UTF-8',
}
data = 'access_token=' + bearer_token
invalidate_response = requests.post(oauth2_invalid_token_url, headers=headers, data=data)
invalidate_response_data = invalidate_response.json()
if invalidate_response_data:
return
else:
raise RuntimeError('Invalidate bearer token request failed')
def verify_bearer_token(bearer_token, tweet_search_url):
"""Verifies access to Twitter APIs using a bearer token
This helper function verifies that the bearer token is valid by calling Twitter's search/tweets API endpoint
Args:
bearer_token (string): The current bearer token for the application
Returns:
True or False
Raises:
KeyError: If the response of search tweets API call fails
"""
headers = {
'Authorization' : 'Bearer {}'.format(bearer_token),
'Content-Type': 'application/x-www-form-urlencoded;charset=UTF-8',
}
search_results = requests.get(tweet_search_url, headers=headers)
try:
search_results.json()['statuses']
return True
except:
return False
def get_secret_dict(service_client, arn, stage, token=None):
"""Gets the secret dictionary corresponding for the secret arn, stage, and token
This helper function gets credentials for the arn and stage passed in and returns the dictionary by parsing the JSON string
Args:
service_client (client): The secrets manager service client
arn (string): The secret ARN or other identifier
token (string): The ClientRequestToken associated with the secret version, or None if no validation is desired
stage (string): The stage identifying the secret version
Returns:
SecretDictionary: Secret dictionary
Raises:
ResourceNotFoundException: If the secret with the specified arn and stage does not exist
ValueError: If the secret is not valid JSON
"""
# Only do VersionId validation against the stage if a token is passed in
if token:
secret = service_client.get_secret_value(SecretId=arn, VersionId=token, VersionStage=stage)
else:
secret = service_client.get_secret_value(SecretId=arn, VersionStage=stage)
plaintext = secret['SecretString']
# Parse and return the secret JSON string
return json.loads(plaintext)
Here’s what it will look like:
Figure 13: The Python code pasted in the “Function code” section
On the same page, provide the following environment variables:
Note: Resources used in this example are in US East (Ohio) region. If you intend to use another AWS Region, change the SECRETS_MANAGER_ENDPOINT set in the Environment variables to the appropriate region.
You’ve now created a Lambda function that can rotate the bearer token:
Figure 15: The new Lambda function
Before you can configure Secrets Manager to use this Lambda function, you need to update the function policy of the Lambda function. A function policy permits AWS services, such as Secrets Manager, to invoke a Lambda function on behalf of your application. You can attach a Lambda function policy from the AWS Command Line Interface (AWS CLI) or SDK. To attach a function policy, call the add-permission Lambda API from the AWS CLI.
Phase 3: Configure your application to retrieve the bearer token from Secrets Manager
Now that you’ve stored the bearer token in Secrets Manager, update the application to retrieve the bearer token from Secrets Manager instead of hard-coding this information in a configuration file or source code. For this example, I show you how to configure a Python application to retrieve this secret from Secrets Manager.
import config
def no_secrets_manager_sample()
# Get the bearer token from a config file.
Bearer_token = config.bearer_token
# Use the bearer token to authenticate requests to Twitter
Use the sample code from section titled Phase 1 and update the application to retrieve the bearer token from Secrets Manager. The following code sets up the client and retrieves and decrypts the secret Demo/Twitter_bearer_token.
# Use this code snippet in your app.
import boto3
from botocore.exceptions import ClientError
def get_secret():
secret_name = "Demo/Twitter_bearer_token"
endpoint_url = "https://secretsmanager.us-east-2.amazonaws.com"
region_name = "us-east-2"
session = boto3.session.Session()
client = session.client(
service_name='secretsmanager',
region_name=region_name,
endpoint_url=endpoint_url
)
try:
get_secret_value_response = client.get_secret_value(
SecretId=secret_name
)
except ClientError as e:
if e.response['Error']['Code'] == 'ResourceNotFoundException':
print("The requested secret " + secret_name + " was not found")
elif e.response['Error']['Code'] == 'InvalidRequestException':
print("The request was invalid due to:", e)
elif e.response['Error']['Code'] == 'InvalidParameterException':
print("The request had invalid params:", e)
else:
# Decrypted secret using the associated KMS CMK
# Depending on whether the secret was a string or binary, one of these fields will be populated
if 'SecretString' in get_secret_value_response:
secret = get_secret_value_response['SecretString']
else:
binary_secret_data = get_secret_value_response['SecretBinary']
# Your code goes here.
Applications require permissions to access Secrets Manager. My application runs on Amazon EC2 and uses an IAM role to get access to AWS services. I’ll attach the following policy to my IAM role, and you should take a similar action with your IAM role. This policy uses the GetSecretValue action to grant my application permissions to read secrets from Secrets Manager. This policy also uses the resource element to limit my application to read only the Demo/Twitter_bearer_token secret from Secrets Manager. Read the AWS Secrets Manager documentation to understand the minimum IAM permissions required to retrieve a secret.
{
"Version": "2012-10-17",
"Statement": {
"Sid": "RetrieveBearerToken",
"Effect": "Allow",
"Action": "secretsmanager:GetSecretValue",
"Resource": Input ARN of the secret Demo/Twitter_bearer_token here
}
}
Note: To improve the resiliency of your applications, associate your application with two API keys/bearer tokens. This is a higher availability option because you can continue to use one bearer token while Secrets Manager rotates the other token. Read the AWS documentation to learn how AWS Secrets Manager rotates your secrets.
Phase 4: Enable and verify rotation
Now that you’ve stored the secret in Secrets Manager and created a Lambda function to rotate this secret, configure Secrets Manager to rotate the secret Demo/Twitter_bearer_token.
From the Secrets Manager console, go to the list of secrets and choose the secret you created in the first step (in my example, this is named Demo/Twitter_bearer_token).
Scroll to Rotation configuration, and then select Edit rotation.
Figure 16: Select the “Edit rotation” button
To enable rotation, select Enable automatic rotation, and then choose how frequently you want Secrets Manager to rotate this secret. For this example, I set the rotation interval to 30 days. I also choose the rotation Lambda function, Lambda_Rotate_Bearer_Token, from the drop-down list.
Figure 17: “Edit rotation configuration” options
The banner on the next screen confirms that I have successfully configured rotation and the first rotation is in progress, which enables you to verify that rotation is functioning as expected. Secrets Manager will rotate this credential automatically every 30 days.
Figure 18: Confirmation notice
Summary
In this post, I showed you how to configure Secrets Manager to manage and rotate an API key and bearer token used by applications to authenticate and retrieve information from Twitter. You can use the steps described in this blog to manage and rotate other API keys, as well.
Secrets Manager helps you protect access to your applications, services, and IT resources without the upfront investment and on-going maintenance costs of operating your own secrets management infrastructure. To get started, open the Secrets Manager console. To learn more, read the Secrets Manager documentation.
If you have comments about this post, submit them in the Comments section below. If you have questions about anything in this post, start a new thread on the Secrets Manager forum or contact AWS Support.
Want more AWS Security news? Follow us on Twitter.
Amazon Neptune is now Generally Available in US East (N. Virginia), US East (Ohio), US West (Oregon), and EU (Ireland). Amazon Neptune is a fast, reliable, fully-managed graph database service that makes it easy to build and run applications that work with highly connected datasets. At the core of Neptune is a purpose-built, high-performance graph database engine optimized for storing billions of relationships and querying the graph with millisecond latencies. Neptune supports two popular graph models, Property Graph and RDF, through Apache TinkerPop Gremlin and SPARQL, allowing you to easily build queries that efficiently navigate highly connected datasets. Neptune can be used to power everything from recommendation engines and knowledge graphs to drug discovery and network security. Neptune is fully-managed with automatic minor version upgrades, backups, encryption, and fail-over. I wrote about Neptune in detail for AWS re:Invent last year and customers have been using the preview and providing great feedback that the team has used to prepare the service for GA.
Now that Amazon Neptune is generally available there are a few changes from the preview:
A large number of performance enhancements and updates
Launching a Neptune cluster is as easy as navigating to the AWS Management Console and clicking create cluster. Of course you can also launch with CloudFormation, the CLI, or the SDKs.
You can monitor your cluster health and the health of individual instances through Amazon CloudWatch and the console.
Additional Resources
We’ve created two repos with some additional tools and examples here. You can expect continuous development on these repos as we add additional tools and examples.
Amazon Neptune Tools Repo This repo has a useful tool for converting GraphML files into Neptune compatible CSVs for bulk loading from S3.
Amazon Neptune Samples Repo This repo has a really cool example of building a collaborative filtering recommendation engine for video game preferences.
Purpose Built Databases
There’s an industry trend where we’re moving more and more onto purpose-built databases. Developers and businesses want to access their data in the format that makes the most sense for their applications. As cloud resources make transforming large datasets easier with tools like AWS Glue, we have a lot more options than we used to for accessing our data. With tools like Amazon Redshift, Amazon Athena, Amazon Aurora, Amazon DynamoDB, and more we get to choose the best database for the job or even enable entirely new use-cases. Amazon Neptune is perfect for workloads where the data is highly connected across data rich edges.
I’m really excited about graph databases and I see a huge number of applications. Looking for ideas of cool things to build? I’d love to build a web crawler in AWS Lambda that uses Neptune as the backing store. You could further enrich it by running Amazon Comprehend or Amazon Rekognition on the text and images found and creating a search engine on top of Neptune.
As always, feel free to reach out in the comments or on twitter to provide any feedback!
“Most commonly we have unsolicited calls to potential victims in Australia, purporting to represent the people in authority in China and suggesting to intending victims here they have been involved in some sort of offence in China or elsewhere, for which they’re being held responsible,” Commander McLean said.
The scammers threaten the students with deportation from Australia or some kind of criminal punishment.
The victims are then coerced into providing their identification details or money to get out of the supposed trouble they’re in.
Commander McLean said there are also cases where the student is told they have to hide in a hotel room, provide compromising photos of themselves and cut off all contact.
This simulates a kidnapping.
“So having tricked the victims in Australia into providing the photographs, and money and documents and other things, they then present the information back to the unknowing families in China to suggest that their children who are abroad are in trouble,” Commander McLean said.
“So quite circular in a sense…very skilled, very cunning.”
This post is courtesy of Alan Protasio, Software Development Engineer, Amazon Web Services
Just like compute and storage, messaging is a fundamental building block of enterprise applications. Message brokers (aka “message-oriented middleware”) enable different software systems, often written in different languages, on different platforms, running in different locations, to communicate and exchange information. Mission-critical applications, such as CRM and ERP, rely on message brokers to work.
A common performance consideration for customers deploying a message broker in a production environment is the throughput of the system, measured as messages per second. This is important to know so that application environments (hosts, threads, memory, etc.) can be configured correctly.
In this post, we demonstrate how to measure the throughput for Amazon MQ, a new managed message broker service for ActiveMQ, using JMS Benchmark. It should take between 15–20 minutes to set up the environment and an hour to run the benchmark. We also provide some tips on how to configure Amazon MQ for optimal throughput.
Benchmarking throughput for Amazon MQ
ActiveMQ can be used for a number of use cases. These use cases can range from simple fire and forget tasks (that is, asynchronous processing), low-latency request-reply patterns, to buffering requests before they are persisted to a database.
The throughput of Amazon MQ is largely dependent on the use case. For example, if you have non-critical workloads such as gathering click events for a non-business-critical portal, you can use ActiveMQ in a non-persistent mode and get extremely high throughput with Amazon MQ.
On the flip side, if you have a critical workload where durability is extremely important (meaning that you can’t lose a message), then you are bound by the I/O capacity of your underlying persistence store. We recommend using mq.m4.large for the best results. The mq.t2.micro instance type is intended for product evaluation. Performance is limited, due to the lower memory and burstable CPU performance.
Tip: To improve your throughput with Amazon MQ, make sure that you have consumers processing messaging as fast as (or faster than) your producers are pushing messages.
Because it’s impossible to talk about how the broker (ActiveMQ) behaves for each and every use case, we walk through how to set up your own benchmark for Amazon MQ using our favorite open-source benchmarking tool: JMS Benchmark. We are fans of the JMS Benchmark suite because it’s easy to set up and deploy, and comes with a built-in visualizer of the results.
Non-Persistent Scenarios – Queue latency as you scale producer throughput
Getting started
At the time of publication, you can create an mq.m4.large single-instance broker for testing for $0.30 per hour (US pricing).
Step 2 – Create an EC2 instance to run your benchmark Launch the EC2 instance using Step 1: Launch an Instance. We recommend choosing the m5.large instance type.
Step 3 – Configure the security groups Make sure that all the security groups are correctly configured to let the traffic flow between the EC2 instance and your broker.
From the broker list, choose the name of your broker (for example, MyBroker)
In the Details section, under Security and network, choose the name of your security group or choose the expand icon ( ).
From the security group list, choose your security group.
At the bottom of the page, choose Inbound, Edit.
In the Edit inbound rules dialog box, add a role to allow traffic between your instance and the broker: • Choose Add Rule. • For Type, choose Custom TCP. • For Port Range, type the ActiveMQ SSL port (61617). • For Source, leave Custom selected and then type the security group of your EC2 instance. • Choose Save.
Your broker can now accept the connection from your EC2 instance.
Step 4 – Run the benchmark Connect to your EC2 instance using SSH and run the following commands:
After the benchmark finishes, you can find the results in the ~/reports directory. As you may notice, the performance of ActiveMQ varies based on the number of consumers, producers, destinations, and message size.
Amazon MQ architecture
The last bit that’s important to know so that you can better understand the results of the benchmark is how Amazon MQ is architected.
Amazon MQ is architected to be highly available (HA) and durable. For HA, we recommend using the multi-AZ option. After a message is sent to Amazon MQ in persistent mode, the message is written to the highly durable message store that replicates the data across multiple nodes in multiple Availability Zones. Because of this replication, for some use cases you may see a reduction in throughput as you migrate to Amazon MQ. Customers have told us they appreciate the benefits of message replication as it helps protect durability even in the face of the loss of an Availability Zone.
Conclusion
We hope this gives you an idea of how Amazon MQ performs. We encourage you to run tests to simulate your own use cases.
To learn more, see the Amazon MQ website. You can try Amazon MQ for free with the AWS Free Tier, which includes up to 750 hours of a single-instance mq.t2.micro broker and up to 1 GB of storage per month for one year.
The adoption of Apache Spark has increased significantly over the past few years, and running Spark-based application pipelines is the new normal. Spark jobs that are in an ETL (extract, transform, and load) pipeline have different requirements—you must handle dependencies in the jobs, maintain order during executions, and run multiple jobs in parallel. In most of these cases, you can use workflow scheduler tools like Apache Oozie, Apache Airflow, and even Cron to fulfill these requirements.
Apache Oozie is a widely used workflow scheduler system for Hadoop-based jobs. However, its limited UI capabilities, lack of integration with other services, and heavy XML dependency might not be suitable for some users. On the other hand, Apache Airflow comes with a lot of neat features, along with powerful UI and monitoring capabilities and integration with several AWS and third-party services. However, with Airflow, you do need to provision and manage the Airflow server. The Cron utility is a powerful job scheduler. But it doesn’t give you much visibility into the job details, and creating a workflow using Cron jobs can be challenging.
What if you have a simple use case, in which you want to run a few Spark jobs in a specific order, but you don’t want to spend time orchestrating those jobs or maintaining a separate application? You can do that today in a serverless fashion using AWS Step Functions. You can create the entire workflow in AWS Step Functions and interact with Spark on Amazon EMR through Apache Livy.
In this post, I walk you through a list of steps to orchestrate a serverless Spark-based ETL pipeline using AWS Step Functions and Apache Livy.
Input data
For the source data for this post, I use the New York City Taxi and Limousine Commission (TLC) trip record data. For a description of the data, see this detailed dictionary of the taxi data. In this example, we’ll work mainly with the following three columns for the Spark jobs.
Column name
Column description
RateCodeID
Represents the rate code in effect at the end of the trip (for example, 1 for standard rate, 2 for JFK airport, 3 for Newark airport, and so on).
FareAmount
Represents the time-and-distance fare calculated by the meter.
TripDistance
Represents the elapsed trip distance in miles reported by the taxi meter.
The trip data is in comma-separated values (CSV) format with the first row as a header. To shorten the Spark execution time, I trimmed the large input data to only 20,000 rows. During the deployment phase, the input file tripdata.csv is stored in Amazon S3 in the <<your-bucket>>/emr-step-functions/input/ folder.
The following image shows a sample of the trip data:
Solution overview
The next few sections describe how Spark jobs are created for this solution, how you can interact with Spark using Apache Livy, and how you can use AWS Step Functions to create orchestrations for these Spark applications.
At a high level, the solution includes the following steps:
Trigger the AWS Step Function state machine by passing the input file path.
The first stage in the state machine triggers an AWS Lambda
The Lambda function interacts with Apache Spark running on Amazon EMR using Apache Livy, and submits a Spark job.
The state machine waits a few seconds before checking the Spark job status.
Based on the job status, the state machine moves to the success or failure state.
Subsequent Spark jobs are submitted using the same approach.
The state machine waits a few seconds for the job to finish.
The job finishes, and the state machine updates with its final status.
Let’s take a look at the Spark application that is used for this solution.
Spark jobs
For this example, I built a Spark jar named spark-taxi.jar. It has two different Spark applications:
MilesPerRateCode – The first job that runs on the Amazon EMR cluster. This job reads the trip data from an input source and computes the total trip distance for each rate code. The output of this job consists of two columns and is stored in Apache Parquet format in the output path.
The following are the expected output columns:
rate_code – Represents the rate code for the trip.
total_distance – Represents the total trip distance for that rate code (for example, sum(trip_distance)).
RateCodeStatus – The second job that runs on the EMR cluster, but only if the first job finishes successfully. This job depends on two different input sets:
csv – The same trip data that is used for the first Spark job.
miles-per-rate – The output of the first job.
This job first reads the tripdata.csv file and aggregates the fare_amount by the rate_code. After this point, you have two different datasets, both aggregated by rate_code. Finally, the job uses the rate_code field to join two datasets and output the entire rate code status in a single CSV file.
The output columns are as follows:
rate_code_id – Represents the rate code type.
total_distance – Derived from first Spark job and represents the total trip distance.
total_fare_amount – A new field that is generated during the second Spark application, representing the total fare amount by the rate code type.
Note that in this case, you don’t need to run two different Spark jobs to generate that output. The goal of setting up the jobs in this way is just to create a dependency between the two jobs and use them within AWS Step Functions.
Both Spark applications take one input argument called rootPath. It’s the S3 location where the Spark job is stored along with input and output data. Here is a sample of the final output:
The next section discusses how you can use Apache Livy to interact with Spark applications that are running on Amazon EMR.
Using Apache Livy to interact with Apache Spark
Apache Livy provides a REST interface to interact with Spark running on an EMR cluster. Livy is included in Amazon EMR release version 5.9.0 and later. In this post, I use Livy to submit Spark jobs and retrieve job status. When Amazon EMR is launched with Livy installed, the EMR master node becomes the endpoint for Livy, and it starts listening on port 8998 by default. Livy provides APIs to interact with Spark.
Let’s look at a couple of examples how you can interact with Spark running on Amazon EMR using Livy.
To list active running jobs, you can execute the following from the EMR master node:
curl localhost:8998/sessions
If you want to do the same from a remote instance, just change localhost to the EMR hostname, as in the following (port 8998 must be open to that remote instance through the security group):
Through Spark submit, you can pass multiple arguments for the Spark job and Spark configuration settings. You can also do that using Livy, by passing the S3 path through the args parameter, as shown following:
For a detailed list of Livy APIs, see the Apache Livy REST API page. This post uses GET /batches and POST /batches.
In the next section, you create a state machine and orchestrate Spark applications using AWS Step Functions.
Using AWS Step Functions to create a Spark job workflow
AWS Step Functions automatically triggers and tracks each step and retries when it encounters errors. So your application executes in order and as expected every time. To create a Spark job workflow using AWS Step Functions, you first create a Lambda state machine using different types of states to create the entire workflow.
First, you use the Task state—a simple state in AWS Step Functions that performs a single unit of work. You also use the Wait state to delay the state machine from continuing for a specified time. Later, you use the Choice state to add branching logic to a state machine.
The following is a quick summary of how to use different states in the state machine to create the Spark ETL pipeline:
Task state – Invokes a Lambda function. The first Task state submits the Spark job on Amazon EMR, and the next Task state is used to retrieve the previous Spark job status.
Wait state – Pauses the state machine until a job completes execution.
Choice state – Each Spark job execution can return a failure, an error, or a success state So, in the state machine, you use the Choice state to create a rule that specifies the next action or step based on the success or failure of the previous step.
Here is one of my Task states, MilesPerRateCode, which simply submits a Spark job:
"MilesPerRate Job": {
"Type": "Task",
"Resource":"arn:aws:lambda:us-east-1:xxxxxx:function:blog-miles-per-rate-job-submit-function",
"ResultPath": "$.jobId",
"Next": "Wait for MilesPerRate job to complete"
}
This Task state configuration specifies the Lambda function to execute. Inside the Lambda function, it submits a Spark job through Livy using Livy’s POST API. Using ResultPath, it tells the state machine where to place the result of the executing task. As discussed in the previous section, Spark submit returns the session ID, which is captured with $.jobId and used in a later state.
The following code section shows the Lambda function, which is used to submit the MilesPerRateCode job. It uses the Python request library to submit a POST against the Livy endpoint hosted on Amazon EMR and passes the required parameters in JSON format through payload. It then parses the response, grabs id from the response, and returns it. The Next field tells the state machine which state to go to next.
Just like in the MilesPerRate job, another state submits the RateCodeStatus job, but it executes only when all previous jobs have completed successfully.
Here is the Task state in the state machine that checks the Spark job status:
Just like other states, the preceding Task executes a Lambda function, captures the result (represented by jobStatus), and passes it to the next state. The following is the Lambda function that checks the Spark job status based on a given session ID:
In the Choice state, it checks the Spark job status value, compares it with a predefined state status, and transitions the state based on the result. For example, if the status is success, move to the next state (RateCodeJobStatus job), and if it is dead, move to the MilesPerRate job failed state.
To set up this entire solution, you need to create a few AWS resources. To make it easier, I have created an AWS CloudFormation template. This template creates all the required AWS resources and configures all the resources that are needed to create a Spark-based ETL pipeline on AWS Step Functions.
This CloudFormation template requires you to pass the following four parameters during initiation.
Parameter
Description
ClusterSubnetID
The subnet where the Amazon EMR cluster is deployed and Lambda is configured to talk to this subnet.
KeyName
The name of the existing EC2 key pair to access the Amazon EMR cluster.
VPCID
The ID of the virtual private cloud (VPC) where the EMR cluster is deployed and Lambda is configured to talk to this VPC.
S3RootPath
The Amazon S3 path where all required files (input file, Spark job, and so on) are stored and the resulting data is written.
IMPORTANT: These templates are designed only to show how you can create a Spark-based ETL pipeline on AWS Step Functions using Apache Livy. They are not intended for production use without modification. And if you try this solution outside of the us-east-1 Region, download the necessary files from s3://aws-data-analytics-blog/emr-step-functions, upload the files to the buckets in your Region, edit the script as appropriate, and then run it.
To launch the CloudFormation stack, choose Launch Stack:
Launching this stack creates the following list of AWS resources.
Logical ID
Resource Type
Description
StepFunctionsStateExecutionRole
IAM role
IAM role to execute the state machine and have a trust relationship with the states service.
SparkETLStateMachine
AWS Step Functions state machine
State machine in AWS Step Functions for the Spark ETL workflow.
LambdaSecurityGroup
Amazon EC2 security group
Security group that is used for the Lambda function to call the Livy API.
RateCodeStatusJobSubmitFunction
AWS Lambda function
Lambda function to submit the RateCodeStatus job.
MilesPerRateJobSubmitFunction
AWS Lambda function
Lambda function to submit the MilesPerRate job.
SparkJobStatusFunction
AWS Lambda function
Lambda function to check the Spark job status.
LambdaStateMachineRole
IAM role
IAM role for all Lambda functions to use the lambda trust relationship.
EMRCluster
Amazon EMR cluster
EMR cluster where Livy is running and where the job is placed.
During the AWS CloudFormation deployment phase, it sets up S3 paths for input and output. Input files are stored in the <<s3-root-path>>/emr-step-functions/input/ path, whereas spark-taxi.jar is copied under <<s3-root-path>>/emr-step-functions/.
The following screenshot shows how the S3 paths are configured after deployment. In this example, I passed a bucket that I created in the AWS account s3://tm-app-demos for the S3 root path.
If the CloudFormation template completed successfully, you will see Spark-ETL-State-Machine in the AWS Step Functions dashboard, as follows:
Choose the Spark-ETL-State-Machine state machine to take a look at this implementation. The AWS CloudFormation template built the entire state machine along with its dependent Lambda functions, which are now ready to be executed.
On the dashboard, choose the newly created state machine, and then choose New execution to initiate the state machine. It asks you to pass input in JSON format. This input goes to the first state MilesPerRate Job, which eventually executes the Lambda function blog-miles-per-rate-job-submit-function.
Pass the S3 root path as input:
{
“rootPath”: “s3://tm-app-demos”
}
Then choose Start Execution:
The rootPath value is the same value that was passed when creating the CloudFormation stack. It can be an S3 bucket location or a bucket with prefixes, but it should be the same value that is used for AWS CloudFormation. This value tells the state machine where it can find the Spark jar and input file, and where it will write output files. After the state machine starts, each state/task is executed based on its definition in the state machine.
At a high level, the following represents the flow of events:
Execute the first Spark job, MilesPerRate.
The Spark job reads the input file from the location <<rootPath>>/emr-step-functions/input/tripdata.csv. If the job finishes successfully, it writes the output data to <<rootPath>>/emr-step-functions/miles-per-rate.
If the Spark job fails, it transitions to the error state MilesPerRate job failed, and the state machine stops. If the Spark job finishes successfully, it transitions to the RateCodeStatus Job state, and the second Spark job is executed.
If the second Spark job fails, it transitions to the error state RateCodeStatus job failed, and the state machine stops with the Failed status.
If this Spark job completes successfully, it writes the final output data to the <<rootPath>>/emr-step-functions/rate-code-status/ It also transitions the RateCodeStatus job finished state, and the state machine ends its execution with the Success status.
This following screenshot shows a successfully completed Spark ETL state machine:
The right side of the state machine diagram shows the details of individual states with their input and output.
When you execute the state machine for the second time, it fails because the S3 path already exists. The state machine turns red and stops at MilePerRate job failed. The following image represents that failed execution of the state machine:
You can also check your Spark application status and logs by going to the Amazon EMR console and viewing the Application history tab:
I hope this walkthrough paints a picture of how you can create a serverless solution for orchestrating Spark jobs on Amazon EMR using AWS Step Functions and Apache Livy. In the next section, I share some ideas for making this solution even more elegant.
Next steps
The goal of this post is to show a simple example that uses AWS Step Functions to create an orchestration for Spark-based jobs in a serverless fashion. To make this solution robust and production ready, you can explore the following options:
In this example, I manually initiated the state machine by passing the rootPath as input. You can instead trigger the state machine automatically. To run the ETL pipeline as soon as the files arrive in your S3 bucket, you can pass the new file path to the state machine. Because CloudWatch Events supports AWS Step Functions as a target, you can create a CloudWatch rule for an S3 event. You can then set AWS Step Functions as a target and pass the new file path to your state machine. You’re all set!
You can also improve this solution by adding an alerting mechanism in case of failures. To do this, create a Lambda function that sends an alert email and assigns that Lambda function to a Fail That way, when any part of your state fails, it triggers an email and notifies the user.
If you want to submit multiple Spark jobs in parallel, you can use the Parallel state type in AWS Step Functions. The Parallel state is used to create parallel branches of execution in your state machine.
With Lambda and AWS Step Functions, you can create a very robust serverless orchestration for your big data workload.
Cleaning up
When you’ve finished testing this solution, remember to clean up all those AWS resources that you created using AWS CloudFormation. Use the AWS CloudFormation console or AWS CLI to delete the stack named Blog-Spark-ETL-Step-Functions.
Summary
In this post, I showed you how to use AWS Step Functions to orchestrate your Spark jobs that are running on Amazon EMR. You used Apache Livy to submit jobs to Spark from a Lambda function and created a workflow for your Spark jobs, maintaining a specific order for job execution and triggering different AWS events based on your job’s outcome. Go ahead—give this solution a try, and share your experience with us!
Tanzir Musabbir is an EMR Specialist Solutions Architect with AWS. He is an early adopter of open source Big Data technologies. At AWS, he works with our customers to provide them architectural guidance for running analytics solutions on Amazon EMR, Amazon Athena & AWS Glue. Tanzir is a big Real Madrid fan and he loves to travel in his free time.
When I talk with customers and partners, I find that they are in different stages in the adoption of DevOps methodologies. They are automating the creation of application artifacts and the deployment of their applications to different infrastructure environments. In many cases, they are creating and supporting multiple applications using a variety of coding languages and artifacts.
The management of these processes and artifacts can be challenging, but using the right tools and methodologies can simplify the process.
In this post, I will show you how you can automate the creation and storage of application artifacts through the implementation of a pipeline and custom deploy action in AWS CodePipeline. The example includes a Node.js code base stored in an AWS CodeCommit repository. A Node Package Manager (npm) artifact is built from the code base, and the build artifact is published to a JFrogArtifactory npm repository.
I frequently recommend AWS CodePipeline, the AWS continuous integration and continuous delivery tool. You can use it to quickly innovate through integration and deployment of new features and bug fixes by building a workflow that automates the build, test, and deployment of new versions of your application. And, because AWS CodePipeline is extensible, it allows you to create a custom action that performs customized, automated actions on your behalf.
JFrog’s Artifactory is a universal binary repository manager where you can manage multiple applications, their dependencies, and versions in one place. Artifactory also enables you to standardize the way you manage your package types across all applications developed in your company, no matter the code base or artifact type.
If you already have a Node.js CodeCommit repository, a JFrog Artifactory host, and would like to automate the creation of the pipeline, including the custom action and CodeBuild project, you can use this AWS CloudFormationtemplate to create your AWS CloudFormation stack.
This figure shows the path defined in the pipeline for this project. It starts with a change to Node.js source code committed to a private code repository in AWS CodeCommit. With this change, CodePipeline triggers AWS CodeBuild to create the npm package from the node.js source code. After the build, CodePipeline triggers the custom action job worker to commit the build artifact to the designated artifact repository in Artifactory.
This blog post assumes you have already:
· Created a CodeCommit repository that contains a Node.js project.
· Configured a two-stage pipeline in AWS CodePipeline.
The Source stage of the pipeline is configured to poll the Node.js CodeCommit repository. The Build stage is configured to use a CodeBuild project to build the npm package using a buildspec.yml file located in the code repository.
If you do not have a Node.js repository, you can create a CodeCommit repository that contains this simple ‘Hello World’ project. This project also includes a buildspec.yml file that is used when you define your CodeBuild project. It defines the steps to be taken by CodeBuild to create the npm artifact.
If you do not already have a pipeline set up in CodePipeline, you can use this template to create a pipeline with a CodeCommit source action and a CodeBuild build action through the AWS Command Line Interface (AWS CLI). If you do not want to install the AWS CLI on your local machine, you can use AWS Cloud9, our managed integrated development environment (IDE), to interact with AWS APIs.
In your development environment, open your favorite editor and fill out the template with values appropriate to your project. For information, see the readme in the GitHub repository.
Use this CLI command to create the pipeline from the template:
It creates a pipeline that has a CodeCommit source action and a CodeBuild build action.
Integrating JFrog Artifactory
JFrog Artifactory provides default repositories for your project needs. For my NPM package repository, I am using the default virtual npm repository (named npm) that is available in Artifactory Pro. You might want to consider creating a repository per project but for the example used in this post, using the default lets me get started without having to configure a new repository.
I can use the steps in the Set Me Up -> npm section on the landing page to configure my worker to interact with the default NPM repository.
Describes the required values to run the custom action. I will define my custom action in the ‘Deploy’ category, identify the provider as ‘Artifactory’, of version ‘1’, and specify a variety of configurationProperties whose values will be defined when this stage is added to my pipeline.
Polls CodePipeline for a job, scanning for its action-definition properties. In this blog post, after a job has been found, the job worker does the work required to publish the npm artifact to the Artifactory repository.
{
"category": "Deploy",
"configurationProperties": [{
"name": "TypeOfArtifact",
"required": true,
"key": true,
"secret": false,
"description": "Package type, ex. npm for node packages",
"type": "String"
},
{ "name": "RepoKey",
"required": true,
"key": true,
"secret": false,
"type": "String",
"description": "Name of the repository in which this artifact should be stored"
},
{ "name": "UserName",
"required": true,
"key": true,
"secret": false,
"type": "String",
"description": "Username for authenticating with the repository"
},
{ "name": "Password",
"required": true,
"key": true,
"secret": true,
"type": "String",
"description": "Password for authenticating with the repository"
},
{ "name": "EmailAddress",
"required": true,
"key": true,
"secret": false,
"type": "String",
"description": "Email address used to authenticate with the repository"
},
{ "name": "ArtifactoryHost",
"required": true,
"key": true,
"secret": false,
"type": "String",
"description": "Public address of Artifactory host, ex: https://myexamplehost.com or http://myexamplehost.com:8080"
}],
"provider": "Artifactory",
"version": "1",
"settings": {
"entityUrlTemplate": "{Config:ArtifactoryHost}/artifactory/webapp/#/artifacts/browse/tree/General/{Config:RepoKey}"
},
"inputArtifactDetails": {
"maximumCount": 5,
"minimumCount": 1
},
"outputArtifactDetails": {
"maximumCount": 5,
"minimumCount": 0
}
}
There are seven sections to the custom action definition:
category: This is the stage in which you will be creating this action. It can be Source, Build, Deploy, Test, Invoke, Approval. Except for source actions, the category section simply allows us to organize our actions. I am setting the category for my action as ‘Deploy’ because I’m using it to publish my node artifact to my Artifactory instance.
configurationProperties: These are the parameters or variables required for your project to authenticate and commit your artifact. In the case of my custom worker, I need:
TypeOfArtifact: In this case, npm, because it’s for the Node Package Manager.
RepoKey: The name of the repository. In this case, it’s the default npm.
UserName and Password for the user to authenticate with the Artifactory repository.
EmailAddress used to authenticate with the repository.
Artifactory host name or IP address.
provider: The name you define for your custom action stage. I have named the provider Artifactory.
version: Version number for the custom action. Because this is the first version, I set the version number to 1.
entityUrlTemplate: This URL is presented to your users for the deploy stage along with the title you define in your provider. The link takes the user to their artifact repository page in the Artifactory host.
inputArtifactDetails: The number of artifacts to expect from the previous stage in the pipeline.
outputArtifactDetails: The number of artifacts that should be the result from the custom action stage. Later in this blog post, I define 0 for my output artifacts because I am publishing the artifact to the Artifactory repository as the final action.
After I define the custom action in a JSON file, I use the AWS CLI to create the custom action type in CodePipeline:
After I create the custom action type in the same region as my pipeline, I edit the pipeline to add a Deploy stage and configure it to use the custom action I created for Artifactory:
I have created a custom worker for the actions required to commit the npm artifact to the Artifactory repository. The worker is in Python and it runs in a loop on an Amazon EC2 instance. My custom worker polls for a deploy job and publishes the NPM artifact to the Artifactory repository.
The EC2 instance is running Amazon Linux and has an IAM instance role attached that gives the worker permission to access CodePipeline. The worker process is as follows:
Take the configuration properties from the custom worker and poll CodePipeline for a custom action job.
After there is a job in the job queue with the appropriate category, provider, and version, acknowledge the job.
Download the zipped artifact created in the previous Build stage from the provided S3 buckets with the provided temporary credentials.
Unzip the artifact into a temporary directory.
A user-defined Artifactory user name and password is used to receive a temporary API key from Artifactory.
To avoid having to write the password to a file, use that temporary API key and user name to authenticate with the NPM repository.
Publish the Node.js package to the specified repository.
Because I am running my custom worker on an Amazon Linux EC2 instance, I installed npm with the following command:
sudo yum install nodejs npm --enablerepo=epel
For my custom worker, I used pip to install the required Python libraries:
pip install boto3 requests
For a full Python package list, see requirements.txt in the GitHub repository.
Let’s take a look at some of the code snippets from the worker.
First, the worker polls for jobs:
def action_type():
ActionType = {
'category': 'Deploy',
'owner': 'Custom',
'provider': 'Artifactory',
'version': '1' }
return(ActionType)
def poll_for_jobs():
try:
artifactory_action_type = action_type()
print(artifactory_action_type)
jobs = codepipeline.poll_for_jobs(actionTypeId=artifactory_action_type)
while not jobs['jobs']:
time.sleep(10)
jobs = codepipeline.poll_for_jobs(actionTypeId=artifactory_action_type)
if jobs['jobs']:
print('Job found')
return jobs['jobs'][0]
except ClientError as e:
print("Received an error: %s" % str(e))
raise
When there is a job in the queue, the poller returns a number of values from the queue such as jobId, the input and output S3 buckets for artifacts, temporary credentials to access the S3 buckets, and other configuration details from the stage in the pipeline.
After successfully receiving the job details, the worker sends an acknowledgement to CodePipeline to ensure that the work on the job is not duplicated by other workers watching for the same job:
def job_acknowledge(jobId, nonce):
try:
print('Acknowledging job')
result = codepipeline.acknowledge_job(jobId=jobId, nonce=nonce)
return result
except Exception as e:
print("Received an error when trying to acknowledge the job: %s" % str(e))
raise
With the job now acknowledged, the worker publishes the source code artifact into the desired repository. The worker gets the value of the artifact S3 bucket and objectKey from the inputArtifacts in the response from the poll_for_jobs API request. Next, the worker creates a new directory in /tmp and downloads the S3 object into this directory:
def get_bucket_location(bucketName, init_client):
region = init_client.get_bucket_location(Bucket=bucketName)['LocationConstraint']
if not region:
region = 'us-east-1'
return region
def get_s3_artifact(bucketName, objectKey, ak, sk, st):
init_s3 = boto3.client('s3')
region = get_bucket_location(bucketName, init_s3)
session = Session(aws_access_key_id=ak,
aws_secret_access_key=sk,
aws_session_token=st)
s3 = session.resource('s3',
region_name=region,
config=botocore.client.Config(signature_version='s3v4'))
try:
tempdirname = tempfile.mkdtemp()
except OSError as e:
print('Could not write temp directory %s' % tempdirname)
raise
bucket = s3.Bucket(bucketName)
obj = bucket.Object(objectKey)
filename = tempdirname + '/' + objectKey
try:
if os.path.dirname(objectKey):
directory = os.path.dirname(filename)
os.makedirs(directory)
print('Downloading the %s object and writing it to disk in %s location' % (objectKey, tempdirname))
with open(filename, 'wb') as data:
obj.download_fileobj(data)
except ClientError as e:
print('Downloading the object and writing the file to disk raised this error: ' + str(e))
raise
return(filename, tempdirname)
Because the downloaded artifact from S3 is a zip file, the worker must unzip it first. To have a clean area in which to work, I extract the downloaded zip archive into a new directory:
def unzip_codepipeline_artifact(artifact, origtmpdir):
# create a new temp directory
# Unzip artifact into new directory
try:
newtempdir = tempfile.mkdtemp()
print('Extracting artifact %s into temporary directory %s' % (artifact, newtempdir))
zip_ref = zipfile.ZipFile(artifact, 'r')
zip_ref.extractall(newtempdir)
zip_ref.close()
shutil.rmtree(origtmpdir)
return(os.listdir(newtempdir), newtempdir)
except OSError as e:
if e.errno != errno.EEXIST:
shutil.rmtree(newtempdir)
raise
The worker now has the npm package that I want to store in my Artifactory NPM repository.
To authenticate with the NPM repository, the worker requests a temporary token from the Artifactory host. After receiving this temporary token, it creates a .npmrc file in the worker user’s home directory that includes a hash of the user name and temporary token. After it has authenticated, the worker runs npm config set registry <URL OF REPOSITORY> to configure the npm registry value to be the Artifactory host. Next, the worker runs npm publish –registry <URL OF REPOSITORY>, which publishes the node package to the NPM repository in the Artifactory host.
def push_to_npm(configuration, artifact_list, temp_dir, jobId):
reponame = configuration['RepoKey']
art_type = configuration['TypeOfArtifact']
print("Putting artifact into NPM repository " + reponame)
token, hostname, username = gen_artifactory_auth_token(configuration)
npmconfigfile = create_npmconfig_file(configuration, username, token)
url = hostname + '/artifactory/api/' + art_type + '/' + reponame
print("Changing directory to " + str(temp_dir))
os.chdir(temp_dir)
try:
print("Publishing following files to the repository: %s " % os.listdir(temp_dir))
print("Sending artifact to Artifactory NPM registry URL: " + url)
subprocess.call(["npm", "config", "set", "registry", url])
req = subprocess.call(["npm", "publish", "--registry", url])
print("Return code from npm publish: " + str(req))
if req != 0:
err_msg = "npm ERR! Recieved non OK response while sending response to Artifactory. Return code from npm publish: " + str(req)
signal_failure(jobId, err_msg)
else:
signal_success(jobId)
except requests.exceptions.RequestException as e:
print("Received an error when trying to commit artifact %s to repository %s: " % (str(art_type), str(configuration['RepoKey']), str(e)))
raise
return(req, npmconfigfile)
If the return value from publishing to the repository is not 0, the worker signals a failure to CodePipeline. If the value is 0, the worker signals success to CodePipeline to indicate that the stage of the pipeline has been completed successfully.
For the custom worker code, see npm_job_worker.py in the GitHub repository.
I run my custom worker on an EC2 instance using the command python npm_job_worker.py, with an optional --version flag that can be used to specify worker versions other than 1. Then I trigger a release change in my pipeline:
From my custom worker output logs, I have just committed a package named node_example at version 1.0.3:
On artifact: index.js
Committing to the repo: https://artifactory.myexamplehost.com/artifactory/api/npm/npm
Sending artifact to Artifactory URL: https:// artifactoryhost.myexamplehost.com/artifactory/api/npm/npm
npm config: 0
npm http PUT https://artifactory.myexamplehost.com/artifactory/api/npm/npm/node_example
npm http 201 https://artifactory.myexamplehost.com/artifactory/api/npm/npm/node_example
+ [email protected]
Return code from npm publish: 0
Signaling success to CodePipeline
After that has been built successfully, I can find my artifact in my Artifactory repository:
To help you automate this process, I have created this AWS CloudFormation template that automates the creation of the CodeBuild project, the custom action, and the CodePipeline pipeline. It also launches the Amazon EC2-based custom job worker in an AWS Auto Scaling group. This template requires you to have a VPC and CodeCommit repository for your Node.js project. If you do not currently have a VPC in which you want to run your custom worker EC2 instances, you can use this AWS QuickStart to create one. If you do not have an existing Node.js project, I’ve provided a sample project in the GitHub repository.
Conclusion
I‘ve shown you the steps to integrate your JFrog Artifactory repository with your CodePipeline workflow. I’ve shown you how to create a custom action in CodePipeline and how to create a custom worker that works in your CI/CD pipeline. To dig deeper into custom actions and see how you can integrate your Artifactory repositories into your AWS CodePipeline projects, check out the full code base on GitHub.
If you have any questions or feedback, feel free to reach out to us through the AWS CodePipeline forum.
Erin McGill is a Solutions Architect in the AWS Partner Program with a focus on DevOps and automation tooling.
Classic Bond villain, Elon Musk, has a new plan to create a website dedicated to measuring the credibility and adherence to “core truth” of journalists. He is, without any sense of irony, going to call this “Pravda”. This is not simply wrong but evil.
Musk has a point. Journalists do suck, and many suck consistently. I see this in my own industry, cybersecurity, and I frequently criticize them for their suckage.
But what he’s doing here is not correcting them when they make mistakes (or what Musk sees as mistakes), but questioning their legitimacy. This legitimacy isn’t measured by whether they follow established journalism ethics, but whether their “core truths” agree with Musk’s “core truths”.
An example of the problem is how the press fixates on Tesla car crashes due to its “autopilot” feature. Pretty much every autopilot crash makes national headlines, while the press ignores the other 40,000 car crashes that happen in the United States each year. Musk spies on Tesla drivers (hello, classic Bond villain everyone) so he can see the dip in autopilot usage every time such a news story breaks. He’s got good reason to be concerned about this.
He argues that autopilot is safer than humans driving, and he’s got the statistics and government studies to back this up. Therefore, the press’s fixation on Tesla crashes is illegitimate “fake news”, titillating the audience with distorted truth.
But here’s the thing: that’s still only Musk’s version of the truth. Yes, on a mile-per-mile basis, autopilot is safer, but there’s nuance here. Autopilot is used primarily on freeways, which already have a low mile-per-mile accident rate. People choose autopilot only when conditions are incredibly safe and drivers are unlikely to have an accident anyway. Musk is therefore being intentionally deceptive comparing apples to oranges. Autopilot may still be safer, it’s just that the numbers Musk uses don’t demonstrate this.
And then there is the truth calling it “autopilot” to begin with, because it isn’t. The public is overrating the capabilities of the feature. It’s little different than “lane keeping” and “adaptive cruise control” you can now find in other cars. In many ways, the technology is behind — my Tesla doesn’t beep at me when a pedestrian walks behind my car while backing up, but virtually every new car on the market does.
Yes, the press unduly covers Tesla autopilot crashes, but Musk has only himself to blame by unduly exaggerating his car’s capabilities by calling it “autopilot”.
What’s “core truth” is thus rather difficult to obtain. What the press satisfies itself with instead is smaller truths, what they can document. The facts are in such cases that the accident happened, and they try to get Tesla or Musk to comment on it.
What you can criticize a journalist for is therefore not “core truth” but whether they did journalism correctly. When such stories criticize “autopilot”, but don’t do their diligence in getting Tesla’s side of the story, then that’s a violation of journalistic practice. When I criticize journalists for their poor handling of stories in my industry, I try to focus on which journalistic principles they get wrong. For example, the NYTimes reporters do a lot of stories quoting anonymous government sources in clear violation of journalistic principles.
If “credibility” is the concern, then it’s the classic Bond villain here that’s the problem: Musk himself. His track record on business statements is abysmal. For example, when he announced the Model 3 he claimed production targets that every Wall Street analyst claimed were absurd. He didn’t make those targets, he didn’t come close. Model 3 production is still lagging behind Musk’s twice adjusted targets.
So who has a credibility gap here, the press, or Musk himself?
Not only is Musk’s credibility problem ironic, so is the name he chose, “Pravada”, the Russian word for truth that was the name of the Soviet Union Communist Party’s official newspaper. This is so absurd this has to be a joke, yet Musk claims to be serious about all this.
Yes, the press has a lot of problems, and if Musk were some journalism professor concerned about journalists meeting the objective standards of their industry (e.g. abusing anonymous sources), then this would be a fine thing. But it’s not. It’s Musk who is upset the press’s version of “core truth” does not agree with his version — a version that he’s proven time and time again differs from “real truth”.
Just in case Musk is serious, I’ve already registered “www.antipravda.com” to start measuring the credibility of statements by billionaire playboy CEOs. Let’s see who blinks first.
I stole the title, with permission, from this tweet:
Earlier this year on 3 and 4 March, communities around the world held Raspberry Jam events to celebrate Raspberry Pi’s sixth birthday. We sent out special birthday kits to participating Jams — it was amazing to know the kits would end up in the hands of people in parts of the world very far from Raspberry Pi HQ in Cambridge, UK.
The Raspberry Jam Camer team: Damien Doumer, Eyong Etta, Loïc Dessap and Lionel Sichom, aka Lionel Tellem
Preparing for the #PiParty
One birthday kit went to Yaoundé, the capital of Cameroon. There, a team of four students in their twenties — Lionel Sichom (aka Lionel Tellem), Eyong Etta, Loïc Dessap, and Damien Doumer — were organising Yaoundé’s first Jam, called Raspberry Jam Camer, as part of the Raspberry Jam Big Birthday Weekend. The team knew one another through their shared interests and skills in electronics, robotics, and programming. Damien explains in his blog post about the Jam that they planned ahead for several activities for the Jam based on their own projects, so they could be confident of having a few things that would definitely be successful for attendees to do and see.
Show-and-tell at Raspberry Jam Cameroon
Loïc presented a Raspberry Pi–based, Android app–controlled robot arm that he had built, and Lionel coded a small video game using Scratch on Raspberry Pi while the audience watched. Damien demonstrated the possibilities of Windows 10 IoT Core on Raspberry Pi, showing how to install it, how to use it remotely, and what you can do with it, including building a simple application.
Loïc showcases the prototype robot arm he built
There was lots more too, with others discussing their own Pi projects and talking about the possibilities Raspberry Pi offers, including a Pi-controlled drone and car. Cake was a prevailing theme of the Raspberry Jam Big Birthday Weekend around the world, and Raspberry Jam Camer made sure they didn’t miss out.
Yay, birthday cake!!
A big success
Most visitors to the Jam were secondary school students, while others were university students and graduates. The majority were unfamiliar with Raspberry Pi, but all wanted to learn about Raspberry Pi and what they could do with it. Damien comments that the fact most people were new to Raspberry Pi made the event more interactive rather than creating any challenges, because the visitors were all interested in finding out about the little computer. The Jam was an all-round success, and the team was pleased with how it went:
What I liked the most was that we sensitized several people about the Raspberry Pi and what one can be capable of with such a small but powerful device. — Damien Doumer
The Jam team rounded off the event by announcing that this was the start of a Raspberry Pi community in Yaoundé. They hope that they and others will be able to organise more Jams and similar events in the area to spread the word about what people can do with Raspberry Pi, and to help them realise their ideas.
Raspberry Jam Camer gets the thumbs-up
The Raspberry Pi community in Cameroon
In a French-language interview about their Jam, the team behind Raspberry Jam Camer said they’d like programming to become the third official language of Cameroon, after French and English; their aim is to to popularise programming and digital making across Cameroonian society. Neither of these fields is very familiar to most people in Cameroon, but both are very well aligned with the country’s ambitions for development. The team is conscious of the difficulties around the emergence of information and communication technologies in the Cameroonian context; in response, they are seizing the opportunities Raspberry Pi offers to give children and young people access to modern and constantly evolving technology at low cost.
Thanks to Lionel, Eyong, Damien, and Loïc, and to everyone who helped put on a Jam for the Big Birthday Weekend! Remember, anyone can start a Jam at any time — and we provide plenty of resources to get you started. Check out the Guidebook, the Jam branding pack, our specially-made Jam activities online (in multiplelanguages), printable worksheets, and more.
Naturebytes are making their weatherproof Wildlife Cam Case available as a standalone product for the first time, a welcome addition to the Raspberry Pi ecosystem that should take some of the hassle out of your outdoor builds.
Weatherproofing digital making projects
People often use Raspberry Pis and Camera Modules for outdoorprojects, but weatherproofing your set-up can be tricky. You need to keep water — and tiny creatures — out, but you might well need access for wires and cables, whether for power or sensors; if you’re using a camera, it’ll need something clear and cleanable in front of the lens. You can use sealant, but if you need to adjust anything that you’ve applied it to, you’ll have to remove it and redo it. While we’ve seen a few reasonable options available to buy, the choice has never been what you’d call extensive.
The Wildlife Cam Case is ideal for nature camera projects, of course, but it’ll also be useful for anyone who wants to take their Pi outdoors. It has weatherproof lenses that are transparent to visible and IR light, for all your nature observation projects. Its opening is hinged to allow easy access to your hardware, and the case has waterproof access for cables. Inside, there’s a mount for fixing any model of Raspberry Pi and camera, as well as many other components. On top of all that, the case comes with a sturdy nylon strap to make it easy to attach it to a post or a tree.
Order yours now!
At the moment, Naturebytes are producing a limited run of the cases. The first batch of 50 are due to be dispatched next week to arrive just in time for the Bank Holiday weekend in the UK, so get them while they’re hot. It’s the perfect thing for recording a timelapse of exactly how quickly the slugs obliterate your vegetable seedlings, and of lots more heartening things that must surely happen in gardens other than mine.
As you can see from my EC2 Instance History post, we add new instance types on a regular and frequent basis. Driven by increasingly powerful processors and designed to address an ever-widening set of use cases, the size and diversity of this list reflects the equally diverse group of EC2 customers!
Near the bottom of that list you will find the new compute-intensive C5 instances. With a 25% to 50% improvement in price-performance over the C4 instances, the C5 instances are designed for applications like batch and log processing, distributed and or real-time analytics, high-performance computing (HPC), ad serving, highly scalable multiplayer gaming, and video encoding. Some of these applications can benefit from access to high-speed, ultra-low latency local storage. For example, video encoding, image manipulation, and other forms of media processing often necessitates large amounts of I/O to temporary storage. While the input and output files are valuable assets and are typically stored as Amazon Simple Storage Service (S3) objects, the intermediate files are expendable. Similarly, batch and log processing runs in a race-to-idle model, flushing volatile data to disk as fast as possible in order to make full use of compute resources.
New C5d Instances with Local Storage In order to meet this need, we are introducing C5 instances equipped with local NVMe storage. Available for immediate use in 5 regions, these instances are a great fit for the applications that I described above, as well as others that you will undoubtedly dream up! Here are the specs:
Instance Name
vCPUs
RAM
Local Storage
EBS Bandwidth
Network Bandwidth
c5d.large
2
4 GiB
1 x 50 GB NVMe SSD
Up to 2.25 Gbps
Up to 10 Gbps
c5d.xlarge
4
8 GiB
1 x 100 GB NVMe SSD
Up to 2.25 Gbps
Up to 10 Gbps
c5d.2xlarge
8
16 GiB
1 x 225 GB NVMe SSD
Up to 2.25 Gbps
Up to 10 Gbps
c5d.4xlarge
16
32 GiB
1 x 450 GB NVMe SSD
2.25 Gbps
Up to 10 Gbps
c5d.9xlarge
36
72 GiB
1 x 900 GB NVMe SSD
4.5 Gbps
10 Gbps
c5d.18xlarge
72
144 GiB
2 x 900 GB NVMe SSD
9 Gbps
25 Gbps
Other than the addition of local storage, the C5 and C5d share the same specs. Both are powered by 3.0 GHz Intel Xeon Platinum 8000-series processors, optimized for EC2 and with full control over C-states on the two largest sizes, giving you the ability to run two cores at up to 3.5 GHz using Intel Turbo Boost Technology.
You can use any AMI that includes drivers for the Elastic Network Adapter (ENA) and NVMe; this includes the latest Amazon Linux, Microsoft Windows (Server 2008 R2, Server 2012, Server 2012 R2 and Server 2016), Ubuntu, RHEL, SUSE, and CentOS AMIs.
Here are a couple of things to keep in mind about the local NVMe storage:
Naming – You don’t have to specify a block device mapping in your AMI or during the instance launch; the local storage will show up as one or more devices (/dev/nvme*1 on Linux) after the guest operating system has booted.
Encryption – Each local NVMe device is hardware encrypted using the XTS-AES-256 block cipher and a unique key. Each key is destroyed when the instance is stopped or terminated.
Lifetime – Local NVMe devices have the same lifetime as the instance they are attached to, and do not stick around after the instance has been stopped or terminated.
Available Now C5d instances are available in On-Demand, Reserved Instance, and Spot form in the US East (N. Virginia), US West (Oregon), EU (Ireland), US East (Ohio), and Canada (Central) Regions. Prices vary by Region, and are just a bit higher than for the equivalent C5 instances.
I’m happy to announce that Sumerian is now generally available. You can create realistic virtual environments and scenes without having to acquire or master specialized tools for 3D modeling, animation, lighting, audio editing, or programming. Once built, you can deploy your finished creation across multiple platforms without having to write custom code or deal with specialized deployment systems and processes.
Sumerian gives you a web-based editor that you can use to quickly and easily create realistic, professional-quality scenes. There’s a visual scripting tool that lets you build logic to control how objects and characters (Sumerian Hosts) respond to user actions. Sumerian also lets you create rich, natural interactions powered by AWS services such as Amazon Lex, Polly, AWS Lambda, AWS IoT, and Amazon DynamoDB.
Sumerian was designed to work on multiple platforms. The VR and AR apps that you create in Sumerian will run in browsers that supports WebGL or WebVR and on popular devices such as the Oculus Rift, HTC Vive, and those powered by iOS or Android.
During the preview period, we have been working with a broad spectrum of customers to put Sumerian to the test and to create proof of concept (PoC) projects designed to highlight an equally broad spectrum of use cases, including employee education, training simulations, field service productivity, virtual concierge, design and creative, and brand engagement. Fidelity Labs (the internal R&D unit of Fidelity Investments), was the first to use a Sumerian host to create an engaging VR experience. Cora (the host) lives within a virtual chart room. She can display stock quotes, pull up company charts, and answer questions about a company’s performance. This PoC uses Amazon Polly to implement text to speech and Amazon Lex for conversational chatbot functionality. Read their blog post and watch the video inside to see Cora in action:
Now that Sumerian is generally available, you have the power to create engaging AR, VR, and 3D experiences of your own. To learn more, visit the Amazon Sumerian home page and then spend some quality time with our extensive collection of Sumerian Tutorials.
The EU’s General Data Protection Regulation (GDPR) describes data processor and data controller roles, and some customers and AWS Partner Network (APN) partners are asking how this affects the long-established AWS Shared Responsibility Model. I wanted to take some time to help folks understand shared responsibilities for us and for our customers in context of the GDPR.
How does the AWS Shared Responsibility Model change under GDPR? The short answer – it doesn’t. AWS is responsible for securing the underlying infrastructure that supports the cloud and the services provided; while customers and APN partners, acting either as data controllers or data processors, are responsible for any personal data they put in the cloud. The shared responsibility model illustrates the various responsibilities of AWS and our customers and APN partners, and the same separation of responsibility applies under the GDPR.
AWS responsibilities as a data processor
The GDPR does introduce specific regulation and responsibilities regarding data controllers and processors. When any AWS customer uses our services to process personal data, the controller is usually the AWS customer (and sometimes it is the AWS customer’s customer). However, in all of these cases, AWS is always the data processor in relation to this activity. This is because the customer is directing the processing of data through its interaction with the AWS service controls, and AWS is only executing customer directions. As a data processor, AWS is responsible for protecting the global infrastructure that runs all of our services. Controllers using AWS maintain control over data hosted on this infrastructure, including the security configuration controls for handling end-user content and personal data. Protecting this infrastructure, is our number one priority, and we invest heavily in third-party auditors to test our security controls and make any issues they find available to our customer base through AWS Artifact. Our ISO 27018 report is a good example, as it tests security controls that focus on protection of personal data in particular.
AWS has an increased responsibility for our managed services. Examples of managed services include Amazon DynamoDB, Amazon RDS, Amazon Redshift, Amazon Elastic MapReduce, and Amazon WorkSpaces. These services provide the scalability and flexibility of cloud-based resources with less operational overhead because we handle basic security tasks like guest operating system (OS) and database patching, firewall configuration, and disaster recovery. For most managed services, you only configure logical access controls and protect account credentials, while maintaining control and responsibility of any personal data.
Customer and APN partner responsibilities as data controllers — and how AWS Services can help
Our customers can act as data controllers or data processors within their AWS environment. As a data controller, the services you use may determine how you configure those services to help meet your GDPR compliance needs. For example, AWS Services that are classified as Infrastructure as a Service (IaaS), such as Amazon EC2, Amazon VPC, and Amazon S3, are under your control and require you to perform all routine security configuration and management that would be necessary no matter where the servers were located. With Amazon EC2 instances, you are responsible for managing: guest OS (including updates and security patches), application software or utilities installed on the instances, and the configuration of the AWS-provided firewall (called a security group).
To help you realize data protection by design principles under the GDPR when using our infrastructure, we recommend you protect AWS account credentials and set up individual user accounts with Amazon Identity and Access Management (IAM) so that each user is only given the permissions necessary to fulfill their job duties. We also recommend using multi-factor authentication (MFA) with each account, requiring the use of SSL/TLS to communicate with AWS resources, setting up API/user activity logging with AWS CloudTrail, and using AWS encryption solutions, along with all default security controls within AWS Services. You can also use advanced managed security services, such as Amazon Macie, which assists in discovering and securing personal data stored in Amazon S3.
For more information, you can download the AWS Security Best Practices whitepaper or visit the AWS Security Resources or GDPR Center webpages. In addition to our solutions and services, AWS APN partners can provide hundreds of tools and features to help you meet your security objectives, ranging from network security and configuration management to access control and data encryption.
I’ve been busy trying to replicate the “eFail” PGP/SMIME bug. I thought I’d write up some notes.
PGP and S/MIME encrypt emails, so that eavesdroppers can’t read them. The bugs potentially allow eavesdroppers to take the encrypted emails they’ve captured and resend them to you, reformatted in a way that allows them to decrypt the messages.
Disable remote/external content in email
The most important defense is to disable “external” or “remote” content from being automatically loaded. This is when HTML-formatted emails attempt to load images from remote websites. This happens legitimately when they want to display images, but not fill up the email with them. But most of the time this is illegitimate, they hide images on the webpage in order to track you with unique IDs and cookies. For example, this is the code at the end of an email from politician Bernie Sanders to his supporters. Notice the long random number assigned to track me, and the width/height of this image is set to one pixel, so you don’t even see it:
Such trackers are so pernicious they are disabled by default in most email clients. This is an example of the settings in Thunderbird:
The problem is that as you read email messages, you often get frustrated by the fact the error messages and missing content, so you keep adding exceptions:
The correct defense against this eFail bug is to make sure such remote content is disabled and that you have no exceptions, or at least, no HTTP exceptions. HTTPS exceptions (those using SSL) are okay as long as they aren’t to a website the attacker controls. Unencrypted exceptions, though, the hacker can eavesdrop on, so it doesn’t matter if they control the website the requests go to. If the attacker can eavesdrop on your emails, they can probably eavesdrop on your HTTP sessions as well.
Some have recommended disabling PGP and S/MIME completely. That’s probably overkill. As long as the attacker can’t use the “remote content” in emails, you are fine. Likewise, some have recommend disabling HTML completely. That’s not even an option in any email client I’ve used — you can disable sending HTML emails, but not receiving them. It’s sufficient to just disable grabbing remote content, not the rest of HTML email rendering.
I couldn’t replicate the direct exfiltration
There rare two related bugs. One allows direct exfiltration, which appends the decrypted PGP email onto the end of an IMG tag (like one of those tracking tags), allowing the entire message to be decrypted.
An example of this is the following email. This is a standard HTML email message consisting of multiple parts. The trick is that the IMG tag in the first part starts the URL (blog.robertgraham.com/…) but doesn’t end it. It has the starting quotes in front of the URL but no ending quotes. The ending will in the next chunk.
The next chunk isn’t HTML, though, it’s PGP. The PGP extension (in my case, Enignmail) will detect this and automatically decrypt it. In this case, it’s some previous email message I’ve received the attacker captured by eavesdropping, who then pastes the contents into this email message in order to get it decrypted.
What should happen at this point is that Thunderbird will generate a request (if “remote content” is enabled) to the blog.robertgraham.com server with the decrypted contents of the PGP email appended to it. But that’s not what happens. Instead, I get this:
I am indeed getting weird stuff in the URL (the bit after the GET /), but it’s not the PGP decrypted message. Instead what’s going on is that when Thunderbird puts together a “multipart/mixed” message, it adds it’s own HTML tags consisting of lines between each part. In the email client it looks like this:
The HTML code it adds looks like:
That’s what you see in the above URL, all this code up to the first quotes. Those quotes terminate the quotes in the URL from the first multipart section, causing the rest of the content to be ignored (as far as being sent as part of the URL).
So at least for the latest version of Thunderbird, you are accidentally safe, even if you have “remote content” enabled. Though, this is only according to my tests, there may be a work around to this that hackers could exploit.
STARTTLS
In the old days, email was sent plaintext over the wire so that it could be passively eavesdropped on. Nowadays, most providers send it via “STARTTLS”, which sorta encrypts it. Attackers can still intercept such email, but they have to do so actively, using man-in-the-middle. Such active techniques can be detected if you are careful and look for them.
Some organizations don’t care. Apparently, some nation states are just blocking all STARTTLS and forcing email to be sent unencrypted. Others do care. The NSA will passively sniff all the email they can in nations like Iraq, but they won’t actively intercept STARTTLS messages, for fear of getting caught.
The consequence is that it’s much less likely that somebody has been eavesdropping on you, passively grabbing all your PGP/SMIME emails. If you fear they have been, you should look (e.g. send emails from GMail and see if they are intercepted by sniffing the wire).
You’ll know if you are getting hacked
If somebody attacks you using eFail, you’ll know. You’ll get an email message formatted this way, with multipart/mixed components, some with corrupt HTML, some encrypted via PGP. This means that for the most part, your risk is that you’ll be attacked only once — the hacker will only be able to get one message through and decrypt it before you notice that something is amiss. Though to be fair, they can probably include all the emails they want decrypted as attachments to the single email they sent you, so the risk isn’t necessarily that you’ll only get one decrypted.
As mentioned above, a lot of attackers (e.g. the NSA) won’t attack you if its so easy to get caught. Other attackers, though, like anonymous hackers, don’t care.
Somebody ought to write a plugin to Thunderbird to detect this.
Summary
It only works if attackers have already captured your emails (though, that’s why you use PGP/SMIME in the first place, to guard against that).
It only works if you’ve enabled your email client to automatically grab external/remote content.
It seems to not be easily reproducible in all cases.
Instead of disabling PGP/SMIME, you should make sure your email client hast remote/external content disabled — that’s a huge privacy violation even without this bug.
Notes: The default email client on the Mac enables remote content by default, which is bad:
If you’ve used Amazon CloudWatch Events to schedule the invocation of a Lambda function at regular intervals, you may have noticed that the highest frequency possible is one invocation per minute. However, in some cases, you may need to invoke Lambda more often than that. In this blog post, I’ll cover invoking a Lambda function every 10 seconds, but with some simple math you can change to whatever interval you like.
To achieve this, I’ll show you how to leverage Step Functions and Amazon Kinesis Data Streams.
The Solution
For this example, I’ve created a Step Functions State Machine that invokes our Lambda function 6 times, 10 seconds apart. Such State Machine is then executed once per minute by a CloudWatch Events Rule. This state machine is then executed once per minute by an Amazon CloudWatch Events rule. Finally, the Kinesis Data Stream triggers our Lambda function for each record inserted. The result is our Lambda function being invoked every 10 seconds, indefinitely.
Below is a diagram illustrating how the various services work together.
Step 1: My sampleLambda function doesn’t actually do anything, it just simulates an execution for a few seconds. This is the (Python) code of my dummy function:
import time
import random
def lambda_handler(event, context):
rand = random.randint(1, 3)
print('Running for {} seconds'.format(rand))
time.sleep(rand)
return True
Step 2:
The next step is to create a second Lambda function, that I called Iterator, which has two duties:
It keeps track of the current number of iterations, since Step Function doesn’t natively have a state we can use for this purpose.
It asynchronously invokes our Lambda function at every loops.
This is the code of the Iterator, adapted from here.
The state machine starts and sets the index at 0 and the count at 6.
Iterator function is invoked.
If the iterator function reached the end of the loop, the IsCountReached state terminates the execution, otherwise the machine waits for 10 seconds.
The machine loops back to the iterator.
Step 3: Create an Amazon CloudWatch Events rule scheduled to trigger every minute and add the state machine as its target. I’ve actually prepared an Amazon CloudFormation template that creates the whole stack and starts the Lambda invocations, you can find it here.
Performance
Let’s have a look at a sample series of invocations and analyse how precise the timing is. In the following chart I reported the delay (in excess of the expected 10-second-wait) of 30 consecutive invocations of my dummy function, when the Iterator is configured with a memory size of 1024MB.
Invocations Delay
Notice the delay increases by a few hundred milliseconds at every invocation. The good news is it accrues only within the same loop, 6 times; after that, a new CloudWatch Events kicks in and it resets.
This delay is due to the work that AWS Step Function does outside of the Wait state, the main component of which is the Iterator function itself, that runs synchronously in the state machine and therefore adds up its duration to the 10-second-wait.
As we can easily imagine, the memory size of the Iterator Lambda function does make a difference. Here are the Average and Maximum duration of the function with 256MB, 512MB, 1GB and 2GB of memory.
Average Duration
Maximum Duration
Given those results, I’d say that a memory of 1024MB is a good compromise between costs and performance.
Caveats
As mentioned, in our Amazon CloudWatch Events documentation, in rare cases a rule can be triggered twice, causing two parallel executions of the state machine. If that is a concern, we can add a task state at the beginning of the state machine that checks if any other executions are currently running. If the outcome is positive, then a choice state can immediately terminate the flow. Since the state machine is invoked every 60 seconds and runs for about 50, it is safe to assume that executions should all be sequential and any parallel executions should be treated as duplicates. The task state that checks for current running executions can be a Lambda function similar to the following:
AWS Glue is a fully managed extract, transform, and load (ETL) service that makes it easier to prepare and load your data for analytics. You can create and run an ETL job with a few clicks on the AWS Management Console. Just point AWS Glue to your data store. AWS Glue discovers your data and stores the associated metadata (for example, a table definition and schema) in the AWS Glue Data Catalog.
AWS Glue has native connectors to data sources using JDBC drivers, either on AWS or elsewhere, as long as there is IP connectivity. In this post, we demonstrate how to connect to data sources that are not natively supported in AWS Glue today. We walk through connecting to and running ETL jobs against two such data sources, IBM DB2 and SAP Sybase. However, you can use the same process with any other JDBC-accessible database.
AWS Glue data sources
AWS Glue natively supports the following data stores by using the JDBC protocol:
One of the fastest growing architectures deployed on AWS is the data lake. The ETL processes that are used to ingest, clean, transform, and structure data are critically important for this architecture. Having the flexibility to interoperate with a broader range of database engines allows for a quicker adoption of the data lake architecture.
For data sources that AWS Glue doesn’t natively support, such as IBM DB2, Pivotal Greenplum, SAP Sybase, or any other relational database management system (RDBMS), you can import custom database connectors from Amazon S3 into AWS Glue jobs. In this case, the connection to the data source must be made from the AWS Glue script to extract the data, rather than using AWS Glue connections. To learn more, see Providing Your Own Custom Scripts in the AWS Glue Developer Guide.
Setting up an ETL job for an IBM DB2 data source
The first example demonstrates how to connect the AWS Glue ETL job to an IBM DB2 instance, transform the data from the source, and store it in Apache Parquet format in Amazon S3. To successfully create the ETL job using an external JDBC driver, you must define the following:
The S3 location of the job script
The S3 location of the temporary directory
The S3 location of the JDBC driver
The S3 location of the Parquet data (output)
The IAM role for the job
By default, AWS Glue suggests bucket names for the scripts and the temporary directory using the following format:
Keep in mind that having the AWS Glue job and S3 buckets in the same AWS Region helps save on cross-Region data transfer fees. For this post, we will work in the US East (Ohio) Region (us-east-2).
Creating the IAM role
The next step is to set up the IAM role that the ETL job will use:
Sign in to the AWS Management Console, and search for IAM:
On the IAM console, choose Roles in the left navigation pane.
Choose Create role. The role type of trusted entity must be an AWS service, specifically AWS Glue.
Choose Next: Permissions.
Search for the AWSGlueServiceRole policy, and select it.
Search again, now for the SecretsManagerReadWrite This policy allows the AWS Glue job to access database credentials that are stored in AWS Secrets Manager.
CAUTION: This policy is open and is being used for testing purposes only. You should create a custom policy to narrow the access just to the secrets that you want to use in the ETL job.
Select this policy, and choose Next: Review.
Give your role a name, for example, GluePermissions, and confirm that both policies were selected.
Choose Create role.
Now that you have created the IAM role, it’s time to upload the JDBC driver to the defined location in Amazon S3. For this example, we will use the DB2 driver, which is available on the IBM Support site.
Storing database credentials
It is a best practice to store database credentials in a safe store. In this case, we use AWS Secrets Manager to securely store credentials. Follow these steps to create those credentials:
Open the console, and search for Secrets Manager.
In the AWS Secrets Manager console, choose Store a new secret.
Under Select a secret type, choose Other type of secrets.
In the Secret key/value, set one row for each of the following parameters:
db_username
db_password
db_url (for example, jdbc:db2://10.10.12.12:50000/SAMPLE)
db_table
driver_name (ibm.db2.jcc.DB2Driver)
output_bucket: (for example, aws-glue-data-output-1234567890-us-east-2/User)
Choose Next.
For Secret name, use DB2_Database_Connection_Info.
Choose Next.
Keep the Disable automatic rotation check box selected.
Choose Next.
Choose Store.
Adding a job in AWS Glue
The next step is to author the AWS Glue job, following these steps:
In the AWS Management Console, search for AWS Glue.
In the navigation pane on the left, choose Jobs under the ETL
Choose Add job.
Fill in the basic Job properties:
Give the job a name (for example, db2-job).
Choose the IAM role that you created previously (GluePermissions).
For This job runs, choose A new script to be authored by you.
For ETL language, choose Python.
In the Script libraries and job parameters section, choose the location of your JDBC driver for Dependent jars path.
Choose Next.
On the Connections page, choose Next
On the summary page, choose Save job and edit script. This creates the job and opens the script editor.
In the editor, replace the existing code with the following script. Important: Line 47 of the script corresponds to the mapping of the fields in the source table to the destination, dropping of the null fields to save space in the Parquet destination, and finally writing to Amazon S3 in Parquet format.
Choose the black X on the right side of the screen to close the editor.
Running the ETL job
Now that you have created the job, the next step is to execute it as follows:
On the Jobs page, select your new job. On the Action menu, choose Run job, and confirm that you want to run the job. Wait a few moments as it finishes the execution.
After the job shows as Succeeded, choose Logs to read the output of the job.
In the output of the job, you will find the result of executing the df.printSchema() and the message with the df.count().
Also, if you go to your output bucket in S3, you will find the Parquet result of the ETL job.
Using AWS Glue, you have created an ETL job that connects to an existing database using an external JDBC driver. It enables you to execute any transformation that you need.
Setting up an ETL job for an SAP Sybase data source
In this section, we describe how to create an AWS Glue ETL job against an SAP Sybase data source. The process mentioned in the previous section works for a Sybase data source with a few changes required in the job:
While creating the job, choose the correct jar for the JDBC dependency.
In the script, change the reference to the secret to be used from AWS Secrets Manager:
After you successfully execute the new ETL job, the output contains the same type of information that was generated with the DB2 data source.
Note that each of these JDBC drivers has its own nuances and different licensing terms that you should be aware of before using them.
Maximizing JDBC read parallelism
Something to keep in mind while working with big data sources is the memory consumption. In some cases, “Out of Memory” errors are generated when all the data is read into a single executor. One approach to optimize this is to rely on the parallelism on read that you can implement with Apache Spark and AWS Glue. To learn more, see the Apache Spark SQL module.
You can use the following options:
partitionColumn: The name of an integer column that is used for partitioning.
lowerBound: The minimum value of partitionColumn that is used to decide partition stride.
upperBound: The maximum value of partitionColumn that is used to decide partition stride.
numPartitions: The number of partitions. This, along with lowerBound (inclusive) and upperBound (exclusive), form partition strides for generated WHERE clause expressions used to split the partitionColumn When unset, this defaults to SparkContext.defaultParallelism.
Those options specify the parallelism of the table read. lowerBound and upperBound decide the partition stride, but they don’t filter the rows in the table. Therefore, Spark partitions and returns all rows in the table. For example:
It’s important to be careful with the number of partitions because too many partitions could also result in Spark crashing your external database systems.
Conclusion
Using the process described in this post, you can connect to and run AWS Glue ETL jobs against any data source that can be reached using a JDBC driver. This includes new generations of common analytical databases like Greenplum and others.
You can improve the query efficiency of these datasets by using partitioning and pushdown predicates. For more information, see Managing Partitions for ETL Output in AWS Glue. This technique opens the door to moving data and feeding data lakes in hybrid environments.
Kapil Shardha is a Technical Account Manager and supports enterprise customers with their AWS adoption. He has background in infrastructure automation and DevOps.
William Torrealba is an AWS Solutions Architect supporting customers with their AWS adoption. He has background in Application Development, High Available Distributed Systems, Automation, and DevOps.
The collective thoughts of the interwebz
By continuing to use the site, you agree to the use of cookies. more information
The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.