Tag Archives: CERN

Friday Squid Blogging: Do Cephalopods Contain Alien DNA?

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2018/06/friday_squid_bl_627.html

Maybe not DNA, but biological somethings.

Cause of Cambrian explosion — Terrestrial or Cosmic?“:

Abstract: We review the salient evidence consistent with or predicted by the Hoyle-Wickramasinghe (H-W) thesis of Cometary (Cosmic) Biology. Much of this physical and biological evidence is multifactorial. One particular focus are the recent studies which date the emergence of the complex retroviruses of vertebrate lines at or just before the Cambrian Explosion of ~500 Ma. Such viruses are known to be plausibly associated with major evolutionary genomic processes. We believe this coincidence is not fortuitous but is consistent with a key prediction of H-W theory whereby major extinction-diversification evolutionary boundaries coincide with virus-bearing cometary-bolide bombardment events. A second focus is the remarkable evolution of intelligent complexity (Cephalopods) culminating in the emergence of the Octopus. A third focus concerns the micro-organism fossil evidence contained within meteorites as well as the detection in the upper atmosphere of apparent incoming life-bearing particles from space. In our view the totality of the multifactorial data and critical analyses assembled by Fred Hoyle, Chandra Wickramasinghe and their many colleagues since the 1960s leads to a very plausible conclusion — life may have been seeded here on Earth by life-bearing comets as soon as conditions on Earth allowed it to flourish (about or just before 4.1 Billion years ago); and living organisms such as space-resistant and space-hardy bacteria, viruses, more complex eukaryotic cells, fertilised ova and seeds have been continuously delivered ever since to Earth so being one important driver of further terrestrial evolution which has resulted in considerable genetic diversity and which has led to the emergence of mankind.

Two commentaries.

This is almost certainly not true.

As usual, you can also use this squid post to talk about the security stories in the news that I haven’t covered.

Read my blog posting guidelines here.

timeShift(GrafanaBuzz, 1w) Issue 47

Post Syndicated from Blogs on Grafana Labs Blog original https://grafana.com/blog/2018/06/01/timeshiftgrafanabuzz-1w-issue-47/

Welcome to TimeShift We cover a lot of ground this week with posts on general monitoring principles, home automation, how CERN uses open source projects in their particle acceleration work, and more. Have an article you’d like highlighted here? Get in touch.
We’re excited to be a sponsor of Monitorama PDX June 4-6. If you’re going, please be sure and say hello! Latest Release: Grafana 5.1.3 This latest point release fixes a scrolling issue that was reported in Firefox.

The devil wears Pravda

Post Syndicated from Robert Graham original https://blog.erratasec.com/2018/05/the-devil-wears-pravda.html

Classic Bond villain, Elon Musk, has a new plan to create a website dedicated to measuring the credibility and adherence to “core truth” of journalists. He is, without any sense of irony, going to call this “Pravda”. This is not simply wrong but evil.

Musk has a point. Journalists do suck, and many suck consistently. I see this in my own industry, cybersecurity, and I frequently criticize them for their suckage.

But what he’s doing here is not correcting them when they make mistakes (or what Musk sees as mistakes), but questioning their legitimacy. This legitimacy isn’t measured by whether they follow established journalism ethics, but whether their “core truths” agree with Musk’s “core truths”.

An example of the problem is how the press fixates on Tesla car crashes due to its “autopilot” feature. Pretty much every autopilot crash makes national headlines, while the press ignores the other 40,000 car crashes that happen in the United States each year. Musk spies on Tesla drivers (hello, classic Bond villain everyone) so he can see the dip in autopilot usage every time such a news story breaks. He’s got good reason to be concerned about this.

He argues that autopilot is safer than humans driving, and he’s got the statistics and government studies to back this up. Therefore, the press’s fixation on Tesla crashes is illegitimate “fake news”, titillating the audience with distorted truth.

But here’s the thing: that’s still only Musk’s version of the truth. Yes, on a mile-per-mile basis, autopilot is safer, but there’s nuance here. Autopilot is used primarily on freeways, which already have a low mile-per-mile accident rate. People choose autopilot only when conditions are incredibly safe and drivers are unlikely to have an accident anyway. Musk is therefore being intentionally deceptive comparing apples to oranges. Autopilot may still be safer, it’s just that the numbers Musk uses don’t demonstrate this.

And then there is the truth calling it “autopilot” to begin with, because it isn’t. The public is overrating the capabilities of the feature. It’s little different than “lane keeping” and “adaptive cruise control” you can now find in other cars. In many ways, the technology is behind — my Tesla doesn’t beep at me when a pedestrian walks behind my car while backing up, but virtually every new car on the market does.

Yes, the press unduly covers Tesla autopilot crashes, but Musk has only himself to blame by unduly exaggerating his car’s capabilities by calling it “autopilot”.

What’s “core truth” is thus rather difficult to obtain. What the press satisfies itself with instead is smaller truths, what they can document. The facts are in such cases that the accident happened, and they try to get Tesla or Musk to comment on it.

What you can criticize a journalist for is therefore not “core truth” but whether they did journalism correctly. When such stories criticize “autopilot”, but don’t do their diligence in getting Tesla’s side of the story, then that’s a violation of journalistic practice. When I criticize journalists for their poor handling of stories in my industry, I try to focus on which journalistic principles they get wrong. For example, the NYTimes reporters do a lot of stories quoting anonymous government sources in clear violation of journalistic principles.

If “credibility” is the concern, then it’s the classic Bond villain here that’s the problem: Musk himself. His track record on business statements is abysmal. For example, when he announced the Model 3 he claimed production targets that every Wall Street analyst claimed were absurd. He didn’t make those targets, he didn’t come close. Model 3 production is still lagging behind Musk’s twice adjusted targets.

https://www.bloomberg.com/graphics/2018-tesla-tracker/

So who has a credibility gap here, the press, or Musk himself?

Not only is Musk’s credibility problem ironic, so is the name he chose, “Pravada”, the Russian word for truth that was the name of the Soviet Union Communist Party’s official newspaper. This is so absurd this has to be a joke, yet Musk claims to be serious about all this.

Yes, the press has a lot of problems, and if Musk were some journalism professor concerned about journalists meeting the objective standards of their industry (e.g. abusing anonymous sources), then this would be a fine thing. But it’s not. It’s Musk who is upset the press’s version of “core truth” does not agree with his version — a version that he’s proven time and time again differs from “real truth”.

Just in case Musk is serious, I’ve already registered “www.antipravda.com” to start measuring the credibility of statements by billionaire playboy CEOs. Let’s see who blinks first.


I stole the title, with permission, from this tweet:

[$] Securing the container image supply chain

Post Syndicated from corbet original https://lwn.net/Articles/754443/rss

“Security is hard” is a tautology, especially in the fast-moving world
of container orchestration. We have previously covered various aspects of
Linux container
security through, for example, the Clear Containers implementation
or the broader question of Kubernetes and
security
, but those are mostly concerned with container isolation; they do not address the
question of trusting a container’s contents. What is a container running?
Who built it and when? Even assuming we have good programmers and solid
isolation layers, propagating that good code around a Kubernetes cluster
and making strong assertions on the integrity of that supply chain is far
from trivial. The 2018 KubeCon
+ CloudNativeCon Europe
event featured some projects that could
eventually solve that problem.

Canonical on trust and security in the Snap Store

Post Syndicated from corbet original https://lwn.net/Articles/754502/rss

Here’s a
posting from Canonical
concerning the cryptocurrency-mining app that
was discovered in its Snap Store. “Several years ago when we started
the work on snap packages, we understood that we could not instantly
implement an alternative that was completely safe from all perspectives. In
addition to being safe, it had to be useful. So the challenge we gave
ourselves was to significantly improve the situation immediately, and then
pave the road for incremental improvements that could be rolled out
gradually.

A serverless solution for invoking AWS Lambda at a sub-minute frequency

Post Syndicated from Emanuele Menga original https://aws.amazon.com/blogs/architecture/a-serverless-solution-for-invoking-aws-lambda-at-a-sub-minute-frequency/

If you’ve used Amazon CloudWatch Events to schedule the invocation of a Lambda function at regular intervals, you may have noticed that the highest frequency possible is one invocation per minute. However, in some cases, you may need to invoke Lambda more often than that. In this blog post, I’ll cover invoking a Lambda function every 10 seconds, but with some simple math you can change to whatever interval you like.

To achieve this, I’ll show you how to leverage Step Functions and Amazon Kinesis Data Streams.

The Solution

For this example, I’ve created a Step Functions State Machine that invokes our Lambda function 6 times, 10 seconds apart. Such State Machine is then executed once per minute by a CloudWatch Events Rule. This state machine is then executed once per minute by an Amazon CloudWatch Events rule. Finally, the Kinesis Data Stream triggers our Lambda function for each record inserted. The result is our Lambda function being invoked every 10 seconds, indefinitely.

Below is a diagram illustrating how the various services work together.

Step 1: My sampleLambda function doesn’t actually do anything, it just simulates an execution for a few seconds. This is the (Python) code of my dummy function:

import time

import random


def lambda_handler(event, context):

rand = random.randint(1, 3)

print('Running for {} seconds'.format(rand))

time.sleep(rand)

return True

Step 2:

The next step is to create a second Lambda function, that I called Iterator, which has two duties:

  • It keeps track of the current number of iterations, since Step Function doesn’t natively have a state we can use for this purpose.
  • It asynchronously invokes our Lambda function at every loops.

This is the code of the Iterator, adapted from here.

 

import boto3

client = boto3.client('kinesis')

def lambda_handler(event, context):

index = event['iterator']['index'] + 1

response = client.put_record(

StreamName='LambdaSubMinute',

PartitionKey='1',

Data='',

)

return {

'index': index,

'continue': index < event['iterator']['count'],

'count': event['iterator']['count']

}

This function does three things:

  • Increments the counter.
  • Verifies if we reached a count of (in this example) 6.
  • Sends an empty record to the Kinesis Stream.

Now we can create the Step Functions State Machine; the definition is, again, adapted from here.

 

{

"Comment": "Invoke Lambda every 10 seconds",

"StartAt": "ConfigureCount",

"States": {

"ConfigureCount": {

"Type": "Pass",

"Result": {

"index": 0,

"count": 6

},

"ResultPath": "$.iterator",

"Next": "Iterator"

},

"Iterator": {

"Type": "Task",

"Resource": “arn:aws:lambda:REGION:ACCOUNT_ID:function:Iterator",

"ResultPath": "$.iterator",

"Next": "IsCountReached"

},

"IsCountReached": {

"Type": "Choice",

"Choices": [

{

"Variable": "$.iterator.continue",

"BooleanEquals": true,

"Next": "Wait"

}

],

"Default": "Done"

},

"Wait": {

"Type": "Wait",

"Seconds": 10,

"Next": "Iterator"

},

"Done": {

"Type": "Pass",

"End": true

}

}

}

This is how it works:

  1. The state machine starts and sets the index at 0 and the count at 6.
  2. Iterator function is invoked.
  3. If the iterator function reached the end of the loop, the IsCountReached state terminates the execution, otherwise the machine waits for 10 seconds.
  4. The machine loops back to the iterator.

Step 3: Create an Amazon CloudWatch Events rule scheduled to trigger every minute and add the state machine as its target. I’ve actually prepared an Amazon CloudFormation template that creates the whole stack and starts the Lambda invocations, you can find it here.

Performance

Let’s have a look at a sample series of invocations and analyse how precise the timing is. In the following chart I reported the delay (in excess of the expected 10-second-wait) of 30 consecutive invocations of my dummy function, when the Iterator is configured with a memory size of 1024MB.

Invocations Delay

Notice the delay increases by a few hundred milliseconds at every invocation. The good news is it accrues only within the same loop, 6 times; after that, a new CloudWatch Events kicks in and it resets.

This delay  is due to the work that AWS Step Function does outside of the Wait state, the main component of which is the Iterator function itself, that runs synchronously in the state machine and therefore adds up its duration to the 10-second-wait.

As we can easily imagine, the memory size of the Iterator Lambda function does make a difference. Here are the Average and Maximum duration of the function with 256MB, 512MB, 1GB and 2GB of memory.

Average Duration

Maximum Duration


Given those results, I’d say that a memory of 1024MB is a good compromise between costs and performance.

Caveats

As mentioned, in our Amazon CloudWatch Events documentation, in rare cases a rule can be triggered twice, causing two parallel executions of the state machine. If that is a concern, we can add a task state at the beginning of the state machine that checks if any other executions are currently running. If the outcome is positive, then a choice state can immediately terminate the flow. Since the state machine is invoked every 60 seconds and runs for about 50, it is safe to assume that executions should all be sequential and any parallel executions should be treated as duplicates. The task state that checks for current running executions can be a Lambda function similar to the following:

 

import boto3

client = boto3.client('stepfunctions')

def lambda_handler(event, context):

response = client.list_executions(

stateMachineArn='arn:aws:states:REGION:ACCOUNTID:stateMachine:LambdaSubMinute',

statusFilter='RUNNING'

)

return {

'alreadyRunning': len(response['executions']) > 0

}

About the Author

Emanuele Menga, Cloud Support Engineer

 

Supply-Chain Security

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2018/05/supply-chain_se.html

Earlier this month, the Pentagon stopped selling phones made by the Chinese companies ZTE and Huawei on military bases because they might be used to spy on their users.

It’s a legitimate fear, and perhaps a prudent action. But it’s just one instance of the much larger issue of securing our supply chains.

All of our computerized systems are deeply international, and we have no choice but to trust the companies and governments that touch those systems. And while we can ban a few specific products, services or companies, no country can isolate itself from potential foreign interference.

In this specific case, the Pentagon is concerned that the Chinese government demanded that ZTE and Huawei add “backdoors” to their phones that could be surreptitiously turned on by government spies or cause them to fail during some future political conflict. This tampering is possible because the software in these phones is incredibly complex. It’s relatively easy for programmers to hide these capabilities, and correspondingly difficult to detect them.

This isn’t the first time the United States has taken action against foreign software suspected to contain hidden features that can be used against us. Last December, President Trump signed into law a bill banning software from the Russian company Kaspersky from being used within the US government. In 2012, the focus was on Chinese-made Internet routers. Then, the House Intelligence Committee concluded: “Based on available classified and unclassified information, Huawei and ZTE cannot be trusted to be free of foreign state influence and thus pose a security threat to the United States and to our systems.”

Nor is the United States the only country worried about these threats. In 2014, China reportedly banned antivirus products from both Kaspersky and the US company Symantec, based on similar fears. In 2017, the Indian government identified 42 smartphone apps that China subverted. Back in 1997, the Israeli company Check Point was dogged by rumors that its government added backdoors into its products; other of that country’s tech companies have been suspected of the same thing. Even al-Qaeda was concerned; ten years ago, a sympathizer released the encryption software Mujahedeen Secrets, claimed to be free of Western influence and backdoors. If a country doesn’t trust another country, then it can’t trust that country’s computer products.

But this trust isn’t limited to the country where the company is based. We have to trust the country where the software is written — and the countries where all the components are manufactured. In 2016, researchers discovered that many different models of cheap Android phones were sending information back to China. The phones might be American-made, but the software was from China. In 2016, researchers demonstrated an even more devious technique, where a backdoor could be added at the computer chip level in the factory that made the chips ­ without the knowledge of, and undetectable by, the engineers who designed the chips in the first place. Pretty much every US technology company manufactures its hardware in countries such as Malaysia, Indonesia, China and Taiwan.

We also have to trust the programmers. Today’s large software programs are written by teams of hundreds of programmers scattered around the globe. Backdoors, put there by we-have-no-idea-who, have been discovered in Juniper firewalls and D-Link routers, both of which are US companies. In 2003, someone almost slipped a very clever backdoor into Linux. Think of how many countries’ citizens are writing software for Apple or Microsoft or Google.

We can go even farther down the rabbit hole. We have to trust the distribution systems for our hardware and software. Documents disclosed by Edward Snowden showed the National Security Agency installing backdoors into Cisco routers being shipped to the Syrian telephone company. There are fake apps in the Google Play store that eavesdrop on you. Russian hackers subverted the update mechanism of a popular brand of Ukrainian accounting software to spread the NotPetya malware.

In 2017, researchers demonstrated that a smartphone can be subverted by installing a malicious replacement screen.

I could go on. Supply-chain security is an incredibly complex problem. US-only design and manufacturing isn’t an option; the tech world is far too internationally interdependent for that. We can’t trust anyone, yet we have no choice but to trust everyone. Our phones, computers, software and cloud systems are touched by citizens of dozens of different countries, any one of whom could subvert them at the demand of their government. And just as Russia is penetrating the US power grid so they have that capability in the event of hostilities, many countries are almost certainly doing the same thing at the consumer level.

We don’t know whether the risk of Huawei and ZTE equipment is great enough to warrant the ban. We don’t know what classified intelligence the United States has, and what it implies. But we do know that this is just a minor fix for a much larger problem. It’s doubtful that this ban will have any real effect. Members of the military, and everyone else, can still buy the phones. They just can’t buy them on US military bases. And while the US might block the occasional merger or acquisition, or ban the occasional hardware or software product, we’re largely ignoring that larger issue. Solving it borders on somewhere between incredibly expensive and realistically impossible.

Perhaps someday, global norms and international treaties will render this sort of device-level tampering off-limits. But until then, all we can do is hope that this particular arms race doesn’t get too far out of control.

This essay previously appeared in the Washington Post.

The US Is Unprepared for Election-Related Hacking in 2018

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2018/05/the_us_is_unpre.html

This survey and report is not surprising:

The survey of nearly forty Republican and Democratic campaign operatives, administered through November and December 2017, revealed that American political campaign staff — primarily working at the state and congressional levels — are not only unprepared for possible cyber attacks, but remain generally unconcerned about the threat. The survey sample was relatively small, but nevertheless the survey provides a first look at how campaign managers and staff are responding to the threat.

The overwhelming majority of those surveyed do not want to devote campaign resources to cybersecurity or to hire personnel to address cybersecurity issues. Even though campaign managers recognize there is a high probability that campaign and personal emails are at risk of being hacked, they are more concerned about fundraising and press coverage than they are about cybersecurity. Less than half of those surveyed said they had taken steps to make their data secure and most were unsure if they wanted to spend any money on this protection.

Security is never something we actually want. Security is something we need in order to avoid what we don’t want. It’s also more abstract, concerned with hypothetical future possibilities. Of course it’s lower on the priorities list than fundraising and press coverage. They’re more tangible, and they’re more immediate.

This is all to the attackers’ advantage.

[$] A kernel integrity subsystem update

Post Syndicated from jake original https://lwn.net/Articles/753276/rss

At the 2018 Linux Storage, Filesystem, and Memory-Management Summit, Mimi
Zohar gave a presentation in the
filesystem track on the Linux integrity subsystem. There is a lot
of talk that the integrity subsystem (usually referred to as “IMA”, which
is the integrity
measurement architecture
, though there is more to the subsystem) is
complex and
not documented well, she
said. So she wanted to give an overview of the subsystem and then to
discuss some filesystem-related concerns.

CI/CD with Data: Enabling Data Portability in a Software Delivery Pipeline with AWS Developer Tools, Kubernetes, and Portworx

Post Syndicated from Kausalya Rani Krishna Samy original https://aws.amazon.com/blogs/devops/cicd-with-data-enabling-data-portability-in-a-software-delivery-pipeline-with-aws-developer-tools-kubernetes-and-portworx/

This post is written by Eric Han – Vice President of Product Management Portworx and Asif Khan – Solutions Architect

Data is the soul of an application. As containers make it easier to package and deploy applications faster, testing plays an even more important role in the reliable delivery of software. Given that all applications have data, development teams want a way to reliably control, move, and test using real application data or, at times, obfuscated data.

For many teams, moving application data through a CI/CD pipeline, while honoring compliance and maintaining separation of concerns, has been a manual task that doesn’t scale. At best, it is limited to a few applications, and is not portable across environments. The goal should be to make running and testing stateful containers (think databases and message buses where operations are tracked) as easy as with stateless (such as with web front ends where they are often not).

Why is state important in testing scenarios? One reason is that many bugs manifest only when code is tested against real data. For example, we might simply want to test a database schema upgrade but a small synthetic dataset does not exercise the critical, finer corner cases in complex business logic. If we want true end-to-end testing, we need to be able to easily manage our data or state.

In this blog post, we define a CI/CD pipeline reference architecture that can automate data movement between applications. We also provide the steps to follow to configure the CI/CD pipeline.

 

Stateful Pipelines: Need for Portable Volumes

As part of continuous integration, testing, and deployment, a team may need to reproduce a bug found in production against a staging setup. Here, the hosting environment is comprised of a cluster with Kubernetes as the scheduler and Portworx for persistent volumes. The testing workflow is then automated by AWS CodeCommit, AWS CodePipeline, and AWS CodeBuild.

Portworx offers Kubernetes storage that can be used to make persistent volumes portable between AWS environments and pipelines. The addition of Portworx to the AWS Developer Tools continuous deployment for Kubernetes reference architecture adds persistent storage and storage orchestration to a Kubernetes cluster. The example uses MongoDB as the demonstration of a stateful application. In practice, the workflow applies to any containerized application such as Cassandra, MySQL, Kafka, and Elasticsearch.

Using the reference architecture, a developer calls CodePipeline to trigger a snapshot of the running production MongoDB database. Portworx then creates a block-based, writable snapshot of the MongoDB volume. Meanwhile, the production MongoDB database continues serving end users and is uninterrupted.

Without the Portworx integrations, a manual process would require an application-level backup of the database instance that is outside of the CI/CD process. For larger databases, this could take hours and impact production. The use of block-based snapshots follows best practices for resilient and non-disruptive backups.

As part of the workflow, CodePipeline deploys a new MongoDB instance for staging onto the Kubernetes cluster and mounts the second Portworx volume that has the data from production. CodePipeline triggers the snapshot of a Portworx volume through an AWS Lambda function, as shown here

 

 

 

AWS Developer Tools with Kubernetes: Integrated Workflow with Portworx

In the following workflow, a developer is testing changes to a containerized application that calls on MongoDB. The tests are performed against a staging instance of MongoDB. The same workflow applies if changes were on the server side. The original production deployment is scheduled as a Kubernetes deployment object and uses Portworx as the storage for the persistent volume.

The continuous deployment pipeline runs as follows:

  • Developers integrate bug fix changes into a main development branch that gets merged into a CodeCommit master branch.
  • Amazon CloudWatch triggers the pipeline when code is merged into a master branch of an AWS CodeCommit repository.
  • AWS CodePipeline sends the new revision to AWS CodeBuild, which builds a Docker container image with the build ID.
  • AWS CodeBuild pushes the new Docker container image tagged with the build ID to an Amazon ECR registry.
  • Kubernetes downloads the new container (for the database client) from Amazon ECR and deploys the application (as a pod) and staging MongoDB instance (as a deployment object).
  • AWS CodePipeline, through a Lambda function, calls Portworx to snapshot the production MongoDB and deploy a staging instance of MongoDB• Portworx provides a snapshot of the production instance as the persistent storage of the staging MongoDB
    • The MongoDB instance mounts the snapshot.

At this point, the staging setup mimics a production environment. Teams can run integration and full end-to-end tests, using partner tooling, without impacting production workloads. The full pipeline is shown here.

 

Summary

This reference architecture showcases how development teams can easily move data between production and staging for the purposes of testing. Instead of taking application-specific manual steps, all operations in this CodePipeline architecture are automated and tracked as part of the CI/CD process.

This integrated experience is part of making stateful containers as easy as stateless. With AWS CodePipeline for CI/CD process, developers can easily deploy stateful containers onto a Kubernetes cluster with Portworx storage and automate data movement within their process.

The reference architecture and code are available on GitHub:

● Reference architecture: https://github.com/portworx/aws-kube-codesuite
● Lambda function source code for Portworx additions: https://github.com/portworx/aws-kube-codesuite/blob/master/src/kube-lambda.py

For more information about persistent storage for containers, visit the Portworx website. For more information about Code Pipeline, see the AWS CodePipeline User Guide.

[$] The memory-management development process

Post Syndicated from corbet original https://lwn.net/Articles/752985/rss

The memory-management subsystem is maintained by a small but dedicated
group of developers. How healthy is that development community? Michal
Hocko raised that question during the memory-management track at the 2018
Linux Storage, Filesystem, and Memory-Management Summit. Hocko is worried,
but it appears that his concerns are not universally felt.

Secure Build with AWS CodeBuild and LayeredInsight

Post Syndicated from Asif Khan original https://aws.amazon.com/blogs/devops/secure-build-with-aws-codebuild-and-layeredinsight/

This post is written by Asif Awan, Chief Technology Officer of Layered InsightSubin Mathew – Software Development Manager for AWS CodeBuild, and Asif Khan – Solutions Architect

Enterprises adopt containers because they recognize the benefits: speed, agility, portability, and high compute density. They understand how accelerating application delivery and deployment pipelines makes it possible to rapidly slipstream new features to customers. Although the benefits are indisputable, this acceleration raises concerns about security and corporate compliance with software governance. In this blog post, I provide a solution that shows how Layered Insight, the pioneer and global leader in container-native application protection, can be used with seamless application build and delivery pipelines like those available in AWS CodeBuild to address these concerns.

Layered Insight solutions

Layered Insight enables organizations to unify DevOps and SecOps by providing complete visibility and control of containerized applications. Using the industry’s first embedded security approach, Layered Insight solves the challenges of container performance and protection by providing accurate insight into container images, adaptive analysis of running containers, and automated enforcement of container behavior.

 

AWS CodeBuild

AWS CodeBuild is a fully managed build service that compiles source code, runs tests, and produces software packages that are ready to deploy. With CodeBuild, you don’t need to provision, manage, and scale your own build servers. CodeBuild scales continuously and processes multiple builds concurrently, so your builds are not left waiting in a queue. You can get started quickly by using prepackaged build environments, or you can create custom build environments that use your own build tools.

 

Problem Definition

Security and compliance concerns span the lifecycle of application containers. Common concerns include:

Visibility into the container images. You need to verify the software composition information of the container image to determine whether known vulnerabilities associated with any of the software packages and libraries are included in the container image.

Governance of container images is critical because only certain open source packages/libraries, of specific versions, should be included in the container images. You need support for mechanisms for blacklisting all container images that include a certain version of a software package/library, or only allowing open source software that come with a specific type of license (such as Apache, MIT, GPL, and so on). You need to be able to address challenges such as:

·       Defining the process for image compliance policies at the enterprise, department, and group levels.

·       Preventing the images that fail the compliance checks from being deployed in critical environments, such as staging, pre-prod, and production.

Visibility into running container instances is critical, including:

·       CPU and memory utilization.

·       Security of the build environment.

·       All activities (system, network, storage, and application layer) of the application code running in each container instance.

Protection of running container instances that is:

·       Zero-touch to the developers (not an SDK-based approach).

·       Zero touch to the DevOps team and doesn’t limit the portability of the containerized application.

·       This protection must retain the option to switch to a different container stack or orchestration layer, or even to a different Container as a Service (CaaS ).

·       And it must be a fully automated solution to SecOps, so that the SecOps team doesn’t have to manually analyze and define detailed blacklist and whitelist policies.

 

Solution Details

In AWS CodeCommit, we have three projects:
●     “Democode” is a simple Java application, with one buildspec to build the app into a Docker container (run by build-demo-image CodeBuild project), and another to instrument said container (instrument-image CodeBuild project). The resulting container is stored in ECR repo javatestasjavatest:20180415-layered. This instrumented container is running in AWS Fargate cluster demo-java-appand can be seen in the Layered Insight runtime console as the javatestapplication in us-east-1.
●     aws-codebuild-docker-imagesis a clone of the official aws-codebuild-docker-images repo on GitHub . This CodeCommit project is used by the build-python-builder CodeBuild project to build the python 3.3.6 codebuild image and is stored at the codebuild-python ECR repo. We then manually instructed the Layered Insight console to instrument the image.
●     scan-java-imagecontains just a buildspec.yml file. This file is used by the scan-java-image CodeBuild project to instruct Layered Assessment to perform a vulnerability scan of the javatest container image built previously, and then run the scan results through a compliance policy that states there should be no medium vulnerabilities. This build fails — but in this case that is a success: the scan completes successfully, but compliance fails as there are medium-level issues found in the scan.

This build is performed using the instrumented version of the Python 3.3.6 CodeBuild image, so the activity of the processes running within the build are recorded each time within the LI console.

Build container image

Create or use a CodeCommit project with your application. To build this image and store it in Amazon Elastic Container Registry (Amazon ECR), add a buildspec file to the project and build a container image and create a CodeBuild project.

Scan container image

Once the image is built, create a new buildspec in the same project or a new one that looks similar to below (update ECR URL as necessary):

version: 0.2
phases:
  pre_build:
    commands:
      - echo Pulling down LI Scan API client scripts
      - git clone https://github.com/LayeredInsight/scan-api-example-python.git
      - echo Setting up LI Scan API client
      - cd scan-api-example-python
      - pip install layint_scan_api
      - pip install -r requirements.txt
  build:
    commands:
      - echo Scanning container started on `date`
      - IMAGEID=$(./li_add_image --name <aws-region>.amazonaws.com/javatest:20180415)
      - ./li_wait_for_scan -v --imageid $IMAGEID
      - ./li_run_image_compliance -v --imageid $IMAGEID --policyid PB15260f1acb6b2aa5b597e9d22feffb538256a01fbb4e5a95

Add the buildspec file to the git repo, push it, and then build a CodeBuild project using with the instrumented Python 3.3.6 CodeBuild image at <aws-region>.amazonaws.com/codebuild-python:3.3.6-layered. Set the following environment variables in the CodeBuild project:
●     LI_APPLICATIONNAME – name of the build to display
●     LI_LOCATION – location of the build project to display
●     LI_API_KEY – ApiKey:<key-name>:<api-key>
●     LI_API_HOST – location of the Layered Insight API service

Instrument container image

Next, to instrument the new container image:

  1. In the Layered Insight runtime console, ensure that the ECR registry and credentials are defined (click the Setup icon and the ‘+’ sign on the top right of the screen to add a new container registry). Note the name given to the registry in the console, as this needs to be referenced in the li_add_imagecommand in the script, below.
  2. Next, add a new buildspec (with a new name) to the CodeCommit project, such as the one shown below. This code will download the Layered Insight runtime client, and use it to instruct the Layered Insight service to instrument the image that was just built:
    version: 0.2
    phases:
    pre_build:
    commands:
    echo Pulling down LI API Runtime client scripts
    git clone https://github.com/LayeredInsight/runtime-api-example-python
    echo Setting up LI API client
    cd runtime-api-example-python
    pip install layint-runtime-api
    pip install -r requirements.txt
    build:
    commands:
    echo Instrumentation started on `date`
    ./li_add_image --registry "Javatest ECR" --name IMAGE_NAME:TAG --description "IMAGE DESCRIPTION" --policy "Default Policy" --instrument --wait --verbose
  3. Commit and push the new buildspec file.
  4. Going back to CodeBuild, create a new project, with the same CodeCommit repo, but this time select the new buildspec file. Use a Python 3.3.6 builder – either the AWS or LI Instrumented version.
  5. Click Continue
  6. Click Save
  7. Run the build, again on the master branch.
  8. If everything runs successfully, a new image should appear in the ECR registry with a -layered suffix. This is the instrumented image.

Run instrumented container image

When the instrumented container is now run — in ECS, Fargate, or elsewhere — it will log data back to the Layered Insight runtime console. It’s appearance in the console can be modified by setting the LI_APPLICATIONNAME and LI_LOCATION environment variables when running the container.

Conclusion

In the above blog we have provided you steps needed to embed governance and runtime security in your build pipelines running on AWS CodeBuild using Layered Insight.

 

 

 

[$] The impact of page-table isolation on I/O performance

Post Syndicated from corbet original https://lwn.net/Articles/752587/rss

Ever since kernel page-table isolation
(PTI)
was introduced as a mitigation for
the Meltdown CPU vulnerability, users have worried about how it affects the
performance of their systems. Most of that concern has been directed
toward its impact on computing performance, but I/O performance also
matters. At the 2018 Linux Storage, Filesystem, and Memory-Management
Summit, Ming Lei presented some preliminary work he has done to try to
quantify how severely PTI affects block I/O operations.

Russia is Banning Telegram

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2018/04/russia_is_banni.html

Russia has banned the secure messaging app Telegram. It’s making an absolute mess of the ban — blocking 16 million IP addresses, many belonging to the Amazon and Google clouds — and it’s not even clear that it’s working. But, more importantly, I’m not convinced Telegram is secure in the first place.

Such a weird story. If you want secure messaging, use Signal. If you’re concerned that having Signal on your phone will itself arouse suspicion, use WhatsApp.

[$] Finding Spectre vulnerabilities with smatch

Post Syndicated from corbet original https://lwn.net/Articles/752408/rss

The furor over the Meltdown and Spectre vulnerabilities has calmed a bit —
for now, at least — but that does not mean that developers have stopped
worrying about them. Spectre variant 1 (the bounds-check bypass
vulnerability) has been of particular concern because, while the kernel is
thought to contain numerous vulnerable spots, nobody really knows how to
find them all. As a result, the defenses that have been developed for
variant 1 have only been deployed in a few places. Recently, though,
Dan Carpenter has enhanced the smatch tool to enable it to find possibly
vulnerable code in the kernel.

[$] PostgreSQL’s fsync() surprise

Post Syndicated from corbet original https://lwn.net/Articles/752063/rss

Developers of database management systems are, by necessity, concerned
about getting data safely to persistent storage. So when the PostgreSQL
community found out that the way the kernel handles I/O errors could result
in data being lost without any errors being reported to user space, a fair
amount of unhappiness resulted. The problem, which is exacerbated by the
way PostgreSQL performs buffered I/O, turns out not to be unique to Linux,
and will not be easy to solve even there.

Achieving Major Stability and Performance Improvements in Yahoo Mail with a Novel Redux Architecture

Post Syndicated from mikesefanov original https://yahooeng.tumblr.com/post/173062946866

yahoodevelopers:

By Mohit Goenka, Gnanavel Shanmugam, and Lance Welsh

At Yahoo Mail, we’re constantly striving to upgrade our product experience. We do this not only by adding new features based on our members’ feedback, but also by providing the best technical solutions to power the most engaging experiences. As such, we’ve recently introduced a number of novel and unique revisions to the way in which we use Redux that have resulted in significant stability and performance improvements. Developers may find our methods useful in achieving similar results in their apps.

Improvements to product metrics

Last year Yahoo Mail implemented a brand new architecture using Redux. Since then, we have transformed the overall architecture to reduce latencies in various operations, reduce JavaScript exceptions, and better synchronized states. As a result, the product is much faster and more stable.

Stability improvements:

  • when checking for new emails – 20%
  • when reading emails – 30%
  • when sending emails – 20%

Performance improvements:

  • 10% improvement in page load performance
  • 40% improvement in frame rendering time

We have also reduced API calls by approximately 20%.

How we use Redux in Yahoo Mail

Redux architecture is reliant on one large store that represents the application state. In a Redux cycle, action creators dispatch actions to change the state of the store. React Components then respond to those state changes. We’ve made some modifications on top of this architecture that are atypical in the React-Redux community.

For instance, when fetching data over the network, the traditional methodology is to use Thunk middleware. Yahoo Mail fetches data over the network from our API. Thunks would create an unnecessary and undesirable dependency between the action creators and our API. If and when the API changes, the action creators must then also change. To keep these concerns separate we dispatch the action payload from the action creator to store them in the Redux state for later processing by “action syncers”. Action syncers use the payload information from the store to make requests to the API and process responses. In other words, the action syncers form an API layer by interacting with the store. An additional benefit to keeping the concerns separate is that the API layer can change as the backend changes, thereby preventing such changes from bubbling back up into the action creators and components. This also allowed us to optimize the API calls by batching, deduping, and processing the requests only when the network is available. We applied similar strategies for handling other side effects like route handling and instrumentation. Overall, action syncers helped us to reduce our API calls by ~20% and bring down API errors by 20-30%.

Another change to the normal Redux architecture was made to avoid unnecessary props. The React-Redux community has learned to avoid passing unnecessary props from high-level components through multiple layers down to lower-level components (prop drilling) for rendering. We have introduced action enhancers middleware to avoid passing additional unnecessary props that are purely used when dispatching actions. Action enhancers add data to the action payload so that data does not have to come from the component when dispatching the action. This avoids the component from having to receive that data through props and has improved frame rendering by ~40%. The use of action enhancers also avoids writing utility functions to add commonly-used data to each action from action creators.

image

In our new architecture, the store reducers accept the dispatched action via action enhancers to update the state. The store then updates the UI, completing the action cycle. Action syncers then initiate the call to the backend APIs to synchronize local changes.

Conclusion

Our novel use of Redux in Yahoo Mail has led to significant user-facing benefits through a more performant application. It has also reduced development cycles for new features due to its simplified architecture. We’re excited to share our work with the community and would love to hear from anyone interested in learning more.

The DMCA and its Chilling Effects on Research

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2018/04/the_dmca_and_it.html

The Center for Democracy and Technology has a good summary of the current state of the DMCA’s chilling effects on security research.

To underline the nature of chilling effects on hacking and security research, CDT has worked to describe how tinkerers, hackers, and security researchers of all types both contribute to a baseline level of security in our digital environment and, in turn, are shaped themselves by this environment, most notably when things they do upset others and result in threats, potential lawsuits, and prosecution. We’ve published two reports (sponsored by the Hewlett Foundation and MacArthur Foundation) about needed reforms to the law and the myriad of ways that security research directly improves people’s lives. To get a more complete picture, we wanted to talk to security researchers themselves and gauge the forces that shape their work; essentially, we wanted to “take the pulse” of the security research community.

Today, we are releasing a third report in service of this effort: “Taking the Pulse of Hacking: A Risk Basis for Security Research.” We report findings after having interviewed a set of 20 security researchers and hackers — half academic and half non-academic — about what considerations they take into account when starting new projects or engaging in new work, as well as to what extent they or their colleagues have faced threats in the past that chilled their work. The results in our report show that a wide variety of constraints shape the work they do, from technical constraints to ethical boundaries to legal concerns, including the DMCA and especially the CFAA.

Note: I am a signatory on the letter supporting unrestricted security research.

[$] A look at terminal emulators, part 2

Post Syndicated from jake original https://lwn.net/Articles/751763/rss

A comparison of the feature sets for a handful of terminal emulators was
the subject of a recent article; here I follow that up by
examining the performance of those terminals.

This might seem like a
lesser concern, but as it turns out, terminals exhibit surprisingly
high latency for such fundamental programs. I also examine what is
traditionally considered “speed” (but is really scroll bandwidth) and
memory usage, with the understanding that the impact of memory use
is less than it was when I looked at this a decade ago (in
French).

Subscribers can read on for part 2 from guest author Antoine Beaupré.