Tag Archives: Choice

Microsoft acquires GitHub

Post Syndicated from corbet original https://lwn.net/Articles/756443/rss

Here’s the
press release
announcing Microsoft’s agreement to acquire GitHub for a
mere $7.5 billion. “GitHub will retain its developer-first
ethos and will operate independently to provide an open platform for all
developers in all industries. Developers will continue to be able to use
the programming languages, tools and operating systems of their choice for
their projects — and will still be able to deploy their code to any
operating system, any cloud and any device.

Replacing macOS Server with Synology NAS

Post Syndicated from Roderick Bauer original https://www.backblaze.com/blog/replacing-macos-server-with-synology-nas/

Synology NAS boxes backed up to the cloud

Businesses and organizations that rely on macOS server for essential office and data services are facing some decisions about the future of their IT services.

Apple recently announced that it is deprecating a significant portion of essential network services in macOS Server, as they described in a support statement posted on April 24, 2018, “Prepare for changes to macOS Server.” Apple’s note includes:

macOS Server is changing to focus more on management of computers, devices, and storage on your network. As a result, some changes are coming in how Server works. A number of services will be deprecated, and will be hidden on new installations of an update to macOS Server coming in spring 2018.

The note lists the services that will be removed in a future release of macOS Server, including calendar and contact support, Dynamic Host Configuration Protocol (DHCP), Domain Name Services (DNS), mail, instant messages, virtual private networking (VPN), NetInstall, Web server, and the Wiki.

Apple assures users who have already configured any of the listed services that they will be able to use them in the spring 2018 macOS Server update, but the statement ends with links to a number of alternative services, including hosted services, that macOS Server users should consider as viable replacements to the features it is removing. These alternative services are all FOSS (Free and Open-Source Software).

As difficult as this could be for organizations that use macOS server, this is not unexpected. Apple left the server hardware space back in 2010, when Steve Jobs announced the company was ending its line of Xserve rackmount servers, which were introduced in May, 2002. Since then, macOS Server has hardly been a prominent part of Apple’s product lineup. It’s not just the product itself that has lost some luster, but the entire category of SMB office and business servers, which has been undergoing a gradual change in recent years.

Some might wonder how important the news about macOS Server is, given that macOS Server represents a pretty small share of the server market. macOS Server has been important to design shops, agencies, education users, and small businesses that likely have been on Macs for ages, but it’s not a significant part of the IT infrastructure of larger organizations and businesses.

What Comes After macOS Server?

Lovers of macOS Server don’t have to fear having their Mac minis pried from their cold, dead hands quite yet. Installed services will continue to be available. In the fall of 2018, new installations and upgrades of macOS Server will require users to migrate most services to other software. Since many of the services of macOS Server were already open-source, this means that a change in software might not be required. It does mean more configuration and management required from those who continue with macOS Server, however.

Users can continue with macOS Server if they wish, but many will see the writing on the wall and look for a suitable substitute.

The Times They Are A-Changin’

For many people working in organizations, what is significant about this announcement is how it reflects the move away from the once ubiquitous server-based IT infrastructure. Services that used to be centrally managed and office-based, such as storage, file sharing, communications, and computing, have moved to the cloud.

In selecting the next office IT platforms, there’s an opportunity to move to solutions that reflect and support how people are working and the applications they are using both in the office and remotely. For many, this means including cloud-based services in office automation, backup, and business continuity/disaster recovery planning. This includes Software as a Service, Platform as a Service, and Infrastructure as a Service (Saas, PaaS, IaaS) options.

IT solutions that integrate well with the cloud are worth strong consideration for what comes after a macOS Server-based environment.

Synology NAS as a macOS Server Alternative

One solution that is becoming popular is to replace macOS Server with a device that has the ability to provide important office services, but also bridges the office and cloud environments. Using Network-Attached Storage (NAS) to take up the server slack makes a lot of sense. Many customers are already using NAS for file sharing, local data backup, automatic cloud backup, and other uses. In the case of Synology, their operating system, Synology DiskStation Manager (DSM), is Linux based, and integrates the basic functions of file sharing, centralized backup, RAID storage, multimedia streaming, virtual storage, and other common functions.

Synology NAS box

Synology NAS

Since DSM is based on Linux, there are numerous server applications available, including many of the same ones that are available for macOS Server, which shares conceptual roots with Linux as it comes from BSD Unix.

Synology DiskStation Manager Package Center screenshot

Synology DiskStation Manager Package Center

According to Ed Lukacs, COO at 2FIFTEEN Systems Management in Salt Lake City, their customers have found the move from macOS Server to Synology NAS not only painless, but positive. DSM works seamlessly with macOS and has been faster for their customers, as well. Many of their customers are running Adobe Creative Suite and Google G Suite applications, so a workflow that combines local storage, remote access, and the cloud, is already well known to them. Remote users are supported by Synology’s QuickConnect or VPN.

Business continuity and backup are simplified by the flexible storage capacity of the NAS. Synology has built-in backup to Backblaze B2 Cloud Storage with Synology’s Cloud Sync, as well as a choice of a number of other B2-compatible applications, such as Cloudberry, Comet, and Arq.

Customers have been able to get up and running quickly, with only initial data transfers requiring some time to complete. After that, management of the NAS can be handled in-house or with the support of a Managed Service Provider (MSP).

Are You Sticking with macOS Server or Moving to Another Platform?

If you’re affected by this change in macOS Server, please let us know in the comments how you’re planning to cope. Are you using Synology NAS for server services? Please tell us how that’s working for you.

The post Replacing macOS Server with Synology NAS appeared first on Backblaze Blog | Cloud Storage & Cloud Backup.

HackSpace magazine 7: Internet of Everything

Post Syndicated from Andrew Gregory original https://www.raspberrypi.org/blog/hackspace-magazine-7-internet-of-everything/

We’re usually averse to buzzwords at HackSpace magazine, but not this month: in issue 7, we’re taking a deep dive into the Internet of Things.HackSpace magazine issue 7 cover

Internet of Things (IoT)

To many people, IoT is a shady term used by companies to sell you something you already own, but this time with WiFi; to us, it’s a way to make our builds smarter, more useful, and more connected. In HackSpace magazine #7, you can join us on a tour of the boards that power IoT projects, marvel at the ways in which other makers are using IoT, and get started with your first IoT project!

Awesome projects

DIY retro computing: this issue, we’re taking our collective hat off to Spencer Owen. He stuck his home-brew computer on Tindie thinking he might make a bit of beer money — now he’s paying the mortgage with his making skills and inviting others to build modules for his machine. And if that tickles your fancy, why not take a crack at our Z80 tutorial? Get out your breadboard, assemble your jumper wires, and prepare to build a real-life computer!

Inside HackSpace magazine issue 7

Shameless patriotism: combine Lego, Arduino, and the car of choice for 1960 gold bullion thieves, and you’ve got yourself a groovy weekend project. We proudly present to you one man’s epic quest to add LED lights (controllable via a smartphone!) to his daughter’s LEGO Mini Cooper.

Makerspaces

Patriotism intensifies: for the last 200-odd years, the Black Country has been a hotbed of making. Urban Hax, based in Walsall, is the latest makerspace to show off its riches in the coveted Space of the Month pages. Every space has its own way of doing things, but not every space has a portrait of Rob Halford on the wall. All hail!

Inside HackSpace magazine issue 7

Diversity: advice on diversity often boils down to ‘Be nice to people’, which might feel more vague than actionable. This is where we come in to help: it is truly worth making the effort to give people of all backgrounds access to your makerspace, so we take a look at why it’s nice to be nice, and at the ways in which one makerspace has put niceness into practice — with great results.

And there’s more!

We also show you how to easily calculate the size and radius of laser-cut gears, use a bank of LEDs to etch PCBs in your own mini factory, and use chemistry to mess with your lunch menu.

Inside HackSpace magazine issue 7
Helen Steer inside HackSpace magazine issue 7
Inside HackSpace magazine issue 7

All this plus much, much more waits for you in HackSpace magazine issue 7!

Get your copy of HackSpace magazine

If you like the sound of that, you can find HackSpace magazine in WHSmith, Tesco, Sainsbury’s, and independent newsagents in the UK. If you live in the US, check out your local Barnes & Noble, Fry’s, or Micro Center next week. We’re also shipping to stores in Australia, Hong Kong, Canada, Singapore, Belgium, and Brazil, so be sure to ask your local newsagent whether they’ll be getting HackSpace magazine.

And if you can’t get to the shops, fear not: you can subscribe from £4 an issue from our online shop. And if you’d rather try before you buy, you can always download the free PDF. Happy reading, and happy making!

The post HackSpace magazine 7: Internet of Everything appeared first on Raspberry Pi.

Naturebytes’ weatherproof Pi and camera case

Post Syndicated from Helen Lynn original https://www.raspberrypi.org/blog/naturebytes-weatherproof-pi-and-camera-case/

Naturebytes are making their weatherproof Wildlife Cam Case available as a standalone product for the first time, a welcome addition to the Raspberry Pi ecosystem that should take some of the hassle out of your outdoor builds.

A robin on a bird feeder in a garden with a Naturebytes Wildlife Cam mounted beside it

Weatherproofing digital making projects

People often use Raspberry Pis and Camera Modules for outdoor projects, but weatherproofing your set-up can be tricky. You need to keep water — and tiny creatures — out, but you might well need access for wires and cables, whether for power or sensors; if you’re using a camera, it’ll need something clear and cleanable in front of the lens. You can use sealant, but if you need to adjust anything that you’ve applied it to, you’ll have to remove it and redo it. While we’ve seen a few reasonable options available to buy, the choice has never been what you’d call extensive.

The Naturebytes case

For all these reasons, I was pleased to learn that Naturebytes, the wildlife camera people, are releasing their Wildlife Cam Case as a standalone product for the first time.

Naturebytes case open

The Wildlife Cam Case is ideal for nature camera projects, of course, but it’ll also be useful for anyone who wants to take their Pi outdoors. It has weatherproof lenses that are transparent to visible and IR light, for all your nature observation projects. Its opening is hinged to allow easy access to your hardware, and the case has waterproof access for cables. Inside, there’s a mount for fixing any model of Raspberry Pi and camera, as well as many other components. On top of all that, the case comes with a sturdy nylon strap to make it easy to attach it to a post or a tree.

Naturebytes case additional components

Order yours now!

At the moment, Naturebytes are producing a limited run of the cases. The first batch of 50 are due to be dispatched next week to arrive just in time for the Bank Holiday weekend in the UK, so get them while they’re hot. It’s the perfect thing for recording a timelapse of exactly how quickly the slugs obliterate your vegetable seedlings, and of lots more heartening things that must surely happen in gardens other than mine.

The post Naturebytes’ weatherproof Pi and camera case appeared first on Raspberry Pi.

A serverless solution for invoking AWS Lambda at a sub-minute frequency

Post Syndicated from Emanuele Menga original https://aws.amazon.com/blogs/architecture/a-serverless-solution-for-invoking-aws-lambda-at-a-sub-minute-frequency/

If you’ve used Amazon CloudWatch Events to schedule the invocation of a Lambda function at regular intervals, you may have noticed that the highest frequency possible is one invocation per minute. However, in some cases, you may need to invoke Lambda more often than that. In this blog post, I’ll cover invoking a Lambda function every 10 seconds, but with some simple math you can change to whatever interval you like.

To achieve this, I’ll show you how to leverage Step Functions and Amazon Kinesis Data Streams.

The Solution

For this example, I’ve created a Step Functions State Machine that invokes our Lambda function 6 times, 10 seconds apart. Such State Machine is then executed once per minute by a CloudWatch Events Rule. This state machine is then executed once per minute by an Amazon CloudWatch Events rule. Finally, the Kinesis Data Stream triggers our Lambda function for each record inserted. The result is our Lambda function being invoked every 10 seconds, indefinitely.

Below is a diagram illustrating how the various services work together.

Step 1: My sampleLambda function doesn’t actually do anything, it just simulates an execution for a few seconds. This is the (Python) code of my dummy function:

import time

import random


def lambda_handler(event, context):

rand = random.randint(1, 3)

print('Running for {} seconds'.format(rand))

time.sleep(rand)

return True

Step 2:

The next step is to create a second Lambda function, that I called Iterator, which has two duties:

  • It keeps track of the current number of iterations, since Step Function doesn’t natively have a state we can use for this purpose.
  • It asynchronously invokes our Lambda function at every loops.

This is the code of the Iterator, adapted from here.

 

import boto3

client = boto3.client('kinesis')

def lambda_handler(event, context):

index = event['iterator']['index'] + 1

response = client.put_record(

StreamName='LambdaSubMinute',

PartitionKey='1',

Data='',

)

return {

'index': index,

'continue': index < event['iterator']['count'],

'count': event['iterator']['count']

}

This function does three things:

  • Increments the counter.
  • Verifies if we reached a count of (in this example) 6.
  • Sends an empty record to the Kinesis Stream.

Now we can create the Step Functions State Machine; the definition is, again, adapted from here.

 

{

"Comment": "Invoke Lambda every 10 seconds",

"StartAt": "ConfigureCount",

"States": {

"ConfigureCount": {

"Type": "Pass",

"Result": {

"index": 0,

"count": 6

},

"ResultPath": "$.iterator",

"Next": "Iterator"

},

"Iterator": {

"Type": "Task",

"Resource": “arn:aws:lambda:REGION:ACCOUNT_ID:function:Iterator",

"ResultPath": "$.iterator",

"Next": "IsCountReached"

},

"IsCountReached": {

"Type": "Choice",

"Choices": [

{

"Variable": "$.iterator.continue",

"BooleanEquals": true,

"Next": "Wait"

}

],

"Default": "Done"

},

"Wait": {

"Type": "Wait",

"Seconds": 10,

"Next": "Iterator"

},

"Done": {

"Type": "Pass",

"End": true

}

}

}

This is how it works:

  1. The state machine starts and sets the index at 0 and the count at 6.
  2. Iterator function is invoked.
  3. If the iterator function reached the end of the loop, the IsCountReached state terminates the execution, otherwise the machine waits for 10 seconds.
  4. The machine loops back to the iterator.

Step 3: Create an Amazon CloudWatch Events rule scheduled to trigger every minute and add the state machine as its target. I’ve actually prepared an Amazon CloudFormation template that creates the whole stack and starts the Lambda invocations, you can find it here.

Performance

Let’s have a look at a sample series of invocations and analyse how precise the timing is. In the following chart I reported the delay (in excess of the expected 10-second-wait) of 30 consecutive invocations of my dummy function, when the Iterator is configured with a memory size of 1024MB.

Invocations Delay

Notice the delay increases by a few hundred milliseconds at every invocation. The good news is it accrues only within the same loop, 6 times; after that, a new CloudWatch Events kicks in and it resets.

This delay  is due to the work that AWS Step Function does outside of the Wait state, the main component of which is the Iterator function itself, that runs synchronously in the state machine and therefore adds up its duration to the 10-second-wait.

As we can easily imagine, the memory size of the Iterator Lambda function does make a difference. Here are the Average and Maximum duration of the function with 256MB, 512MB, 1GB and 2GB of memory.

Average Duration

Maximum Duration


Given those results, I’d say that a memory of 1024MB is a good compromise between costs and performance.

Caveats

As mentioned, in our Amazon CloudWatch Events documentation, in rare cases a rule can be triggered twice, causing two parallel executions of the state machine. If that is a concern, we can add a task state at the beginning of the state machine that checks if any other executions are currently running. If the outcome is positive, then a choice state can immediately terminate the flow. Since the state machine is invoked every 60 seconds and runs for about 50, it is safe to assume that executions should all be sequential and any parallel executions should be treated as duplicates. The task state that checks for current running executions can be a Lambda function similar to the following:

 

import boto3

client = boto3.client('stepfunctions')

def lambda_handler(event, context):

response = client.list_executions(

stateMachineArn='arn:aws:states:REGION:ACCOUNTID:stateMachine:LambdaSubMinute',

statusFilter='RUNNING'

)

return {

'alreadyRunning': len(response['executions']) > 0

}

About the Author

Emanuele Menga, Cloud Support Engineer

 

Supply-Chain Security

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2018/05/supply-chain_se.html

Earlier this month, the Pentagon stopped selling phones made by the Chinese companies ZTE and Huawei on military bases because they might be used to spy on their users.

It’s a legitimate fear, and perhaps a prudent action. But it’s just one instance of the much larger issue of securing our supply chains.

All of our computerized systems are deeply international, and we have no choice but to trust the companies and governments that touch those systems. And while we can ban a few specific products, services or companies, no country can isolate itself from potential foreign interference.

In this specific case, the Pentagon is concerned that the Chinese government demanded that ZTE and Huawei add “backdoors” to their phones that could be surreptitiously turned on by government spies or cause them to fail during some future political conflict. This tampering is possible because the software in these phones is incredibly complex. It’s relatively easy for programmers to hide these capabilities, and correspondingly difficult to detect them.

This isn’t the first time the United States has taken action against foreign software suspected to contain hidden features that can be used against us. Last December, President Trump signed into law a bill banning software from the Russian company Kaspersky from being used within the US government. In 2012, the focus was on Chinese-made Internet routers. Then, the House Intelligence Committee concluded: “Based on available classified and unclassified information, Huawei and ZTE cannot be trusted to be free of foreign state influence and thus pose a security threat to the United States and to our systems.”

Nor is the United States the only country worried about these threats. In 2014, China reportedly banned antivirus products from both Kaspersky and the US company Symantec, based on similar fears. In 2017, the Indian government identified 42 smartphone apps that China subverted. Back in 1997, the Israeli company Check Point was dogged by rumors that its government added backdoors into its products; other of that country’s tech companies have been suspected of the same thing. Even al-Qaeda was concerned; ten years ago, a sympathizer released the encryption software Mujahedeen Secrets, claimed to be free of Western influence and backdoors. If a country doesn’t trust another country, then it can’t trust that country’s computer products.

But this trust isn’t limited to the country where the company is based. We have to trust the country where the software is written — and the countries where all the components are manufactured. In 2016, researchers discovered that many different models of cheap Android phones were sending information back to China. The phones might be American-made, but the software was from China. In 2016, researchers demonstrated an even more devious technique, where a backdoor could be added at the computer chip level in the factory that made the chips ­ without the knowledge of, and undetectable by, the engineers who designed the chips in the first place. Pretty much every US technology company manufactures its hardware in countries such as Malaysia, Indonesia, China and Taiwan.

We also have to trust the programmers. Today’s large software programs are written by teams of hundreds of programmers scattered around the globe. Backdoors, put there by we-have-no-idea-who, have been discovered in Juniper firewalls and D-Link routers, both of which are US companies. In 2003, someone almost slipped a very clever backdoor into Linux. Think of how many countries’ citizens are writing software for Apple or Microsoft or Google.

We can go even farther down the rabbit hole. We have to trust the distribution systems for our hardware and software. Documents disclosed by Edward Snowden showed the National Security Agency installing backdoors into Cisco routers being shipped to the Syrian telephone company. There are fake apps in the Google Play store that eavesdrop on you. Russian hackers subverted the update mechanism of a popular brand of Ukrainian accounting software to spread the NotPetya malware.

In 2017, researchers demonstrated that a smartphone can be subverted by installing a malicious replacement screen.

I could go on. Supply-chain security is an incredibly complex problem. US-only design and manufacturing isn’t an option; the tech world is far too internationally interdependent for that. We can’t trust anyone, yet we have no choice but to trust everyone. Our phones, computers, software and cloud systems are touched by citizens of dozens of different countries, any one of whom could subvert them at the demand of their government. And just as Russia is penetrating the US power grid so they have that capability in the event of hostilities, many countries are almost certainly doing the same thing at the consumer level.

We don’t know whether the risk of Huawei and ZTE equipment is great enough to warrant the ban. We don’t know what classified intelligence the United States has, and what it implies. But we do know that this is just a minor fix for a much larger problem. It’s doubtful that this ban will have any real effect. Members of the military, and everyone else, can still buy the phones. They just can’t buy them on US military bases. And while the US might block the occasional merger or acquisition, or ban the occasional hardware or software product, we’re largely ignoring that larger issue. Solving it borders on somewhere between incredibly expensive and realistically impossible.

Perhaps someday, global norms and international treaties will render this sort of device-level tampering off-limits. But until then, all we can do is hope that this particular arms race doesn’t get too far out of control.

This essay previously appeared in the Washington Post.

YouTube Won’t Put Up With Blatant Piracy Tutorials Forever

Post Syndicated from Andy original https://torrentfreak.com/youtube-wont-put-up-with-blatant-piracy-tutorials-forever-180506/

Once upon a time, Internet users’ voices would be heard in limited circles, on platforms such as Usenet or other niche platforms.

Then, with the rise of forum platforms such as phpBB in 2000 and Invision Power Board in 2002, thriving communities could gather in public to discuss endless specialist topics, including file-sharing of course.

When dedicated piracy forums began to gain traction, it was pretty much a free-for-all. People discussed obtaining free content absolutely openly. Nothing was taboo and no one considered that there would be any repercussions. As such, moderation was limited to keeping troublemakers in check.

As the years progressed and lawsuits against both sites and services became more commonplace, most sites that weren’t actually serving illegal content began to consider their positions. Run by hobbyists, most didn’t want the hassle of a multi-million dollar lawsuit, so links to pirate content began to diminish and the more overt piracy tutorials began to disappear underground.

Those that remained in plain sight became much more considered. Tutorials on how to pirate specific Hollywood blockbusters were no longer needed, a plain general tutorial would suffice. And, as communities matured and took time to understand the implications of their actions, those without political motivations realized that drawing attention to potential criminality was neither required nor necessary.

Then YouTube and social media happened and almost overnight, no one was in charge and anyone could say whatever they liked.

In this new reality, there were no irritating moderator-type figures removing links to this and that, and nobody warning people against breaking rules that suddenly didn’t exist anymore. In essence, previously tight-knit and street-wise file-sharing and piracy communities not only became fragmented, but also chaotic.

This meant that anyone could become a leader and in some cases, this was the utopia that many had hoped for. Not only couldn’t the record labels or Hollywood tell people what to do anymore, discussion site operators couldn’t either. For those who didn’t abuse the power and for those who knew no better, this was a much-needed breath of fresh air. But, like all good things, it was unlikely to last forever.

Where most file-sharing of yesterday was carried out by hobbyist enthusiasts, many of today’s pirates are far more casual. They’re just as thirsty for content, but they don’t want to spend hours hunting for it. They want it all on a plate, at the flick of a switch, delivered to their TV with a minimum of hassle.

With online discussions increasingly seen as laborious and old-fashioned, many mainstream pirates have turned to easy-to-consume videos. In support of their Kodi media player habits, YouTube has become the educational platform of choice for millions.

As a result, there is now a long line of self-declared Kodi piracy specialists scooping up millions of views on YouTube. Their videos – which in many cases are thinly veiled advertisements for third party addons, Kodi ‘builds’, illegal IPTV services, and obscure Android APKs – are now the main way for a new generation to obtain direct advice on pirating.

Many of the videos are incredibly blatant, like the past 15 years of litigation never happened. All the lessons learned by the phpBB board operators of yesteryear, of how to achieve their goals of sharing information without getting shut down, have been long forgotten. In their place, a barrage of daily videos designed to generate clicks and affiliate revenue, no matter what the cost, no matter what the risk.

It’s pretty clear that these videos are at least partly responsible for the phenomenal uptick in Kodi and Android-based piracy over the past few years. In that respect, many lovers of free content will be eternally grateful for the service they’ve provided. But like many piracy movements over the years, people shouldn’t get too attached to them, at least in their current form.

Thanks to the devil-may-care approach of many influential YouTubers, it won’t be long before a whole new set of moderators begin flexing their muscles. While your average phpBB moderator could be reasoned with in order to get a second chance, a determined and largely faceless YouTube will eject offenders without so much as a clear explanation.

When this happens (and it’s only a question of time given the growing blatancy of many tutorials) YouTubers will not only lose their voices but their revenue streams too. While YouTube’s partner programs bring in some welcome cash, the profitable affiliate schemes touted on these channels for external products will also be under threat.

Perhaps the most surprising thing in this drama-waiting-to-happen is that many of the most popular YouTubers can hardly be considered young and naive. While some are of more tender years, most – with their undoubted skill, knowledge and work ethic – should know better for their 30 or 40 years on this planet. Yet not only do they make their names public, they feature their faces heavily in their videos too.

Still, it’s likely that it will take some big YouTube accounts to fall before YouTubers respond by shaving the sharp edges off their blatant promotion of illegal activity. And there’s little doubt that those advertising products (which is most of them) will have to do so sooner rather than later.

Just this week, YouTube made it clear that it won’t tolerate people making money from the promotion of illegal activities.

“YouTube creators may include paid endorsements as part of their content only if the product or service they are endorsing complies with our advertising policies,” YouTube told the BBC.

“We will be working with creators going forward so they better understand that in video promotions [they] must not promote dishonest activity.”

That being said, like many other players in the piracy and file-sharing space over the past 18 years, YouTubers will eventually begin to learn that not only can the smart survive, they can flourish too.

Sure, there will be people out there who’ll protest that free speech allows citizens to express themselves in a manner of their choosing. But try PM’ing that to YouTube in response to a strike, and see how that fares.

When they say you’re done, the road back is a long one.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and more. We also have VPN reviews, discounts, offers and coupons.

3D-printed speakers from the Technical University of Denmark

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/technical-university-denmark-speakers/

Students taking Design of Mechatronics at the Technical University of Denmark have created some seriously elegant and striking Raspberry Pi speakers. Their builds are part of a project asking them to “explore, design and build a 3D printed speaker, around readily available electronics and components”.

The students have been uploading their designs, incorporating Raspberry Pis and HiFiBerry HATs, to Thingiverse throughout April. The task is a collaboration with luxury brand Bang & Olufsen’s Create initiative, and the results wouldn’t look out of place in a high-end showroom; I’d happily take any of these home.

The Sphere

Søren Qvist Sphere 3D-printed laser-cut Raspberry Pi Speaker
Søren Qvist Sphere 3D-printed laser-cut Raspberry Pi Speaker
Søren Qvist Sphere 3D-printed laser-cut Raspberry Pi Speaker

Søren Qvist’s wall-mounted kitchen sphere uses 3D-printed and laser-cut parts, along with the HiFiBerry HAT and B&O speakers to create a sleek-looking design.

Hex One

Otto Ømann Hex One 3D-printed laser-cut Raspberry Pi Speaker

Otto Ømann Hex One 3D-printed laser-cut Raspberry Pi Speaker

Otto Ømann’s group have designed the Hex One – a work-in-progress wireless 360° speaker. A particular objective for their project is to create a speaker using as many 3D-printed parts as possible.

Portable B&O-Create Speaker



“The design is supposed to resemble that of a B&O speaker, and from a handful of categories we chose to create a portable and wearable speaker,” explain Gustav Larsen and his team.

Desktop Loudspeaker

Oliver Repholtz Behrens loudspeaker

Oliver Repholtz Behrens loudspeaker

Oliver Repholtz Behrens and team have housed a Raspberry Pi and HiFiBerry HAT inside this this stylish airplay speaker. You can follow their design progress on their team blog.

B&O TILE



Tue Thomsen’s six-person team Mechatastic have produced the B&O TILE. “The speaker consists of four 3D-printed cabinet and top parts, where the top should be covered by fabric,” they explain. “The speaker insides consists of laser-cut wood to hold the tweeter and driver and encase the Raspberry Pi.”

The team aimed to design a speaker that would be at home in a kitchen. With a removable upper casing allowing for a choice of colour, the TILE can be customised to fit particular tastes and colour schemes.

Build your own speakers with Raspberry Pis

Raspberry Pi’s onboard audio jack, along with third-party HATs such as the HiFiBerry and Pimoroni Speaker pHAT, make speaker design and fabrication with the Pi an interesting alternative to pre-made tech. These builds don’t tend to be technically complex, and they provide some lovely examples of tech-based projects that reflect makers’ own particular aesthetic style.

If you have access to a 3D printer or a laser cutter, perhaps at a nearby maker space, then those can be excellent resources, but fancy kit isn’t a requirement. Basic joinery and crafting with card or paper are just a couple of ways you can build things that are all your own, using familiar tools and materials. We think more people would enjoy getting hands-on with this sort of thing if they gave it a whirl, and we publish a free magazine to help.

Raspberry Pi Zero AirPlay Speaker

Looking for a new project to build around the Raspberry Pi Zero, I came across the pHAT DAC from Pimoroni. This little add-on board adds audio playback capabilities to the Pi Zero. Because the pHAT uses the GPIO pins, the USB OTG port remains available for a wifi dongle.

This video by Frederick Vandenbosch is a great example of building AirPlay speakers using a Pi and HAT, and a quick search will find you lots more relevant tutorials and ideas.

Have you built your own? Share your speaker-based Pi builds with us in the comments.

The post 3D-printed speakers from the Technical University of Denmark appeared first on Raspberry Pi.

Congratulations to Oracle on MySQL 8.0

Post Syndicated from Michael "Monty" Widenius original http://monty-says.blogspot.com/2018/04/congratulations-to-oracle-on-mysql-80.html

Last week, Oracle announced the general availability of MySQL 8.0. This is good news for database users, as it means Oracle is still developing MySQL.

I decide to celebrate the event by doing a quick test of MySQL 8.0. Here follows a step-by-step description of my first experience with MySQL 8.0.
Note that I did the following without reading the release notes, as is what I have done with every MySQL / MariaDB release up to date; In this case it was not the right thing to do.

I pulled MySQL 8.0 from [email protected]:mysql/mysql-server.git
I was pleasantly surprised that ‘cmake . ; make‘ worked without without any compiler warnings! I even checked the used compiler options and noticed that MySQL was compiled with -Wall + several other warning flags. Good job MySQL team!

I did have a little trouble finding the mysqld binary as Oracle had moved it to ‘runtime_output_directory’; Unexpected, but no big thing.

Now it’s was time to install MySQL 8.0.

I did know that MySQL 8.0 has removed mysql_install_db, so I had to use the mysqld binary directly to install the default databases:
(I have specified datadir=/my/data3 in the /tmp/my.cnf file)

> cd runtime_output_directory
> mkdir /my/data3
> ./mysqld –defaults-file=/tmp/my.cnf –install

2018-04-22T12:38:18.332967Z 1 [ERROR] [MY-011011] [Server] Failed to find valid data directory.
2018-04-22T12:38:18.333109Z 0 [ERROR] [MY-010020] [Server] Data Dictionary initialization failed.
2018-04-22T12:38:18.333135Z 0 [ERROR] [MY-010119] [Server] Aborting

A quick look in mysqld –help –verbose output showed that the right command option is –-initialize. My bad, lets try again,

> ./mysqld –defaults-file=/tmp/my.cnf –initialize

2018-04-22T12:39:31.910509Z 0 [ERROR] [MY-010457] [Server] –initialize specified but the data directory has files in it. Aborting.
2018-04-22T12:39:31.910578Z 0 [ERROR] [MY-010119] [Server] Aborting

Now I used the right options, but still didn’t work.
I took a quick look around:

> ls /my/data3/
binlog.index

So even if the mysqld noticed that the data3 directory was wrong, it still wrote things into it.  This even if I didn’t have –log-binlog enabled in the my.cnf file. Strange, but easy to fix:

> rm /my/data3/binlog.index
> ./mysqld –defaults-file=/tmp/my.cnf –initialize

2018-04-22T12:40:45.633637Z 0 [ERROR] [MY-011071] [Server] unknown variable ‘max-tmp-tables=100’
2018-04-22T12:40:45.633657Z 0 [Warning] [MY-010952] [Server] The privilege system failed to initialize correctly. If you have upgraded your server, make sure you’re executing mysql_upgrade to correct the issue.
2018-04-22T12:40:45.633663Z 0 [ERROR] [MY-010119] [Server] Aborting

The warning about the privilege system confused me a bit, but I ignored it for the time being and removed from my configuration files the variables that MySQL 8.0 doesn’t support anymore. I couldn’t find a list of the removed variables anywhere so this was done with the trial and error method.

> ./mysqld –defaults-file=/tmp/my.cnf

2018-04-22T12:42:56.626583Z 0 [ERROR] [MY-010735] [Server] Can’t open the mysql.plugin table. Please run mysql_upgrade to create it.
2018-04-22T12:42:56.827685Z 0 [Warning] [MY-010015] [Repl] Gtid table is not ready to be used. Table ‘mysql.gtid_executed’ cannot be opened.
2018-04-22T12:42:56.838501Z 0 [Warning] [MY-010068] [Server] CA certificate ca.pem is self signed.
2018-04-22T12:42:56.848375Z 0 [Warning] [MY-010441] [Server] Failed to open optimizer cost constant tables
2018-04-22T12:42:56.848863Z 0 [ERROR] [MY-013129] [Server] A message intended for a client cannot be sent there as no client-session is attached. Therefore, we’re sending the information to the error-log instead: MY-001146 – Table ‘mysql.component’ doesn’t exist
2018-04-22T12:42:56.848916Z 0 [Warning] [MY-013129] [Server] A message intended for a client cannot be sent there as no client-session is attached. Therefore, we’re sending the information to the error-log instead: MY-003543 – The mysql.component table is missing or has an incorrect definition.
….
2018-04-22T12:42:56.854141Z 0 [System] [MY-010931] [Server] /home/my/mysql-8.0/runtime_output_directory/mysqld: ready for connections. Version: ‘8.0.11’ socket: ‘/tmp/mysql.sock’ port: 3306 Source distribution.

I figured out that if there is a single wrong variable in the configuration file, running mysqld –initialize will leave the database in an inconsistent state. NOT GOOD! I am happy I didn’t try this in a production system!

Time to start over from the beginning:

> rm -r /my/data3/*
> ./mysqld –defaults-file=/tmp/my.cnf –initialize

2018-04-22T12:44:45.548960Z 5 [Note] [MY-010454] [Server] A temporary password is generated for [email protected]: px)NaaSp?6um
2018-04-22T12:44:51.221751Z 0 [System] [MY-013170] [Server] /home/my/mysql-8.0/runtime_output_directory/mysqld (mysqld 8.0.11) initializing of server has completed

Success!

I wonder why the temporary password is so complex; It could easily have been something that one could easily remember without decreasing security, it’s temporary after all. No big deal, one can always paste it from the logs. (Side note: MariaDB uses socket authentication on many system and thus doesn’t need temporary installation passwords).

Now lets start the MySQL server for real to do some testing:

> ./mysqld –defaults-file=/tmp/my.cnf

2018-04-22T12:45:43.683484Z 0 [System] [MY-010931] [Server] /home/my/mysql-8.0/runtime_output_directory/mysqld: ready for connections. Version: ‘8.0.11’ socket: ‘/tmp/mysql.sock’ port: 3306 Source distribution.

And the lets start the client:

> ./client/mysql –socket=/tmp/mysql.sock –user=root –password=”px)NaaSp?6um”
ERROR 2059 (HY000): Plugin caching_sha2_password could not be loaded: /usr/local/mysql/lib/plugin/caching_sha2_password.so: cannot open shared object file: No such file or directory

Apparently MySQL 8.0 doesn’t work with old MySQL / MariaDB clients by default 🙁

I was testing this in a system with MariaDB installed, like all modern Linux system today, and didn’t want to use the MySQL clients or libraries.

I decided to try to fix this by changing the authentication to the native (original) MySQL authentication method.

> mysqld –skip-grant-tables

> ./client/mysql –socket=/tmp/mysql.sock –user=root
ERROR 1045 (28000): Access denied for user ‘root’@’localhost’ (using password: NO)

Apparently –skip-grant-tables is not good enough anymore. Let’s try again with:

> mysqld –skip-grant-tables –default_authentication_plugin=mysql_native_password

> ./client/mysql –socket=/tmp/mysql.sock –user=root mysql
Welcome to the MariaDB monitor. Commands end with ; or \g.
Your MySQL connection id is 7
Server version: 8.0.11 Source distribution

Great, we are getting somewhere, now lets fix “root”  to work with the old authenticaion:

MySQL [mysql]> update mysql.user set plugin=”mysql_native_password”,authentication_string=password(“test”) where user=”root”;
ERROR 1064 (42000): You have an error in your SQL syntax; check the manual that corresponds to your MySQL server version for the right syntax to use near ‘(“test”) where user=”root”‘ at line 1

A quick look in the MySQL 8.0 release notes told me that the PASSWORD() function is removed in 8.0. Why???? I don’t know how one in MySQL 8.0 is supposed to generate passwords compatible with old installations of MySQL. One could of course start an old MySQL or MariaDB version, execute the password() function and copy the result.

I decided to fix this the easy way and use an empty password:

(Update:: I later discovered that the right way would have been to use: FLUSH PRIVILEGES;  ALTER USER’ root’@’localhost’ identified by ‘test’  ; I however dislike this syntax as it has the password in clear text which is easy to grab and the command can’t be used to easily update the mysql.user table. One must also disable the –skip-grant mode to do use this)

MySQL [mysql]> update mysql.user set plugin=”mysql_native_password”,authentication_string=”” where user=”root”;
Query OK, 1 row affected (0.077 sec)
Rows matched: 1 Changed: 1 Warnings: 0
 
I restarted mysqld:
> mysqld –default_authentication_plugin=mysql_native_password

> ./client/mysql –user=root –password=”” mysql
ERROR 1862 (HY000): Your password has expired. To log in you must change it using a client that supports expired passwords.

Ouch, forgot that. Lets try again:

> mysqld –skip-grant-tables –default_authentication_plugin=mysql_native_password

> ./client/mysql –user=root –password=”” mysql
MySQL [mysql]> update mysql.user set password_expired=”N” where user=”root”;

Now restart and test worked:

> ./mysqld –default_authentication_plugin=mysql_native_password

>./client/mysql –user=root –password=”” mysql

Finally I had a working account that I can use to create other users!

When looking at mysqld –help –verbose again. I noticed the option:

–initialize-insecure
Create the default database and exit. Create a super user
with empty password.

I decided to check if this would have made things easier:

> rm -r /my/data3/*
> ./mysqld –defaults-file=/tmp/my.cnf –initialize-insecure

2018-04-22T13:18:06.629548Z 5 [Warning] [MY-010453] [Server] [email protected] is created with an empty password ! Please consider switching off the –initialize-insecure option.

Hm. Don’t understand the warning as–initialize-insecure is not an option that one would use more than one time and thus nothing one would ‘switch off’.

> ./mysqld –defaults-file=/tmp/my.cnf

> ./client/mysql –user=root –password=”” mysql
ERROR 2059 (HY000): Plugin caching_sha2_password could not be loaded: /usr/local/mysql/lib/plugin/caching_sha2_password.so: cannot open shared object file: No such file or directory

Back to the beginning 🙁

To get things to work with old clients, one has to initialize the database with:
> ./mysqld –defaults-file=/tmp/my.cnf –initialize-insecure –default_authentication_plugin=mysql_native_password

Now I finally had MySQL 8.0 up and running and thought I would take it up for a spin by running the “standard” MySQL/MariaDB sql-bench test suite. This was removed in MySQL 5.7, but as I happened to have MariaDB 10.3 installed, I decided to run it from there.

sql-bench is a single threaded benchmark that measures the “raw” speed for some common operations. It gives you the ‘maximum’ performance for a single query. Its different from other benchmarks that measures the maximum throughput when you have a lot of users, but sql-bench still tells you a lot about what kind of performance to expect from the database.

I tried first to be clever and create the “test” database, that I needed for sql-bench, with
> mkdir /my/data3/test

but when I tried to run the benchmark, MySQL 8.0 complained that the test database didn’t exist.

MySQL 8.0 has gone away from the original concept of MySQL where the user can easily
create directories and copy databases into the database directory. This may have serious
implication for anyone doing backup of databases and/or trying to restore a backup with normal OS commands.

I created the ‘test’ database with mysqladmin and then tried to run sql-bench:

> ./run-all-tests –user=root

The first run failed in test-ATIS:

Can’t execute command ‘create table class_of_service (class_code char(2) NOT NULL,rank tinyint(2) NOT NULL,class_description char(80) NOT NULL,PRIMARY KEY (class_code))’
Error: You have an error in your SQL syntax; check the manual that corresponds to your MySQL server version for the right syntax to use near ‘rank tinyint(2) NOT NULL,class_description char(80) NOT NULL,PRIMARY KEY (class_’ at line 1

This happened because ‘rank‘ is now a reserved word in MySQL 8.0. This is also reserved in ANSI SQL, but I don’t know of any other database that has failed to run test-ATIS before. I have in the past run it against Oracle, PostgreSQL, Mimer, MSSQL etc without any problems.

MariaDB also has ‘rank’ as a keyword in 10.2 and 10.3 but one can still use it as an identifier.

I fixed test-ATIS and then managed to run all tests on MySQL 8.0.

I did run the test both with MySQL 8.0 and MariaDB 10.3 with the InnoDB storage engine and by having identical values for all InnoDB variables, table-definition-cache and table-open-cache. I turned off performance schema for both databases. All test are run with a user with an empty password (to keep things comparable and because it’s was too complex to generate a password in MySQL 8.0)

The result are as follows
Results per test in seconds:

Operation         |MariaDB|MySQL-8|

———————————–
ATIS              | 153.00| 228.00|
alter-table       |  92.00| 792.00|
big-tables        | 990.00|2079.00|
connect           | 186.00| 227.00|
create            | 575.00|4465.00|
insert            |4552.00|8458.00|
select            | 333.00| 412.00|
table-elimination |1900.00|3916.00|
wisconsin         | 272.00| 590.00|
———————————–

This is of course just a first view of the performance of MySQL 8.0 in a single user environment. Some reflections about the results:

  • Alter-table test is slower (as expected) in 8.0 as some of the alter tests benefits of the instant add column in MariaDB 10.3.
  • connect test is also better for MariaDB as we put a lot of efforts to speed this up in MariaDB 10.2
  • table-elimination shows an optimization in MariaDB for the  Anchor table model, which MySQL doesn’t have.
  • CREATE and DROP TABLE is almost 8 times slower in MySQL 8.0 than in MariaDB 10.3. I assume this is the cost of ‘atomic DDL’. This may also cause performance problems for any thread using the data dictionary when another thread is creating/dropping tables.
  • When looking at the individual test results, MySQL 8.0 was slower in almost every test, in many significantly slower.
  • The only test where MySQL was faster was “update_with_key_prefix”. I checked this and noticed that there was a bug in the test and the columns was updated to it’s original value (which should be instant with any storage engine). This is an old bug that MySQL has found and fixed and that we have not been aware of in the test or in MariaDB.
  • While writing this, I noticed that MySQL 8.0 is now using utf8mb4 as the default character set instead of latin1. This may affect some of the benchmarks slightly (not much as most tests works with numbers and Oracle claims that utf8mb4 is only 20% slower than latin1), but needs to be verified.
  • Oracle claims that MySQL 8.0 is much faster on multi user benchmarks. The above test indicates that they may have done this by sacrificing single user performance.
  •  We need to do more and many different benchmarks to better understand exactly what is going on. Stay tuned!

Short summary of my first run with MySQL 8.0:

  • Using the new caching_sha2_password authentication as default for new installation is likely to cause a lot of problems for users. No old application will be able to use MySQL 8.0, installed with default options, without moving to MySQL’s client libraries. While working on this blog I saw MySQL users complain on IRC that not even MySQL Workbench can authenticate with MySQL 8.0. This is the first time in MySQL’s history where such an incompatible change has ever been done!
  • Atomic DDL is a good thing (We plan to have this in MariaDB 10.4), but it should not have such a drastic impact on performance. I am also a bit skeptical of MySQL 8.0 having just one copy of the data dictionary as if this gets corrupted you will lose all your data. (Single point of failure)
  • MySQL 8.0 has several new reserved words and has removed a lot of variables, which makes upgrades hard. Before upgrading to MySQL 8.0 one has to check all one’s databases and applications to ensure that there are no conflicts.
  • As my test above shows, if you have a single deprecated variable in your configuration files, the installation of MySQL will abort and can leave the database in inconsistent state. I did of course my tests by installing into an empty data dictionary, but one can assume that some of the problems may also happen when upgrading an old installation.

Conclusions:
In many ways, MySQL 8.0 has caught up with some earlier versions of MariaDB. For instance, in MariaDB 10.0, we introduced roles (four years ago). In MariaDB 10.1, we introduced encrypted redo/undo logs (three years ago). In MariaDB 10.2, we introduced window functions and CTEs (a year ago). However, some catch-up of MariaDB Server 10.2 features still remains for MySQL (such as check constraints, binlog compression, and log-based rollback).

MySQL 8.0 has a few new interesting features (mostly Atomic DDL and JSON TABLE functions), but at the same time MySQL has strayed away from some of the fundamental corner stone principles of MySQL:

From the start of the first version of MySQL in 1995, all development has been focused around 3 core principles:

  • Ease of use
  • Performance
  • Stability

With MySQL 8.0, Oracle has sacrifices 2 of 3 of these.

In addition (as part of ease of use), while I was working on MySQL, we did our best to ensure that the following should hold:

  • Upgrades should be trivial
  • Things should be kept compatible, if possible (don’t remove features/options/functions that are used)
  • Minimize reserved words, don’t remove server variables
  • One should be able to use normal OS commands to create and drop databases, copy and move tables around within the same system or between different systems. With 8.0 and data dictionary taking backups of specific tables will be hard, even if the server is not running.
  • mysqldump should always be usable backups and to move to new releases
  • Old clients and application should be able to use ‘any’ MySQL server version unchanged. (Some Oracle client libraries, like C++, by default only supports the new X protocol and can thus not be used with older MySQL or any MariaDB version)

We plan to add a data dictionary to MariaDB 10.4 or MariaDB 10.5, but in a way to not sacrifice any of the above principles!

The competition between MySQL and MariaDB is not just about a tactical arms race on features. It’s about design philosophy, or strategic vision, if you will.

This shows in two main ways: our respective view of the Storage Engine structure, and of the top-level direction of the roadmap.

On the Storage Engine side, MySQL is converging on InnoDB, even for clustering and partitioning. In doing so, they are abandoning the advantages of multiple ways of storing data. By contrast, MariaDB sees lots of value in the Storage Engine architecture: MariaDB Server 10.3 will see the general availability of MyRocks (for write-intensive workloads) and Spider (for scalable workloads). On top of that, we have ColumnStore for analytical workloads. One can use the CONNECT engine to join with other databases. The use of different storage engines for different workloads and different hardware is a competitive differentiator, now more than ever.

On the roadmap side, MySQL is carefully steering clear of features that close the gap between MySQL and Oracle. MariaDB has no such constraints. With MariaDB 10.3, we are introducing PL/SQL compatibility (Oracle’s stored procedures) and AS OF (built-in system versioned tables with point-in-time querying). For both of those features, MariaDB is the first Open Source database doing so. I don’t except Oracle to provide any of the above features in MySQL!

Also on the roadmap side, MySQL is not working with the ecosystem in extending the functionality. In 2017, MariaDB accepted more code contributions in one year, than MySQL has done during its entire lifetime, and the rate is increasing!

I am sure that the experience I had with testing MySQL 8.0 would have been significantly better if MySQL would have an open development model where the community could easily participate in developing and testing MySQL continuously. Most of the confusing error messages and strange behavior would have been found and fixed long before the GA release.

Before upgrading to MySQL 8.0 please read https://dev.mysql.com/doc/refman/8.0/en/upgrading-from-previous-series.html to see what problems you can run into! Don’t expect that old installations or applications will work out of the box without testing as a lot of features and options has been removed (query cache, partition of myisam tables etc)! You probably also have to revise your backup methods, especially if you want to ever restore just a few tables. (With 8.0, I don’t know how this can be easily done).

According to the MySQL 8.0 release notes, one can’t use mysqldump to copy a database to MySQL 8.0. One has to first to move to a MySQL 5.7 GA version (with mysqldump, as recommended by Oracle) and then to MySQL 8.0 with in-place update. I assume this means that all old mysqldump backups are useless for MySQL 8.0?

MySQL 8.0 seams to be a one way street to an unknown future. Up to MySQL 5.7 it has been trivial to move to MariaDB and one could always move back to MySQL with mysqldump. All MySQL client libraries has worked with MariaDB and all MariaDB client libraries has worked with MySQL. With MySQL 8.0 this has changed in the wrong direction.

As long as you are using MySQL 5.7 and below you have choices for your future, after MySQL 8.0 you have very little choice. But don’t despair, as MariaDB will always be able to load a mysqldump file and it’s very easy to upgrade your old MySQL installation to MariaDB 🙂

I wish you good luck to try MySQL 8.0 (and also the upcoming MariaDB 10.3)!

Pirates Taunt Amazon Over New “Turd Sandwich” Prime Video Quality

Post Syndicated from Andy original https://torrentfreak.com/pirates-taunt-amazon-over-new-turd-sandwich-prime-video-quality-180419/

Even though they generally aren’t paying for the content they consume, don’t fall into the trap of believing that all pirates are eternally grateful for even poor quality media.

Without a doubt, some of the most quality-sensitive individuals are to be found in pirate communities and they aren’t scared to make their voices known when release groups fail to come up with the best possible goods.

This week there’s been a sustained chorus of disapproval over the quality of pirate video releases sourced from Amazon Prime. The anger is usually directed at piracy groups who fail to capture content in the correct manner but according to a number of observers, the problem is actually at Amazon’s end.

Discussions on Reddit, for example, report that episodes in a single TV series have been declining in filesize and bitrate, from 1.56 GB in 720p at a 3073 kb/s video bitrate for episode 1, down to 907 MB in 720p at just 1514 kb/s video bitrate for episode 10.

Numerous theories as to why this may be the case are being floated around, including that Amazon is trying to save on bandwidth expenses. While this is a possibility, the company hasn’t made any announcements to that end.

Indeed, one legitimate customer reported that he’d raised the quality issue with Amazon and they’d said that the problem was “probably on his end”.

“I have Amazon Prime Video and I noticed the quality was always great for their exclusive shows, so I decided to try buying the shows on Amazon instead of iTunes this year. I paid for season pass subscriptions for Legion, Billions and Homeland this year,” he wrote.

“Just this past weekend, I have noticed a significant drop in details compared to weeks before! So naturally I assumed it was an issue on my end. I started trying different devices, calling support, etc, but nothing really helped.

“Billions continued to look like a blurry mess, almost like I was watching a standard definition DVD instead of the crystal clear HD I paid for and have experienced in the past! And when I check the previous episodes, sure enough, they look fantastic again. What the heck??”

With Amazon distancing itself from the issues, piracy groups have already begun to dig in the knife. Release group DEFLATE has been particularly critical.

“Amazon, in their infinite wisdom, have decided to start fucking with the quality of their encodes. They’re now reaching Netflix’s subpar 1080p.H264 levels, and their H265 encodes aren’t even close to what Netflix produces,” the group said in a file attached to S02E07 of The Good Fight released on Sunday.

“Netflix is able to produce drastic visual improvements with their H265 encodes compared to H264 across every original. In comparison, Amazon can’t decide whether H265 or H264 is going to produce better results, and as a result we suffer for it.”

Arrr! The quality be fallin’

So what’s happening exactly?

A TorrentFreak source (who tells us he’s been working in the BluRay/DCP authoring business for the last 10 years) was kind enough to give us two opinions, one aimed at the techies and another at us mere mortals.

“In technical terms, it appears [Amazon has] increased the CRF [Constant Rate Factor] value they use when encoding for both the HEVC [H265] and H264 streams. Previously, their H264 streams were using CRF 18 and a max bitrate of 15Mbit/s, which usually resulted in file sizes of roughly 3GB, or around 10Mbit/s. Similarly with their HEVC streams, they were using CRF 20 and resulting in streams which were around the same size,” he explained.

“In the past week, the H264 streams have decreased by up to 50% for some streams. While there are no longer any x264 headers embedded in the H264 streams, the HEVC streams still retain those headers and the CRF value used has been increased, so it does appear this change has been done on purpose.”

In layman’s terms, our source believes that Amazon had previously been using an encoding profile that was “right on the edge of relatively good quality” which kept bitrates relatively low but high enough to ensure no perceivable loss of quality.

“H264 streams encoded with CRF 18 could provide an acceptable compromise between quality and file size, where the loss of detail is often negligible when watched at regular viewing distances, at a desk, or in a lounge room on a larger TV,” he explained.

“Recently, it appears these values have been intentionally changed in order to lower the bitrate and file sizes for reasons unknown. As a result, the quality of some streams has been reduced by up to 50% of their previous values. This has introduced a visual loss of quality, comparable to that of viewing something in standard definition versus high definition.”

With the situation failing to improve during the week, by the time piracy group DEFLATE released S03E14 of Supergirl on Tuesday their original criticism had transformed into flat-out insults.

“These are only being done in H265 because Amazon have shit the bed, and it’s a choice between a turd sandwich and a giant douche,” they wrote, offering these images as illustrative of the problem and these indicating what should be achievable.

With DEFLATE advising customers to start complaining to Amazon, the memes have already begun, with unfavorable references to now-defunct group YIFY (which was often chastized for its low quality rips) and even a spin on one of the most well known anti-piracy campaigns.

You wouldn’t download stream….

TorrentFreak contacted Amazon Prime for comment on both the recent changes and growing customer complaints but at the time of publication we were yet to receive a response.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and more. We also have VPN reviews, discounts, offers and coupons.

Build a house in Minecraft using Python

Post Syndicated from Rob Zwetsloot original https://www.raspberrypi.org/blog/build-minecraft-house-using-python/

In this tutorial from The MagPi issue 68, Steve Martin takes us through the process of house-building in Minecraft Pi. Get your copy of The MagPi in stores now, or download it as a free PDF here.

Minecraft Pi is provided for free as part of the Raspbian operating system. To start your Minecraft: Pi Edition adventures, try our free tutorial Getting started with Minecraft.

Minecraft Raspberry Pi

Writing programs that create things in Minecraft is not only a great way to learn how to code, but it also means that you have a program that you can run again and again to make as many copies of your Minecraft design as you want. You never need to worry about your creation being destroyed by your brother or sister ever again — simply rerun your program and get it back! Whilst it might take a little longer to write the program than to build one house, once it’s finished you can build as many houses as you want.

Co-ordinates in Minecraft

Let’s start with a review of the coordinate system that Minecraft uses to know where to place blocks. If you are already familiar with this, you can skip to the next section. Otherwise, read on.

Minecraft Raspberry Pi Edition

Plan view of our house design

Minecraft shows us a three-dimensional (3D) view of the world. Imagine that the room you are in is the Minecraft world and you want to describe your location within that room. You can do so with three numbers, as follows:

  • How far across the room are you? As you move from side to side, you change this number. We can consider this value to be our X coordinate.
  • How high off the ground are you? If you are upstairs, or if you jump, this value increases. We can consider this value to be our Y coordinate.
  • How far into the room are you? As you walk forwards or backwards, you change this number. We can consider this value to be our Z coordinate.

You might have done graphs in school with X going across the page and Y going up the page. Coordinates in Minecraft are very similar, except that we have an extra value, Z, for our third dimension. Don’t worry if this still seems a little confusing: once we start to build our house, you will see how these three dimensions work in Minecraft.

Designing our house

It is a good idea to start with a rough design for our house. This will help us to work out the values for the coordinates when we are adding doors and windows to our house. You don’t have to plan every detail of your house right away. It is always fun to enhance it once you have got the basic design written. The image above shows the plan view of the house design that we will be creating in this tutorial. Note that because this is a plan view, it only shows the X and Z co-ordinates; we can’t see how high anything is. Hopefully, you can imagine the house extending up from the screen.

We will build our house close to where the Minecraft player is standing. This a good idea when creating something in Minecraft with Python, as it saves us from having to walk around the Minecraft world to try to find our creation.

Starting our program

Type in the code as you work through this tutorial. You can use any editor you like; we would suggest either Python 3 (IDLE) or Thonny Python IDE, both of which you can find on the Raspberry Pi menu under Programming. Start by selecting the File menu and creating a new file. Save the file with a name of your choice; it must end with .py so that the Raspberry Pi knows that it is a Python program.

It is important to enter the code exactly as it is shown in the listing. Pay particular attention to both the spelling and capitalisation (upper- or lower-case letters) used. You may find that when you run your program the first time, it doesn’t work. This is very common and just means there’s a small error somewhere. The error message will give you a clue about where the error is.

It is good practice to start all of your Python programs with the first line shown in our listing. All other lines that start with a # are comments. These are ignored by Python, but they are a good way to remind us what the program is doing.

The two lines starting with from tell Python about the Minecraft API; this is a code library that our program will be using to talk to Minecraft. The line starting mc = creates a connection between our Python program and the game. Then we get the player’s location broken down into three variables: x, y, and z.

Building the shell of our house

To help us build our house, we define three variables that specify its width, height, and depth. Defining these variables makes it easy for us to change the size of our house later; it also makes the code easier to understand when we are setting the co-ordinates of the Minecraft bricks. For now, we suggest that you use the same values that we have; you can go back and change them once the house is complete and you want to alter its design.

It’s now time to start placing some bricks. We create the shell of our house with just two lines of code! These lines of code each use the setBlocks command to create a complete block of bricks. This function takes the following arguments:

setBlocks(x1, y1, z1, x2, y2, z2, block-id, data)

x1, y1, and z1 are the coordinates of one corner of the block of bricks that we want to create; x1, y1, and z1 are the coordinates of the other corner. The block-id is the type of block that we want to use. Some blocks require another value called data; we will see this being used later, but you can ignore it for now.

We have to work out the values that we need to use in place of x1, y1, z1, x1, y1, z1 for our walls. Note that what we want is a larger outer block made of bricks and that is filled with a slightly smaller block of air blocks. Yes, in Minecraft even air is actually just another type of block.

Once you have typed in the two lines that create the shell of your house, you almost ready to run your program. Before doing so, you must have Minecraft running and displaying the contents of your world. Do not have a world loaded with things that you have created, as they may get destroyed by the house that we are building. Go to a clear area in the Minecraft world before running the program. When you run your program, check for any errors in the ‘console’ window and fix them, repeatedly running the code again until you’ve corrected all the errors.

You should see a block of bricks now, as shown above. You may have to turn the player around in the Minecraft world before you can see your house.

Adding the floor and door

Now, let’s make our house a bit more interesting! Add the lines for the floor and door. Note that the floor extends beyond the boundary of the wall of the house; can you see how we achieve this?

Hint: look closely at how we calculate the x and z attributes as compared to when we created the house shell above. Also note that we use a value of y-1 to create the floor below our feet.

Minecraft doors are two blocks high, so we have to create them in two parts. This is where we have to use the data argument. A value of 0 is used for the lower half of the door, and a value of 8 is used for the upper half (the part with the windows in it). These values will create an open door. If we add 4 to each of these values, a closed door will be created.

Before you run your program again, move to a new location in Minecraft to build the house away from the previous one. Then run it to check that the floor and door are created; you will need to fix any errors again. Even if your program runs without errors, check that the floor and door are positioned correctly. If they aren’t, then you will need to check the arguments so setBlock and setBlocks are exactly as shown in the listing.

Adding windows

Hopefully you will agree that your house is beginning to take shape! Now let’s add some windows. Looking at the plan for our house, we can see that there is a window on each side; see if you can follow along. Add the four lines of code, one for each window.

Now you can move to yet another location and run the program again; you should have a window on each side of the house. Our house is starting to look pretty good!

Adding a roof

The final stage is to add a roof to the house. To do this we are going to use wooden stairs. We will do this inside a loop so that if you change the width of your house, more layers are added to the roof. Enter the rest of the code. Be careful with the indentation: I recommend using spaces and avoiding the use of tabs. After the if statement, you need to indent the code even further. Each indentation level needs four spaces, so below the line with if on it, you will need eight spaces.

Since some of these code lines are lengthy and indented a lot, you may well find that the text wraps around as you reach the right-hand side of your editor window — don’t worry about this. You will have to be careful to get those indents right, however.

Now move somewhere new in your world and run the complete program. Iron out any last bugs, then admire your house! Does it look how you expect? Can you make it better?

Customising your house

Now you can start to customise your house. It is a good idea to use Save As in the menu to save a new version of your program. Then you can keep different designs, or refer back to your previous program if you get to a point where you don’t understand why your new one doesn’t work.

Consider these changes:

  • Change the size of your house. Are you able also to move the door and windows so they stay in proportion?
  • Change the materials used for the house. An ice house placed in an area of snow would look really cool!
  • Add a back door to your house. Or make the front door a double-width door!

We hope that you have enjoyed writing this program to build a house. Now you can easily add a house to your Minecraft world whenever you want to by simply running this program.

Get the complete code for this project here.

Continue your Minecraft journey

Minecraft Pi’s programmable interface is an ideal platform for learning Python. If you’d like to try more of our free tutorials, check out:

You may also enjoy Martin O’Hanlon’s and David Whale’s Adventures in Minecraft, and the Hacking and Making in Minecraft MagPi Essentials guide, which you can download for free or buy in print here.

The post Build a house in Minecraft using Python appeared first on Raspberry Pi.

More power to your Pi

Post Syndicated from James Adams original https://www.raspberrypi.org/blog/pi-power-supply-chip/

It’s been just over three weeks since we launched the new Raspberry Pi 3 Model B+. Although the product is branded Raspberry Pi 3B+ and not Raspberry Pi 4, a serious amount of engineering was involved in creating it. The wireless networking, USB/Ethernet hub, on-board power supplies, and BCM2837 chip were all upgraded: together these represent almost all the circuitry on the board! Today, I’d like to tell you about the work that has gone into creating a custom power supply chip for our newest computer.

Raspberry Pi 3 Model B+, with custome power supply chip

The new Raspberry Pi 3B+, sporting a new, custom power supply chip (bottom left-hand corner)

Successful launch

The Raspberry Pi 3B+ has been well received, and we’ve enjoyed hearing feedback from the community as well as reading the various reviews and articles highlighting the solid improvements in wireless networking, Ethernet, CPU, and thermal performance of the new board. Gareth Halfacree’s post here has some particularly nice graphs showing the increased performance as well as how the Pi 3B+ keeps cool under load due to the new CPU package that incorporates a metal heat spreader. The Raspberry Pi production lines at the Sony UK Technology Centre are running at full speed, and it seems most people who want to get hold of the new board are able to find one in stock.

Powering your Pi

One of the most critical but often under-appreciated elements of any electronic product, particularly one such as Raspberry Pi with lots of complex on-board silicon (processor, networking, high-speed memory), is the power supply. In fact, the Raspberry Pi 3B+ has no fewer than six different voltage rails: two at 3.3V — one special ‘quiet’ one for audio, and one for everything else; 1.8V; 1.2V for the LPDDR2 memory; and 1.2V nominal for the CPU core. Note that the CPU voltage is actually raised and lowered on the fly as the speed of the CPU is increased and decreased depending on how hard the it is working. The sixth rail is 5V, which is the master supply that all the others are created from, and the output voltage for the four downstream USB ports; this is what the mains power adaptor is supplying through the micro USB power connector.

Power supply primer

There are two common classes of power supply circuits: linear regulators and switching regulators. Linear regulators work by creating a lower, regulated voltage from a higher one. In simple terms, they monitor the output voltage against an internally generated reference and continually change their own resistance to keep the output voltage constant. Switching regulators work in a different way: they ‘pump’ energy by first storing the energy coming from the source supply in a reactive component (usually an inductor, sometimes a capacitor) and then releasing it to the regulated output supply. The switches in switching regulators effect this energy transfer by first connecting the inductor (or capacitor) to store the source energy, and then switching the circuit so the energy is released to its destination.

Linear regulators produce smoother, less noisy output voltages, but they can only convert to a lower voltage, and have to dissipate energy to do so. The higher the output current and the voltage difference across them is, the more energy is lost as heat. On the other hand, switching supplies can, depending on their design, convert any voltage to any other voltage and can be much more efficient (efficiencies of 90% and above are not uncommon). However, they are more complex and generate noisier output voltages.

Designers use both types of regulators depending on the needs of the downstream circuit: for low-voltage drops, low current, or low noise, linear regulators are usually the right choice, while switching regulators are used for higher power or when efficiency of conversion is required. One of the simplest switching-mode power supply circuits is the buck converter, used to create a lower voltage from a higher one, and this is what we use on the Pi.

A history lesson

The BCM2835 processor chip (found on the original Raspberry Pi Model B and B+, as well as on the Zero products) has on-chip power supplies: one switch-mode regulator for the core voltage, as well as a linear one for the LPDDR2 memory supply. This meant that in addition to 5V, we only had to provide 3.3V and 1.8V on the board, which was relatively simple to do using cheap, off-the-shelf parts.

Pi Zero sporting a BCM2835 processor which only needs 2 external switchers (the components clustered behind the camera port)

When we moved to the BCM2836 for Raspberry Pi Model 2 (and subsequently to the BCM2837A1 and B0 for Raspberry Pi 3B and 3B+), the core supply and the on-chip LPDDR2 memory supply were not up to the job of supplying the extra processor cores and larger memory, so we removed them. (We also used the recovered chip area to help fit in the new quad-core ARM processors.) The upshot of this was that we had to supply these power rails externally for the Raspberry Pi 2 and models thereafter. Moreover, we also had to provide circuitry to sequence them correctly in order to control exactly when they power up compared to the other supplies on the board.

Power supply design is tricky (but critical)

Raspberry Pi boards take in 5V from the micro USB socket and have to generate the other required supplies from this. When 5V is first connected, each of these other supplies must ‘start up’, meaning go from ‘off’, or 0V, to their correct voltage in some short period of time. The order of the supplies starting up is often important: commonly, there are structures inside a chip that form diodes between supply rails, and bringing supplies up in the wrong order can sometimes ‘turn on’ these diodes, causing them to conduct, with undesirable consequences. Silicon chips come with a data sheet specifying what supplies (voltages and currents) are needed and whether they need to be low-noise, in what order they must power up (and in some cases down), and sometimes even the rate at which the voltages must power up and down.

A Pi3. Power supply components are clustered bottom left next to the micro USB, middle (above LPDDR2 chip which is on the bottom of the PCB) and above the A/V jack.

In designing the power chain for the Pi 2 and 3, the sequencing was fairly straightforward: power rails power up in order of voltage (5V, 3.3V, 1.8V, 1.2V). However, the supplies were all generated with individual, discrete devices. Therefore, I spent quite a lot of time designing circuitry to control the sequencing — even with some design tricks to reduce component count, quite a few sequencing components are required. More complex systems generally use a Power Management Integrated Circuit (PMIC) with multiple supplies on a single chip, and many different PMIC variants are made by various manufacturers. Since Raspberry Pi 2 days, I was looking for a suitable PMIC to simplify the Pi design, but invariably (and somewhat counter-intuitively) these were always too expensive compared to my discrete solution, usually because they came with more features than needed.

One device to rule them all

It was way back in May 2015 when I first chatted to Peter Coyle of Exar (Exar were bought by MaxLinear in 2017) about power supply products for Raspberry Pi. We didn’t find a product match then, but in June 2016 Peter, along with Tuomas Hollman and Trevor Latham, visited to pitch the possibility of building a custom power management solution for us.

I was initially sceptical that it could be made cheap enough. However, our discussion indicated that if we could tailor the solution to just what we needed, it could be cost-effective. Over the coming weeks and months, we honed a specification we agreed on from the initial sketches we’d made, and Exar thought they could build it for us at the target price.

The chip we designed would contain all the key supplies required for the Pi on one small device in a cheap QFN package, and it would also perform the required sequencing and voltage monitoring. Moreover, the chip would be flexible to allow adjustment of supply voltages from their default values via I2C; the largest supply would be capable of being adjusted quickly to perform the dynamic core voltage changes needed in order to reduce voltage to the processor when it is idling (to save power), and to boost voltage to the processor when running at maximum speed (1.4 GHz). The supplies on the chip would all be generously specified and could deliver significantly more power than those used on the Raspberry Pi 3. All in all, the chip would contain four switching-mode converters and one low-current linear regulator, this last one being low-noise for the audio circuitry.

The MXL7704 chip

The project was a great success: MaxLinear delivered working samples of first silicon at the end of May 2017 (almost exactly a year after we had kicked off the project), and followed through with production quantities in December 2017 in time for the Raspberry Pi 3B+ production ramp.

The team behind the power supply chip on the Raspberry Pi 3 Model B+ (group of six men, two of whom are holding Raspberry Pi boards)

Front row: Roger with the very first Pi 3B+ prototypes and James with a MXL7704 development board hacked to power a Pi 3. Back row left to right: Will Torgerson, Trevor Latham, Peter Coyle, Tuomas Hollman.

The MXL7704 device has been key to reducing Pi board complexity and therefore overall bill of materials cost. Furthermore, by being able to deliver more power when needed, it has also been essential to increasing the speed of the (newly packaged) BCM2837B0 processor on the 3B+ to 1.4GHz. The result is improvements to both the continuous output current to the CPU (from 3A to 4A) and to the transient performance (i.e. the chip has helped to reduce the ‘transient response’, which is the change in supply voltage due to a sudden current spike that occurs when the processor suddenly demands a large current in a few nanoseconds, as modern CPUs tend to do).

With the MXL7704, the power supply circuitry on the 3B+ is now a lot simpler than the Pi 3B design. This new supply also provides the LPDDR2 memory voltage directly from a switching regulator rather than using linear regulators like the Pi 3, thereby improving energy efficiency. This helps to somewhat offset the extra power that the faster Ethernet, wireless networking, and processor consume. A pleasing side effect of using the new chip is the symmetric board layout of the regulators — it’s easy to see the four switching-mode supplies, given away by four similar-looking blobs (three grey and one brownish), which are the inductors.

Close-up of the power supply chip on the Raspberry Pi 3 Model B+

The Pi 3B+ PMIC MXL7704 — pleasingly symmetric

Kudos

It takes a lot of effort to design a new chip from scratch and get it all the way through to production — we are very grateful to the team at MaxLinear for their hard work, dedication, and enthusiasm. We’re also proud to have created something that will not only power Raspberry Pis, but will also be useful for other product designs: it turns out when you have a low-cost and flexible device, it can be used for many things — something we’re fairly familiar with here at Raspberry Pi! For the curious, the product page (including the data sheet) for the MXL7704 chip is here. Particular thanks go to Peter Coyle, Tuomas Hollman, and Trevor Latham, and also to Jon Cronk, who has been our contact in the US and has had to get up early to attend all our conference calls!

The MXL7704 design team celebrating on Pi Day — it takes a lot of people to design a chip!

I hope you liked reading about some of the effort that has gone into creating the new Pi. It’s nice to finally have a chance to tell people about some of the (increasingly complex) technical work that makes building a $35 computer possible — we’re very pleased with the Raspberry Pi 3B+, and we hope you enjoy using it as much as we’ve enjoyed creating it!

The post More power to your Pi appeared first on Raspberry Pi.

Cloud Empire: Meet the Rebel Alliance

Post Syndicated from Roderick Bauer original https://www.backblaze.com/blog/cloud-empire-meet-the-rebel-alliance/

Cloud Empire: Meet the Rebel Alliance

Last week Backblaze made the exciting announcement that through partnerships with Packet and ServerCentral, cloud computing is available to Backblaze B2 Cloud Storage customers.

Those of you familiar with cloud computing will understand the significance of this news. We are now offering the least expensive cloud storage + cloud computing available anywhere. You no longer have to submit to the lock-in tactics and exorbitant prices charged by the other big players in the cloud services biz.

As Robin Harris wrote in ZDNet about last week’s computing partners announcement, Cloud Empire: Meet the Rebel Alliance.

We understand that some of our cloud backup and storage customers might be unfamiliar with cloud computing. Backblaze made its name in cloud backup and object storage, and that’s what our customers know us for. In response to customers requests, we’ve directly connected our B2 cloud object storage with cloud compute providers. This adds the ability to use and run programs on data once it’s in the B2 cloud, opening up a world of new uses for B2. Just some of the possibilities include media transcoding and rendering, web hosting, application development and testing, business analytics, disaster recovery, on-demand computing capacity (cloud bursting), AI, and mobile and IoT applications.

The world has been moving to a multi-cloud / hybrid cloud world, and customers are looking for more choices than those offered by the existing cloud players. Our B2 compute partnerships build on our mission to offer cloud storage that’s astonishingly easy and low-cost. They enable our customers to move into a more flexible and affordable cloud services ecosystem that provides a greater variety of choices and costs far less. We believe we are helping to fulfill the promise of the internet by allowing customers to choose the best-of-breed services from the best vendors.

If You’re Not Familiar with Cloud Computing, Here’s a Quick Overview

Cloud computing is another component of cloud services, like object storage, that replicates in the cloud a basic function of a computer system. Think of services that operate in a cloud as an infinitely scalable version of what happens on your desktop computer. In your desktop computer you have computing/processing (CPU), fast storage (like an SSD), data storage (like your disk drive), and memory (RAM). Their counterparts in the cloud are computing (CPU), block storage (fast storage), object storage (data storage), and processing memory (RAM).

Computer building blocks

CPU, RAM, fast internal storage, and a hard drive are the basic building blocks of a computer
They also are the basic building blocks of cloud computing

Some customers require only some of these services, such as cloud storage. B2 as a standalone service has proven to be an outstanding solution for those customers interested in backing up or archiving data. There are many customers that would like additional capabilities, such as performing operations on that data once it’s in the cloud. They need object storage combined with computing.

With the just announced compute partnerships, Backblaze is able to offer computing services to anyone using B2. A direct connection between Backblaze’s and our partners’ data centers means that our customers can process data stored in B2 with high speed, low latency, and zero data transfer costs.

Backblaze, Packet and Server Central cloud compute workflow diagram

Cloud service providers package up CPU, storage, and memory into services that you can rent on an hourly basis
You can scale up and down and add or remove services as you need them

How Does Computing + B2 Work?

Those wanting to use B2 with computing will need to sign up for accounts with Backblaze and either Packet or ServerCentral. Packet customers need only select “SJC1” as their region and then get started. The process is also simple for ServerCentral customers — they just need to register with a ServerCentral account rep.

The direct connection between B2 and our compute partners means customers will experience very low latency (less than 10ms) between services. Even better, all data transfers between B2 and the compute partner are free. When combined with Backblaze B2, customers can obtain cloud computing services for as little as 50% of the cost of Amazon’s Elastic Compute Cloud (EC2).

Opening Up the Cloud “Walled Garden”

Traditionally, cloud vendors charge fees for customers to move data outside the “walled garden” of that particular vendor. These fees reach upwards of $0.12 per gigabyte (GB) for data egress. This large fee for customers accessing their own data restricts users from using a multi-cloud approach and taking advantage of less expensive or better performing options. With free transfers between B2 and Packet or ServerCentral, customers now have a predictable, scalable solution for computing and data storage while avoiding vendor lock in. Dropbox made waves when they saved $75 million by migrating off of AWS. Adding computing to B2 helps anyone interested in moving some or all of their computing off of AWS and thereby cutting their AWS bill by 50% or more.

What are the Advantages of Cloud Storage + Computing?

Using computing and storage in the cloud provide a number of advantages over using in-house resources.

  1. You don’t have to purchase the actual hardware, software licenses, and provide space and IT resources for the systems.
  2. Cloud computing is available with just a few minutes notice and you only pay for whatever period of time you need. You avoid having additional hardware on your balance sheet.
  3. Resources are in the cloud and can provide online services to customers, mobile users, and partners located anywhere in the world.
  4. You can isolate the work on these systems from your normal production environment, making them ideal for testing and trying out new applications and development projects.
  5. Computing resources scale when you need them to, providing temporary or ongoing extra resources for expected or unexpected demand.
  6. They can provide redundant and failover services when and if your primary systems are unavailable for whatever reason.

Where Can I Learn More?

We encourage B2 customers to explore the options available at our partner sites, Packet and ServerCentral. They are happy to help customers understand what services are available and how to get started.

We are excited to see what you build! And please tell us in the comments what you are doing or have planned with B2 + computing.

P.S. May the force be with all of us!

The post Cloud Empire: Meet the Rebel Alliance appeared first on Backblaze Blog | Cloud Storage & Cloud Backup.