Tag Archives: chromium

Security updates for Friday

Post Syndicated from ris original https://lwn.net/Articles/733829/rss

Security updates have been issued by Arch Linux (flashplugin, kernel, lib32-flashplugin, and linux-lts), CentOS (postgresql), Debian (tcpdump and wordpress-shibboleth), Fedora (lightdm, python-django, and tomcat), Mageia (flash-player-plugin and libsndfile), openSUSE (chromium, cvs, kernel, and libreoffice), Oracle (postgresql), and Ubuntu (libgcrypt20 and thunderbird).

Security updates for Monday

Post Syndicated from ris original https://lwn.net/Articles/733389/rss

Security updates have been issued by Debian (freerdp, mbedtls, tiff, and tiff3), Fedora (chromium, krb5, libstaroffice, mbedtls, mingw-libidn2, mingw-openjpeg2, openjpeg2, and rubygems), Mageia (bzr, libarchive, libgcrypt, and tcpdump), openSUSE (gdk-pixbuf, libidn2, mpg123, postgresql94, postgresql96, and xen), Slackware (bash, mariadb, and tcpdump), and SUSE (evince and kernel).

Security updates for Tuesday

Post Syndicated from ris original https://lwn.net/Articles/732264/rss

Security updates have been issued by Debian (ffmpeg, fontforge, and openjdk-7), Fedora (cvs, java-1.8.0-openjdk-aarch32, krb5, and mercurial), Mageia (chromium and libgxps), Red Hat (rh-nginx110-nginx), SUSE (java-1_7_1-ibm), and Ubuntu (ghostscript, kernel, linux, linux-aws, linux-gke, linux-raspi2, linux-snapdragon, linux, linux-raspi2, linux-hwe, linux-lts-xenial, and python-crypto).

Security updates for Monday

Post Syndicated from jake original https://lwn.net/Articles/731567/rss

Security updates have been issued by Arch Linux (newsbeuter), Debian (augeas, curl, ioquake3, libxml2, newsbeuter, and strongswan), Fedora (bodhi, chicken, chromium, cryptlib, cups-filters, cyrus-imapd, glibc, mingw-openjpeg2, mingw-postgresql, qpdf, and torbrowser-launcher), Gentoo (bzip2, evilvte, ghostscript-gpl, Ked Password Manager, and rar), Mageia (curl, cvs, fossil, jetty, kernel, kernel-linus, kernel-tmb, libmspack, mariadb, mercurial, potrace, ruby, and taglib), Oracle (kernel), Red Hat (xmlsec1), and Ubuntu (graphite2 and strongswan).

Raspbian Stretch has arrived for Raspberry Pi

Post Syndicated from Simon Long original https://www.raspberrypi.org/blog/raspbian-stretch/

It’s now just under two years since we released the Jessie version of Raspbian. Those of you who know that Debian run their releases on a two-year cycle will therefore have been wondering when we might be releasing the next version, codenamed Stretch. Well, wonder no longer – Raspbian Stretch is available for download today!

Disney Pixar Toy Story Raspbian Stretch Raspberry Pi

Debian releases are named after characters from Disney Pixar’s Toy Story trilogy. In case, like me, you were wondering: Stretch is a purple octopus from Toy Story 3. Hi, Stretch!

The differences between Jessie and Stretch are mostly under-the-hood optimisations, and you really shouldn’t notice any differences in day-to-day use of the desktop and applications. (If you’re really interested, the technical details are in the Debian release notes here.)

However, we’ve made a few small changes to our image that are worth mentioning.

New versions of applications

Version 3.0.1 of Sonic Pi is included – this includes a lot of new functionality in terms of input/output. See the Sonic Pi release notes for more details of exactly what has changed.

Raspbian Stretch Raspberry Pi

The Chromium web browser has been updated to version 60, the most recent stable release. This offers improved memory usage and more efficient code, so you may notice it running slightly faster than before. The visual appearance has also been changed very slightly.

Raspbian Stretch Raspberry Pi

Bluetooth audio

In Jessie, we used PulseAudio to provide support for audio over Bluetooth, but integrating this with the ALSA architecture used for other audio sources was clumsy. For Stretch, we are using the bluez-alsa package to make Bluetooth audio work with ALSA itself. PulseAudio is therefore no longer installed by default, and the volume plugin on the taskbar will no longer start and stop PulseAudio. From a user point of view, everything should still work exactly as before – the only change is that if you still wish to use PulseAudio for some other reason, you will need to install it yourself.

Better handling of other usernames

The default user account in Raspbian has always been called ‘pi’, and a lot of the desktop applications assume that this is the current user. This has been changed for Stretch, so now applications like Raspberry Pi Configuration no longer assume this to be the case. This means, for example, that the option to automatically log in as the ‘pi’ user will now automatically log in with the name of the current user instead.

One other change is how sudo is handled. By default, the ‘pi’ user is set up with passwordless sudo access. We are no longer assuming this to be the case, so now desktop applications which require sudo access will prompt for the password rather than simply failing to work if a user without passwordless sudo uses them.

Scratch 2 SenseHAT extension

In the last Jessie release, we added the offline version of Scratch 2. While Scratch 2 itself hasn’t changed for this release, we have added a new extension to allow the SenseHAT to be used with Scratch 2. Look under ‘More Blocks’ and choose ‘Add an Extension’ to load the extension.

This works with either a physical SenseHAT or with the SenseHAT emulator. If a SenseHAT is connected, the extension will control that in preference to the emulator.

Raspbian Stretch Raspberry Pi

Fix for Broadpwn exploit

A couple of months ago, a vulnerability was discovered in the firmware of the BCM43xx wireless chipset which is used on Pi 3 and Pi Zero W; this potentially allows an attacker to take over the chip and execute code on it. The Stretch release includes a patch that addresses this vulnerability.

There is also the usual set of minor bug fixes and UI improvements – I’ll leave you to spot those!

How to get Raspbian Stretch

As this is a major version upgrade, we recommend using a clean image; these are available from the Downloads page on our site as usual.

Upgrading an existing Jessie image is possible, but is not guaranteed to work in every circumstance. If you wish to try upgrading a Jessie image to Stretch, we strongly recommend taking a backup first – we can accept no responsibility for loss of data from a failed update.

To upgrade, first modify the files /etc/apt/sources.list and /etc/apt/sources.list.d/raspi.list. In both files, change every occurrence of the word ‘jessie’ to ‘stretch’. (Both files will require sudo to edit.)

Then open a terminal window and execute

sudo apt-get update
sudo apt-get -y dist-upgrade

Answer ‘yes’ to any prompts. There may also be a point at which the install pauses while a page of information is shown on the screen – hold the ‘space’ key to scroll through all of this and then hit ‘q’ to continue.

Finally, if you are not using PulseAudio for anything other than Bluetooth audio, remove it from the image by entering

sudo apt-get -y purge pulseaudio*

The post Raspbian Stretch has arrived for Raspberry Pi appeared first on Raspberry Pi.

What’s the Diff: Programs, Processes, and Threads

Post Syndicated from Roderick Bauer original https://www.backblaze.com/blog/whats-the-diff-programs-processes-and-threads/

let's talk about Threads

How often have you heard the term threading in relation to a computer program, but you weren’t exactly sure what it meant? How about processes? You likely understand that a thread is somehow closely related to a program and a process, but if you’re not a computer science major, maybe that’s as far as your understanding goes.

Knowing what these terms mean is absolutely essential if you are a programmer, but an understanding of them also can be useful to the average computer user. Being able to look at and understand the Activity Monitor on the Macintosh, the Task Manager on Windows, or Top on Linux can help you troubleshoot which programs are causing problems on your computer, or whether you might need to install more memory to make your system run better.

Let’s take a few minutes to delve into the world of computer programs and sort out what these terms mean. We’ll simplify and generalize some of the ideas, but the general concepts we cover should help clarify the difference between the terms.

Programs

First of all, you probably are aware that a program is the code that is stored on your computer that is intended to fulfill a certain task. There are many types of programs, including programs that help your computer function and are part of the operating system, and other programs that fulfill a particular job. These task-specific programs are also known as “applications,” and can include programs such as word processing, web browsing, or emailing a message to another computer.

Program

Programs are typically stored on disk or in non-volatile memory in a form that can be executed by your computer. Prior to that, they are created using a programming language such as C, Lisp, Pascal, or many others using instructions that involve logic, data and device manipulation, recurrence, and user interaction. The end result is a text file of code that is compiled into binary form (1’s and 0’s) in order to run on the computer. Another type of program is called “interpreted,” and instead of being compiled in advance in order to run, is interpreted into executable code at the time it is run. Some common, typically interpreted programming languages, are Python, PHP, JavaScript, and Ruby.

The end result is the same, however, in that when a program is run, it is loaded into memory in binary form. The computer’s CPU (Central Processing Unit) understands only binary instructions, so that’s the form the program needs to be in when it runs.

Perhaps you’ve heard the programmer’s joke, “There are only 10 types of people in the world, those who understand binary, and those who don’t.”

Binary is the native language of computers because an electrical circuit at its basic level has two states, on or off, represented by a one or a zero. In the common numbering system we use every day, base 10, each digit position can be anything from 0 to 9. In base 2 (or binary), each position is either a 0 or a 1. (In a future blog post we might cover quantum computing, which goes beyond the concept of just 1’s and 0’s in computing.)

Decimal—Base 10 Binary—Base 2
0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001

How Processes Work

The program has been loaded into the computer’s memory in binary form. Now what?

An executing program needs more than just the binary code that tells the computer what to do. The program needs memory and various operating system resources that it needs in order to run. A “process” is what we call a program that has been loaded into memory along with all the resources it needs to operate. The “operating system” is the brains behind allocating all these resources, and comes in different flavors such as macOS, iOS, Microsoft Windows, Linux, and Android. The OS handles the task of managing the resources needed to turn your program into a running process.

Some essential resources every process needs are registers, a program counter, and a stack. The “registers” are data holding places that are part of the computer processor (CPU). A register may hold an instruction, a storage address, or other kind of data needed by the process. The “program counter,” also called the “instruction pointer,” keeps track of where a computer is in its program sequence. The “stack” is a data structure that stores information about the active subroutines of a computer program and is used as scratch space for the process. It is distinguished from dynamically allocated memory for the process that is known as “the heap.”

diagram of how processes work

There can be multiple instances of a single program, and each instance of that running program is a process. Each process has a separate memory address space, which means that a process runs independently and is isolated from other processes. It cannot directly access shared data in other processes. Switching from one process to another requires some time (relatively) for saving and loading registers, memory maps, and other resources.

This independence of processes is valuable because the operating system tries its best to isolate processes so that a problem with one process doesn’t corrupt or cause havoc with another process. You’ve undoubtedly run into the situation in which one application on your computer freezes or has a problem and you’ve been able to quit that program without affecting others.

How Threads Work

So, are you still with us? We finally made it to threads!

A thread is the unit of execution within a process. A process can have anywhere from just one thread to many threads.

Process vs. Thread

diagram of threads in a process over time

When a process starts, it is assigned memory and resources. Each thread in the process shares that memory and resources. In single-threaded processes, the process contains one thread. The process and the thread are one and the same, and there is only one thing happening.

In multithreaded processes, the process contains more than one thread, and the process is accomplishing a number of things at the same time (technically, it’s almost at the same time—read more on that in the “What about Parallelism and Concurrency?” section below).

diagram of single and multi-treaded process

We talked about the two types of memory available to a process or a thread, the stack and the heap. It is important to distinguish between these two types of process memory because each thread will have its own stack, but all the threads in a process will share the heap.

Threads are sometimes called lightweight processes because they have their own stack but can access shared data. Because threads share the same address space as the process and other threads within the process, the operational cost of communication between the threads is low, which is an advantage. The disadvantage is that a problem with one thread in a process will certainly affect other threads and the viability of the process itself.

Threads vs. Processes

So to review:

  1. The program starts out as a text file of programming code,
  2. The program is compiled or interpreted into binary form,
  3. The program is loaded into memory,
  4. The program becomes one or more running processes.
  5. Processes are typically independent of each other,
  6. While threads exist as the subset of a process.
  7. Threads can communicate with each other more easily than processes can,
  8. But threads are more vulnerable to problems caused by other threads in the same process.

Processes vs. Threads — Advantages and Disadvantages

Process Thread
Processes are heavyweight operations Threads are lighter weight operations
Each process has its own memory space Threads use the memory of the process they belong to
Inter-process communication is slow as processes have different memory addresses Inter-thread communication can be faster than inter-process communication because threads of the same process share memory with the process they belong to
Context switching between processes is more expensive Context switching between threads of the same process is less expensive
Processes don’t share memory with other processes Threads share memory with other threads of the same process

What about Concurrency and Parallelism?

A question you might ask is whether processes or threads can run at the same time. The answer is: it depends. On a system with multiple processors or CPU cores (as is common with modern processors), multiple processes or threads can be executed in parallel. On a single processor, though, it is not possible to have processes or threads truly executing at the same time. In this case, the CPU is shared among running processes or threads using a process scheduling algorithm that divides the CPU’s time and yields the illusion of parallel execution. The time given to each task is called a “time slice.” The switching back and forth between tasks happens so fast it is usually not perceptible. The terms parallelism (true operation at the same time) and concurrency (simulated operation at the same time), distinguish between the two type of real or approximate simultaneous operation.

diagram of concurrency and parallelism

Why Choose Process over Thread, or Thread over Process?

So, how would a programmer choose between a process and a thread when creating a program in which she wants to execute multiple tasks at the same time? We’ve covered some of the differences above, but let’s look at a real world example with a program that many of us use, Google Chrome.

When Google was designing the Chrome browser, they needed to decide how to handle the many different tasks that needed computer, communications, and network resources at the same time. Each browser window or tab communicates with multiple servers on the internet to retrieve text, programs, graphics, audio, video, and other resources, and renders that data for display and interaction with the user. In addition, the browser can open many windows, each with many tasks.

Google had to decide how to handle that separation of tasks. They chose to run each browser window in Chrome as a separate process rather than a thread or many threads, as is common with other browsers. Doing that brought Google a number of benefits. Running each window as a process protects the overall application from bugs and glitches in the rendering engine and restricts access from each rendering engine process to others and to the rest of the system. Isolating JavaScript programs in a process prevents them from running away with too much CPU time and memory, and making the entire browser non-responsive.

Google made the calculated trade-off with a multi-processing design as starting a new process for each browser window has a higher fixed cost in memory and resources than using threads. They were betting that their approach would end up with less memory bloat overall.

Using processes instead of threads provides better memory usage when memory gets low. An inactive window is treated as a lower priority by the operating system and becomes eligible to be swapped to disk when memory is needed for other processes, helping to keep the user-visible windows more responsive. If the windows were threaded, it would be more difficult to separate the used and unused memory as cleanly, wasting both memory and performance.

You can read more about Google’s design decisions on Google’s Chromium Blog or on the Chrome Introduction Comic.

The screen capture below shows the Google Chrome processes running on a MacBook Air with many tabs open. Some Chrome processes are using a fair amount of CPU time and resources, and some are using very little. You can see that each process also has many threads running as well.

activity monitor of Google Chrome

The Activity Monitor or Task Manager on your system can be a valuable ally in helping fine-tune your computer or troubleshooting problems. If your computer is running slowly, or a program or browser window isn’t responding for a while, you can check its status using the system monitor. Sometimes you’ll see a process marked as “Not Responding.” Try quitting that process and see if your system runs better. If an application is a memory hog, you might consider choosing a different application that will accomplish the same task.

Windows Task Manager view

Made it This Far?

We hope this Tron-like dive into the fascinating world of computer programs, processes, and threads has helped clear up some questions you might have had.

The next time your computer is running slowly or an application is acting up, you know your assignment. Fire up the system monitor and take a look under the hood to see what’s going on. You’re in charge now.

We love to hear from you

Are you still confused? Have questions? If so, please let us know in the comments. And feel free to suggest topics for future blog posts.

The post What’s the Diff: Programs, Processes, and Threads appeared first on Backblaze Blog | Cloud Storage & Cloud Backup.

Security updates for Monday

Post Syndicated from ris original https://lwn.net/Articles/730098/rss

Security updates have been issued by Debian (chromium-browser, kernel, libsndfile, and qemu), Fedora (php-PHPMailer, qpdf, qt5-qtwebengine, qt5-qtwebkit, and ruby), Mageia (evince), openSUSE (icoutils and poppler), Red Hat (log4j), SUSE (kernel), and Ubuntu (openvpn and tiff).

Security updates for Monday

Post Syndicated from ris original https://lwn.net/Articles/729357/rss

Security updates have been issued by Debian (apache2, enigmail, graphicsmagick, ipsec-tools, libquicktime, lucene-solr, mysql-5.5, nasm, and supervisor), Fedora (mingw-librsvg2, php-PHPMailer, and webkitgtk4), Mageia (freeradius, gdk-pixbuf2.0, graphicsmagick, java-1.8.0-openjdk, kernel, libmtp, libgphoto, libraw, nginx, openvpn, postgresql9.4, valgrind, webkit2, and wireshark), openSUSE (apache2, chromium, libical, mysql-community-server, and nginx), Oracle (kernel), Red Hat (chromium-browser and eap7-jboss-ec2-eap), Slackware (squashfs), and Ubuntu (linux-hwe and nss).

Security updates for Friday

Post Syndicated from ris original https://lwn.net/Articles/729136/rss

Security updates have been issued by Arch Linux (cacti and chromium), CentOS (tomcat), Debian (roundcube), Fedora (bind99, dhcp, freeradius, golang, mingw-poppler, minicom, php-symfony, and webkitgtk4), openSUSE (GraphicsMagick and the_silver_searcher), Oracle (tomcat), Scientific Linux (tomcat), SUSE (kernel), and Ubuntu (apache2 and freeradius).

Security updates for Wednesday

Post Syndicated from ris original https://lwn.net/Articles/727667/rss

Security updates have been issued by Arch Linux (flashplugin, lib32-flashplugin, lib32-gnutls, libdwarf, nginx, nginx-mainline, and tor), Debian (spice and undertow), Fedora (bind, bind-dyndb-ldap, chromium-native_client, dnsperf, expat, flatpak, GraphicsMagick, httpd, jetty, libdb, libsndfile, mingw-LibRaw, mosquitto, php-horde-Horde-Image, qt5-qtwebengine, xen, and yara), Oracle (httpd and kernel), Red Hat (flash-plugin, httpd, and kernel), Scientific Linux (httpd and kernel), and SUSE (spice).

Security updates for Friday

Post Syndicated from jake original https://lwn.net/Articles/726896/rss

Security updates have been issued by CentOS (freeradius, kernel, and mercurial), Debian (libarchive and mercurial), Fedora (chromium-native_client, systemd, and tomcat), Mageia (drupal, golang, libmwaw, libsndfile, rxvt-unicode, and tomcat), Oracle (kernel), Slackware (bind, httpd, kernel, and libgcrypt), SUSE (bind, clamav, kernel, and openvpn-openssl1), and Ubuntu (bind9, eglibc, and linux-hwe).

Security updates for Tuesday

Post Syndicated from ris original https://lwn.net/Articles/726568/rss

Security updates have been issued by Arch Linux (expat and poppler), Debian (unrar-nonfree and vlc), Fedora (chromium and mercurial), Gentoo (freeradius, kauth, and libreoffice), Mageia (glibc, irssi, kernel, kernel-linus, kernel-tmb, and rpcbind/libtirpc), openSUSE (libgcrypt, netpbm, and sudo), Oracle (sudo), Scientific Linux (mercurial), Slackware (kernel), SUSE (jakarta-taglibs-standard, kernel, and kernel-source), and Ubuntu (apache2).

Security updates for Monday

Post Syndicated from ris original https://lwn.net/Articles/726471/rss

Security updates have been issued by Arch Linux (kernel, linux-zen, and tcpreplay), Debian (drupal7, exim4, expat, imagemagick, and smb4k), Fedora (chromium, firefox, glibc, kernel, openvpn, and wireshark), Mageia (mercurial and roundcubemail), openSUSE (kernel, libmicrohttpd, libqt5-qtbase, libqt5-qtdeclarative, openvpn, and python-tablib), Scientific Linux (sudo), and SUSE (firefox).

A Raspbian desktop update with some new programming tools

Post Syndicated from Simon Long original https://www.raspberrypi.org/blog/a-raspbian-desktop-update-with-some-new-programming-tools/

Today we’ve released another update to the Raspbian desktop. In addition to the usual small tweaks and bug fixes, the big new changes are the inclusion of an offline version of Scratch 2.0, and of Thonny (a user-friendly IDE for Python which is excellent for beginners). We’ll look at all the changes in this post, but let’s start with the biggest…

Scratch 2.0 for Raspbian

Scratch is one of the most popular pieces of software on Raspberry Pi. This is largely due to the way it makes programming accessible – while it is simple to learn, it covers many of the concepts that are used in more advanced languages. Scratch really does provide a great introduction to programming for all ages.

Raspbian ships with the original version of Scratch, which is now at version 1.4. A few years ago, though, the Scratch team at the MIT Media Lab introduced the new and improved Scratch version 2.0, and ever since we’ve had numerous requests to offer it on the Pi.

There was, however, a problem with this. The original version of Scratch was written in a language called Squeak, which could run on the Pi in a Squeak interpreter. Scratch 2.0, however, was written in Flash, and was designed to run from a remote site in a web browser. While this made Scratch 2.0 a cross-platform application, which you could run without installing any Scratch software, it also meant that you had to be able to run Flash on your computer, and that you needed to be connected to the internet to program in Scratch.

We worked with Adobe to include the Pepper Flash plugin in Raspbian, which enables Flash sites to run in the Chromium browser. This addressed the first of these problems, so the Scratch 2.0 website has been available on Pi for a while. However, it still needed an internet connection to run, which wasn’t ideal in many circumstances. We’ve been working with the Scratch team to get an offline version of Scratch 2.0 running on Pi.

Screenshot of Scratch on Raspbian

The Scratch team had created a website to enable developers to create hardware and software extensions for Scratch 2.0; this provided a version of the Flash code for the Scratch editor which could be modified to run locally rather than over the internet. We combined this with a program called Electron, which effectively wraps up a local web page into a standalone application. We ended up with the Scratch 2.0 application that you can find in the Programming section of the main menu.

Physical computing with Scratch 2.0

We didn’t stop there though. We know that people want to use Scratch for physical computing, and it has always been a bit awkward to access GPIO pins from Scratch. In our Scratch 2.0 application, therefore, there is a custom extension which allows the user to control the Pi’s GPIO pins without difficulty. Simply click on ‘More Blocks’, choose ‘Add an Extension’, and select ‘Pi GPIO’. This loads two new blocks, one to read and one to write the state of a GPIO pin.

Screenshot of new Raspbian iteration of Scratch 2, featuring GPIO pin control blocks.

The Scratch team kindly allowed us to include all the sprites, backdrops, and sounds from the online version of Scratch 2.0. You can also use the Raspberry Pi Camera Module to create new sprites and backgrounds.

This first release works well, although it can be slow for some operations; this is largely unavoidable for Flash code running under Electron. Bear in mind that you will need to have the Pepper Flash plugin installed (which it is by default on standard Raspbian images). As Pepper Flash is only compatible with the processor in the Pi 2.0 and Pi 3, it is unfortunately not possible to run Scratch 2.0 on the Pi Zero or the original models of the Pi.

We hope that this makes Scratch 2.0 a more practical proposition for many users than it has been to date. Do let us know if you hit any problems, though!

Thonny: a more user-friendly IDE for Python

One of the paths from Scratch to ‘real’ programming is through Python. We know that the transition can be awkward, and this isn’t helped by the tools available for learning Python. It’s fair to say that IDLE, the Python IDE, isn’t the most popular piece of software ever written…

Earlier this year, we reviewed every Python IDE that we could find that would run on a Raspberry Pi, in an attempt to see if there was something better out there than IDLE. We wanted to find something that was easier for beginners to use but still useful for experienced Python programmers. We found one program, Thonny, which stood head and shoulders above all the rest. It’s a really user-friendly IDE, which still offers useful professional features like single-stepping of code and inspection of variables.

Screenshot of Thonny IDE in Raspbian

Thonny was created at the University of Tartu in Estonia; we’ve been working with Aivar Annamaa, the lead developer, on getting it into Raspbian. The original version of Thonny works well on the Pi, but because the GUI is written using Python’s default GUI toolkit, Tkinter, the appearance clashes with the rest of the Raspbian desktop, most of which is written using the GTK toolkit. We made some changes to bring things like fonts and graphics into line with the appearance of our other apps, and Aivar very kindly took that work and converted it into a theme package that could be applied to Thonny.

Due to the limitations of working within Tkinter, the result isn’t exactly like a native GTK application, but it’s pretty close. It’s probably good enough for anyone who isn’t a picky UI obsessive like me, anyway! Have a look at the Thonny webpage to see some more details of all the cool features it offers. We hope that having a more usable environment will help to ease the transition from graphical languages like Scratch into ‘proper’ languages like Python.

New icons

Other than these two new packages, this release is mostly bug fixes and small version bumps. One thing you might notice, though, is that we’ve made some tweaks to our custom icon set. We wondered if the icons might look better with slightly thinner outlines. We tried it, and they did: we hope you prefer them too.

Downloading the new image

You can either download a new image from the Downloads page, or you can use apt to update:

sudo apt-get update
sudo apt-get dist-upgrade

To install Scratch 2.0:

sudo apt-get install scratch2

To install Thonny:

sudo apt-get install python3-thonny

One more thing…

Before Christmas, we released an experimental version of the desktop running on Debian for x86-based computers. We were slightly taken aback by how popular it turned out to be! This made us realise that this was something we were going to need to support going forward. We’ve decided we’re going to try to make all new desktop releases for both Pi and x86 from now on.

The version of this we released last year was a live image that could run from a USB stick. Many people asked if we could make it permanently installable, so this version includes an installer. This uses the standard Debian install process, so it ought to work on most machines. I should stress, though, that we haven’t been able to test on every type of hardware, so there may be issues on some computers. Please be sure to back up your hard drive before installing it. Unlike the live image, this will erase and reformat your hard drive, and you will lose anything that is already on it!

You can still boot the image as a live image if you don’t want to install it, and it will create a persistence partition on the USB stick so you can save data. Just select ‘Run with persistence’ from the boot menu. To install, choose either ‘Install’ or ‘Graphical install’ from the same menu. The Debian installer will then walk you through the install process.

You can download the latest x86 image (which includes both Scratch 2.0 and Thonny) from here or here for a torrent file.

One final thing

This version of the desktop is based on Debian Jessie. Some of you will be aware that a new stable version of Debian (called Stretch) was released last week. Rest assured – we have been working on porting everything across to Stretch for some time now, and we will have a Stretch release ready some time over the summer.

The post A Raspbian desktop update with some new programming tools appeared first on Raspberry Pi.

Security updates for Monday

Post Syndicated from ris original https://lwn.net/Articles/725822/rss

Security updates have been issued by Arch Linux (chromium, firefox, and thunderbird), Debian (exim4, expat, firefox-esr, glibc, gnutls28, irssi, jython, and kernel), Fedora (dolphin-emu, firefox, golang, mariadb, perl-File-Path, redis, and yara), Mageia (firefox, kodi, and thunderbird), openSUSE (chromium and lynis), and SUSE (mercurial).

Electronic Signature Using The WebCrypto API

Post Syndicated from Bozho original https://techblog.bozho.net/electronic-signature-using-webcrypto-api/

Sometimes we need to let users sign something electronically. Often people understand that as placing your handwritten signature on the screen somehow. Depending on the jurisdiction, that may be fine, or it may not be sufficient to just store the image. In Europe, for example, there’s the Regulation 910/2014 which defines what electronic signature are. As it can be expected from a legal text, the definition is rather vague:

‘electronic signature’ means data in electronic form which is attached to or logically associated with other data in electronic form and which is used by the signatory to sign;

Yes, read it a few more times, say “wat” a few more times, and let’s discuss what that means. And it can mean basically anything. It is technically acceptable to just attach an image of the drawn signature (e.g. using an html canvas) to the data and that may still count.

But when we get to the more specific types of electronic signature – the advanced and qualified electronic signatures, things get a little better:

An advanced electronic signature shall meet the following requirements:
(a) it is uniquely linked to the signatory;
(b) it is capable of identifying the signatory;
(c) it is created using electronic signature creation data that the signatory can, with a high level of confidence, use under his sole control; and
(d) it is linked to the data signed therewith in such a way that any subsequent change in the data is detectable.

That looks like a proper “digital signature” in the technical sense – e.g. using a private key to sign and a public key to verify the signature. The “qualified” signatures need to be issued by qualified provider that is basically a trusted Certificate Authority. The keys for placing qualified signatures have to be issued on secure devices (smart cards and HSMs) so that nobody but the owner can have access to the private key.

But the legal distinction between advanced and qualified signatures isn’t entirely clear – the Regulation explicitly states that non-qualified signatures also have legal value. Working with qualified signatures (with smartcards) in browsers is a horrifying user experience – in most cases it goes through a Java Applet, which works basically just on Internet Explorer and a special build of Firefox nowadays. Alternatives include desktop software and local service JWS applications that handles the signing, but smartcards are a big issue and offtopic at the moment.

So, how do we allow users to “place” an electronic signature? I had an idea that this could be done entirely using the WebCrypto API that’s more or less supported in browsers these days. The idea is as follows:

  • Let the user type in a password for the purpose of sining
  • Derive a key from the password (e.g. using PBKDF2)
  • Sign the contents of the form that the user is submitting with the derived key
  • Store the signature alongside the rest of the form data
  • Optionally, store the derived key for verification purposes

Here’s a javascript gist with implementation of that flow.

Many of the pieces are taken from the very helpful webcrypto examples repo. The hex2buf, buf2hex and str2ab functions are utilities (that sadly are not standard in js).

What the code does is straightforward, even though it’s a bit verbose. All the operations are chained using promises and “then”, which to be honest is a big tedious to write and read (but inevitable I guess):

  • The password is loaded as a raw key (after transforming to an array buffer)
  • A secret key is derived using PBKDF2 (with 100 iterations)
  • The secret key is used to do an HMAC “signature” on the content filled in by the user
  • The signature and the key are stored (in the UI in this example)
  • Then the signature can be verified using: the data, the signature and the key

You can test it here:

Having the signature stored should be enough to fulfill the definition of “electronic signature”. The fact that it’s a secret password known only to the user may even mean this is an “advanced electronic signature”. Storing the derived secret key is questionable – if you store it, it means you can “forge” signatures on behalf of the user. But not storing it means you can’t verify the signature – only the user can. Depending on the use-case, you can choose one or the other.

Now, I have to admit I tried deriving an asymmetric keypair from the password (both RSA and ECDSA). The WebCrypto API doesn’t allow that out of the box. So I tried “generating” the keys using deriveBits(), e.g. setting the “n” and “d” values for RSA, and the x, y and d values for ECDSA (which can be found here, after a bit of searching). But I failed – you can’t specify just any values as importKey parameters, and the constraints are not documented anywhere, except for the low-level algorithm details, and that was a bit out of the scope of my experiment.

The goal was that if we only derive the private key from the password, we can easily derive the public key from the private key (but not vice-versa) – then we store the public key for verification, and the private key remains really private, so that we can’t forge signatures.

I have to add a disclaimer here that I realize this isn’t very secure. To begin with, deriving a key from a password is questionable in many contexts. However, in this context (placing a signature), it’s fine.

As a side note – working with the WebCrypto API is tedious. Maybe because nobody has actually used it yet, so googling for errors basically gives you the source code of Chromium and nothing else. It feels like uncharted territory (although the documentation and examples are good enough to get you started).

Whether it will be useful to do electronic signatures in this way, I don’t know. I implemented it for a use-case that it actually made sense (party membership declaration signature). Whether it’s better than hand-drawn signature on a canvas – I think it is (unless you derive the key from the image, in which case the handwritten one is better due to a higher entropy).

The post Electronic Signature Using The WebCrypto API appeared first on Bozho's tech blog.