Tag Archives: CloudWatch dashboards

New – Amazon CloudWatch Agent with AWS Systems Manager Integration – Unified Metrics & Log Collection for Linux & Windows

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/new-amazon-cloudwatch-agent-with-aws-systems-manager-integration-unified-metrics-log-collection-for-linux-windows/

In the past I’ve talked about several agents, deaemons, and scripts that you could use to collect system metrics and log files for your Windows and Linux instances and on-premise services and publish them to Amazon CloudWatch. The data collected by this somewhat disparate collection of tools gave you visibility into the status and behavior of your compute resources, along with the power to take action when a value goes out of range and indicates a potential issue. You can graph any desired metrics on CloudWatch Dashboards, initiate actions via CloudWatch Alarms, and search CloudWatch Logs to find error messages, while taking advantage of our support for custom high-resolution metrics.

New Unified Agent
Today we are taking a nice step forward and launching a new, unified CloudWatch Agent. It runs in the cloud and on-premises, on Linux and Windows instances and servers, and handles metrics and log files. You can deploy it using AWS Systems Manager (SSM) Run Command, SSM State Manager, or from the CLI. Here are some of the most important features:

Single Agent – A single agent now collects both metrics and logs. This simplifies the setup process and reduces complexity.

Cross-Platform / Cross-Environment – The new agent runs in the cloud and on-premises, on 64-bit Linux and 64-bit Windows, and includes HTTP proxy server support.

Configurable – The new agent captures the most useful system metrics automatically. It can be configured to collect hundreds of others, including fine-grained metrics on sub-resources such as CPU threads, mounted filesystems, and network interfaces.

CloudWatch-Friendly – The new agent supports standard 1-minute metrics and the newer 1-second high-resolution metrics. It automatically includes EC2 dimensions such as Instance Id, Image Id, and Auto Scaling Group Name, and also supports the use of custom dimensions. All of the dimensions can be used for custom aggregation across Auto Scaling Groups, applications, and so forth.

Migration – You can easily migrate existing AWS SSM and EC2Config configurations for use with the new agent.

Installing the Agent
The CloudWatch Agent uses an IAM role when running on an EC2 instance, and an IAM user when running on an on-premises server. The role or the user must include the AmazonSSMFullAccess and AmazonEC2ReadOnlyAccess policies. Here’s my role:

I can easily add it to a running instance (this is a relatively new and very handy EC2 feature):

The SSM Agent is already running on my instance. If it wasn’t, I would follow the steps in Installing and Configuring SSM Agent to set it up.

Next, I install the CloudWatch Agent using the AWS Systems Manager:

This takes just a few seconds. Now I can use a simple wizard to set up the configuration file for the agent:

The wizard also lets me set up the log files to be monitored:

The wizard generates a JSON-format config file and stores it on the instance. It also offers me the option to upload the file to my Parameter Store so that I can deploy it to my other instances (I can also do fine-grained customization of the metrics and log collection configuration by editing the file):

Now I can start the CloudWatch Agent using Run Command, supplying the name of my configuration in the Parameter Store:

This runs in a few seconds and the agent begins to publish metrics right away. As I mentioned earlier, the agent can publish fine-grained metrics on the resources inside of or attached to an instance. For example, here are the metrics for each filesystem:

There’s a separate log stream for each monitored log file on each instance:

I can view and search it, just like I can do for any other log stream:

Now Available
The new CloudWatch Agent is available now and you can start using it today in all public AWS Regions, with AWS GovCloud (US) and the Regions in China to follow.

There’s no charge for the agent; you pay the usual CloudWatch prices for logs and custom metrics.

Jeff;

AWS Systems Manager – A Unified Interface for Managing Your Cloud and Hybrid Resources

Post Syndicated from Randall Hunt original https://aws.amazon.com/blogs/aws/aws-systems-manager/

AWS Systems Manager is a new way to manage your cloud and hybrid IT environments. AWS Systems Manager provides a unified user interface that simplifies resource and application management, shortens the time to detect and resolve operational problems, and makes it easy to operate and manage your infrastructure securely at scale. This service is absolutely packed full of features. It defines a new experience around grouping, visualizing, and reacting to problems using features from products like Amazon EC2 Systems Manager (SSM) to enable rich operations across your resources.

As I said above, there are a lot of powerful features in this service and we won’t be able to dive deep on all of them but it’s easy to go to the console and get started with any of the tools.

Resource Groupings

Resource Groups allow you to create logical groupings of most resources that support tagging like: Amazon Elastic Compute Cloud (EC2) instances, Amazon Simple Storage Service (S3) buckets, Elastic Load Balancing balancers, Amazon Relational Database Service (RDS) instances, Amazon Virtual Private Cloud, Amazon Kinesis streams, Amazon Route 53 zones, and more. Previously, you could use the AWS Console to define resource groupings but AWS Systems Manager provides this new resource group experience via a new console and API. These groupings are a fundamental building block of Systems Manager in that they are frequently the target of various operations you may want to perform like: compliance management, software inventories, patching, and other automations.

You start by defining a group based on tag filters. From there you can view all of the resources in a centralized console. You would typically use these groupings to differentiate between applications, application layers, and environments like production or dev – but you can make your own rules about how to use them as well. If you imagine a typical 3 tier web-app you might have a few EC2 instances, an ELB, a few S3 buckets, and an RDS instance. You can define a grouping for that application and with all of those different resources simultaneously.

Insights

AWS Systems Manager automatically aggregates and displays operational data for each resource group through a dashboard. You no longer need to navigate through multiple AWS consoles to view all of your operational data. You can easily integrate your exiting Amazon CloudWatch dashboards, AWS Config rules, AWS CloudTrail trails, AWS Trusted Advisor notifications, and AWS Personal Health Dashboard performance and availability alerts. You can also easily view your software inventories across your fleet. AWS Systems Manager also provides a compliance dashboard allowing you to see the state of various security controls and patching operations across your fleets.

Acting on Insights

Building on the success of EC2 Systems Manager (SSM), AWS Systems Manager takes all of the features of SSM and provides a central place to access them. These are all the same experiences you would have through SSM with a more accesible console and centralized interface. You can use the resource groups you’ve defined in Systems Manager to visualize and act on groups of resources.

Automation


Automations allow you to define common IT tasks as a JSON document that specify a list of tasks. You can also use community published documents. These documents can be executed through the Console, CLIs, SDKs, scheduled maintenance windows, or triggered based on changes in your infrastructure through CloudWatch events. You can track and log the execution of each step in the documents and prompt for additional approvals. It also allows you to incrementally roll out changes and automatically halt when errors occur. You can start executing an automation directly on a resource group and it will be able to apply itself to the resources that it understands within the group.

Run Command

Run Command is a superior alternative to enabling SSH on your instances. It provides safe, secure remote management of your instances at scale without logging into your servers, replacing the need for SSH bastions or remote powershell. It has granular IAM permissions that allow you to restrict which roles or users can run certain commands.

Patch Manager, Maintenance Windows, and State Manager

I’ve written about Patch Manager before and if you manage fleets of Windows and Linux instances it’s a great way to maintain a common baseline of security across your fleet.

Maintenance windows allow you to schedule instance maintenance and other disruptive tasks for a specific time window.

State Manager allows you to control various server configuration details like anti-virus definitions, firewall settings, and more. You can define policies in the console or run existing scripts, PowerShell modules, or even Ansible playbooks directly from S3 or GitHub. You can query State Manager at any time to view the status of your instance configurations.

Things To Know

There’s some interesting terminology here. We haven’t done the best job of naming things in the past so let’s take a moment to clarify. EC2 Systems Manager (sometimes called SSM) is what you used before today. You can still invoke aws ssm commands. However, AWS Systems Manager builds on and enhances many of the tools provided by EC2 Systems Manager and allows those same tools to be applied to more than just EC2. When you see the phrase “Systems Manager” in the future you should think of AWS Systems Manager and not EC2 Systems Manager.

AWS Systems Manager with all of this useful functionality is provided at no additional charge. It is immediately available in all public AWS regions.

The best part about these services is that even with their tight integrations each one is designed to be used in isolation as well. If you only need one component of these services it’s simple to get started with only that component.

There’s a lot more than I could ever document in this post so I encourage you all to jump into the console and documentation to figure out where you can start using AWS Systems Manager.

Randall

Amazon ElastiCache Update – Online Resizing for Redis Clusters

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/amazon-elasticache-update-online-resizing-for-redis-clusters/

Amazon ElastiCache makes it easy to for you to set up a fast, in-memory data store and cache. With support for the two most popular open source offerings (Redis and Memcached), ElastiCache supports the demanding needs of game leaderboards, in-memory analytics, and large-scale messaging.

Today I would like to tell you about an important addition to Amazon ElastiCache for Redis. You can already create clusters with up to 15 shards, each responsible for storing keys and values for a specific set of slots (each cluster has exactly 16,384 slots). A single cluster can expand to store 3.55 terabytes of in-memory data while supporting up to 20 million reads and 4.5 million writes per second.

Now with Online Resizing
You can now adjust the number of shards in a running ElastiCache for Redis cluster while the cluster remains online and responding to requests. This gives you the power to respond to changes in traffic and data volume without having to take the cluster offline or to start with an empty cache. You can also rebalance a running cluster to uniformly redistribute slot space without changing the number of shards.

When you initiate a resharding or rebalancing operation, ElastiCache for Redis starts by preparing a plan that will result in an even distribution of slots across the shards in the cluster. Then it transfers slots across shards, moving many in parallel for efficiency. This all happens while the cluster continues to respond to requests, with a modest impact on write throughput for writes to a slot that is in motion. The migration rate is dependent on the instance type, network speed, read/write traffic to the slots, and is generally about 1 gigabyte per minute.

The resharding and rebalancing operations apply to Redis clusters that were created with Cluster Mode enabled:

Resharding a Cluster
In general, you will know that it is time to expand a cluster via resharding when it starts to face significant memory pressure or when individual nodes are becoming bottlenecks. You can watch the cluster’s CloudWatch metrics to identify each situation:

Memory Pressure – FreeableMemory, SwapUsage, BytesUsedForCache.

CPU Bottleneck – CPUUtilization, CurrConnections, NewConnections.

Network Bottleneck – NetworkBytesIn, NetworkBytesOut.

You can use CloudWatch Dashboards to monitor these metrics, and CloudWatch Alarms to automate the resharding process.

To reshard a Redis cluster from the ElastiCache Dashboard, click on the cluster to visit the detail page, and then click on the Add shards button:

Enter the number of shards to add and (optionally) the desired Availability Zones, then click on Add:

The status of the cluster will change to modifying and the resharding process will begin. It can take anywhere from a few minutes to several hours, as indicated above. You can track the progress on the detail page for the cluster:

You can see the slots moving from shard to shard:

You can also watch the Events for the cluster:

During the resharding you should avoid the use of the KEYS and SMEMBERS commands, as well as compute-intensive Lua scripts in order to moderate the load on the cluster shards. You should avoid the FLUSHDB and FLUSHALL commands entirely; using them will interrupt and then abort the resharding process.

The status of each shard will return to available when the process is complete:

The same process takes place when you delete shards.

Rebalancing Slots
You can perform this operation by heading to the cluster’s detail page and clicking on Rebalance Slot Distribution:

Things to Know
Here are a couple of things to keep in mind about this new feature:

Engine Version – Your cluster must be running version 3.2.10 of the Redis engine.

Migration Size – Slots that contain items that are larger than 256 megabytes after serialization are not migrated.

Cluster Endpoint – The cluster endpoint does not change as a result of a resharding or rebalancing.

Available Now
This feature is available now and you can start using it today.

Jeff;