Tag Archives: commercial

The Benefits of Side Projects

Post Syndicated from Bozho original https://techblog.bozho.net/the-benefits-of-side-projects/

Side projects are the things you do at home, after work, for your own “entertainment”, or to satisfy your desire to learn new stuff, in case your workplace doesn’t give you that opportunity (or at least not enough of it). Side projects are also a way to build stuff that you think is valuable but not necessarily “commercialisable”. Many side projects are open-sourced sooner or later and some of them contribute to the pool of tools at other people’s disposal.

I’ve outlined one recommendation about side projects before – do them with technologies that are new to you, so that you learn important things that will keep you better positioned in the software world.

But there are more benefits than that – serendipitous benefits, for example. And I’d like to tell some personal stories about that. I’ll focus on a few examples from my list of side projects to show how, through a sort-of butterfly effect, they helped shape my career.

The computoser project, no matter how cool algorithmic music composition, didn’t manage to have much of a long term impact. But it did teach me something apart from niche musical theory – how to read a bulk of scientific papers (mostly computer science) and understand them without being formally trained in the particular field. We’ll see how that was useful later.

Then there was the “State alerts” project – a website that scraped content from public institutions in my country (legislation, legislation proposals, decisions by regulators, new tenders, etc.), made them searchable, and “subscribable” – so that you get notified when a keyword of interest is mentioned in newly proposed legislation, for example. (I obviously subscribed for “information technologies” and “electronic”).

And that project turned out to have a significant impact on the following years. First, I chose a new technology to write it with – Scala. Which turned out to be of great use when I started working at TomTom, and on the 3rd day I was transferred to a Scala project, which was way cooler and much more complex than the original one I was hired for. It was a bit ironic, as my colleagues had just read that “I don’t like Scala” a few weeks earlier, but nevertheless, that was one of the most interesting projects I’ve worked on, and it went on for two years. Had I not known Scala, I’d probably be gone from TomTom much earlier (as the other project was restructured a few times), and I would not have learned many of the scalability, architecture and AWS lessons that I did learn there.

But the very same project had an even more important follow-up. Because if its “civic hacking” flavour, I was invited to join an informal group of developers (later officiated as an NGO) who create tools that are useful for society (something like MySociety.org). That group gathered regularly, discussed both tools and policies, and at some point we put up a list of policy priorities that we wanted to lobby policy makers. One of them was open source for the government, the other one was open data. As a result of our interaction with an interim government, we donated the official open data portal of my country, functioning to this day.

As a result of that, a few months later we got a proposal from the deputy prime minister’s office to “elect” one of the group for an advisor to the cabinet. And we decided that could be me. So I went for it and became advisor to the deputy prime minister. The job has nothing to do with anything one could imagine, and it was challenging and fascinating. We managed to pass legislation, including one that requires open source for custom projects, eID and open data. And all of that would not have been possible without my little side project.

As for my latest side project, LogSentinel – it became my current startup company. And not without help from the previous two mentioned above – the computer science paper reading was of great use when I was navigating the crypto papers landscape, and from the government job I not only gained invaluable legal knowledge, but I also “got” a co-founder.

Some other side projects died without much fanfare, and that’s fine. But the ones above shaped my “story” in a way that would not have been possible otherwise.

And I agree that such serendipitous chain of events could have happened without side projects – I could’ve gotten these opportunities by meeting someone at a bar (unlikely, but who knows). But we, as software engineers, are capable of tilting chance towards us by utilizing our skills. Side projects are our “extracurricular activities”, and they often lead to unpredictable, but rather positive chains of events. They would rarely be the only factor, but they are certainly great at unlocking potential.

The post The Benefits of Side Projects appeared first on Bozho's tech blog.

Connect Veeam to the B2 Cloud: Episode 3 — Using OpenDedup

Post Syndicated from Roderick Bauer original https://www.backblaze.com/blog/opendedup-for-cloud-storage/

Veeam backup to Backblaze B2 logo

In this, the third post in our series on connecting Veeam with Backblaze B2 Cloud Storage, we discuss how to back up your VMs to B2 using Veeam and OpenDedup. In our previous posts, we covered how to connect Veeam to the B2 cloud using Synology, and how to connect Veeam with B2 using StarWind VTL.

Deduplication and OpenDedup

Deduplication is simply the process of eliminating redundant data on disk. Deduplication reduces storage space requirements, improves backup speed, and lowers backup storage costs. The dedup field used to be dominated by a few big-name vendors who sold dedup systems that were too expensive for most of the SMB market. Then an open-source challenger came along in OpenDedup, a project that produced the Space Deduplication File System (SDFS). SDFS provides many of the features of commercial dedup products without their cost.

OpenDedup provides inline deduplication that can be used with applications such as Veeam, Veritas Backup Exec, and Veritas NetBackup.

Features Supported by OpenDedup:

  • Variable Block Deduplication to cloud storage
  • Local Data Caching
  • Encryption
  • Bandwidth Throttling
  • Fast Cloud Recovery
  • Windows and Linux Support

Why use Veeam with OpenDedup to Backblaze B2?

With your VMs backed up to B2, you have a number of options to recover from a disaster. If the unexpected occurs, you can quickly restore your VMs from B2 to the location of your choosing. You also have the option to bring up cloud compute through B2’s compute partners, thereby minimizing any loss of service and ensuring business continuity.

Veeam logo + OpenDedup logo + Backblaze B2 logo

Backblaze’s B2 is an ideal solution for backing up Veeam’s backup repository due to B2’s combination of low-cost and high availability. Users of B2 save up to 75% compared to other cloud solutions such as Microsoft Azure, Amazon AWS, or Google Cloud Storage. When combined with OpenDedup’s no-cost deduplication, you’re got an efficient and economical solution for backing up VMs to the cloud.

How to Use OpenDedup with B2

For step-by-step instructions for how to set up OpenDedup for use with B2 on Windows or Linux, see Backblaze B2 Enabled on the OpenDedup website.

Are you backing up Veeam to B2 using one of the solutions we’ve written about in this series? If you have, we’d love to hear from you in the comments.

View all posts in the Veeam series.

The post Connect Veeam to the B2 Cloud: Episode 3 — Using OpenDedup appeared first on Backblaze Blog | Cloud Storage & Cloud Backup.

The Helium Factor and Hard Drive Failure Rates

Post Syndicated from Andy Klein original https://www.backblaze.com/blog/helium-filled-hard-drive-failure-rates/

Seagate Enterprise Capacity 3.5 Helium HDD

In November 2013, the first commercially available helium-filled hard drive was introduced by HGST, a Western Digital subsidiary. The 6 TB drive was not only unique in being helium-filled, it was for the moment, the highest capacity hard drive available. Fast forward a little over 4 years later and 12 TB helium-filled drives are readily available, 14 TB drives can be found, and 16 TB helium-filled drives are arriving soon.

Backblaze has been purchasing and deploying helium-filled hard drives over the past year and we thought it was time to start looking at their failure rates compared to traditional air-filled drives. This post will provide an overview, then we’ll continue the comparison on a regular basis over the coming months.

The Promise and Challenge of Helium Filled Drives

We all know that helium is lighter than air — that’s why helium-filled balloons float. Inside of an air-filled hard drive there are rapidly spinning disk platters that rotate at a given speed, 7200 rpm for example. The air inside adds an appreciable amount of drag on the platters that in turn requires an appreciable amount of additional energy to spin the platters. Replacing the air inside of a hard drive with helium reduces the amount of drag, thereby reducing the amount of energy needed to spin the platters, typically by 20%.

We also know that after a few days, a helium-filled balloon sinks to the ground. This was one of the key challenges in using helium inside of a hard drive: helium escapes from most containers, even if they are well sealed. It took years for hard drive manufacturers to create containers that could contain helium while still functioning as a hard drive. This container innovation allows helium-filled drives to function at spec over the course of their lifetime.

Checking for Leaks

Three years ago, we identified SMART 22 as the attribute assigned to recording the status of helium inside of a hard drive. We have both HGST and Seagate helium-filled hard drives, but only the HGST drives currently report the SMART 22 attribute. It appears the normalized and raw values for SMART 22 currently report the same value, which starts at 100 and goes down.

To date only one HGST drive has reported a value of less than 100, with multiple readings between 94 and 99. That drive continues to perform fine, with no other errors or any correlating changes in temperature, so we are not sure whether the change in value is trying to tell us something or if it is just a wonky sensor.

Helium versus Air-Filled Hard Drives

There are several different ways to compare these two types of drives. Below we decided to use just our 8, 10, and 12 TB drives in the comparison. We did this since we have helium-filled drives in those sizes. We left out of the comparison all of the drives that are 6 TB and smaller as none of the drive models we use are helium-filled. We are open to trying different comparisons. This just seemed to be the best place to start.

Lifetime Hard Drive Failure Rates: Helium vs. Air-Filled Hard Drives table

The most obvious observation is that there seems to be little difference in the Annualized Failure Rate (AFR) based on whether they contain helium or air. One conclusion, given this evidence, is that helium doesn’t affect the AFR of hard drives versus air-filled drives. My prediction is that the helium drives will eventually prove to have a lower AFR. Why? Drive Days.

Let’s go back in time to Q1 2017 when the air-filled drives listed in the table above had a similar number of Drive Days to the current number of Drive Days for the helium drives. We find that the failure rate for the air-filled drives at the time (Q1 2017) was 1.61%. In other words, when the drives were in use a similar number of hours, the helium drives had a failure rate of 1.06% while the failure rate of the air-filled drives was 1.61%.

Helium or Air?

My hypothesis is that after normalizing the data so that the helium and air-filled drives have the same (or similar) usage (Drive Days), the helium-filled drives we use will continue to have a lower Annualized Failure Rate versus the air-filled drives we use. I expect this trend to continue for the next year at least. What side do you come down on? Will the Annualized Failure Rate for helium-filled drives be better than air-filled drives or vice-versa? Or do you think the two technologies will be eventually produce the same AFR over time? Pick a side and we’ll document the results over the next year and see where the data takes us.

The post The Helium Factor and Hard Drive Failure Rates appeared first on Backblaze Blog | Cloud Storage & Cloud Backup.

Continued: the answers to your questions for Eben Upton

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/eben-q-a-2/

Last week, we shared the first half of our Q&A with Raspberry Pi Trading CEO and Raspberry Pi creator Eben Upton. Today we follow up with all your other questions, including your expectations for a Raspberry Pi 4, Eben’s dream add-ons, and whether we really could go smaller than the Zero.

Live Q&A with Eben Upton, creator of the Raspberry Pi

Get your questions to us now using #AskRaspberryPi on Twitter

With internet security becoming more necessary, will there be automated versions of VPN on an SD card?

There are already third-party tools which turn your Raspberry Pi into a VPN endpoint. Would we do it ourselves? Like the power button, it’s one of those cases where there are a million things we could do and so it’s more efficient to let the community get on with it.

Just to give a counterexample, while we don’t generally invest in optimising for particular use cases, we did invest a bunch of money into optimising Kodi to run well on Raspberry Pi, because we found that very large numbers of people were using it. So, if we find that we get half a million people a year using a Raspberry Pi as a VPN endpoint, then we’ll probably invest money into optimising it and feature it on the website as we’ve done with Kodi. But I don’t think we’re there today.

Have you ever seen any Pis running and doing important jobs in the wild, and if so, how does it feel?

It’s amazing how often you see them driving displays, for example in radio and TV studios. Of course, it feels great. There’s something wonderful about the geographic spread as well. The Raspberry Pi desktop is quite distinctive, both in its previous incarnation with the grey background and logo, and the current one where we have Greg Annandale’s road picture.

The PIXEL desktop on Raspberry Pi

And so it’s funny when you see it in places. Somebody sent me a video of them teaching in a classroom in rural Pakistan and in the background was Greg’s picture.

Raspberry Pi 4!?!

There will be a Raspberry Pi 4, obviously. We get asked about it a lot. I’m sticking to the guidance that I gave people that they shouldn’t expect to see a Raspberry Pi 4 this year. To some extent, the opportunity to do the 3B+ was a surprise: we were surprised that we’ve been able to get 200MHz more clock speed, triple the wireless and wired throughput, and better thermals, and still stick to the $35 price point.

We’re up against the wall from a silicon perspective; we’re at the end of what you can do with the 40nm process. It’s not that you couldn’t clock the processor faster, or put a larger processor which can execute more instructions per clock in there, it’s simply about the energy consumption and the fact that you can’t dissipate the heat. So we’ve got to go to a smaller process node and that’s an order of magnitude more challenging from an engineering perspective. There’s more effort, more risk, more cost, and all of those things are challenging.

With 3B+ out of the way, we’re going to start looking at this now. For the first six months or so we’re going to be figuring out exactly what people want from a Raspberry Pi 4. We’re listening to people’s comments about what they’d like to see in a new Raspberry Pi, and I’m hoping by early autumn we should have an idea of what we want to put in it and a strategy for how we might achieve that.

Could you go smaller than the Zero?

The challenge with Zero as that we’re periphery-limited. If you run your hand around the unit, there is no edge of that board that doesn’t have something there. So the question is: “If you want to go smaller than Zero, what feature are you willing to throw out?”

It’s a single-sided board, so you could certainly halve the PCB area if you fold the circuitry and use both sides, though you’d have to lose something. You could give up some GPIO and go back to 26 pins like the first Raspberry Pi. You could give up the camera connector, you could go to micro HDMI from mini HDMI. You could remove the SD card and just do USB boot. I’m inventing a product live on air! But really, you could get down to two thirds and lose a bunch of GPIO – it’s hard to imagine you could get to half the size.

What’s the one feature that you wish you could outfit on the Raspberry Pi that isn’t cost effective at this time? Your dream feature.

Well, more memory. There are obviously technical reasons why we don’t have more memory on there, but there are also market reasons. People ask “why doesn’t the Raspberry Pi have more memory?”, and my response is typically “go and Google ‘DRAM price’”. We’re used to the price of memory going down. And currently, we’re going through a phase where this has turned around and memory is getting more expensive again.

Machine learning would be interesting. There are machine learning accelerators which would be interesting to put on a piece of hardware. But again, they are not going to be used by everyone, so according to our method of pricing what we might add to a board, machine learning gets treated like a $50 chip. But that would be lovely to do.

Which citizen science projects using the Pi have most caught your attention?

I like the wildlife camera projects. We live out in the countryside in a little village, and we’re conscious of being surrounded by nature but we don’t see a lot of it on a day-to-day basis. So I like the nature cam projects, though, to my everlasting shame, I haven’t set one up yet. There’s a range of them, from very professional products to people taking a Raspberry Pi and a camera and putting them in a plastic box. So those are good fun.

Raspberry Shake seismometer

The Raspberry Shake seismometer

And there’s Meteor Pi from the Cambridge Science Centre, that’s a lot of fun. And the seismometer Raspberry Shake – that sort of thing is really nice. We missed the recent South Wales earthquake; perhaps we should set one up at our Californian office.

How does it feel to go to bed every day knowing you’ve changed the world for the better in such a massive way?

What feels really good is that when we started this in 2006 nobody else was talking about it, but now we’re part of a very broad movement.

We were in a really bad way: we’d seen a collapse in the number of applicants applying to study Computer Science at Cambridge and elsewhere. In our view, this reflected a move away from seeing technology as ‘a thing you do’ to seeing it as a ‘thing that you have done to you’. It is problematic from the point of view of the economy, industry, and academia, but most importantly it damages the life prospects of individual children, particularly those from disadvantaged backgrounds. The great thing about STEM subjects is that you can’t fake being good at them. There are a lot of industries where your Dad can get you a job based on who he knows and then you can kind of muddle along. But if your dad gets you a job building bridges and you suck at it, after the first or second bridge falls down, then you probably aren’t going to be building bridges anymore. So access to STEM education can be a great driver of social mobility.

By the time we were launching the Raspberry Pi in 2012, there was this wonderful movement going on. Code Club, for example, and CoderDojo came along. Lots of different ways of trying to solve the same problem. What feels really, really good is that we’ve been able to do this as part of an enormous community. And some parts of that community became part of the Raspberry Pi Foundation – we merged with Code Club, we merged with CoderDojo, and we continue to work alongside a lot of these other organisations. So in the two seconds it takes me to fall asleep after my face hits the pillow, that’s what I think about.

We’re currently advertising a Programme Manager role in New Delhi, India. Did you ever think that Raspberry Pi would be advertising a role like this when you were bringing together the Foundation?

No, I didn’t.

But if you told me we were going to be hiring somewhere, India probably would have been top of my list because there’s a massive IT industry in India. When we think about our interaction with emerging markets, India, in a lot of ways, is the poster child for how we would like it to work. There have already been some wonderful deployments of Raspberry Pi, for example in Kerala, without our direct involvement. And we think we’ve got something that’s useful for the Indian market. We have a product, we have clubs, we have teacher training. And we have a body of experience in how to teach people, so we have a physical commercial product as well as a charitable offering that we think are a good fit.

It’s going to be massive.

What is your favourite BBC type-in listing?

There was a game called Codename: Druid. There is a famous game called Codename: Droid which was the sequel to Stryker’s Run, which was an awesome, awesome game. And there was a type-in game called Codename: Druid, which was at the bottom end of what you would consider a commercial game.

codename druid

And I remember typing that in. And what was really cool about it was that the next month, the guy who wrote it did another article that talks about the memory map and which operating system functions used which bits of memory. So if you weren’t going to do disc access, which bits of memory could you trample on and know the operating system would survive.

babbage versus bugs Raspberry Pi annual

See the full listing for Babbage versus Bugs in the Raspberry Pi 2018 Annual

I still like type-in listings. The Raspberry Pi 2018 Annual has a type-in listing that I wrote for a Babbage versus Bugs game. I will say that’s not the last type-in listing you will see from me in the next twelve months. And if you download the PDF, you could probably copy and paste it into your favourite text editor to save yourself some time.

The post Continued: the answers to your questions for Eben Upton appeared first on Raspberry Pi.

Audit Trail Overview

Post Syndicated from Bozho original https://techblog.bozho.net/audit-trail-overview/

As part of my current project (secure audit trail) I decided to make a survey about the use of audit trail “in the wild”.

I haven’t written in details about this project of mine (unlike with some other projects). Mostly because it’s commercial and I don’t want to use my blog as a direct promotion channel (though I am doing that at the moment, ironically). But the aim of this post is to shed some light on how audit trail is used.

The survey can be found here. The questions are basically: does your current project have audit trail functionality, and if yes, is it protected from tampering. If not – do you think you should have such functionality.

The results are interesting (although with only around 50 respondents)

So more than half of the systems (on which respondents are working) don’t have audit trail. While audit trail is recommended by information security and related standards, it may not find place in the “busy schedule” of a software project, even though it’s fairly easy to provide a trivial implementation (e.g. I’ve written how to quickly setup one with Hibernate and Spring)

A trivial implementation might do in many cases but if the audit log is critical (e.g. access to sensitive data, performing financial operations etc.), then relying on a trivial implementation might not be enough. In other words – if the sysadmin can access the database and delete or modify the audit trail, then it doesn’t serve much purpose. Hence the next question – how is the audit trail protected from tampering:

And apparently, from the less than 50% of projects with audit trail, around 50% don’t have technical guarantees that the audit trail can’t be tampered with. My guess is it’s more, because people have different understanding of what technical measures are sufficient. E.g. someone may think that digitally signing your log files (or log records) is sufficient, but in fact it isn’t, as whole files (or records) can be deleted (or fully replaced) without a way to detect that. Timestamping can help (and a good audit trail solution should have that), but it doesn’t guarantee the order of events or prevent a malicious actor from deleting or inserting fake ones. And if timestamping is done on a log file level, then any not-yet-timestamped log file is vulnerable to manipulation.

I’ve written about event logs before and their two flavours – event sourcing and audit trail. An event log can effectively be considered audit trail, but you’d need additional security to avoid the problems mentioned above.

So, let’s see what would various levels of security and usefulness of audit logs look like. There are many papers on the topic (e.g. this and this), and they often go into the intricate details of how logging should be implemented. I’ll try to give an overview of the approaches:

  • Regular logs – rely on regular INFO log statements in the production logs to look for hints of what has happened. This may be okay, but is harder to look for evidence (as there is non-auditable data in those log files as well), and it’s not very secure – usually logs are collected (e.g. with graylog) and whoever has access to the log collector’s database (or search engine in the case of Graylog), can manipulate the data and not be caught
  • Designated audit trail – whether it’s stored in the database or in logs files. It has the proper business-event level granularity, but again doesn’t prevent or detect tampering. With lower risk systems that may is perfectly okay.
  • Timestamped logs – whether it’s log files or (harder to implement) database records. Timestamping is good, but if it’s not an external service, a malicious actor can get access to the local timestamping service and issue fake timestamps to either re-timestamp tampered files. Even if the timestamping is not compromised, whole entries can be deleted. The fact that they are missing can sometimes be deduced based on other factors (e.g. hour of rotation), but regularly verifying that is extra effort and may not always be feasible.
  • Hash chaining – each entry (or sequence of log files) could be chained (just as blockchain transactions) – the next one having the hash of the previous one. This is a good solution (whether it’s local, external or 3rd party), but it has the risk of someone modifying or deleting a record, getting your entire chain and re-hashing it. All the checks will pass, but the data will not be correct
  • Hash chaining with anchoring – the head of the chain (the hash of the last entry/block) could be “anchored” to an external service that is outside the capabilities of a malicious actor. Ideally, a public blockchain, alternatively – paper, a public service (twitter), email, etc. That way a malicious actor can’t just rehash the whole chain, because any check against the external service would fail.
  • WORM storage (write once, ready many). You could send your audit logs almost directly to WORM storage, where it’s impossible to replace data. However, that is not ideal, as WORM storage can be slow and expensive. For example AWS Glacier has rather big retrieval times and searching through recent data makes it impractical. It’s actually cheaper than S3, for example, and you can have expiration policies. But having to support your own WORM storage is expensive. It is a good idea to eventually send the logs to WORM storage, but “fresh” audit trail should probably not be “archived” so that it’s searchable and some actionable insight can be gained from it.
  • All-in-one – applying all of the above “just in case” may be unnecessary for every project out there, but that’s what I decided to do at LogSentinel. Business-event granularity with timestamping, hash chaining, anchoring, and eventually putting to WORM storage – I think that provides both security guarantees and flexibility.

I hope the overview is useful and the results from the survey shed some light on how this aspect of information security is underestimated.

The post Audit Trail Overview appeared first on Bozho's tech blog.

The answers to your questions for Eben Upton

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/eben-q-a-1/

Before Easter, we asked you to tell us your questions for a live Q & A with Raspberry Pi Trading CEO and Raspberry Pi creator Eben Upton. The variety of questions and comments you sent was wonderful, and while we couldn’t get to them all, we picked a handful of the most common to grill him on.

You can watch the video below — though due to this being the first pancake of our live Q&A videos, the sound is a bit iffy — or read Eben’s answers to the first five questions today. We’ll follow up with the rest in the next few weeks!

Live Q&A with Eben Upton, creator of the Raspberry Pi

Get your questions to us now using #AskRaspberryPi on Twitter

Any plans for 64-bit Raspbian?

Raspbian is effectively 32-bit Debian built for the ARMv6 instruction-set architecture supported by the ARM11 processor in the first-generation Raspberry Pi. So maybe the question should be: “Would we release a version of our operating environment that was built on top of 64-bit ARM Debian?”

And the answer is: “Not yet.”

When we released the Raspberry Pi 3 Model B+, we released an operating system image on the same day; the wonderful thing about that image is that it runs on every Raspberry Pi ever made. It even runs on the alpha boards from way back in 2011.

That deep backwards compatibility is really important for us, in large part because we don’t want to orphan our customers. If someone spent $35 on an older-model Raspberry Pi five or six years ago, they still spent $35, so it would be wrong for us to throw them under the bus.

So, if we were going to do a 64-bit version, we’d want to keep doing the 32-bit version, and then that would mean our efforts would be split across the two versions; and remember, we’re still a very small engineering team. Never say never, but it would be a big step for us.

For people wanting a 64-bit operating system, there are plenty of good third-party images out there, including SUSE Linux Enterprise Server.

Given that the 3B+ includes 5GHz wireless and Power over Ethernet (PoE) support, why would manufacturers continue to use the Compute Module?

It’s a form-factor thing.

Very large numbers of people are using the bigger product in an industrial context, and it’s well engineered for that: it has module certification, wireless on board, and now PoE support. But there are use cases that can’t accommodate this form factor. For example, NEC displays: we’ve had this great relationship with NEC for a couple of years now where a lot of their displays have a socket in the back that you can put a Compute Module into. That wouldn’t work with the 3B+ form factor.

Back of an NEC display with a Raspberry Pi Compute Module slotted in.

An NEC display with a Raspberry Pi Compute Module

What are some industrial uses/products Raspberry is used with?

The NEC displays are a good example of the broader trend of using Raspberry Pi in digital signage.

A Raspberry Pi running the wait time signage at The Wizarding World of Harry Potter, Universal Studios.
Image c/o thelonelyredditor1

If you see a monitor at a station, or an airport, or a recording studio, and you look behind it, it’s amazing how often you’ll find a Raspberry Pi sitting there. The original Raspberry Pi was particularly strong for multimedia use cases, so we saw uptake in signage very early on.

An array of many Raspberry Pis

Los Alamos Raspberry Pi supercomputer

Another great example is the Los Alamos National Laboratory building supercomputers out of Raspberry Pis. Many high-end supercomputers now are built using white-box hardware — just regular PCs connected together using some networking fabric — and a collection of Raspberry Pi units can serve as a scale model of that. The Raspberry Pi has less processing power, less memory, and less networking bandwidth than the PC, but it has a balanced amount of each. So if you don’t want to let your apprentice supercomputer engineers loose on your expensive supercomputer, a cluster of Raspberry Pis is a good alternative.

Why is there no power button on the Raspberry Pi?

“Once you start, where do you stop?” is a question we ask ourselves a lot.

There are a whole bunch of useful things that we haven’t included in the Raspberry Pi by default. We don’t have a power button, we don’t have a real-time clock, and we don’t have an analogue-to-digital converter — those are probably the three most common requests. And the issue with them is that they each cost a bit of money, they’re each only useful to a minority of users, and even that minority often can’t agree on exactly what they want. Some people would like a power button that is literally a physical analogue switch between the 5V input and the rest of the board, while others would like something a bit more like a PC power button, which is partway between a physical switch and a ‘shutdown’ button. There’s no consensus about what sort of power button we should add.

So the answer is: accessories. By leaving a feature off the board, we’re not taxing the majority of people who don’t want the feature. And of course, we create an opportunity for other companies in the ecosystem to create and sell accessories to those people who do want them.

Adafruit Push-button Power Switch Breakout Raspberry Pi

The Adafruit Push-button Power Switch Breakout is one of many accessories that fill in the gaps for makers.

We have this neat way of figuring out what features to include by default: we divide through the fraction of people who want it. If you have a 20 cent component that’s going to be used by a fifth of people, we treat that as if it’s a $1 component. And it has to fight its way against the $1 components that will be used by almost everybody.

Do you think that Raspberry Pi is the future of the Internet of Things?

Absolutely, Raspberry Pi is the future of the Internet of Things!

In practice, most of the viable early IoT use cases are in the commercial and industrial spaces rather than the consumer space. Maybe in ten years’ time, IoT will be about putting 10-cent chips into light switches, but right now there’s so much money to be saved by putting automation into factories that you don’t need 10-cent components to address the market. Last year, roughly 2 million $35 Raspberry Pi units went into commercial and industrial applications, and many of those are what you’d call IoT applications.

So I think we’re the future of a particular slice of IoT. And we have ten years to get our price point down to 10 cents 🙂

The post The answers to your questions for Eben Upton appeared first on Raspberry Pi.

Community profile: Dave Akerman

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/community-profile-dave-akerman/

This column is from The MagPi issue 61. You can download a PDF of the full issue for free, or subscribe to receive the print edition through your letterbox or the digital edition on your tablet. All proceeds from the print and digital editions help the Raspberry Pi Foundation achieve our charitable goals.

The pinned tweet on Dave Akerman’s Twitter account shows a table displaying the various components needed for a high-altitude balloon (HAB) flight. Batteries, leads, a camera and Raspberry Pi, plus an unusually themed payload. The caption reads ‘The Queen, The Duke of York, and my TARDIS”, and sums up Dave’s maker career in a heartbeat.

David Akerman on Twitter

The Queen, The Duke of York, and my TARDIS 🙂 #UKHAS #RaspberryPi

Though writing software for industrial automation pays the bills, the majority of Dave’s time is spent in the world of high-altitude ballooning and the ever-growing community that encompasses it. And, while he makes some money sending business-themed balloons to near space for the likes of Aardman Animations, Confused.com, and the BBC, Dave is best known in the Raspberry Pi community for his use of the small computer in every payload, and his work as a tutor alongside the Foundation’s staff at Skycademy events.

Dave Akerman The MagPi Raspberry Pi Community Profile

Dave continues to help others while breaking records and having a good time exploring the atmosphere.

Dave has dedicated many hours and many, many more miles to assist with the Foundation’s Skycademy programme, helping to explore high-altitude ballooning with educators from across the UK. Using a Raspberry Pi and various other pieces of lightweight tech, Dave and Foundation staff member James Robinson explored the incorporation of high-altitude ballooning into education. Through Skycademy, educators were able to learn new skills and take them to the classroom, setting off their own balloons with their students, and recording the results on Raspberry Pis.

Dave Akerman The MagPi Raspberry Pi Community Profile

Dave’s most recent flight broke a new record. On 13 August 2017, his HAB payload was able to send back the highest images taken by any amateur flight.

But education isn’t the only reason for Dave’s involvement in the HAB community. As with anyone passionate about a specific hobby, Dave strives to break records. The most recent record-breaking flight took place on 13 August 2017, when Dave’s Raspberry Pi Zero HAB sent home the highest images taken by any amateur high-altitude balloon launch: at 43014 metres. No other HAB balloon has provided images from such an altitude, and the lightweight nature of the Pi Zero definitely helped, as Dave went on to mention on Twitter a few days later.

Dave Akerman The MagPi Raspberry Pi Community Profile

Dave is recognised as being the first person to incorporate a Raspberry Pi into a HAB payload, and continues to break records with the help of the little green board. More recently, he’s been able to lighten the load by using the Raspberry Pi Zero.

When the first Pi made its way to near space, Dave tore the computer apart in order to meet the weight restriction. The Pi in the Sky board was created to add the extra features needed for the flight. Since then, the HAT has experienced a few changes.

Dave Akerman The MagPi Raspberry Pi Community Profile

The Pi in the Sky board, created specifically for HAB flights.

Dave first fell in love with high-altitude ballooning after coming across the hobby in a video shared on a photographic forum. With a lifelong interest in space thanks to watching the Moon landings as a boy, plus a talent for electronics and photography, it seems a natural progression for him. Throw in his coding skills from learning to program on a Teletype and it’s no wonder he was ready and eager to take to the skies, so to speak, and capture the curvature of the Earth. What was so great about using the Raspberry Pi was the instant gratification he got from receiving images in real time as they were taken during the flight. While other devices could control a camera and store captured images for later retrieval, thanks to the Pi Dave was able to transmit the files back down to Earth and check the progress of his balloon while attempting to break records with a flight.

Dave Akerman The MagPi Raspberry Pi Community Profile Morph

One of the many commercial flights Dave has organised featured the classic children’s TV character Morph, a creation of the Aardman Animations studio known for Wallace and Gromit. Morph took to the sky twice in his mission to reach near space, and finally succeeded in 2016.

High-altitude ballooning isn’t the only part of Dave’s life that incorporates a Raspberry Pi. Having “lost count” of how many Pis he has running tasks, Dave has also created radio receivers for APRS (ham radio data), ADS-B (aircraft tracking), and OGN (gliders), along with a time-lapse camera in his garden, and he has a few more Pi for tinkering purposes.

The post Community profile: Dave Akerman appeared first on Raspberry Pi.

Secure Images

Post Syndicated from marcelatoath original https://yahooeng.tumblr.com/post/172068649246

oath-postmaster:

By Marcel Becker

The mail team at OATH is busy  integrating  Yahoo and AOL technology to deliver an even better experience across all our consumer mail products. While privacy and security are top priority for us, we also want to improve the experience and remove unnecessary clutter across all of our products.

Starting this week we will be serving images in mails via our own secure proxy servers. This will not only increase speed and security in our own mail products and reduce the risk of phishing and other scams,  but it will also mean that our users don’t have to fiddle around with those “enable images” settings. Messages and inline images will now just show up as originally intended.

We are aware that commercial mail senders are relying on images (so-called pixels) to track delivery and open rates. Our proxy solution will continue to support most of these cases and ensure that true mail opens are recorded.

For senders serving dynamic content based on the recipient’s location (leveraging standard IP-based browser and app capabilities) we recommend falling back on other tools and technologies which do not rely on IP-based targeting.

All of our consumer mail applications (Yahoo and AOL) will benefit from this change. This includes our desktop products as well as our mobile applications across iOS and Android.

If you have any feedback or want to discuss those changes with us personally, just send us a note to [email protected].

Secure Images

Post Syndicated from marcelatoath original https://yahooeng.tumblr.com/post/172037447286

By Marcel Becker

The mail team at OATH is busy  integrating  Yahoo and AOL technology to deliver an even better experience across all our consumer mail products. While privacy and security are top priority for us, we also want to improve the experience and remove unnecessary clutter across all of our products.

Starting this week we will be serving images in mails via our own secure proxy servers. This will not only increase speed and security in our own mail products and reduce the risk of phishing and other scams,  but it will also mean that our users don’t have to fiddle around with those “enable images” settings. Messages and inline images will now just show up as originally intended.

We are aware that commercial mail senders are relying on images (so-called pixels) to track delivery and open rates. Our proxy solution will continue to support most of these cases and ensure that true mail opens are recorded.

For senders serving dynamic content based on the recipient’s location (leveraging standard IP-based browser and app capabilities) we recommend falling back on other tools and technologies which do not rely on IP-based targeting.

All of our consumer mail applications (Yahoo and AOL) will benefit from this change. This includes our desktop products as well as our mobile applications across iOS and Android.

If you have any feedback or want to discuss those changes with us personally, just send us a note to [email protected].

AWS Key Management Service now offers FIPS 140-2 validated cryptographic modules enabling easier adoption of the service for regulated workloads

Post Syndicated from Sreekumar Pisharody original https://aws.amazon.com/blogs/security/aws-key-management-service-now-offers-fips-140-2-validated-cryptographic-modules-enabling-easier-adoption-of-the-service-for-regulated-workloads/

AWS Key Management Service (KMS) now uses FIPS 140-2 validated hardware security modules (HSM) and supports FIPS 140-2 validated endpoints, which provide independent assurances about the confidentiality and integrity of your keys. Having additional third-party assurances about the keys you manage in AWS KMS can make it easier to use the service for regulated workloads.

The process of gaining FIPS 140-2 validation is rigorous. First, AWS KMS HSMs were tested by an independent lab; those results were further reviewed by the Cryptographic Module Validation Program run by NIST. You can view the FIPS 140-2 certificate of the AWS Key Management Service HSM to get more details.

AWS KMS HSMs are designed so that no one, not even AWS employees, can retrieve your plaintext keys. The service uses the FIPS 140-2 validated HSMs to protect your keys when you request the service to create keys on your behalf or when you import them. Your plaintext keys are never written to disk and are only used in volatile memory of the HSMs while performing your requested cryptographic operation. Furthermore, AWS KMS keys are never transmitted outside the AWS Regions they were created. And HSM firmware updates are controlled by multi-party access that is audited and reviewed by an independent group within AWS.

AWS KMS HSMs are validated at level 2 overall and at level 3 in the following areas:

  • Cryptographic Module Specification
  • Roles, Services, and Authentication
  • Physical Security
  • Design Assurance

You can also make AWS KMS requests to API endpoints that terminate TLS sessions using a FIPS 140-2 validated cryptographic software module. To do so, connect to the unique FIPS 140-2 validated HTTPS endpoints in the AWS KMS requests made from your applications. AWS KMS FIPS 140-2 validated HTTPS endpoints are powered by the OpenSSL FIPS Object Module. FIPS 140-2 validated API endpoints are available in all commercial regions where AWS KMS is available.

The Challenges of Opening a Data Center — Part 1

Post Syndicated from Roderick Bauer original https://www.backblaze.com/blog/choosing-data-center/

Backblaze storage pod in new data center

This is part one of a series. The second part will be posted later this week. Use the Join button above to receive notification of future posts in this series.

Though most of us have never set foot inside of a data center, as citizens of a data-driven world we nonetheless depend on the services that data centers provide almost as much as we depend on a reliable water supply, the electrical grid, and the highway system. Every time we send a tweet, post to Facebook, check our bank balance or credit score, watch a YouTube video, or back up a computer to the cloud we are interacting with a data center.

In this series, The Challenges of Opening a Data Center, we’ll talk in general terms about the factors that an organization needs to consider when opening a data center and the challenges that must be met in the process. Many of the factors to consider will be similar for opening a private data center or seeking space in a public data center, but we’ll assume for the sake of this discussion that our needs are more modest than requiring a data center dedicated solely to our own use (i.e. we’re not Google, Facebook, or China Telecom).

Data center technology and management are changing rapidly, with new approaches to design and operation appearing every year. This means we won’t be able to cover everything happening in the world of data centers in our series, however, we hope our brief overview proves useful.

What is a Data Center?

A data center is the structure that houses a large group of networked computer servers typically used by businesses, governments, and organizations for the remote storage, processing, or distribution of large amounts of data.

While many organizations will have computing services in the same location as their offices that support their day-to-day operations, a data center is a structure dedicated to 24/7 large-scale data processing and handling.

Depending on how you define the term, there are anywhere from a half million data centers in the world to many millions. While it’s possible to say that an organization’s on-site servers and data storage can be called a data center, in this discussion we are using the term data center to refer to facilities that are expressly dedicated to housing computer systems and associated components, such as telecommunications and storage systems. The facility might be a private center, which is owned or leased by one tenant only, or a shared data center that offers what are called “colocation services,” and rents space, services, and equipment to multiple tenants in the center.

A large, modern data center operates around the clock, placing a priority on providing secure and uninterrrupted service, and generally includes redundant or backup power systems or supplies, redundant data communication connections, environmental controls, fire suppression systems, and numerous security devices. Such a center is an industrial-scale operation often using as much electricity as a small town.

Types of Data Centers

There are a number of ways to classify data centers according to how they will be used, whether they are owned or used by one or multiple organizations, whether and how they fit into a topology of other data centers; which technologies and management approaches they use for computing, storage, cooling, power, and operations; and increasingly visible these days: how green they are.

Data centers can be loosely classified into three types according to who owns them and who uses them.

Exclusive Data Centers are facilities wholly built, maintained, operated and managed by the business for the optimal operation of its IT equipment. Some of these centers are well-known companies such as Facebook, Google, or Microsoft, while others are less public-facing big telecoms, insurance companies, or other service providers.

Managed Hosting Providers are data centers managed by a third party on behalf of a business. The business does not own data center or space within it. Rather, the business rents IT equipment and infrastructure it needs instead of investing in the outright purchase of what it needs.

Colocation Data Centers are usually large facilities built to accommodate multiple businesses within the center. The business rents its own space within the data center and subsequently fills the space with its IT equipment, or possibly uses equipment provided by the data center operator.

Backblaze, for example, doesn’t own its own data centers but colocates in data centers owned by others. As Backblaze’s storage needs grow, Backblaze increases the space it uses within a given data center and/or expands to other data centers in the same or different geographic areas.

Availability is Key

When designing or selecting a data center, an organization needs to decide what level of availability is required for its services. The type of business or service it provides likely will dictate this. Any organization that provides real-time and/or critical data services will need the highest level of availability and redundancy, as well as the ability to rapidly failover (transfer operation to another center) when and if required. Some organizations require multiple data centers not just to handle the computer or storage capacity they use, but to provide alternate locations for operation if something should happen temporarily or permanently to one or more of their centers.

Organizations operating data centers that can’t afford any downtime at all will typically operate data centers that have a mirrored site that can take over if something happens to the first site, or they operate a second site in parallel to the first one. These data center topologies are called Active/Passive, and Active/Active, respectively. Should disaster or an outage occur, disaster mode would dictate immediately moving all of the primary data center’s processing to the second data center.

While some data center topologies are spread throughout a single country or continent, others extend around the world. Practically, data transmission speeds put a cap on centers that can be operated in parallel with the appearance of simultaneous operation. Linking two data centers located apart from each other — say no more than 60 miles to limit data latency issues — together with dark fiber (leased fiber optic cable) could enable both data centers to be operated as if they were in the same location, reducing staffing requirements yet providing immediate failover to the secondary data center if needed.

This redundancy of facilities and ensured availability is of paramount importance to those needing uninterrupted data center services.

Active/Passive Data Centers

Active/Active Data Centers

LEED Certification

Leadership in Energy and Environmental Design (LEED) is a rating system devised by the United States Green Building Council (USGBC) for the design, construction, and operation of green buildings. Facilities can achieve ratings of certified, silver, gold, or platinum based on criteria within six categories: sustainable sites, water efficiency, energy and atmosphere, materials and resources, indoor environmental quality, and innovation and design.

Green certification has become increasingly important in data center design and operation as data centers require great amounts of electricity and often cooling water to operate. Green technologies can reduce costs for data center operation, as well as make the arrival of data centers more amenable to environmentally-conscious communities.

The ACT, Inc. data center in Iowa City, Iowa was the first data center in the U.S. to receive LEED-Platinum certification, the highest level available.

ACT Data Center exterior

ACT Data Center exterior

ACT Data Center interior

ACT Data Center interior

Factors to Consider When Selecting a Data Center

There are numerous factors to consider when deciding to build or to occupy space in a data center. Aspects such as proximity to available power grids, telecommunications infrastructure, networking services, transportation lines, and emergency services can affect costs, risk, security and other factors that need to be taken into consideration.

The size of the data center will be dictated by the business requirements of the owner or tenant. A data center can occupy one room of a building, one or more floors, or an entire building. Most of the equipment is often in the form of servers mounted in 19 inch rack cabinets, which are usually placed in single rows forming corridors (so-called aisles) between them. This allows staff access to the front and rear of each cabinet. Servers differ greatly in size from 1U servers (i.e. one “U” or “RU” rack unit measuring 44.50 millimeters or 1.75 inches), to Backblaze’s Storage Pod design that fits a 4U chassis, to large freestanding storage silos that occupy many square feet of floor space.

Location

Location will be one of the biggest factors to consider when selecting a data center and encompasses many other factors that should be taken into account, such as geological risks, neighboring uses, and even local flight paths. Access to suitable available power at a suitable price point is often the most critical factor and the longest lead time item, followed by broadband service availability.

With more and more data centers available providing varied levels of service and cost, the choices increase each year. Data center brokers can be employed to find a data center, just as one might use a broker for home or other commercial real estate.

Websites listing available colocation space, such as upstack.io, or entire data centers for sale or lease, are widely used. A common practice is for a customer to publish its data center requirements, and the vendors compete to provide the most attractive bid in a reverse auction.

Business and Customer Proximity

The center’s closeness to a business or organization may or may not be a factor in the site selection. The organization might wish to be close enough to manage the center or supervise the on-site staff from a nearby business location. The location of customers might be a factor, especially if data transmission speeds and latency are important, or the business or customers have regulatory, political, tax, or other considerations that dictate areas suitable or not suitable for the storage and processing of data.

Climate

Local climate is a major factor in data center design because the climatic conditions dictate what cooling technologies should be deployed. In turn this impacts uptime and the costs associated with cooling, which can total as much as 50% or more of a center’s power costs. The topology and the cost of managing a data center in a warm, humid climate will vary greatly from managing one in a cool, dry climate. Nevertheless, data centers are located in both extremely cold regions and extremely hot ones, with innovative approaches used in both extremes to maintain desired temperatures within the center.

Geographic Stability and Extreme Weather Events

A major obvious factor in locating a data center is the stability of the actual site as regards weather, seismic activity, and the likelihood of weather events such as hurricanes, as well as fire or flooding.

Backblaze’s Sacramento data center describes its location as one of the most stable geographic locations in California, outside fault zones and floodplains.

Sacramento Data Center

Sometimes the location of the center comes first and the facility is hardened to withstand anticipated threats, such as Equinix’s NAP of the Americas data center in Miami, one of the largest single-building data centers on the planet (six stories and 750,000 square feet), which is built 32 feet above sea level and designed to withstand category 5 hurricane winds.

Equinix Data Center in Miami

Equinix “NAP of the Americas” Data Center in Miami

Most data centers don’t have the extreme protection or history of the Bahnhof data center, which is located inside the ultra-secure former nuclear bunker Pionen, in Stockholm, Sweden. It is buried 100 feet below ground inside the White Mountains and secured behind 15.7 in. thick metal doors. It prides itself on its self-described “Bond villain” ambiance.

Bahnhof Data Center under White Mountain in Stockholm

Usually, the data center owner or tenant will want to take into account the balance between cost and risk in the selection of a location. The Ideal quadrant below is obviously favored when making this compromise.

Cost vs Risk in selecting a data center

Cost = Construction/lease, power, bandwidth, cooling, labor, taxes
Risk = Environmental (seismic, weather, water, fire), political, economic

Risk mitigation also plays a strong role in pricing. The extent to which providers must implement special building techniques and operating technologies to protect the facility will affect price. When selecting a data center, organizations must make note of the data center’s certification level on the basis of regulatory requirements in the industry. These certifications can ensure that an organization is meeting necessary compliance requirements.

Power

Electrical power usually represents the largest cost in a data center. The cost a service provider pays for power will be affected by the source of the power, the regulatory environment, the facility size and the rate concessions, if any, offered by the utility. At higher level tiers, battery, generator, and redundant power grids are a required part of the picture.

Fault tolerance and power redundancy are absolutely necessary to maintain uninterrupted data center operation. Parallel redundancy is a safeguard to ensure that an uninterruptible power supply (UPS) system is in place to provide electrical power if necessary. The UPS system can be based on batteries, saved kinetic energy, or some type of generator using diesel or another fuel. The center will operate on the UPS system with another UPS system acting as a backup power generator. If a power outage occurs, the additional UPS system power generator is available.

Many data centers require the use of independent power grids, with service provided by different utility companies or services, to prevent against loss of electrical service no matter what the cause. Some data centers have intentionally located themselves near national borders so that they can obtain redundant power from not just separate grids, but from separate geopolitical sources.

Higher redundancy levels required by a company will of invariably lead to higher prices. If one requires high availability backed by a service-level agreement (SLA), one can expect to pay more than another company with less demanding redundancy requirements.

Stay Tuned for Part 2 of The Challenges of Opening a Data Center

That’s it for part 1 of this post. In subsequent posts, we’ll take a look at some other factors to consider when moving into a data center such as network bandwidth, cooling, and security. We’ll take a look at what is involved in moving into a new data center (including stories from Backblaze’s experiences). We’ll also investigate what it takes to keep a data center running, and some of the new technologies and trends affecting data center design and use. You can discover all posts on our blog tagged with “Data Center” by following the link https://www.backblaze.com/blog/tag/data-center/.

The second part of this series on The Challenges of Opening a Data Center will be posted later this week. Use the Join button above to receive notification of future posts in this series.

The post The Challenges of Opening a Data Center — Part 1 appeared first on Backblaze Blog | Cloud Storage & Cloud Backup.

Tech wishes for 2018

Post Syndicated from Eevee original https://eev.ee/blog/2018/02/18/tech-wishes-for-2018/

Anonymous asks, via money:

What would you like to see happen in tech in 2018?

(answer can be technical, social, political, combination, whatever)

Hmm.

Less of this

I’m not really qualified to speak in depth about either of these things, but let me put my foot in my mouth anyway:

The Blockchain™

Bitcoin was a neat idea. No, really! Decentralization is cool. Overhauling our terrible financial infrastructure is cool. Hash functions are cool.

Unfortunately, it seems to have devolved into mostly a get-rich-quick scheme for nerds, and by nearly any measure it’s turning into a spectacular catastrophe. Its “success” is measured in how much a bitcoin is worth in US dollars, which is pretty close to an admission from its own investors that its only value is in converting back to “real” money — all while that same “success” is making it less useful as a distinct currency.

Blah, blah, everyone already knows this.

What concerns me slightly more is the gold rush hype cycle, which is putting cryptocurrency and “blockchain” in the news and lending it all legitimacy. People have raked in millions of dollars on ICOs of novel coins I’ve never heard mentioned again. (Note: again, that value is measured in dollars.) Most likely, none of the investors will see any return whatsoever on that money. They can’t, really, unless a coin actually takes off as a currency, and that seems at odds with speculative investing since everyone either wants to hoard or ditch their coins. When the coins have no value themselves, the money can only come from other investors, and eventually the hype winds down and you run out of other investors.

I fear this will hurt a lot of people before it’s over, so I’d like for it to be over as soon as possible.


That said, the hype itself has gotten way out of hand too. First it was the obsession with “blockchain” like it’s a revolutionary technology, but hey, Git is a fucking blockchain. The novel part is the way it handles distributed consensus (which in Git is basically left for you to figure out), and that’s uniquely important to currency because you want to be pretty sure that money doesn’t get duplicated or lost when moved around.

But now we have startups trying to use blockchains for website backends and file storage and who knows what else? Why? What advantage does this have? When you say “blockchain”, I hear “single Git repository” — so when you say “email on the blockchain”, I have an aneurysm.

Bitcoin seems to have sparked imagination in large part because it’s decentralized, but I’d argue it’s actually a pretty bad example of a decentralized network, since people keep forking it. The ability to fork is a feature, sure, but the trouble here is that the Bitcoin family has no notion of federation — there is one canonical Bitcoin ledger and it has no notion of communication with any other. That’s what you want for currency, not necessarily other applications. (Bitcoin also incentivizes frivolous forking by giving the creator an initial pile of coins to keep and sell.)

And federation is much more interesting than decentralization! Federation gives us email and the web. Federation means I can set up my own instance with my own rules and still be able to meaningfully communicate with the rest of the network. Federation has some amount of tolerance for changes to the protocol, so such changes are more flexible and rely more heavily on consensus.

Federation is fantastic, and it feels like a massive tragedy that this rekindled interest in decentralization is mostly focused on peer-to-peer networks, which do little to address our current problems with centralized platforms.

And hey, you know what else is federated? Banks.

AI

Again, the tech is cool and all, but the marketing hype is getting way out of hand.

Maybe what I really want from 2018 is less marketing?

For one, I’ve seen a huge uptick in uncritically referring to any software that creates or classifies creative work as “AI”. Can we… can we not. It’s not AI. Yes, yes, nerds, I don’t care about the hair-splitting about the nature of intelligence — you know that when we hear “AI” we think of a human-like self-aware intelligence. But we’re applying it to stuff like a weird dog generator. Or to whatever neural network a website threw into production this week.

And this is dangerously misleading — we already had massive tech companies scapegoating The Algorithm™ for the poor behavior of their software, and now we’re talking about those algorithms as though they were self-aware, untouchable, untameable, unknowable entities of pure chaos whose decisions we are arbitrarily bound to. Ancient, powerful gods who exist just outside human comprehension or law.

It’s weird to see this stuff appear in consumer products so quickly, too. It feels quick, anyway. The latest iPhone can unlock via facial recognition, right? I’m sure a lot of effort was put into ensuring that the same person’s face would always be recognized… but how confident are we that other faces won’t be recognized? I admit I don’t follow all this super closely, so I may be imagining a non-problem, but I do know that humans are remarkably bad at checking for negative cases.

Hell, take the recurring problem of major platforms like Twitter and YouTube classifying anything mentioning “bisexual” as pornographic — because the word is also used as a porn genre, and someone threw a list of porn terms into a filter without thinking too hard about it. That’s just a word list, a fairly simple thing that any human can review; but suddenly we’re confident in opaque networks of inferred details?

I don’t know. “Traditional” classification and generation are much more comforting, since they’re a set of fairly abstract rules that can be examined and followed. Machine learning, as I understand it, is less about rules and much more about pattern-matching; it’s built out of the fingerprints of the stuff it’s trained on. Surely that’s just begging for tons of edge cases. They’re practically made of edge cases.


I’m reminded of a point I saw made a few days ago on Twitter, something I’d never thought about but should have. TurnItIn is a service for universities that checks whether students’ papers match any others, in order to detect cheating. But this is a paid service, one that fundamentally hinges on its corpus: a large collection of existing student papers. So students pay money to attend school, where they’re required to let their work be given to a third-party company, which then profits off of it? What kind of a goofy business model is this?

And my thoughts turn to machine learning, which is fundamentally different from an algorithm you can simply copy from a paper, because it’s all about the training data. And to get good results, you need a lot of training data. Where is that all coming from? How many for-profit companies are setting a neural network loose on the web — on millions of people’s work — and then turning around and selling the result as a product?

This is really a question of how intellectual property works in the internet era, and it continues our proud decades-long tradition of just kinda doing whatever we want without thinking about it too much. Nothing if not consistent.

More of this

A bit tougher, since computers are pretty alright now and everything continues to chug along. Maybe we should just quit while we’re ahead. There’s some real pie-in-the-sky stuff that would be nice, but it certainly won’t happen within a year, and may never happen except in some horrific Algorithmic™ form designed by people that don’t know anything about the problem space and only works 60% of the time but is treated as though it were bulletproof.

Federation

The giants are getting more giant. Maybe too giant? Granted, it could be much worse than Google and Amazon — it could be Apple!

Amazon has its own delivery service and brick-and-mortar stores now, as well as providing the plumbing for vast amounts of the web. They’re not doing anything particularly outrageous, but they kind of loom.

Ad company Google just put ad blocking in its majority-share browser — albeit for the ambiguously-noble goal of only blocking obnoxious ads so that people will be less inclined to install a blanket ad blocker.

Twitter is kind of a nightmare but no one wants to leave. I keep trying to use Mastodon as well, but I always forget about it after a day, whoops.

Facebook sounds like a total nightmare but no one wants to leave that either, because normies don’t use anything else, which is itself direly concerning.

IRC is rapidly bleeding mindshare to Slack and Discord, both of which are far better at the things IRC sadly never tried to do and absolutely terrible at the exact things IRC excels at.

The problem is the same as ever: there’s no incentive to interoperate. There’s no fundamental technical reason why Twitter and Tumblr and MySpace and Facebook can’t intermingle their posts; they just don’t, because why would they bother? It’s extra work that makes it easier for people to not use your ecosystem.

I don’t know what can be done about that, except that hope for a really big player to decide to play nice out of the kindness of their heart. The really big federated success stories — say, the web — mostly won out because they came along first. At this point, how does a federated social network take over? I don’t know.

Social progress

I… don’t really have a solid grasp on what’s happening in tech socially at the moment. I’ve drifted a bit away from the industry part, which is where that all tends to come up. I have the vague sense that things are improving, but that might just be because the Rust community is the one I hear the most about, and it puts a lot of effort into being inclusive and welcoming.

So… more projects should be like Rust? Do whatever Rust is doing? And not so much what Linus is doing.

Open source funding

I haven’t heard this brought up much lately, but it would still be nice to see. The Bay Area runs on open source and is raking in zillions of dollars on its back; pump some of that cash back into the ecosystem, somehow.

I’ve seen a couple open source projects on Patreon, which is fantastic, but feels like a very small solution given how much money is flowing through the commercial tech industry.

Ad blocking

Nice. Fuck ads.

One might wonder where the money to host a website comes from, then? I don’t know. Maybe we should loop this in with the above thing and find a more informal way to pay people for the stuff they make when we find it useful, without the financial and cognitive overhead of A Transaction or Giving Someone My Damn Credit Card Number. You know, something like Bitco— ah, fuck.

Year of the Linux Desktop

I don’t know. What are we working on at the moment? Wayland? Do Wayland, I guess. Oh, and hi-DPI, which I hear sucks. And please fix my sound drivers so PulseAudio stops blaming them when it fucks up.

Amazon Relational Database Service – Looking Back at 2017

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/amazon-relational-database-service-looking-back-at-2017/

The Amazon RDS team launched nearly 80 features in 2017. Some of them were covered in this blog, others on the AWS Database Blog, and the rest in What’s New or Forum posts. To wrap up my week, I thought it would be worthwhile to give you an organized recap. So here we go!

Certification & Security

Features

Engine Versions & Features

Regional Support

Instance Support

Price Reductions

And That’s a Wrap
I’m pretty sure that’s everything. As you can see, 2017 was quite the year! I can’t wait to see what the team delivers in 2018.

Jeff;

 

Addressing Data Residency with AWS

Post Syndicated from Min Hyun original https://aws.amazon.com/blogs/security/addressing-data-residency-with-aws/

Whitepaper image

AWS has released a new whitepaper that has been requested by many AWS customers: AWS Policy Perspectives: Data Residency. Data residency is the requirement that all customer content processed and stored in an IT system must remain within a specific country’s borders, and it is one of the foremost concerns of governments that want to use commercial cloud services. General cybersecurity concerns and concerns about government requests for data have contributed to a continued focus on keeping data within countries’ borders. In fact, some governments have determined that mandating data residency provides an extra layer of security.

This approach, however, is counterproductive to the data protection objectives and the IT modernization and global economic growth goals that many governments have set as milestones. This new whitepaper addresses the real and perceived security risks expressed by governments when they demand in-country data residency by identifying the most likely and prevalent IT vulnerabilities and security risks, explaining the native security embedded in cloud services, and highlighting the roles and responsibilities of cloud service providers (CSPs), governments, and customers in protecting data.

Large-scale, multinational CSPs, often called hyperscale CSPs, represent a transformational disruption in technology because of how they support their customers with high degrees of efficiency, agility, and innovation as part of world-class security offerings. The whitepaper explains how hyperscale CSPs, such as AWS, that might be located out of country provide their customers the ability to achieve high levels of data protection through safeguards on their own platform and with turnkey tooling for their customers. They do this while at the same time preserving nation-state regulatory sovereignty.

The whitepaper also considers the commercial, public-sector, and economic effects of data residency policies and offers considerations for governments to evaluate before enforcing requirements that can unintentionally limit public-sector digital transformation goals, in turn possibly leading to increased cybersecurity risk.

AWS continues to engage with governments around the world to hear and address their top-of-mind security concerns. We take seriously our commitment to advocate for our customers’ interests and enforce security from “ground zero.” This means that when customers use AWS, they can have the confidence that their data is protected with a level of assurance that meets, if not exceeds, their needs, regardless of where the data resides.

– Min Hyun, Cloud Security Policy Strategist