Tag Archives: CRT

Majority of Canadians Consume Online Content Legally, Survey Finds

Post Syndicated from Andy original https://torrentfreak.com/majority-of-canadians-consume-online-content-legally-survey-finds-180531/

Back in January, a coalition of companies and organizations with ties to the entertainment industries called on local telecoms regulator CRTC to implement a national website blocking regime.

Under the banner of Fairplay Canada, members including Bell, Cineplex, Directors Guild of Canada, Maple Leaf Sports and Entertainment, Movie Theatre Association of Canada, and Rogers Media, spoke of an industry under threat from marauding pirates. But just how serious is this threat?

The results of a new survey commissioned by Innovation Science and Economic Development Canada (ISED) in collaboration with the Department of Canadian Heritage (PCH) aims to shine light on the problem by revealing the online content consumption habits of citizens in the Great White North.

While there are interesting findings for those on both sides of the site-blocking debate, the situation seems somewhat removed from the Armageddon scenario predicted by the entertainment industries.

Carried out among 3,301 Canadians aged 12 years and over, the Kantar TNS study aims to cover copyright infringement in six key content areas – music, movies, TV shows, video games, computer software, and eBooks. Attitudes and behaviors are also touched upon while measuring the effectiveness of Canada’s copyright measures.

General Digital Content Consumption

In its introduction, the report notes that 28 million Canadians used the Internet in the three-month study period to November 27, 2017. Of those, 22 million (80%) consumed digital content. Around 20 million (73%) streamed or accessed content, 16 million (59%) downloaded content, while 8 million (28%) shared content.

Music, TV shows and movies all battled for first place in the consumption ranks, with 48%, 48%, and 46% respectively.

Copyright Infringement

According to the study, the majority of Canadians do things completely by the book. An impressive 74% of media-consuming respondents said that they’d only accessed material from legal sources in the preceding three months.

The remaining 26% admitted to accessing at least one illegal file in the same period. Of those, just 5% said that all of their consumption was from illegal sources, with movies (36%), software (36%), TV shows (34%) and video games (33%) the most likely content to be consumed illegally.

Interestingly, the study found that few demographic factors – such as gender, region, rural and urban, income, employment status and language – play a role in illegal content consumption.

“We found that only age and income varied significantly between consumers who infringed by downloading or streaming/accessing content online illegally and consumers who did not consume infringing content online,” the report reads.

“More specifically, the profile of consumers who downloaded or streamed/accessed infringing content skewed slightly younger and towards individuals with household incomes of $100K+.”

Licensed services much more popular than pirate haunts

It will come as no surprise that Netflix was the most popular service with consumers, with 64% having used it in the past three months. Sites like YouTube and Facebook were a big hit too, visited by 36% and 28% of content consumers respectively.

Overall, 74% of online content consumers use licensed services for content while 42% use social networks. Under a third (31%) use a combination of peer-to-peer (BitTorrent), cyberlocker platforms, or linking sites. Stream-ripping services are used by 9% of content consumers.

“Consumers who reported downloading or streaming/accessing infringing content only are less likely to use licensed services and more likely to use peer-to-peer/cyberlocker/linking sites than other consumers of online content,” the report notes.

Attitudes towards legal consumption & infringing content

In common with similar surveys over the years, the Kantar research looked at the reasons why people consume content from various sources, both legal and otherwise.

Convenience (48%), speed (36%) and quality (34%) were the most-cited reasons for using legal sources. An interesting 33% of respondents said they use legal sites to avoid using illegal sources.

On the illicit front, 54% of those who obtained unauthorized content in the previous three months said they did so due to it being free, with 40% citing convenience and 34% mentioning speed.

Almost six out of ten (58%) said lower costs would encourage them to switch to official sources, with 47% saying they’d move if legal availability was improved.

Canada’s ‘Notice-and-Notice’ warning system

People in Canada who share content on peer-to-peer systems like BitTorrent without permission run the risk of receiving an infringement notice warning them to stop. These are sent by copyright holders via users’ ISPs and the hope is that the shock of receiving a warning will turn consumers back to the straight and narrow.

The study reveals that 10% of online content consumers over the age of 12 have received one of these notices but what kind of effect have they had?

“Respondents reported that receiving such a notice resulted in the following: increased awareness of copyright infringement (38%), taking steps to ensure password protected home networks (27%), a household discussion about copyright infringement (27%), and discontinuing illegal downloading or streaming (24%),” the report notes.

While these are all positives for the entertainment industries, Kantar reports that almost a quarter (24%) of people who receive a notice simply ignore them.

Stream-ripping

Once upon a time, people obtaining music via P2P networks was cited as the music industry’s greatest threat but, with the advent of sites like YouTube, so-called stream-ripping is the latest bogeyman.

According to the study, 11% of Internet users say they’ve used a stream-ripping service. They are most likely to be male (62%) and predominantly 18 to 34 (52%) years of age.

“Among Canadians who have used a service to stream-rip music or entertainment, nearly half (48%) have used stream-ripping sites, one-third have used downloader apps (38%), one-in-seven (14%) have used a stream-ripping plug-in, and one-in-ten (10%) have used stream-ripping software,” the report adds.

Set-Top Boxes and VPNs

Few general piracy studies would be complete in 2018 without touching on set-top devices and Virtual Private Networks and this report doesn’t disappoint.

More than one in five (21%) respondents aged 12+ reported using a VPN, with the main purpose of securing communications and Internet browsing (57%).

A relatively modest 36% said they use a VPN to access free content while 32% said the aim was to access geo-blocked content unavailable in Canada. Just over a quarter (27%) said that accessing content from overseas at a reasonable price was the main motivator.

One in ten (10%) of respondents reported using a set-top box, with 78% stating they use them to access paid-for content. Interestingly, only a small number say they use the devices to infringe.

“A minority use set-top boxes to access other content that is not legal or they are unsure if it is legal (16%), or to access live sports that are not legal or they are unsure if it is legal (11%),” the report notes.

“Individuals who consumed a mix of legal and illegal content online are more likely to use VPN services (42%) or TV set-top boxes (21%) than consumers who only downloaded or streamed/accessed legal content.”

Kantar says that the findings of the report will be used to help policymakers evaluate how Canada’s Copyright Act is coping with a changing market and technological developments.

“This research will provide the necessary information required to further develop copyright policy in Canada, as well as to provide a foundation to assess the effectiveness of the measures to address copyright infringement, should future analysis be undertaken,” it concludes.

The full report can be found here (pdf)

Source: TF, for the latest info on copyright, file-sharing, torrent sites and more. We also have VPN reviews, discounts, offers and coupons.

Bell/TSN Letter to University Connects Site-Blocking Support to Students’ Futures

Post Syndicated from Andy original https://torrentfreak.com/bell-tsn-letter-to-university-connects-site-blocking-support-to-students-futures-180510/

In January, a coalition of Canadian companies called on local telecoms regulator CRTC to implement a website-blocking regime in Canada.

The coalition, Fairplay Canada, is a collection of organizations and companies with ties to the entertainment industries and includes Bell, Cineplex, Directors Guild of Canada, Maple Leaf Sports and Entertainment, Movie Theatre Association of Canada, and Rogers Media. Its stated aim is to address Canada’s online piracy problems.

While CTRC reviews FairPlay Canada’s plans, the coalition has been seeking to drum up support for the blocking regime, encouraging a diverse range of supporters to send submissions endorsing the project. Of course, building a united front among like-minded groups is nothing out of the ordinary but a situation just uncovered by Canadian law Professor Micheal Geist, one of the most vocal opponents of the proposed scheme, is bound to raise eyebrows.

Geist discovered a submission by Brian Hutchings, who works as Vice-President, Administration at Brock University in Ontario. Dated March 22, 2018, it notes that one of the university’s most sought-after programs is Sports Management, which helps Brock’s students to become “the lifeblood” of Canada’s sport and entertainment industries.

“Our University is deeply alarmed at how piracy is eroding an industry that employs so many of our co-op students and graduates. Piracy is a serious, pervasive threat that steals creativity, undermines investment in content development and threatens the survival of an industry that is also part of our national identity,” the submission reads.

“Brock ardently supports the FairPlay Canada coalition of more than 25 organizations involved in every aspect of Canada’s film, TV, radio, sports entertainment and music industries. Specifically, we support the coalition’s request that the CRTC introduce rules that would disable access in Canada to the most egregious piracy sites, similar to measures that have been taken in the UK, France and Australia. We are committed to assist the members of the coalition and the CRTC in eliminating the theft of digital content.”

The letter leaves no doubt that Brock University as a whole stands side-by-side with Fairplay Canada but according to a subsequent submission signed by Michelle Webber, President, Brock University Faculty Association (BUFA), nothing could be further from the truth.

Noting that BUFA unanimously supports the position of the Canadian Association of University Teachers which opposes the FairPlay proposal, Webber adds that BUFA stands in opposition to the submission by Brian Hutchings on behalf of Brock University.

“Vice President Hutching’s intervention was undertaken without consultation with the wider Brock University community, including faculty, librarians, and Senate; therefore, his submission should not be seen as indicative of the views of Brock University as a whole.”

BUFA goes on to stress the importance of an open Internet to researchers and educators while raising concerns that the blocking proposals could threaten the principles of net neutrality in Canada.

While the undermining of Hutching’s position is embarrassing enough, via access to information laws Geist has also been able to reveal the chain of events that prompted the Vice-President to write a letter of support on behalf of the whole university.

It began with an email sent by former Brock professor Cheri Bradish to Mark Milliere, TSN’s Senior Vice President and General Manager, with Hutchings copied in. The idea was to connect the pair, with the suggestion that supporting the site-blocking plan would help to mitigate the threat to “future work options” for students.

What followed was a direct email from Mark Milliere to Brian Hutchings, in which the former laid out the contributions his company makes to the university, while again suggesting that support for site-blocking would be in the long-term interests of students seeking employment in the industry.

On March 23, Milliere wrote to Hutchings again, thanking him for “a terrific letter” and stating that “If you need anything from TSN, just ask.”

This isn’t the first time that Bell has asked those beholden to the company to support its site-blocking plans.

Back in February it was revealed that the company had asked its own employees to participate in the site-blocking submission process, without necessarily revealing their affiliations with the company.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and more. We also have VPN reviews, discounts, offers and coupons.

GetAltName – Discover Sub-Domains From SSL Certificates

Post Syndicated from Darknet original https://www.darknet.org.uk/2018/03/getaltname-discover-sub-domains-from-ssl-certificates/?utm_source=rss&utm_medium=social&utm_campaign=darknetfeed

GetAltName – Discover Sub-Domains From SSL Certificates

GetAltName it’s a little script to discover sub-domains that can extract Subject Alt Names for SSL Certificates directly from HTTPS websites which can provide you with DNS names or virtual servers.

It’s useful in a discovery phase of a pen-testing assessment, this tool can provide you with more information about your target and scope.

Features of GetAltName to Discover Sub-Domains

  • Strips wildcards and www’s
  • Returns a unique list (no duplicates)
  • Works on verified and self-signed certs
  • Domain matching system
  • Filtering for main domains and TLDs
  • Gets additional sub-domains from crt.sh
  • Outputs to clipboard

GetAltName Subdomain Exctraction Tool Usage

You can output to a text file and also copy the output to your clipboard as a List or a Single line string, which is useful if you’re trying to make a quick scan with Nmap or other tools.

Read the rest of GetAltName – Discover Sub-Domains From SSL Certificates now! Only available at Darknet.

Spiegelbilder Studio’s giant CRT video walls

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/crt-video-walls/

After getting in contact with us to share their latest build with us, we invited Matvey Fridman of Germany-based production company Spiegelbilder Studio to write a guest blog post about their CRT video walls created for the band STRANDKØNZERT.

STRANDKØNZERT – TAGTRAUMER – OFFICIAL VIDEO

GERMAN DJENT RAP / EST. 2017. COMPLETE DIY-PROJECT.

CRT video wall

About a year ago, we had the idea of building a huge video wall out of old TVs to use in a music video. It took some time, but half a year later we found ourselves in a studio actually building this thing using 30 connected computers, 24 of which were Raspberry Pis.

STRANDKØNZERT CRT video wall Raspberry Pi

How we did it

After weeks and months of preproduction and testing, we decided on two consecutive days to build the wall, create the underlying IP network, run a few tests, and then film the artists’ performance in front of it. We actually had 32 Pis (a mixed bag of first, second, and third generation models) and even more TVs ready to go, since we didn’t know what the final build would actually look like. We ended up using 29 separate screens of various sizes hooked up to 24 separate Pis — the remaining five TVs got a daisy-chained video signal out of other monitors for a cool effect. Each Pi had to run a free software called PiWall.

STRANDKØNZERT CRT video wall Raspberry Pi

Since the TVs only had analogue video inputs, we had to get special composite breakout cables and then adapt the RCA connectors to either SCART, S-Video, or BNC.

STRANDKØNZERT CRT video wall Raspberry Pi

As soon as we had all of that running, we connected every Pi to a 48-port network switch that we’d hooked up to a Windows PC acting as a DHCP server to automatically assign IP addresses and handle the multicast addressing. To make remote control of the Raspberry Pis easier, a separate master Linux PC and two MacBook laptops, each with SSH enabled and a Samba server running, joined the network as well.

STRANDKØNZERT CRT video wall Raspberry Pi

The MacBook laptops were used to drop two files containing the settings on each Pi. The .pitile file was unique to every Pi and contained their respective IDs. The .piwall file contained the same info for all Pis: the measurements and positions of every single screen to help the software split up the video signal coming in through the network. After every Pi got the command to start the PiWall software, which specifies the UDP multicast address and settings to be used to receive the video stream, the master Linux PC was tasked with streaming the video file to these UDP addresses. Now every TV was showing its section of the video, and we could begin filming.

STRANDKØNZERT CRT video wall Raspberry Pi

The whole process and the contents of the files and commands are summarised in the infographic below. A lot of trial and error was involved in the making of this project, but it all worked out well in the end. We hope you enjoy the craft behind the music video even though the music is not for everybody 😉

PiWall_Infographic

You can follow Spiegelbilder Studio on Facebook, Twitter, and Instagram. And if you enjoyed the music video, be sure to follow STRANDKØNZERT too.

The post Spiegelbilder Studio’s giant CRT video walls appeared first on Raspberry Pi.

How to Prepare for AWS’s Move to Its Own Certificate Authority

Post Syndicated from Jonathan Kozolchyk original https://aws.amazon.com/blogs/security/how-to-prepare-for-aws-move-to-its-own-certificate-authority/

AWS Certificate Manager image

 

Update from March 28, 2018: We updated the Amazon Trust Services table by replacing an out-of-date value with a new value.


Transport Layer Security (TLS, formerly called Secure Sockets Layer [SSL]) is essential for encrypting information that is exchanged on the internet. For example, Amazon.com uses TLS for all traffic on its website, and AWS uses it to secure calls to AWS services.

An electronic document called a certificate verifies the identity of the server when creating such an encrypted connection. The certificate helps establish proof that your web browser is communicating securely with the website that you typed in your browser’s address field. Certificate Authorities, also known as CAs, issue certificates to specific domains. When a domain presents a certificate that is issued by a trusted CA, your browser or application knows it’s safe to make the connection.

In January 2016, AWS launched AWS Certificate Manager (ACM), a service that lets you easily provision, manage, and deploy SSL/TLS certificates for use with AWS services. These certificates are available for no additional charge through Amazon’s own CA: Amazon Trust Services. For browsers and other applications to trust a certificate, the certificate’s issuer must be included in the browser’s trust store, which is a list of trusted CAs. If the issuing CA is not in the trust store, the browser will display an error message (see an example) and applications will show an application-specific error. To ensure the ubiquity of the Amazon Trust Services CA, AWS purchased the Starfield Services CA, a root found in most browsers and which has been valid since 2005. This means you shouldn’t have to take any action to use the certificates issued by Amazon Trust Services.

AWS has been offering free certificates to AWS customers from the Amazon Trust Services CA. Now, AWS is in the process of moving certificates for services such as Amazon EC2 and Amazon DynamoDB to use certificates from Amazon Trust Services as well. Most software doesn’t need to be changed to handle this transition, but there are exceptions. In this blog post, I show you how to verify that you are prepared to use the Amazon Trust Services CA.

How to tell if the Amazon Trust Services CAs are in your trust store

The following table lists the Amazon Trust Services certificates. To verify that these certificates are in your browser’s trust store, click each Test URL in the following table to verify that it works for you. When a Test URL does not work, it displays an error similar to this example.

Distinguished nameSHA-256 hash of subject public key informationTest URL
CN=Amazon Root CA 1,O=Amazon,C=USfbe3018031f9586bcbf41727e417b7d1c45c2f47f93be372a17b96b50757d5a2Test URL
CN=Amazon Root CA 2,O=Amazon,C=US7f4296fc5b6a4e3b35d3c369623e364ab1af381d8fa7121533c9d6c633ea2461Test URL
CN=Amazon Root CA 3,O=Amazon,C=US36abc32656acfc645c61b71613c4bf21c787f5cabbee48348d58597803d7abc9Test URL
CN=Amazon Root CA 4,O=Amazon,C=USf7ecded5c66047d28ed6466b543c40e0743abe81d109254dcf845d4c2c7853c5Test URL
CN=Starfield Services Root Certificate Authority – G2,O=Starfield Technologies\, Inc.,L=Scottsdale,ST=Arizona,C=US2b071c59a0a0ae76b0eadb2bad23bad4580b69c3601b630c2eaf0613afa83f92Test URL
Starfield Class 2 Certification Authority15f14ac45c9c7da233d3479164e8137fe35ee0f38ae858183f08410ea82ac4b4Not available*

* Note: Amazon doesn’t own this root and doesn’t have a test URL for it. The certificate can be downloaded from here.

You can calculate the SHA-256 hash of Subject Public Key Information as follows. With the PEM-encoded certificate stored in certificate.pem, run the following openssl commands:

openssl x509 -in certificate.pem -noout -pubkey | openssl asn1parse -noout -inform pem -out certificate.key
openssl dgst -sha256 certificate.key

As an example, with the Starfield Class 2 Certification Authority self-signed cert in a PEM encoded file sf-class2-root.crt, you can use the following openssl commands:

openssl x509 -in sf-class2-root.crt -noout -pubkey | openssl asn1parse -noout -inform pem -out sf-class2-root.key
openssl dgst -sha256 sf-class2-root.key ~
SHA256(sf-class2-root.key)= 15f14ac45c9c7da233d3479164e8137fe35ee0f38ae858183f08410ea82ac4b4

What to do if the Amazon Trust Services CAs are not in your trust store

If your tests of any of the Test URLs failed, you must update your trust store. The easiest way to update your trust store is to upgrade the operating system or browser that you are using.

You will find the Amazon Trust Services CAs in the following operating systems (release dates are in parentheses):

  • Microsoft Windows versions that have January 2005 or later updates installed, Windows Vista, Windows 7, Windows Server 2008, and newer versions
  • Mac OS X 10.4 with Java for Mac OS X 10.4 Release 5, Mac OS X 10.5 and newer versions
  • Red Hat Enterprise Linux 5 (March 2007), Linux 6, and Linux 7 and CentOS 5, CentOS 6, and CentOS 7
  • Ubuntu 8.10
  • Debian 5.0
  • Amazon Linux (all versions)
  • Java 1.4.2_12, Java 5 update 2, and all newer versions, including Java 6, Java 7, and Java 8

All modern browsers trust Amazon’s CAs. You can update the certificate bundle in your browser simply by updating your browser. You can find instructions for updating the following browsers on their respective websites:

If your application is using a custom trust store, you must add the Amazon root CAs to your application’s trust store. The instructions for doing this vary based on the application or platform. Please refer to the documentation for the application or platform you are using.

AWS SDKs and CLIs

Most AWS SDKs and CLIs are not impacted by the transition to the Amazon Trust Services CA. If you are using a version of the Python AWS SDK or CLI released before October 29, 2013, you must upgrade. The .NET, Java, PHP, Go, JavaScript, and C++ SDKs and CLIs do not bundle any certificates, so their certificates come from the underlying operating system. The Ruby SDK has included at least one of the required CAs since June 10, 2015. Before that date, the Ruby V2 SDK did not bundle certificates.

Certificate pinning

If you are using a technique called certificate pinning to lock down the CAs you trust on a domain-by-domain basis, you must adjust your pinning to include the Amazon Trust Services CAs. Certificate pinning helps defend you from an attacker using misissued certificates to fool an application into creating a connection to a spoofed host (an illegitimate host masquerading as a legitimate host). The restriction to a specific, pinned certificate is made by checking that the certificate issued is the expected certificate. This is done by checking that the hash of the certificate public key received from the server matches the expected hash stored in the application. If the hashes do not match, the code stops the connection.

AWS recommends against using certificate pinning because it introduces a potential availability risk. If the certificate to which you pin is replaced, your application will fail to connect. If your use case requires pinning, we recommend that you pin to a CA rather than to an individual certificate. If you are pinning to an Amazon Trust Services CA, you should pin to all CAs shown in the table earlier in this post.

If you have comments about this post, submit them in the “Comments” section below. If you have questions about this post, start a new thread on the ACM forum.

– Jonathan