Tag Archives: display

[$] Achieving DisplayPort compliance

Post Syndicated from jake original https://lwn.net/Articles/736011/rss

At the X.Org Developers Conference, hosted by Google in Mountain View, CA
September 20-22, Manasi Navare gave a talk about her journey learning
about kernel graphics on the way to achieving DisplayPort (DP)
compliance for Intel graphics devices.
Making that work involved learning about DP, the kernel graphics subsystem,
and how to do
kernel development, as well. There were plenty of details to absorb,
including the relatively new atomic mode
setting support, the design of which was described in a twopart LWN
article.

‘Pirate’ EBook Site Refuses Point Blank to Cooperate With BREIN

Post Syndicated from Andy original https://torrentfreak.com/pirate-ebook-site-refuses-point-blank-to-cooperate-with-brein-171015/

Dutch anti-piracy group BREIN is probably best known for its legal action against The Pirate Bay but the outfit also tackles many other forms of piracy.

A prime example is the case it pursued against a seller of fully-loaded Kodi boxes in the Netherlands. The subsequent landmark ruling from the European Court of Justice will reverberate around Europe for years to come.

Behind the scenes, however, BREIN persistently tries to take much smaller operations offline, and not without success. Earlier this year it revealed it had taken down 231 illegal sites and services includes 84 linking sites, 63 streaming portals, and 34 torrent sites. Some of these shut down completely and others were forced to leave their hosting providers.

Much of this work flies under the radar but some current action, against an eBook site, is now being thrust into the public eye.

For more than five years, EBoek.info (eBook) has serviced Internet users looking to obtain comic books in Dutch. The site informs TorrentFreak it provides a legitimate service, targeted at people who have purchased a hard copy but also want their comics in digital format.

“EBoek.info is a site about comic books in the Dutch language. Besides some general information about the books, people who have legally obtained a hard copy of the books can find a link to an NZB file which enables them to download a digital version of the books they already have,” site representative ‘Zala’ says.

For those out of the loop, NZB files are a bit like Usenet’s version of .torrent files. They contain no copyrighted content themselves but do provide software clients with information on where to find specific content, so it can be downloaded to a user’s machine.

“BREIN claims that this is illegal as it is impossible for us to verify if our visitor is telling the truth [about having purchased a copy],” Zala reveals.

Speaking with TorrentFreak, BREIN chief Tim Kuik says there’s no question that offering downloads like this is illegal.

“It is plain and simple: the site makes links to unauthorized digital copies available to the general public and therefore is infringing copyright. It is distribution of the content without authorization of the rights holder,” Kuik says.

“The unauthorized copies are not private copies. The private copy exception does not apply to this kind of distribution. The private copy has not been made by the owner of the book himself for his own use. Someone else made the digital copy and is making it available to anyone who wants to download it provided he makes the unverified claim that he has a legal copy. This harms the normal exploitation of the
content.”

Zala says that BREIN has been trying to take his site offline for many years but more recently, the platform has utilized the services of Cloudflare, partly as a form of shield. As readers may be aware, a site behind Cloudflare has its originating IP addresses hidden from the public, not to mention BREIN, who values that kind of information. According to the operator, however, BREIN managed to obtain the information from the CDN provider.

“BREIN has tried for years to take our site offline. Recently, however, Cloudflare was so friendly to give them our IP address,” Zala notes.

A text copy of an email reportedly sent by BREIN to EBoek’s web host and seen by TF appears to confirm that Cloudflare handed over the information as suggested. Among other things, the email has BREIN informing the host that “The IP we got back from Cloudflare is XXX.XXX.XX.33.”

This means that BREIN was able to place direct pressure on EBoek.info’s web host, so only time will tell if that bears any fruit for the anti-piracy group. In the meantime, however, EBoek has decided to go public over its battle with BREIN.

“We have received a request from Stichting BREIN via our hosting provider to take EBoek.info offline,” the site informed its users yesterday.

Interestingly, it also appears that BREIN doesn’t appreciate that the operators of EBoek have failed to make their identities publicly known on their platform.

“The site operates anonymously which also is unlawful. Consumer protection requires that the owner/operator of a site identifies himself,” Kuik says.

According to EBoek, the anti-piracy outfit told the site’s web host that as a “commercial online service”, EBoek is required under EU law to display its “correct and complete business information” including names, addresses, and other information. But perhaps unsurprisingly, the site doesn’t want to play ball.

“In my opinion, you are confusing us with Facebook. They are a foreign commercial company with a European branch in Ireland, and therefore are subject to Irish legislation,” Zala says in an open letter to BREIN.

“Eboek.info, on the other hand, is a foreign hobby club with no commercial purpose, whose administrators have no connection with any country in the European Union. As administrators, we follow the laws of our country of residence which do not oblige us to disclose our identity through our website.

“The fact that Eboek is visible in the Netherlands does not just mean that we are going to adapt to Dutch rules, just as we don’t adapt the site to the rules of Saudi Arabia or China or wherever we are available.”

In a further snub to the anti-piracy group, EBoek says that all visitors to the site have to communicate with its operators via its guestbook, which is publicly visible.

“We see no reason to make an exception for Stichting BREIN,” the site notes.

What makes the situation more complex is that EBoek isn’t refusing dialog completely. The site says it doesn’t want to talk to BREIN but will speak to BREIN’s customers – the publishers of the comic books in question – noting that to date no complaints from publishers have ever been received.

While the parties argue about lines of communication, BREIN insists that following this year’s European Court of Justice decision in the GS Media case, a link to a known infringing work represents copyright infringement. In this case, an NZB file – which links to a location on Usenet – would generally fit the bill.

But despite focusing on the Dutch market, the operators of EBoek say the ruling doesn’t apply to them as they’re outside of the ECJ’s jurisdiction and aren’t commercially motivated. Refusing point blank to take their site offline, EBoek’s operators say that BREIN can do its worst, nothing will have much effect.

“[W]hat’s the worst thing that can happen? That our web host hands [BREIN] our address and IP data. In that case, it will turn out that…we are actually far away,” Zala says.

“[In the case the site goes offline], we’ll just put a backup on another server and, in this case, won’t make use of the ‘services’ of Cloudflare, the provider that apparently put BREIN on the right track.”

The question of jurisdiction is indeed an interesting one, particularly given BREIN’s focus in the Netherlands. But Kuik is clear – it is the area where the content is made available that matters.

“The law of the country where the content is made available applies. In this case the EU and amongst others the Netherlands,” Kuik concludes.

To be continued…..

Source: TF, for the latest info on copyright, file-sharing, torrent sites and ANONYMOUS VPN services.

AWS Developer Tools Expands Integration to Include GitHub

Post Syndicated from Balaji Iyer original https://aws.amazon.com/blogs/devops/aws-developer-tools-expands-integration-to-include-github/

AWS Developer Tools is a set of services that include AWS CodeCommit, AWS CodePipeline, AWS CodeBuild, and AWS CodeDeploy. Together, these services help you securely store and maintain version control of your application’s source code and automatically build, test, and deploy your application to AWS or your on-premises environment. These services are designed to enable developers and IT professionals to rapidly and safely deliver software.

As part of our continued commitment to extend the AWS Developer Tools ecosystem to third-party tools and services, we’re pleased to announce AWS CodeStar and AWS CodeBuild now integrate with GitHub. This will make it easier for GitHub users to set up a continuous integration and continuous delivery toolchain as part of their release process using AWS Developer Tools.

In this post, I will walk through the following:

Prerequisites:

You’ll need an AWS account, a GitHub account, an Amazon EC2 key pair, and administrator-level permissions for AWS Identity and Access Management (IAM), AWS CodeStar, AWS CodeBuild, AWS CodePipeline, Amazon EC2, Amazon S3.

 

Integrating GitHub with AWS CodeStar

AWS CodeStar enables you to quickly develop, build, and deploy applications on AWS. Its unified user interface helps you easily manage your software development activities in one place. With AWS CodeStar, you can set up your entire continuous delivery toolchain in minutes, so you can start releasing code faster.

When AWS CodeStar launched in April of this year, it used AWS CodeCommit as the hosted source repository. You can now choose between AWS CodeCommit or GitHub as the source control service for your CodeStar projects. In addition, your CodeStar project dashboard lets you centrally track GitHub activities, including commits, issues, and pull requests. This makes it easy to manage project activity across the components of your CI/CD toolchain. Adding the GitHub dashboard view will simplify development of your AWS applications.

In this section, I will show you how to use GitHub as the source provider for your CodeStar projects. I’ll also show you how to work with recent commits, issues, and pull requests in the CodeStar dashboard.

Sign in to the AWS Management Console and from the Services menu, choose CodeStar. In the CodeStar console, choose Create a new project. You should see the Choose a project template page.

CodeStar Project

Choose an option by programming language, application category, or AWS service. I am going to choose the Ruby on Rails web application that will be running on Amazon EC2.

On the Project details page, you’ll now see the GitHub option. Type a name for your project, and then choose Connect to GitHub.

Project details

You’ll see a message requesting authorization to connect to your GitHub repository. When prompted, choose Authorize, and then type your GitHub account password.

Authorize

This connects your GitHub identity to AWS CodeStar through OAuth. You can always review your settings by navigating to your GitHub application settings.

Installed GitHub Apps

You’ll see AWS CodeStar is now connected to GitHub:

Create project

You can choose a public or private repository. GitHub offers free accounts for users and organizations working on public and open source projects and paid accounts that offer unlimited private repositories and optional user management and security features.

In this example, I am going to choose the public repository option. Edit the repository description, if you like, and then choose Next.

Review your CodeStar project details, and then choose Create Project. On Choose an Amazon EC2 Key Pair, choose Create Project.

Key Pair

On the Review project details page, you’ll see Edit Amazon EC2 configuration. Choose this link to configure instance type, VPC, and subnet options. AWS CodeStar requires a service role to create and manage AWS resources and IAM permissions. This role will be created for you when you select the AWS CodeStar would like permission to administer AWS resources on your behalf check box.

Choose Create Project. It might take a few minutes to create your project and resources.

Review project details

When you create a CodeStar project, you’re added to the project team as an owner. If this is the first time you’ve used AWS CodeStar, you’ll be asked to provide the following information, which will be shown to others:

  • Your display name.
  • Your email address.

This information is used in your AWS CodeStar user profile. User profiles are not project-specific, but they are limited to a single AWS region. If you are a team member in projects in more than one region, you’ll have to create a user profile in each region.

User settings

User settings

Choose Next. AWS CodeStar will create a GitHub repository with your configuration settings (for example, https://github.com/biyer/ruby-on-rails-service).

When you integrate your integrated development environment (IDE) with AWS CodeStar, you can continue to write and develop code in your preferred environment. The changes you make will be included in the AWS CodeStar project each time you commit and push your code.

IDE

After setting up your IDE, choose Next to go to the CodeStar dashboard. Take a few minutes to familiarize yourself with the dashboard. You can easily track progress across your entire software development process, from your backlog of work items to recent code deployments.

Dashboard

After the application deployment is complete, choose the endpoint that will display the application.

Pipeline

This is what you’ll see when you open the application endpoint:

The Commit history section of the dashboard lists the commits made to the Git repository. If you choose the commit ID or the Open in GitHub option, you can use a hotlink to your GitHub repository.

Commit history

Your AWS CodeStar project dashboard is where you and your team view the status of your project resources, including the latest commits to your project, the state of your continuous delivery pipeline, and the performance of your instances. This information is displayed on tiles that are dedicated to a particular resource. To see more information about any of these resources, choose the details link on the tile. The console for that AWS service will open on the details page for that resource.

Issues

You can also filter issues based on their status and the assigned user.

Filter

AWS CodeBuild Now Supports Building GitHub Pull Requests

CodeBuild is a fully managed build service that compiles source code, runs tests, and produces software packages that are ready to deploy. With CodeBuild, you don’t need to provision, manage, and scale your own build servers. CodeBuild scales continuously and processes multiple builds concurrently, so your builds are not left waiting in a queue. You can use prepackaged build environments to get started quickly or you can create custom build environments that use your own build tools.

We recently announced support for GitHub pull requests in AWS CodeBuild. This functionality makes it easier to collaborate across your team while editing and building your application code with CodeBuild. You can use the AWS CodeBuild or AWS CodePipeline consoles to run AWS CodeBuild. You can also automate the running of AWS CodeBuild by using the AWS Command Line Interface (AWS CLI), the AWS SDKs, or the AWS CodeBuild Plugin for Jenkins.

AWS CodeBuild

In this section, I will show you how to trigger a build in AWS CodeBuild with a pull request from GitHub through webhooks.

Open the AWS CodeBuild console at https://console.aws.amazon.com/codebuild/. Choose Create project. If you already have a CodeBuild project, you can choose Edit project, and then follow along. CodeBuild can connect to AWS CodeCommit, S3, BitBucket, and GitHub to pull source code for builds. For Source provider, choose GitHub, and then choose Connect to GitHub.

Configure

After you’ve successfully linked GitHub and your CodeBuild project, you can choose a repository in your GitHub account. CodeBuild also supports connections to any public repository. You can review your settings by navigating to your GitHub application settings.

GitHub Apps

On Source: What to Build, for Webhook, select the Rebuild every time a code change is pushed to this repository check box.

Note: You can select this option only if, under Repository, you chose Use a repository in my account.

Source

In Environment: How to build, for Environment image, select Use an image managed by AWS CodeBuild. For Operating system, choose Ubuntu. For Runtime, choose Base. For Version, choose the latest available version. For Build specification, you can provide a collection of build commands and related settings, in YAML format (buildspec.yml) or you can override the build spec by inserting build commands directly in the console. AWS CodeBuild uses these commands to run a build. In this example, the output is the string “hello.”

Environment

On Artifacts: Where to put the artifacts from this build project, for Type, choose No artifacts. (This is also the type to choose if you are just running tests or pushing a Docker image to Amazon ECR.) You also need an AWS CodeBuild service role so that AWS CodeBuild can interact with dependent AWS services on your behalf. Unless you already have a role, choose Create a role, and for Role name, type a name for your role.

Artifacts

In this example, leave the advanced settings at their defaults.

If you expand Show advanced settings, you’ll see options for customizing your build, including:

  • A build timeout.
  • A KMS key to encrypt all the artifacts that the builds for this project will use.
  • Options for building a Docker image.
  • Elevated permissions during your build action (for example, accessing Docker inside your build container to build a Dockerfile).
  • Resource options for the build compute type.
  • Environment variables (built-in or custom). For more information, see Create a Build Project in the AWS CodeBuild User Guide.

Advanced settings

You can use the AWS CodeBuild console to create a parameter in Amazon EC2 Systems Manager. Choose Create a parameter, and then follow the instructions in the dialog box. (In that dialog box, for KMS key, you can optionally specify the ARN of an AWS KMS key in your account. Amazon EC2 Systems Manager uses this key to encrypt the parameter’s value during storage and decrypt during retrieval.)

Create parameter

Choose Continue. On the Review page, either choose Save and build or choose Save to run the build later.

Choose Start build. When the build is complete, the Build logs section should display detailed information about the build.

Logs

To demonstrate a pull request, I will fork the repository as a different GitHub user, make commits to the forked repo, check in the changes to a newly created branch, and then open a pull request.

Pull request

As soon as the pull request is submitted, you’ll see CodeBuild start executing the build.

Build

GitHub sends an HTTP POST payload to the webhook’s configured URL (highlighted here), which CodeBuild uses to download the latest source code and execute the build phases.

Build project

If you expand the Show all checks option for the GitHub pull request, you’ll see that CodeBuild has completed the build, all checks have passed, and a deep link is provided in Details, which opens the build history in the CodeBuild console.

Pull request

Summary:

In this post, I showed you how to use GitHub as the source provider for your CodeStar projects and how to work with recent commits, issues, and pull requests in the CodeStar dashboard. I also showed you how you can use GitHub pull requests to automatically trigger a build in AWS CodeBuild — specifically, how this functionality makes it easier to collaborate across your team while editing and building your application code with CodeBuild.


About the author:

Balaji Iyer is an Enterprise Consultant for the Professional Services Team at Amazon Web Services. In this role, he has helped several customers successfully navigate their journey to AWS. His specialties include architecting and implementing highly scalable distributed systems, serverless architectures, large scale migrations, operational security, and leading strategic AWS initiatives. Before he joined Amazon, Balaji spent more than a decade building operating systems, big data analytics solutions, mobile services, and web applications. In his spare time, he enjoys experiencing the great outdoors and spending time with his family.

 

How to Automatically Revert and Receive Notifications About Changes to Your Amazon VPC Security Groups

Post Syndicated from Rob Barnes original https://aws.amazon.com/blogs/security/how-to-automatically-revert-and-receive-notifications-about-changes-to-your-amazon-vpc-security-groups/

In a previous AWS Security Blog post, Jeff Levine showed how you can monitor changes to your Amazon EC2 security groups. The methods he describes in that post are examples of detective controls, which can help you determine when changes are made to security controls on your AWS resources.

In this post, I take that approach a step further by introducing an example of a responsive control, which you can use to automatically respond to a detected security event by applying a chosen security mitigation. I demonstrate a solution that continuously monitors changes made to an Amazon VPC security group, and if a new ingress rule (the same as an inbound rule) is added to that security group, the solution removes the rule and then sends you a notification after the changes have been automatically reverted.

The scenario

Let’s say you want to reduce your infrastructure complexity by replacing your Secure Shell (SSH) bastion hosts with Amazon EC2 Systems Manager (SSM). SSM allows you to run commands on your hosts remotely, removing the need to manage bastion hosts or rely on SSH to execute commands. To support this objective, you must prevent your staff members from opening SSH ports to your web server’s Amazon VPC security group. If one of your staff members does modify the VPC security group to allow SSH access, you want the change to be automatically reverted and then receive a notification that the change to the security group was automatically reverted. If you are not yet familiar with security groups, see Security Groups for Your VPC before reading the rest of this post.

Solution overview

This solution begins with a directive control to mandate that no web server should be accessible using SSH. The directive control is enforced using a preventive control, which is implemented using a security group rule that prevents ingress from port 22 (typically used for SSH). The detective control is a “listener” that identifies any changes made to your security group. Finally, the responsive control reverts changes made to the security group and then sends a notification of this security mitigation.

The detective control, in this case, is an Amazon CloudWatch event that detects changes to your security group and triggers the responsive control, which in this case is an AWS Lambda function. I use AWS CloudFormation to simplify the deployment.

The following diagram shows the architecture of this solution.

Solution architecture diagram

Here is how the process works:

  1. Someone on your staff adds a new ingress rule to your security group.
  2. A CloudWatch event that continually monitors changes to your security groups detects the new ingress rule and invokes a designated Lambda function (with Lambda, you can run code without provisioning or managing servers).
  3. The Lambda function evaluates the event to determine whether you are monitoring this security group and reverts the new security group ingress rule.
  4. Finally, the Lambda function sends you an email to let you know what the change was, who made it, and that the change was reverted.

Deploy the solution by using CloudFormation

In this section, you will click the Launch Stack button shown below to launch the CloudFormation stack and deploy the solution.

Prerequisites

  • You must have AWS CloudTrail already enabled in the AWS Region where you will be deploying the solution. CloudTrail lets you log, continuously monitor, and retain events related to API calls across your AWS infrastructure. See Getting Started with CloudTrail for more information.
  • You must have a default VPC in the region in which you will be deploying the solution. AWS accounts have one default VPC per AWS Region. If you’ve deleted your VPC, see Creating a Default VPC to recreate it.

Resources that this solution creates

When you launch the CloudFormation stack, it creates the following resources:

  • A sample VPC security group in your default VPC, which is used as the target for reverting ingress rule changes.
  • A CloudWatch event rule that monitors changes to your AWS infrastructure.
  • A Lambda function that reverts changes to the security group and sends you email notifications.
  • A permission that allows CloudWatch to invoke your Lambda function.
  • An AWS Identity and Access Management (IAM) role with limited privileges that the Lambda function assumes when it is executed.
  • An Amazon SNS topic to which the Lambda function publishes notifications.

Launch the CloudFormation stack

The link in this section uses the us-east-1 Region (the US East [N. Virginia] Region). Change the region if you want to use this solution in a different region. See Selecting a Region for more information about changing the region.

To deploy the solution, click the following Launch Stack button to launch the stack. After you click the button, you must sign in to the AWS Management Console if you have not already done so.

Click this "Launch Stack" button

Then:

  1. Choose Next to proceed to the Specify Details page.
  2. On the Specify Details page, type your email address in the Send notifications to box. This is the email address to which change notifications will be sent. (After the stack is launched, you will receive a confirmation email that you must accept before you can receive notifications.)
  3. Choose Next until you get to the Review page, and then choose the I acknowledge that AWS CloudFormation might create IAM resources check box. This confirms that you are aware that the CloudFormation template includes an IAM resource.
  4. Choose Create. CloudFormation displays the stack status, CREATE_COMPLETE, when the stack has launched completely, which should take less than two minutes.Screenshot showing that the stack has launched completely

Testing the solution

  1. Check your email for the SNS confirmation email. You must confirm this subscription to receive future notification emails. If you don’t confirm the subscription, your security group ingress rules still will be automatically reverted, but you will not receive notification emails.
  2. Navigate to the EC2 console and choose Security Groups in the navigation pane.
  3. Choose the security group created by CloudFormation. Its name is Web Server Security Group.
  4. Choose the Inbound tab in the bottom pane of the page. Note that only one rule allows HTTPS ingress on port 443 from 0.0.0.0/0 (from anywhere).Screenshot showing the "Inbound" tab in the bottom pane of the page
  1. Choose Edit to display the Edit inbound rules dialog box (again, an inbound rule and an ingress rule are the same thing).
  2. Choose Add Rule.
  3. Choose SSH from the Type drop-down list.
  4. Choose My IP from the Source drop-down list. Your IP address is populated for you. By adding this rule, you are simulating one of your staff members violating your organization’s policy (in this blog post’s hypothetical example) against allowing SSH access to your EC2 servers. You are testing the solution created when you launched the CloudFormation stack in the previous section. The solution should remove this newly created SSH rule automatically.
    Screenshot of editing inbound rules
  5. Choose Save.

Adding this rule creates an EC2 AuthorizeSecurityGroupIngress service event, which triggers the Lambda function created in the CloudFormation stack. After a few moments, choose the refresh button ( The "refresh" icon ) to see that the new SSH ingress rule that you just created has been removed by the solution you deployed earlier with the CloudFormation stack. If the rule is still there, wait a few more moments and choose the refresh button again.

Screenshot of refreshing the page to see that the SSH ingress rule has been removed

You should also receive an email to notify you that the ingress rule was added and subsequently reverted.

Screenshot of the notification email

Cleaning up

If you want to remove the resources created by this CloudFormation stack, you can delete the CloudFormation stack:

  1. Navigate to the CloudFormation console.
  2. Choose the stack that you created earlier.
  3. Choose the Actions drop-down list.
  4. Choose Delete Stack, and then choose Yes, Delete.
  5. CloudFormation will display a status of DELETE_IN_PROGRESS while it deletes the resources created with the stack. After a few moments, the stack should no longer appear in the list of completed stacks.
    Screenshot of stack "DELETE_IN_PROGRESS"

Other applications of this solution

I have shown one way to use multiple AWS services to help continuously ensure that your security controls haven’t deviated from your security baseline. However, you also could use the CIS Amazon Web Services Foundations Benchmarks, for example, to establish a governance baseline across your AWS accounts and then use the principles in this blog post to automatically mitigate changes to that baseline.

To scale this solution, you can create a framework that uses resource tags to identify particular resources for monitoring. You also can use a consolidated monitoring approach by using cross-account event delivery. See Sending and Receiving Events Between AWS Accounts for more information. You also can extend the principle of automatic mitigation to detect and revert changes to other resources such as IAM policies and Amazon S3 bucket policies.

Summary

In this blog post, I demonstrated how you can automatically revert changes to a VPC security group and have a notification sent about the changes. You can use this solution in your own AWS accounts to enforce your security requirements continuously.

If you have comments about this blog post or other ideas for ways to use this solution, submit a comment in the “Comments” section below. If you have implementation questions, start a new thread in the EC2 forum or contact AWS Support.

– Rob

The Pi Hut’s 3D Xmas Tree pre-order

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/pi-hut-3d-xmas-tree/

We appreciate it’s only October, but hear us out. The Pi Hut’s 3D Xmas Tree is only available for pre-order until the 15th, and we’d hate for you to find out about it too late. So please share in a few minutes of premature Christmas cheer as we introduce you to this gorgeous kit.

The Pi Hut's 3D Xmas Tree for Raspberry Pi

Oooo…aaaaahhhh…

Super early Christmas prep

Designed by Pi Towers alumna Rachel Rayns, the 3D Xmas Tree kit is a 25-LED add-on board for the Raspberry Pi, on sale as a pre-soldered and as a ‘solder yourself’ version. You can control each LED independently via the GPIO pins, allowing you to create some wonderful, twinkly displays this coming holiday season.

The Pi Hut's 3D Xmas Tree for Raspberry Pi

The tree works with any 40-pin Raspberry Pi, including the Zero and Zero W.

You may remember the kit from last Christmas, when The Pi Hut teasingly hinted at its existence. We’ve been itching to get our hands on one for months now, and last week we finally received our own to build and play with.

3D Xmas Tree

So I took the time to record my entire build process for you…only to discover that I had managed to do most of the soldering out of frame. I blame Ben Nuttall for this, as we all rightly should, and offer instead this short GIF of me proudly showing off my finished piece.

The Pi Hut’s website has complete soldering instructions for the tree, as well as example code to get you started. Thus, even the most novice of Raspberry Pi enthusiasts and digital makers should be able to put this kit together and get it twinkling for Christmas.

If you don’t own helping hands for soldering, you’re missing out on, well, a helping hand when soldering.

If you need any help with soldering, check out our video resource. And once you’ve mastered this skill, how about upgrading your tree to twinkle in time with your favourite Christmas song? Or getting two or three, and having them flash in a beautiful synchronised multi-tree display?

Get your own 3D Xmas Tree

As mentioned above, you can pre-order the kit until Sunday 15 October. Once this deadline passes, that’s it — the boat will have sailed and you’ll be left stranded at the dock, waving goodbye to the missed opportunity.

The Pi Hut's 3D Xmas Tree for Raspberry Pi

Don’t be this kid.

With 2730 trees already ordered, you know this kit is going to be in the Christmas stocking of many a maker on 25 December.

And another thing

Shhh…while you’re there, The Pi Hut still has a few Google AIY Projects voice kits available for pre-order…but you didn’t hear that from me. Quick!

The post The Pi Hut’s 3D Xmas Tree pre-order appeared first on Raspberry Pi.

Roku Shows FBI Warning to Pirate Channel Users

Post Syndicated from Ernesto original https://torrentfreak.com/roku-shows-fbi-warning-to-pirate-channel-users-171009/

In recent years it has become much easier to stream movies and TV-shows over the Internet.

Legal services such as Netflix and HBO are flourishing, but at the same time millions of people are streaming from unauthorized sources, often paired with perfectly legal streaming platforms and devices.

Hollywood insiders have dubbed this trend “Piracy 3.0” and are actively working with stakeholders to address the threat. One of the companies rightsholders are working with is Roku, known for its easy-to-use media players.

Earlier this year a Mexican court ordered retailers to take the Roku media player off the shelves. This legal battle is still ongoing, but it was a clear signal to the company, which now has its own anti-piracy team.

Several third-party “private” channels have been removed from the player in recent weeks as they violate Roku’s terms and conditions. These include the hugely popular streaming channel XTV, which offered access to infringing content.

After its removal, XTV briefly returned as XTV 2, but that didn’t last for long. The infringing channel was soon removed again, this time showing the FBI’s anti-piracy seal followed by a rather ominous message.

“FBI Anti-Piracy Warning: Unauthorized copying is punishable under federal law,” it reads. “Roku has removed this unauthorized service due to repeated claims of copyright infringement.”

FBI Warning (via Cordcuttersnews)

The unusual warning was picked up by Cordcuttersnews and states that Roku itself removed the channel.

To some it may seem that the FBI is cracking down on Roku channels, but this is not the case. The anti-piracy seal and associated warning are often used in cases where the organization is not actively involved, to add extra weight. The FBI supports this, as long as certain standards are met.

A Roku spokesperson confirmed to TorrentFreak that they’re using it on their own accord here.

“We want to send a clear message to Roku customers and to publishers that any publication of pirated content on our platform is a violation of law and our platform rules,” the company says.

“We have recently expanded the messaging that we display to customers that install non-certified channels to alert them to the associated risks, and we display the FBI’s publicly available warning when we remove channels for copyright violations.”

The strong language shows that Roku is taking its efforts to crack down on infringing channels very seriously. A few weeks ago the company started to warn users that pirate channels may be removed without prior notice.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and ANONYMOUS VPN services.

Private Torrent Sites Allow Users to Mine Cryptocurrency for Upload Credit

Post Syndicated from Andy original https://torrentfreak.com/private-torrent-sites-allow-users-to-mine-cryptocurrency-for-upload-credit-171008/

Ever since The Pirate Bay crew added a cryptocurrency miner to their site last month, the debate over user mining has sizzled away in the background.

The basic premise is that a piece of software embedded in a website runs on a user’s machine, utilizing its CPU cycles in order to generate revenue for the site in question. But not everyone likes it.

The main problem has centered around consent. While some sites are giving users the option of whether to be involved or not, others simply run the miner without asking. This week, one site operator suggested to TF that since no one asks whether they can run “shitty” ads on a person’s machine, why should they ask permission to mine?

It’s a controversial point, but it would be hard to find users agreeing on either front. They almost universally insist on consent, wherever possible. That’s why when someone comes up with something innovative to solve a problem, it catches the eye.

Earlier this week a user on Reddit posted a screenshot of a fairly well known private tracker. The site had implemented a mining solution not dissimilar to that appearing on other similar platforms. This one, however, gives the user something back.

Mining for coins – with a twist

First of all, it’s important to note the implementation. The decision to mine is completely under the control of the user, with buttons to start or stop mining. There are even additional controls for how many CPU threads to commit alongside a percentage utilization selector. While still early days, that all sounds pretty fair.

Where this gets even more interesting is how this currency mining affects so-called “upload credit”, an important commodity on a private tracker without which users can be prevented from downloading any content at all.

Very quickly: when BitTorrent users download content, they simultaneously upload to other users too. The idea is that they download X megabytes and upload the same number (at least) to other users, to ensure that everyone in a torrent swarm (a number of users sharing together) gets a piece of the action, aka the content in question.

The amount of content downloaded and uploaded on a private tracker is monitored and documented by the site. If a user has 1TB downloaded and 2TB uploaded, for example, he has 1TB in credit. In basic terms, this means he can download at least 1TB of additional content before he goes into deficit, a position undesirable on a private tracker.

Now, getting more “upload credit” can be as simple as uploading more, but some users find that difficult, either due to the way a tracker’s economy works or simply due to not having resources. If this is the case, some sites allow people to donate real money to receive “upload credit”. On the tracker highlighted in the mining example above, however, it’s possible to virtually ‘trade-in’ some of the mining effort instead.

Tracker politics aside (some people believe this is simply a cash grab opportunity), from a technical standpoint the prospect is quite intriguing.

In a way, the current private tracker system allows users to “mine” upload credits by donating bandwidth to other users of the site. Now they have the opportunity to mine an actual cryptocurrency on the tracker and have some of it converted back into the tracker’s native ‘currency’ – upload credit – which can only be ‘spent’ on the site. Meanwhile, the site’s operator can make a few bucks towards site maintenance.

Another example showing how innovative these mining implementations can be was posted by a member of a second private tracker. Although it’s unclear whether mining is forced or optional, there appears to be complete transparency for the benefit of the user.

The mining ‘Top 10’ on a private tracker

In addition to displaying the total number of users mining and the hashes solved per second, the site publishes a ‘Top 10’ list of users mining the most currently, and overall. Again, some people might not like the concept of users mining at all, but psychologically this is a particularly clever implementation.

Utilizing the desire of many private tracker users to be recognizable among their peers due to their contribution to the platform, the charts give a user a measurable status in the community, at least among those who care about such things. Previously these charts would list top uploaders of content but the addition of a ‘Top miner’ category certainly adds some additional spice to the mix.

Mining is a controversial topic which isn’t likely to go away anytime soon. But, for all its faults, it’s still a way for sites to generate revenue, away from the pitfalls of increasingly hostile and easy-to-trace alternative payment systems. The Pirate Bay may have set the cat among the pigeons last month, but it also gave the old gray matter a boost too.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and ANONYMOUS VPN services.

Spooktacular Halloween Haunted Portrait

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/spooktacular-halloween-haunted-portrait/

October has come at last, and with it, the joy of Halloween is now upon us. So while I spend the next 30 days quoting Hocus Pocus at every opportunity, here’s Adafruit’s latest spooky build … the spooktacular Haunted Portrait.

Adafruit Raspberry Pi Haunted Portrait

Haunted Portraits

If you’ve visited a haunted house such as Disney’s Haunted Mansion, or walked the halls of Hogwarts at Universal Studios, you will have seen a ‘moving portrait’. Whether it’s the classic ‘did that painting just blink?’ approach, or occupants moving in and out of frame, they’re an effective piece of spooky decoration – and now you can make your own!

Adafruit’s AdaBox

John Park, maker extraordinaire, recently posted a live make video where he used the contents of the Raspberry Pi-themed AdaBox 005 to create a blinking portrait.

AdaBox 005 Raspberry Pi Haunted Portrait

The Adabox is Adafruit’s own maker subscription service where plucky makers receive a mystery parcel containing exciting tech and inspirational builds. Their more recent delivery, the AdaBox 005, contains a Raspberry Pi Zero, their own Joy Bonnet, a case, and peripherals, including Pimoroni’s no-solder Hammer Headers.

AdaBox 005 Raspberry Pi Haunted Portrait

While you can purchase the AdaBoxes as one-off buys, subscribers get extra goodies. With AdaBox 005, they received bonus content including Raspberry Pi swag in the form of stickers, and a copy of The MagPi Magazine.

AdaBox 005 Raspberry Pi Haunted Portrait

The contents of AdaBox 005 allows makers to build their own Raspberry Pi Zero tiny gaming machine. But the ever-working minds of the Adafruit team didn’t want to settle there, so they decided to create more tutorials based on the box’s contents, such as John Park’s Haunted Portrait.

Bringing a portrait to life

Alongside the AdaBox 005 content, all of which can be purchased from Adafruit directly, you’ll need a flat-screen monitor and a fancy frame. The former could be an old TV or computer screen while the latter, unless you happen to have an ornate frame that perfectly fits your monitor, can be made from cardboard, CNC-cut wood or gold-painted macaroni and tape … probably.

Adafruit Raspberry Pi Haunted Portrait

You’ll need to attach headers to your Raspberry Pi Zero. For those of you who fear the soldering iron, the Hammer Headers can be hammered into place without the need for melty hot metal. If you’d like to give soldering a go, you can follow Laura’s Getting Started With Soldering tutorial video.

Adafruit Raspberry Pi Haunted Portrait Hammer Header

In his tutorial, John goes on to explain how to set up the Joy Bonnet (if you wish to use it as an added controller), set your Raspberry Pi to display in portrait mode, and manipulate an image in Photoshop or GIMP to create the blinking effect.

Adafruit Raspberry Pi Haunted Portrait

Blinking eyes are just the start of the possibilities for this project. This is your moment to show off your image manipulation skills! Why not have the entire head flash to show the skull within? Or have an ethereal image appear in the background of an otherwise unexceptional painting of a bowl of fruit?

In the final stages of the tutorial, John explains how to set an image slideshow running on the Pi, and how to complete the look with the aforementioned ornate frame. He also goes into detail about the importance of using a matte effect screen or transparent gels to give a more realistic ‘painted’ feel.

You’ll find everything you need to make your own haunted portrait here, including a link to John’s entire live stream.

Get spooky!

We’re going to make this for Pi Towers. In fact, I’m wondering whether I could create an entire gallery of portraits specifically for our reception area and see how long it takes people to notice …

… though I possibly shouldn’t have given my idea away on this rather public blog post.

If you make the Haunted Portrait, or any other Halloween-themed Pi build, make sure you share it with us via social media, or in the comments below.

The post Spooktacular Halloween Haunted Portrait appeared first on Raspberry Pi.

Evergreen 3.0.0 released

Post Syndicated from ris original https://lwn.net/Articles/735379/rss

The Evergreen community has announced the
release
of Evergreen 3.0.0, software for libraries. This release
includes community support of the web staff client for production use,
serials and offline circulation modules for the web staff client,
improvements to the display of headings in the public catalog browse list,
and more.

Adafruit’s read-only Raspberry Pi

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/adafruits-read-only/

For passive projects such as point-of-sale displays, video loopers, and your upcoming Halloween builds, Adafruit have come up with a read-only solution for powering down your Raspberry Pi without endangering your SD card.

Adafruit read-only raspberry pi

Pulling the plug

At home, at a coding club, or at a Jam, you rarely need to pull the plug on your Raspberry Pi without going through the correct shutdown procedure. To ensure a long life for your SD card and its contents, you should always turn off you Pi by selecting the shutdown option from the menu. This way the Pi saves any temporary files to the card before relinquishing power.

Dramatic reconstruction

By pulling the plug while your OS is still running, you might corrupt these files, which could result in the Pi failing to boot up again. The only fix? Wipe the SD card clean and start over, waving goodbye to all files you didn’t back up.

Passive projects

But what if it’s not as easy as selecting shutdown, because your Raspberry Pi is embedded deep inside the belly of a project? Maybe you’ve hot-glued your Zero W into a pumpkin which is now screwed to the roof of your porch, or your store has a bank of Pi-powered monitors playing ads and the power is set to shut off every evening. Without the ability to shut down your Pi via the menu, you risk the SD card’s contents every time you power down your project.

Read-only

Just in time of the plethora of Halloween projects we’re looking forward to this month, the clever folk at Adafruit have designed a solution for this issue. They’ve shared a script which forces the Raspberry Pi to run in read-only mode, so that powering it down via a plug pull will not corrupt the SD card.

But how?

The script makes the Pi save temporary files to the RAM instead of the SD card. Of course, this means that no files or new software can be written to the card. However, if that’s not necessary for your Pi project, you might be happy to make the trade-off. Note that you can only use Adafruit’s script on Raspbian Lite.

Find more about the read-only Raspberry Pi solution, including the script and optional GPIO-halt utility, on the Adafruit Learn page. And be aware that making your Pi read-only is irreversible, so be sure to back up the contents of your SD card before you implement the script.

Halloween!

It’s October, and we’re now allowed to get excited about Halloween and all of the wonderful projects you plan on making for the big night.

Adafruit read-only raspberry pi

Adafruit’s animated snake eyes

We’ll be covering some of our favourite spooky build on social media throughout the month — make sure to share yours with us, either in the comments below or on Facebook, Twitter, Instagram, or G+.

The post Adafruit’s read-only Raspberry Pi appeared first on Raspberry Pi.

[$] A memory allocation API for graphics devices

Post Syndicated from jake original https://lwn.net/Articles/734849/rss

At last
year’s X.Org Developers Conference
(XDC), James Jones began the process of coming up with an API for
allocating memory so that it is accessible to multiple different graphics
devices in a system (e.g. GPUs, hardware compositors, video decoders, display
hardware, cameras, etc.). At XDC 2017 in Mountain
View, CA, he was back to update attendees on the progress that has been
made. He has a prototype in progress, but there is plenty more to do,
including working out some of the problems he has encountered along the way.

The possibilities of the Sense HAT

Post Syndicated from Janina Ander original https://www.raspberrypi.org/blog/sense-hat-projects/

Did you realise the Sense HAT has been available for over two years now? Used by astronauts on the International Space Station, the exact same hardware is available to you on Earth. With a new Astro Pi challenge just launched, it’s time for a retrospective/roundup/inspiration post about this marvellous bit of kit.

Sense HAT attached to Pi and power cord

The Sense HAT on a Pi in full glory

The Sense HAT explained

We developed our scientific add-on board to be part of the Astro Pi computers we sent to the International Space Station with ESA astronaut Tim Peake. For a play-by-play of Astro Pi’s history, head to the blog archive.

Astro Pi logo with starry background

Just to remind you, this is all the cool stuff our engineers have managed to fit onto the HAT:

  • A gyroscope (sensing pitch, roll, and yaw)
  • An accelerometer
  • A magnetometer
  • Sensors for temperature, humidity, and barometric pressure
  • A joystick
  • An 8×8 LED matrix

You can find a roundup of the technical specs here on the blog.

How to Sense HAT

It’s easy to begin exploring this device: take a look at our free Getting started with the Sense HAT resource, or use one of our Code Club Sense HAT projects. You can also try out the emulator, available offline on Raspbian and online on Trinket.

Sense HAT emulator on Trinket

The Sense HAT emulator on trinket.io

Fun and games with the Sense HAT

Use the LED matrix and joystick to recreate games such as Pong or Flappy Bird. Of course, you could also add sensor input to your game: code an egg drop game or a Magic 8 Ball that reacts to how the device moves.

Sense HAT Random Sparkles

Create random sparkles on the Sense HAT

Once December rolls around, you could brighten up your home with a voice-controlled Christmas tree or an advent calendar on your Sense HAT.

If you like the great outdoors, you could also use your Sense HAT to recreate this Hiking Companion by Marcus Johnson. Take it with you on your next hike!

Art with the Sense HAT

The LED matrix is perfect for getting creative. To draw something basic without having to squint at a Python list, use this app by our very own Richard Hayler. Feeling more ambitious? The MagPi will teach you how to create magnificent pixel art. Ben Nuttall has created this neat little Python script for displaying a photo taken by the Raspberry Pi Camera Module on the Sense HAT.

Brett Haines Mathematica on the Sense HAT

It’s also possible to incorporate Sense HAT data into your digital art! The Python Turtle module and the Processing language are both useful tools for creating beautiful animations based on real-world information.

A Sense HAT project that also uses this principle is Giorgio Sancristoforo’s Tableau, a ‘generative music album’. This device creates music according to the sensor data:

Tableau Generative Album

“There is no doubt that, as music is removed by the phonographrecord from the realm of live production and from the imperative of artistic activity and becomes petrified, it absorbs into itself, in this process of petrification, the very life that would otherwise vanish.”

Science with the Sense HAT

This free Essentials book from The MagPi team covers all the Sense HAT science basics. You can, for example, learn how to measure gravity.

Cropped cover of Experiment with the Sense HAT book

Our online resource shows you how to record the information your HAT picks up. Next you can analyse and graph your data using Mathematica, which is included for free on Raspbian. This resource walks you through how this software works.

If you’re seeking inspiration for experiments you can do on our Astro Pis Izzy and Ed on the ISS, check out the winning entries of previous rounds of the Astro Pi challenge.

Thomas Pesquet with Ed and Izzy

Thomas Pesquet with Ed and Izzy

But you can also stick to terrestrial scientific investigations. For example, why not build a weather station and share its data on your own web server or via Weather Underground?

Your code in space!

If you’re a student or an educator in one of the 22 ESA member states, you can get a team together to enter our 2017-18 Astro Pi challenge. There are two missions to choose from, including Mission Zero: follow a few guidelines, and your code is guaranteed to run in space!

The post The possibilities of the Sense HAT appeared first on Raspberry Pi.

TVAddons and ZemTV Operators Named in US Lawsuit

Post Syndicated from Ernesto original https://torrentfreak.com/tvaddons-and-zemtv-operators-named-in-us-lawsuit-170926/

Earlier this year, American satellite and broadcast provider Dish Network targeted two well-known players in the third-party Kodi add-on ecosystem.

In a complaint filed in a federal court in Texas, add-on ZemTV and the TVAddons library were accused of copyright infringement. As a result, both are facing up to $150,000 for each offense.

Initially, the true identities of the defendants unknown and listed as John Does, but an amended complaint that was submitted yesterday reveal their alleged names and hometowns.

The Texas court previously granted subpoenas which allowed Dish to request information from the defendants’ accounts on services including Amazon, Github, Google, Twitter, Facebook and PayPal, which likely helped with the identification.

According to Dish ZemTV was developed by Shahjahan Durrani, who’s based in London, UK. He allegedly controlled and maintained the addon which was used to stream infringing broadcasts of Dish content.

“Durrani developed the ZemTV add-on and managed and operated the ZemTV service. Durrani used the aliases ‘Shani’ and ‘Shani_08′ to communicate with users of the ZemTV service,” the complaint reads.

The owner and operator of TVAddons is listed as Adam Lackman, who resides in Montreal, Canada. This doesn’t really come as a surprise, since Lackman is publicly listed as TVAddons’ owner on Linkedin and was previously named in a Canadian lawsuit.

While both defendants are named, the allegations against them haven’t changed substantially. Both face copyright infringement charges and potentially risk millions of dollars in damages.

Durrani directly infringed Dish’s copyrights by making the streams available, the plaintiffs note. Lackman subsequently profited from this and failed to take any action in response.

“Lackman had the legal right and actual ability to supervise and control this infringing activity because Lackman made the ZemTV add-on, which is necessary to access the ZemTV service, available for download on his websites.

“Lackman refused to take any action to stop the infringement of DISH’s exclusive rights in the programs transmitted through the ZemTV service,” the complaint adds.

TorrentFreak spoke to a TVAddons representative who refutes the copyright infringement allegations. The website sees itself as a platform for user-generated content and cites the DMCA’s safe harbor as a defense.

“TV ADDONS is not a piracy site, it’s a platform for developers of open source add-ons for the Kodi media center. As a community platform filled with user-generated content, we have always acted in accordance with the law and swiftly complied whenever we received a DMCA takedown notice.”

The representative states that it will be very difficult for them to defend themselves against a billion dollar company with unlimited resources, but hopes that the site will prevail.

The new TVAddons

After the original TVAddons.ag domain was seized in the Canadian lawsuit the site returned on TVaddons.co. However, hundreds of allegedly infringing add-ons are no longer listed.

The site previously relied on the DMCA to shield it from liability but apparently, that wasn’t enough. As a result, they now check all submitted add-ons carefully.

“Since complying with the law is clearly not enough to prevent frivolous legal action from being taken against you, we have been forced to implement a more drastic code vetting process,” the TVAddons representative says.

If it’s not entirely clear that an add-on is properly licensed, it won’t be submitted for the time being. This hampers innovation, according to TVAddons, and threatens many communities that rely on user-generated content.

“When you visit any given web site, how can you be certain that every piece of media you see is licensed by the website displaying it? You can assume, but it’s very difficult to be certain. That’s why the DMCA is critical to the existence of online communities.”

Now that both defendants have been named the case will move forward. This may eventually lead to an in-depth discovery process where Dish will try to find more proof that both were knowingly engaging in infringing activity.

Durrani and Lackman, on the other hand, will try to prove their innocence.

A copy of the amended complaint is available here (pdf).

Source: TF, for the latest info on copyright, file-sharing, torrent sites and ANONYMOUS VPN services.

How to Enable LDAPS for Your AWS Microsoft AD Directory

Post Syndicated from Vijay Sharma original https://aws.amazon.com/blogs/security/how-to-enable-ldaps-for-your-aws-microsoft-ad-directory/

Starting today, you can encrypt the Lightweight Directory Access Protocol (LDAP) communications between your applications and AWS Directory Service for Microsoft Active Directory, also known as AWS Microsoft AD. Many Windows and Linux applications use Active Directory’s (AD) LDAP service to read and write sensitive information about users and devices, including personally identifiable information (PII). Now, you can encrypt your AWS Microsoft AD LDAP communications end to end to protect this information by using LDAP Over Secure Sockets Layer (SSL)/Transport Layer Security (TLS), also called LDAPS. This helps you protect PII and other sensitive information exchanged with AWS Microsoft AD over untrusted networks.

To enable LDAPS, you need to add a Microsoft enterprise Certificate Authority (CA) server to your AWS Microsoft AD domain and configure certificate templates for your domain controllers. After you have enabled LDAPS, AWS Microsoft AD encrypts communications with LDAPS-enabled Windows applications, Linux computers that use Secure Shell (SSH) authentication, and applications such as Jira and Jenkins.

In this blog post, I show how to enable LDAPS for your AWS Microsoft AD directory in six steps: 1) Delegate permissions to CA administrators, 2) Add a Microsoft enterprise CA to your AWS Microsoft AD directory, 3) Create a certificate template, 4) Configure AWS security group rules, 5) AWS Microsoft AD enables LDAPS, and 6) Test LDAPS access using the LDP tool.

Assumptions

For this post, I assume you are familiar with following:

Solution overview

Before going into specific deployment steps, I will provide a high-level overview of deploying LDAPS. I cover how you enable LDAPS on AWS Microsoft AD. In addition, I provide some general background about CA deployment models and explain how to apply these models when deploying Microsoft CA to enable LDAPS on AWS Microsoft AD.

How you enable LDAPS on AWS Microsoft AD

LDAP-aware applications (LDAP clients) typically access LDAP servers using Transmission Control Protocol (TCP) on port 389. By default, LDAP communications on port 389 are unencrypted. However, many LDAP clients use one of two standards to encrypt LDAP communications: LDAP over SSL on port 636, and LDAP with StartTLS on port 389. If an LDAP client uses port 636, the LDAP server encrypts all traffic unconditionally with SSL. If an LDAP client issues a StartTLS command when setting up the LDAP session on port 389, the LDAP server encrypts all traffic to that client with TLS. AWS Microsoft AD now supports both encryption standards when you enable LDAPS on your AWS Microsoft AD domain controllers.

You enable LDAPS on your AWS Microsoft AD domain controllers by installing a digital certificate that a CA issued. Though Windows servers have different methods for installing certificates, LDAPS with AWS Microsoft AD requires you to add a Microsoft CA to your AWS Microsoft AD domain and deploy the certificate through autoenrollment from the Microsoft CA. The installed certificate enables the LDAP service running on domain controllers to listen for and negotiate LDAP encryption on port 636 (LDAP over SSL) and port 389 (LDAP with StartTLS).

Background of CA deployment models

You can deploy CAs as part of a single-level or multi-level CA hierarchy. In a single-level hierarchy, all certificates come from the root of the hierarchy. In a multi-level hierarchy, you organize a collection of CAs in a hierarchy and the certificates sent to computers and users come from subordinate CAs in the hierarchy (not the root).

Certificates issued by a CA identify the hierarchy to which the CA belongs. When a computer sends its certificate to another computer for verification, the receiving computer must have the public certificate from the CAs in the same hierarchy as the sender. If the CA that issued the certificate is part of a single-level hierarchy, the receiver must obtain the public certificate of the CA that issued the certificate. If the CA that issued the certificate is part of a multi-level hierarchy, the receiver can obtain a public certificate for all the CAs that are in the same hierarchy as the CA that issued the certificate. If the receiver can verify that the certificate came from a CA that is in the hierarchy of the receiver’s “trusted” public CA certificates, the receiver trusts the sender. Otherwise, the receiver rejects the sender.

Deploying Microsoft CA to enable LDAPS on AWS Microsoft AD

Microsoft offers a standalone CA and an enterprise CA. Though you can configure either as single-level or multi-level hierarchies, only the enterprise CA integrates with AD and offers autoenrollment for certificate deployment. Because you cannot sign in to run commands on your AWS Microsoft AD domain controllers, an automatic certificate enrollment model is required. Therefore, AWS Microsoft AD requires the certificate to come from a Microsoft enterprise CA that you configure to work in your AD domain. When you install the Microsoft enterprise CA, you can configure it to be part of a single-level hierarchy or a multi-level hierarchy. As a best practice, AWS recommends a multi-level Microsoft CA trust hierarchy consisting of a root CA and a subordinate CA. I cover only a multi-level hierarchy in this post.

In a multi-level hierarchy, you configure your subordinate CA by importing a certificate from the root CA. You must issue a certificate from the root CA such that the certificate gives your subordinate CA the right to issue certificates on behalf of the root. This makes your subordinate CA part of the root CA hierarchy. You also deploy the root CA’s public certificate on all of your computers, which tells all your computers to trust certificates that your root CA issues and to trust certificates from any authorized subordinate CA.

In such a hierarchy, you typically leave your root CA offline (inaccessible to other computers in the network) to protect the root of your hierarchy. You leave the subordinate CA online so that it can issue certificates on behalf of the root CA. This multi-level hierarchy increases security because if someone compromises your subordinate CA, you can revoke all certificates it issued and set up a new subordinate CA from your offline root CA. To learn more about setting up a secure CA hierarchy, see Securing PKI: Planning a CA Hierarchy.

When a Microsoft CA is part of your AD domain, you can configure certificate templates that you publish. These templates become visible to client computers through AD. If a client’s profile matches a template, the client requests a certificate from the Microsoft CA that matches the template. Microsoft calls this process autoenrollment, and it simplifies certificate deployment. To enable LDAPS on your AWS Microsoft AD domain controllers, you create a certificate template in the Microsoft CA that generates SSL and TLS-compatible certificates. The domain controllers see the template and automatically import a certificate of that type from the Microsoft CA. The imported certificate enables LDAP encryption.

Steps to enable LDAPS for your AWS Microsoft AD directory

The rest of this post is composed of the steps for enabling LDAPS for your AWS Microsoft AD directory. First, though, I explain which components you must have running to deploy this solution successfully. I also explain how this solution works and include an architecture diagram.

Prerequisites

The instructions in this post assume that you already have the following components running:

  1. An active AWS Microsoft AD directory – To create a directory, follow the steps in Create an AWS Microsoft AD directory.
  2. An Amazon EC2 for Windows Server instance for managing users and groups in your directory – This instance needs to be joined to your AWS Microsoft AD domain and have Active Directory Administration Tools installed. Active Directory Administration Tools installs Active Directory Administrative Center and the LDP tool.
  3. An existing root Microsoft CA or a multi-level Microsoft CA hierarchy – You might already have a root CA or a multi-level CA hierarchy in your on-premises network. If you plan to use your on-premises CA hierarchy, you must have administrative permissions to issue certificates to subordinate CAs. If you do not have an existing Microsoft CA hierarchy, you can set up a new standalone Microsoft root CA by creating an Amazon EC2 for Windows Server instance and installing a standalone root certification authority. You also must create a local user account on this instance and add this user to the local administrator group so that the user has permissions to issue a certificate to a subordinate CA.

The solution setup

The following diagram illustrates the setup with the steps you need to follow to enable LDAPS for AWS Microsoft AD. You will learn how to set up a subordinate Microsoft enterprise CA (in this case, SubordinateCA) and join it to your AWS Microsoft AD domain (in this case, corp.example.com). You also will learn how to create a certificate template on SubordinateCA and configure AWS security group rules to enable LDAPS for your directory.

As a prerequisite, I already created a standalone Microsoft root CA (in this case RootCA) for creating SubordinateCA. RootCA also has a local user account called RootAdmin that has administrative permissions to issue certificates to SubordinateCA. Note that you may already have a root CA or a multi-level CA hierarchy in your on-premises network that you can use for creating SubordinateCA instead of creating a new root CA. If you choose to use your existing on-premises CA hierarchy, you must have administrative permissions on your on-premises CA to issue a certificate to SubordinateCA.

Lastly, I also already created an Amazon EC2 instance (in this case, Management) that I use to manage users, configure AWS security groups, and test the LDAPS connection. I join this instance to the AWS Microsoft AD directory domain.

Diagram showing the process discussed in this post

Here is how the process works:

  1. Delegate permissions to CA administrators (in this case, CAAdmin) so that they can join a Microsoft enterprise CA to your AWS Microsoft AD domain and configure it as a subordinate CA.
  2. Add a Microsoft enterprise CA to your AWS Microsoft AD domain (in this case, SubordinateCA) so that it can issue certificates to your directory domain controllers to enable LDAPS. This step includes joining SubordinateCA to your directory domain, installing the Microsoft enterprise CA, and obtaining a certificate from RootCA that grants SubordinateCA permissions to issue certificates.
  3. Create a certificate template (in this case, ServerAuthentication) with server authentication and autoenrollment enabled so that your AWS Microsoft AD directory domain controllers can obtain certificates through autoenrollment to enable LDAPS.
  4. Configure AWS security group rules so that AWS Microsoft AD directory domain controllers can connect to the subordinate CA to request certificates.
  5. AWS Microsoft AD enables LDAPS through the following process:
    1. AWS Microsoft AD domain controllers request a certificate from SubordinateCA.
    2. SubordinateCA issues a certificate to AWS Microsoft AD domain controllers.
    3. AWS Microsoft AD enables LDAPS for the directory by installing certificates on the directory domain controllers.
  6. Test LDAPS access by using the LDP tool.

I now will show you these steps in detail. I use the names of components—such as RootCA, SubordinateCA, and Management—and refer to users—such as Admin, RootAdmin, and CAAdmin—to illustrate who performs these steps. All component names and user names in this post are used for illustrative purposes only.

Deploy the solution

Step 1: Delegate permissions to CA administrators


In this step, you delegate permissions to your users who manage your CAs. Your users then can join a subordinate CA to your AWS Microsoft AD domain and create the certificate template in your CA.

To enable use with a Microsoft enterprise CA, AWS added a new built-in AD security group called AWS Delegated Enterprise Certificate Authority Administrators that has delegated permissions to install and administer a Microsoft enterprise CA. By default, your directory Admin is part of the new group and can add other users or groups in your AWS Microsoft AD directory to this security group. If you have trust with your on-premises AD directory, you can also delegate CA administrative permissions to your on-premises users by adding on-premises AD users or global groups to this new AD security group.

To create a new user (in this case CAAdmin) in your directory and add this user to the AWS Delegated Enterprise Certificate Authority Administrators security group, follow these steps:

  1. Sign in to the Management instance using RDP with the user name admin and the password that you set for the admin user when you created your directory.
  2. Launch the Microsoft Windows Server Manager on the Management instance and navigate to Tools > Active Directory Users and Computers.
    Screnshot of the menu including the "Active Directory Users and Computers" choice
  3. Switch to the tree view and navigate to corp.example.com > CORP > Users. Right-click Users and choose New > User.
    Screenshot of choosing New > User
  4. Add a new user with the First name CA, Last name Admin, and User logon name CAAdmin.
    Screenshot of completing the "New Object - User" boxes
  5. In the Active Directory Users and Computers tool, navigate to corp.example.com > AWS Delegated Groups. In the right pane, right-click AWS Delegated Enterprise Certificate Authority Administrators and choose Properties.
    Screenshot of navigating to AWS Delegated Enterprise Certificate Authority Administrators > Properties
  6. In the AWS Delegated Enterprise Certificate Authority Administrators window, switch to the Members tab and choose Add.
    Screenshot of the "Members" tab of the "AWS Delegate Enterprise Certificate Authority Administrators" window
  7. In the Enter the object names to select box, type CAAdmin and choose OK.
    Screenshot showing the "Enter the object names to select" box
  8. In the next window, choose OK to add CAAdmin to the AWS Delegated Enterprise Certificate Authority Administrators security group.
    Screenshot of adding "CA Admin" to the "AWS Delegated Enterprise Certificate Authority Administrators" security group
  9. Also add CAAdmin to the AWS Delegated Server Administrators security group so that CAAdmin can RDP in to the Microsoft enterprise CA machine.
    Screenshot of adding "CAAdmin" to the "AWS Delegated Server Administrators" security group also so that "CAAdmin" can RDP in to the Microsoft enterprise CA machine

 You have granted CAAdmin permissions to join a Microsoft enterprise CA to your AWS Microsoft AD directory domain.

Step 2: Add a Microsoft enterprise CA to your AWS Microsoft AD directory


In this step, you set up a subordinate Microsoft enterprise CA and join it to your AWS Microsoft AD directory domain. I will summarize the process first and then walk through the steps.

First, you create an Amazon EC2 for Windows Server instance called SubordinateCA and join it to the domain, corp.example.com. You then publish RootCA’s public certificate and certificate revocation list (CRL) to SubordinateCA’s local trusted store. You also publish RootCA’s public certificate to your directory domain. Doing so enables SubordinateCA and your directory domain controllers to trust RootCA. You then install the Microsoft enterprise CA service on SubordinateCA and request a certificate from RootCA to make SubordinateCA a subordinate Microsoft CA. After RootCA issues the certificate, SubordinateCA is ready to issue certificates to your directory domain controllers.

Note that you can use an Amazon S3 bucket to pass the certificates between RootCA and SubordinateCA.

In detail, here is how the process works, as illustrated in the preceding diagram:

  1. Set up an Amazon EC2 instance joined to your AWS Microsoft AD directory domain – Create an Amazon EC2 for Windows Server instance to use as a subordinate CA, and join it to your AWS Microsoft AD directory domain. For this example, the machine name is SubordinateCA and the domain is corp.example.com.
  2. Share RootCA’s public certificate with SubordinateCA – Log in to RootCA as RootAdmin and start Windows PowerShell with administrative privileges. Run the following commands to copy RootCA’s public certificate and CRL to the folder c:\rootcerts on RootCA.
    New-Item c:\rootcerts -type directory
    copy C:\Windows\system32\certsrv\certenroll\*.cr* c:\rootcerts

    Upload RootCA’s public certificate and CRL from c:\rootcerts to an S3 bucket by following the steps in How Do I Upload Files and Folders to an S3 Bucket.

The following screenshot shows RootCA’s public certificate and CRL uploaded to an S3 bucket.
Screenshot of RootCA’s public certificate and CRL uploaded to the S3 bucket

  1. Publish RootCA’s public certificate to your directory domain – Log in to SubordinateCA as the CAAdmin. Download RootCA’s public certificate and CRL from the S3 bucket by following the instructions in How Do I Download an Object from an S3 Bucket? Save the certificate and CRL to the C:\rootcerts folder on SubordinateCA. Add RootCA’s public certificate and the CRL to the local store of SubordinateCA and publish RootCA’s public certificate to your directory domain by running the following commands using Windows PowerShell with administrative privileges.
    certutil –addstore –f root <path to the RootCA public certificate file>
    certutil –addstore –f root <path to the RootCA CRL file>
    certutil –dspublish –f <path to the RootCA public certificate file> RootCA
  2. Install the subordinate Microsoft enterprise CA – Install the subordinate Microsoft enterprise CA on SubordinateCA by following the instructions in Install a Subordinate Certification Authority. Ensure that you choose Enterprise CA for Setup Type to install an enterprise CA.

For the CA Type, choose Subordinate CA.

  1. Request a certificate from RootCA – Next, copy the certificate request on SubordinateCA to a folder called c:\CARequest by running the following commands using Windows PowerShell with administrative privileges.
    New-Item c:\CARequest -type directory
    Copy c:\*.req C:\CARequest

    Upload the certificate request to the S3 bucket.
    Screenshot of uploading the certificate request to the S3 bucket

  1. Approve SubordinateCA’s certificate request – Log in to RootCA as RootAdmin and download the certificate request from the S3 bucket to a folder called CARequest. Submit the request by running the following command using Windows PowerShell with administrative privileges.
    certreq -submit <path to certificate request file>

    In the Certification Authority List window, choose OK.
    Screenshot of the Certification Authority List window

Navigate to Server Manager > Tools > Certification Authority on RootCA.
Screenshot of "Certification Authority" in the drop-down menu

In the Certification Authority window, expand the ROOTCA tree in the left pane and choose Pending Requests. In the right pane, note the value in the Request ID column. Right-click the request and choose All Tasks > Issue.
Screenshot of noting the value in the "Request ID" column

  1. Retrieve the SubordinateCA certificate – Retrieve the SubordinateCA certificate by running following command using Windows PowerShell with administrative privileges. The command includes the <RequestId> that you noted in the previous step.
    certreq –retrieve <RequestId> <drive>:\subordinateCA.crt

    Upload SubordinateCA.crt to the S3 bucket.

  1. Install the SubordinateCA certificate – Log in to SubordinateCA as the CAAdmin and download SubordinateCA.crt from the S3 bucket. Install the certificate by running following commands using Windows PowerShell with administrative privileges.
    certutil –installcert c:\subordinateCA.crt
    start-service certsvc
  2. Delete the content that you uploaded to S3  As a security best practice, delete all the certificates and CRLs that you uploaded to the S3 bucket in the previous steps because you already have installed them on SubordinateCA.

You have finished setting up the subordinate Microsoft enterprise CA that is joined to your AWS Microsoft AD directory domain. Now you can use your subordinate Microsoft enterprise CA to create a certificate template so that your directory domain controllers can request a certificate to enable LDAPS for your directory.

Step 3: Create a certificate template


In this step, you create a certificate template with server authentication and autoenrollment enabled on SubordinateCA. You create this new template (in this case, ServerAuthentication) by duplicating an existing certificate template (in this case, Domain Controller template) and adding server authentication and autoenrollment to the template.

Follow these steps to create a certificate template:

  1. Log in to SubordinateCA as CAAdmin.
  2. Launch Microsoft Windows Server Manager. Select Tools > Certification Authority.
  3. In the Certificate Authority window, expand the SubordinateCA tree in the left pane. Right-click Certificate Templates, and choose Manage.
    Screenshot of choosing "Manage" under "Certificate Template"
  4. In the Certificate Templates Console window, right-click Domain Controller and choose Duplicate Template.
    Screenshot of the Certificate Templates Console window
  5. In the Properties of New Template window, switch to the General tab and change the Template display name to ServerAuthentication.
    Screenshot of the "Properties of New Template" window
  6. Switch to the Security tab, and choose Domain Controllers in the Group or user names section. Select the Allow check box for Autoenroll in the Permissions for Domain Controllers section.
    Screenshot of the "Permissions for Domain Controllers" section of the "Properties of New Template" window
  7. Switch to the Extensions tab, choose Application Policies in the Extensions included in this template section, and choose Edit
    Screenshot of the "Extensions" tab of the "Properties of New Template" window
  8. In the Edit Application Policies Extension window, choose Client Authentication and choose Remove. Choose OK to create the ServerAuthentication certificate template. Close the Certificate Templates Console window.
    Screenshot of the "Edit Application Policies Extension" window
  9. In the Certificate Authority window, right-click Certificate Templates, and choose New > Certificate Template to Issue.
    Screenshot of choosing "New" > "Certificate Template to Issue"
  10. In the Enable Certificate Templates window, choose ServerAuthentication and choose OK.
    Screenshot of the "Enable Certificate Templates" window

You have finished creating a certificate template with server authentication and autoenrollment enabled on SubordinateCA. Your AWS Microsoft AD directory domain controllers can now obtain a certificate through autoenrollment to enable LDAPS.

Step 4: Configure AWS security group rules


In this step, you configure AWS security group rules so that your directory domain controllers can connect to the subordinate CA to request a certificate. To do this, you must add outbound rules to your directory’s AWS security group (in this case, sg-4ba7682d) to allow all outbound traffic to SubordinateCA’s AWS security group (in this case, sg-6fbe7109) so that your directory domain controllers can connect to SubordinateCA for requesting a certificate. You also must add inbound rules to SubordinateCA’s AWS security group to allow all incoming traffic from your directory’s AWS security group so that the subordinate CA can accept incoming traffic from your directory domain controllers.

Follow these steps to configure AWS security group rules:

  1. Log in to the Management instance as Admin.
  2. Navigate to the EC2 console.
  3. In the left pane, choose Network & Security > Security Groups.
  4. In the right pane, choose the AWS security group (in this case, sg-6fbe7109) of SubordinateCA.
  5. Switch to the Inbound tab and choose Edit.
  6. Choose Add Rule. Choose All traffic for Type and Custom for Source. Enter your directory’s AWS security group (in this case, sg-4ba7682d) in the Source box. Choose Save.
    Screenshot of adding an inbound rule
  7. Now choose the AWS security group (in this case, sg-4ba7682d) of your AWS Microsoft AD directory, switch to the Outbound tab, and choose Edit.
  8. Choose Add Rule. Choose All traffic for Type and Custom for Destination. Enter your directory’s AWS security group (in this case, sg-6fbe7109) in the Destination box. Choose Save.

You have completed the configuration of AWS security group rules to allow traffic between your directory domain controllers and SubordinateCA.

Step 5: AWS Microsoft AD enables LDAPS


The AWS Microsoft AD domain controllers perform this step automatically by recognizing the published template and requesting a certificate from the subordinate Microsoft enterprise CA. The subordinate CA can take up to 180 minutes to issue certificates to the directory domain controllers. The directory imports these certificates into the directory domain controllers and enables LDAPS for your directory automatically. This completes the setup of LDAPS for the AWS Microsoft AD directory. The LDAP service on the directory is now ready to accept LDAPS connections!

Step 6: Test LDAPS access by using the LDP tool


In this step, you test the LDAPS connection to the AWS Microsoft AD directory by using the LDP tool. The LDP tool is available on the Management machine where you installed Active Directory Administration Tools. Before you test the LDAPS connection, you must wait up to 180 minutes for the subordinate CA to issue a certificate to your directory domain controllers.

To test LDAPS, you connect to one of the domain controllers using port 636. Here are the steps to test the LDAPS connection:

  1. Log in to Management as Admin.
  2. Launch the Microsoft Windows Server Manager on Management and navigate to Tools > Active Directory Users and Computers.
  3. Switch to the tree view and navigate to corp.example.com > CORP > Domain Controllers. In the right pane, right-click on one of the domain controllers and choose Properties. Copy the DNS name of the domain controller.
    Screenshot of copying the DNS name of the domain controller
  4. Launch the LDP.exe tool by launching Windows PowerShell and running the LDP.exe command.
  5. In the LDP tool, choose Connection > Connect.
    Screenshot of choosing "Connnection" > "Connect" in the LDP tool
  6. In the Server box, paste the DNS name you copied in the previous step. Type 636 in the Port box. Choose OK to test the LDAPS connection to port 636 of your directory.
    Screenshot of completing the boxes in the "Connect" window
  7. You should see the following message to confirm that your LDAPS connection is now open.

You have completed the setup of LDAPS for your AWS Microsoft AD directory! You can now encrypt LDAP communications between your Windows and Linux applications and your AWS Microsoft AD directory using LDAPS.

Summary

In this blog post, I walked through the process of enabling LDAPS for your AWS Microsoft AD directory. Enabling LDAPS helps you protect PII and other sensitive information exchanged over untrusted networks between your Windows and Linux applications and your AWS Microsoft AD. To learn more about how to use AWS Microsoft AD, see the Directory Service documentation. For general information and pricing, see the Directory Service home page.

If you have comments about this blog post, submit a comment in the “Comments” section below. If you have implementation or troubleshooting questions, start a new thread on the Directory Service forum.

– Vijay

Peru Authorities Shut Down First ‘Pirate’ Websites, Three Arrested

Post Syndicated from Andy original https://torrentfreak.com/peru-authorities-shut-down-first-pirate-websites-three-arrested-170925/

For a country with a soaring crime rate, where violent car-jackings and other violent crime are reportedly commonplace, Internet piracy isn’t something that’s been high on the agenda in Peru.

Nevertheless, under pressure from rightsholders, local authorities have now taken decisive action against the country’s most popular ‘pirate’ sites.

On the orders of prosecutor Miguel Ángel Puicón, a specialized police unit carried out searches earlier this month looking for the people behind Pelis24 (Movies24) and Series24, sites that are extremely popular across all of South America, not just Peru.

Local media reports that an initial search took place in the Los Olivos district of the Lima Province where two people were arrested in connection with the sites. On the same day, a second search was executed in the town of Rimac where a third person was detained.

The case was launched following a rightsholder complaint to the Special Prosecutor’s Office for Customs Crimes and Intellectual Property in Lima. It stated that three domains – pelis24.com, pelis24.tv and series24.tv were offering unlicensed movies and TV shows to the public.

“In view of the abundant evidence, the office requested measures indicative of the right to the criminal judge. A search was carried out in search of the property and the preliminary 48-hour detention of the people investigated was requested,” authorities said in a statement.

The warrant not only covered seizure of physical items but also the domain names associated with the platforms. As shown in the image below, they now display the following seizure banner (translated from Spanish).

Pelis24/Series24 Seizure Banner

Authorities say that a detailed preliminary investigation took place in order to corroborate the information provided by the complainant. Once the measures were approved by a judge, the Prosecutor’s Office acted in coordination with the Investigations Division of the High Technology Crimes unit to carry out the operation.

According to Puicón, this is the first action against the operators of a pirate site in Peru.

“The purpose was to have the detainees close the sites voluntarily after providing us with the login codes,” he said. “We do not have a technology department, so the specialized high-tech police and complainants were present to preserve evidence.”

Local sources indicate that sentences for piracy can be as long as six years in serious cases. However, Peru has been exclusively tackling counterfeiting of physical discs, with online piracy being allowed to run rampant.

“The Office of the Prosecutor has the competency to deal with crimes against intellectual property but has been working exclusively in cases of physical piracy,” Puicón says.

“Online piracy has another connotation, we must use other procedures, another form of investigation and another strategy. Therefore, the authorities that are aware of these crimes must be trained on technological issues.”

It’s believed that at least a million Peruvians download infringing content from the Internet each week, a problem that will need to be tackled moving forward, when the authorities can gather the expertise to do so.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and ANONYMOUS VPN services.

Now Use AWS IAM to Delete a Service-Linked Role When You No Longer Require an AWS Service to Perform Actions on Your Behalf

Post Syndicated from Ujjwal Pugalia original https://aws.amazon.com/blogs/security/now-use-aws-iam-to-delete-a-service-linked-role-when-you-no-longer-require-an-aws-service-to-perform-actions-on-your-behalf/

Earlier this year, AWS Identity and Access Management (IAM) introduced service-linked roles, which provide you an easy and secure way to delegate permissions to AWS services. Each service-linked role delegates permissions to an AWS service, which is called its linked service. Service-linked roles help with monitoring and auditing requirements by providing a transparent way to understand all actions performed on your behalf because AWS CloudTrail logs all actions performed by the linked service using service-linked roles. For information about which services support service-linked roles, see AWS Services That Work with IAM. Over time, more AWS services will support service-linked roles.

Today, IAM added support for the deletion of service-linked roles through the IAM console and the IAM API/CLI. This means you now can revoke permissions from the linked service to create and manage AWS resources in your account. When you delete a service-linked role, the linked service no longer has the permissions to perform actions on your behalf. To ensure your AWS services continue to function as expected when you delete a service-linked role, IAM validates that you no longer have resources that require the service-linked role to function properly. This prevents you from inadvertently revoking permissions required by an AWS service to manage your existing AWS resources and helps you maintain your resources in a consistent state. If there are any resources in your account that require the service-linked role, you will receive an error when you attempt to delete the service-linked role, and the service-linked role will remain in your account. If you do not have any resources that require the service-linked role, you can delete the service-linked role and IAM will remove the service-linked role from your account.

In this blog post, I show how to delete a service-linked role by using the IAM console. To learn more about how to delete service-linked roles by using the IAM API/CLI, see the DeleteServiceLinkedRole API documentation.

Note: The IAM console does not currently support service-linked role deletion for Amazon Lex, but you can delete your service-linked role by using the Amazon Lex console. To learn more, see Service Permissions.

How to delete a service-linked role by using the IAM console

If you no longer need to use an AWS service that uses a service-linked role, you can remove permissions from that service by deleting the service-linked role through the IAM console. To delete a service-linked role, you must have permissions for the iam:DeleteServiceLinkedRole action. For example, the following IAM policy grants the permission to delete service-linked roles used by Amazon Redshift. To learn more about working with IAM policies, see Working with Policies.

{ 
    "Version": "2012-10-17",
    "Statement": [
        {
            "Sid": "AllowDeletionOfServiceLinkedRolesForRedshift",
            "Effect": "Allow",
            "Action": ["iam:DeleteServiceLinkedRole"],
            "Resource": ["arn:aws:iam::*:role/aws-service-role/redshift.amazonaws.com/AWSServiceRoleForRedshift*"]
	 }
    ]
}

To delete a service-linked role by using the IAM console:

  1. Navigate to the IAM console and choose Roles from the navigation pane.

Screenshot of the Roles page in the IAM console

  1. Choose the service-linked role you want to delete and then choose Delete role. In this example, I choose the  AWSServiceRoleForRedshift service-linked role.

Screenshot of the AWSServiceRoleForRedshift service-linked role

  1. A dialog box asks you to confirm that you want to delete the service-linked role you have chosen. In the Last activity column, you can see when the AWS service last used the service-linked role, which tells you when the linked service last used the service-linked role to perform an action on your behalf. If you want to continue to delete the service-linked role, choose Yes, delete to delete the service-linked role.

Screenshot of the "Delete role" window

  1. IAM then checks whether you have any resources that require the service-linked role you are trying to delete. While IAM checks, you will see the status message, Deletion in progress, below the role name. Screenshot showing "Deletion in progress"
  1. If no resources require the service-linked role, IAM deletes the role from your account and displays a success message on the console.

Screenshot of the success message

  1. If there are AWS resources that require the service-linked role you are trying to delete, you will see the status message, Deletion failed, below the role name.

Screenshot showing the "Deletion failed"

  1. If you choose View details, you will see a message that explains the deletion failed because there are resources that use the service-linked role.
    Screenshot showing details about why the role deletion failed
  2. Choose View Resources to view the Amazon Resource Names (ARNs) of the first five resources that require the service-linked role. You can delete the service-linked role only after you delete all resources that require the service-linked role. In this example, only one resource requires the service-linked role.

Conclusion

Service-linked roles make it easier for you to delegate permissions to AWS services to create and manage AWS resources on your behalf and to understand all actions the service will perform on your behalf. If you no longer need to use an AWS service that uses a service-linked role, you can remove permissions from that service by deleting the service-linked role through the IAM console. However, before you delete a service-linked role, you must delete all the resources associated with that role to ensure that your resources remain in a consistent state.

If you have any questions, submit a comment in the “Comments” section below. If you need help working with service-linked roles, start a new thread on the IAM forum or contact AWS Support.

– Ujjwal

Greater Transparency into Actions AWS Services Perform on Your Behalf by Using AWS CloudTrail

Post Syndicated from Ujjwal Pugalia original https://aws.amazon.com/blogs/security/get-greater-transparency-into-actions-aws-services-perform-on-your-behalf-by-using-aws-cloudtrail/

To make managing your AWS account easier, some AWS services perform actions on your behalf, including the creation and management of AWS resources. For example, AWS Elastic Beanstalk automatically handles the deployment details of capacity provisioning, load balancing, auto-scaling, and application health monitoring. To make these AWS actions more transparent, AWS adds an AWS Identity and Access Management (IAM) service-linked roles to your account for each linked service you use. Service-linked roles let you view all actions an AWS service performs on your behalf by using AWS CloudTrail logs. This helps you monitor and audit the actions AWS services perform on your behalf. No additional actions are required from you and you can continue using AWS services the way you do today.

To learn more about which AWS services use service-linked roles and log actions on your behalf to CloudTrail, see AWS Services That Work with IAM. Over time, more AWS services will support service-linked roles. For more information about service-linked roles, see Role Terms and Concepts.

In this blog post, I demonstrate how to view CloudTrail logs so that you can more easily monitor and audit AWS services performing actions on your behalf. First, I show how AWS creates a service-linked role in your account automatically when you configure an AWS service that supports service-linked roles. Next, I show how you can view the policies of a service-linked role that grants an AWS service permission to perform actions on your behalf. Finally, I  use the configured AWS service to perform an action and show you how the action appears in your CloudTrail logs.

How AWS creates a service-linked role in your account automatically

I will use Amazon Lex as the AWS service that performs actions on your behalf for this post. You can use Amazon Lex to create chatbots that allow for highly engaging conversational experiences through voice and text. You also can use chatbots on mobile devices, web browsers, and popular chat platform channels such as Slack. Amazon Lex uses Amazon Polly on your behalf to synthesize speech that sounds like a human voice.

Amazon Lex uses two IAM service-linked roles:

  • AWSServiceRoleForLexBots — Amazon Lex uses this service-linked role to invoke Amazon Polly to synthesize speech responses for your chatbot.
  • AWSServiceRoleForLexChannels — Amazon Lex uses this service-linked role to post text to your chatbot when managing channels such as Slack.

You don’t need to create either of these roles manually. When you create your first chatbot using the Amazon Lex console, Amazon Lex creates the AWSServiceRoleForLexBots role for you. When you first associate a chatbot with a messaging channel, Amazon Lex creates the AWSServiceRoleForLexChannels role in your account.

1. Start configuring the AWS service that supports service-linked roles

Navigate to the Amazon Lex console, and choose Get Started to navigate to the Create your Lex bot page. For this example, I choose a sample chatbot called OrderFlowers. To learn how to create a custom chatbot, see Create a Custom Amazon Lex Bot.

Screenshot of making the choice to create an OrderFlowers chatbot

2. Complete the configuration for the AWS service

When you scroll down, you will see the settings for the OrderFlowers chatbot. Notice the field for the IAM role with the value, AWSServiceRoleForLexBots. This service-linked role is “Automatically created on your behalf.” After you have entered all details, choose Create to build your sample chatbot.

Screenshot of the automatically created service-linked role

AWS has created the AWSServiceRoleForLexBots service-linked role in your account. I will return to using the chatbot later in this post when I discuss how Amazon Lex performs actions on your behalf and how CloudTrail logs these actions. First, I will show how you can view the permissions for the AWSServiceRoleForLexBots service-linked role by using the IAM console.

How to view actions in the IAM console that AWS services perform on your behalf

When you configure an AWS service that supports service-linked roles, AWS creates a service-linked role in your account automatically. You can view the service-linked role by using the IAM console.

1. View the AWSServiceRoleForLexBots service-linked role on the IAM console

Go to the IAM console, and choose AWSServiceRoleForLexBots on the Roles page. You can confirm that this role is a service-linked role by viewing the Trusted entities column.

Screenshot of the service-linked role

2.View the trusted entities that can assume the AWSServiceRoleForLexBots service-linked role

Choose the Trust relationships tab on the AWSServiceRoleForLexBots role page. You can view the trusted entities that can assume the AWSServiceRoleForLexBots service-linked role to perform actions on your behalf. In this example, the trusted entity is lex.amazonaws.com.

Screenshot of the trusted entities that can assume the service-linked role

3. View the policy attached to the AWSServiceRoleForLexBots service-linked role

Choose AmazonLexBotPolicy on the Permissions tab to view the policy attached to the AWSServiceRoleForLexBots service-linked role. You can view the policy summary to see that AmazonLexBotPolicy grants permission to Amazon Lex to use Amazon Polly.

Screenshot showing that AmazonLexBotPolicy grants permission to Amazon Lex to use Amazon Polly

4. View the actions that the service-linked role grants permissions to use

Choose Polly to view the action, SynthesizeSpeech, that the AmazonLexBotPolicy grants permission to Amazon Lex to perform on your behalf. Amazon Lex uses this permission to synthesize speech responses for your chatbot. I show later in this post how you can monitor this SynthesizeSpeech action in your CloudTrail logs.

Screenshot showing the the action, SynthesizeSpeech, that the AmazonLexBotPolicy grants permission to Amazon Lex to perform on your behalf

Now that I know the trusted entity and the policy attached to the service-linked role, let’s go back to the chatbot I created earlier and see how CloudTrail logs the actions that Amazon Lex performs on my behalf.

How to use CloudTrail to view actions that AWS services perform on your behalf

As discussed already, I created an OrderFlowers chatbot on the Amazon Lex console. I will use the chatbot and display how the AWSServiceRoleForLexBots service-linked role helps me track actions in CloudTrail. First, though, I must have an active CloudTrail trail created that stores the logs in an Amazon S3 bucket. I will use a trail called TestTrail and an S3 bucket called account-ids-slr.

1. Use the Amazon Lex chatbot via the Amazon Lex console

In Step 2 in the first section of this post, when I chose Create, Amazon Lex built the OrderFlowers chatbot. After the chatbot was built, the right pane showed that a Test Bot was created. Now, I choose the microphone symbol in the right pane and provide voice input to test the OrderFlowers chatbot. In this example, I tell the chatbot, “I would like to order some flowers.” The bot replies to me by asking, “What type of flowers would you like to order?”

Screenshot of voice input to test the OrderFlowers chatbot

When the chatbot replies using voice, Amazon Lex uses Amazon Polly to synthesize speech from text to voice. Amazon Lex assumes the AWSServiceRoleForLexBots service-linked role to perform the SynthesizeSpeech action.

2. Check CloudTrail to view actions performed on your behalf

Now that I have created the chatbot, let’s see which actions were logged in CloudTrail. Choose CloudTrail from the Services drop-down menu to reach the CloudTrail console. Choose Trails and choose the S3 bucket in which you are storing your CloudTrail logs.

Screenshot of the TestTrail trail

In the S3 bucket, you will find log entries for the SynthesizeSpeech event. This means that CloudTrail logged the action when Amazon Lex assumed the AWSServiceRoleForLexBots service-linked role to invoke Amazon Polly to synthesize speech responses for your chatbot. You can monitor and audit this invocation, and it provides you with transparency into Amazon Polly’s SynthesizeSpeech action that Amazon Lex invoked on your behalf. The applicable CloudTrail log section follows and I have emphasized the key lines.

{  
         "eventVersion":"1.05",
         "userIdentity":{  
           "type":"AssumedRole",
            "principalId":"{principal-id}:OrderFlowers",
            "arn":"arn:aws:sts::{account-id}:assumed-role/AWSServiceRoleForLexBots/OrderFlowers",
            "accountId":"{account-id}",
            "accessKeyId":"{access-key-id}",
            "sessionContext":{  
               "attributes":{  
                  "mfaAuthenticated":"false",
                  "creationDate":"2017-09-17T17:30:05Z"
               },
               "sessionIssuer":{  
                  "type":"Role",
                  "principalId":"{principal-id}",
                  "arn":"arn:aws:iam:: {account-id}:role/aws-service-role/lex.amazonaws.com/AWSServiceRoleForLexBots",
                  "accountId":"{account-id",
                  "userName":"AWSServiceRoleForLexBots"
               }
            },
            "invokedBy":"lex.amazonaws.com"
         },
         "eventTime":"2017-09-17T17:30:05Z",
         "eventSource":"polly.amazonaws.com",
         "eventName":"SynthesizeSpeech",
         "awsRegion":"us-east-1",
         "sourceIPAddress":"lex.amazonaws.com",
         "userAgent":"lex.amazonaws.com",
         "requestParameters":{  
            "outputFormat":"mp3",
            "textType":"text",
            "voiceId":"Salli",
            "text":"**********"
         },
         "responseElements":{  
            "requestCharacters":45,
            "contentType":"audio/mpeg"
         },
         "requestID":"{request-id}",
         "eventID":"{event-id}",
         "eventType":"AwsApiCall",
         "recipientAccountId":"{account-id}"
      }

Conclusion

Service-linked roles make it easier for you to track and view actions that linked AWS services perform on your behalf by using CloudTrail. When an AWS service supports service-linked roles to enable this additional logging, you will see a service-linked role added to your account.

If you have comments about this post, submit a comment in the “Comments” section below. If you have questions about working with service-linked roles, start a new thread on the IAM forum or contact AWS Support.

– Ujjwal

Using AWS CodePipeline, AWS CodeBuild, and AWS Lambda for Serverless Automated UI Testing

Post Syndicated from Prakash Palanisamy original https://aws.amazon.com/blogs/devops/using-aws-codepipeline-aws-codebuild-and-aws-lambda-for-serverless-automated-ui-testing/

Testing the user interface of a web application is an important part of the development lifecycle. In this post, I’ll explain how to automate UI testing using serverless technologies, including AWS CodePipeline, AWS CodeBuild, and AWS Lambda.

I built a website for UI testing that is hosted in S3. I used Selenium to perform cross-browser UI testing on Chrome, Firefox, and PhantomJS, a headless WebKit browser with Ghost Driver, an implementation of the WebDriver Wire Protocol. I used Python to create test cases for ChromeDriver, FirefoxDriver, or PhatomJSDriver based the browser against which the test is being executed.

Resources referred to in this post, including the AWS CloudFormation template, test and status websites hosted in S3, AWS CodeBuild build specification files, AWS Lambda function, and the Python script that performs the test are available in the serverless-automated-ui-testing GitHub repository.

S3 Hosted Test Website:

AWS CodeBuild supports custom containers so we can use the Selenium/standalone-Firefox and Selenium/standalone-Chrome containers, which include prebuild Firefox and Chrome browsers, respectively. Xvfb performs the graphical operation in virtual memory without any display hardware. It will be installed in the CodeBuild containers during the install phase.

Build Spec for Chrome and Firefox

The build specification for Chrome and Firefox testing includes multiple phases:

  • The environment variables section contains a set of default variables that are overridden while creating the build project or triggering the build.
  • As part of install phase, required packages like Xvfb and Selenium are installed using yum.
  • During the pre_build phase, the test bed is prepared for test execution.
  • During the build phase, the appropriate DISPLAY is set and the tests are executed.
version: 0.2

env:
  variables:
    BROWSER: "chrome"
    WebURL: "https://sampletestweb.s3-eu-west-1.amazonaws.com/website/index.html"
    ArtifactBucket: "codebuild-demo-artifact-repository"
    MODULES: "mod1"
    ModuleTable: "test-modules"
    StatusTable: "blog-test-status"

phases:
  install:
    commands:
      - apt-get update
      - apt-get -y upgrade
      - apt-get install xvfb python python-pip build-essential -y
      - pip install --upgrade pip
      - pip install selenium
      - pip install awscli
      - pip install requests
      - pip install boto3
      - cp xvfb.init /etc/init.d/xvfb
      - chmod +x /etc/init.d/xvfb
      - update-rc.d xvfb defaults
      - service xvfb start
      - export PATH="$PATH:`pwd`/webdrivers"
  pre_build:
    commands:
      - python prepare_test.py
  build:
    commands:
      - export DISPLAY=:5
      - cd tests
      - echo "Executing simple test..."
      - python testsuite.py

Because Ghost Driver runs headless, it can be executed on AWS Lambda. In keeping with a fire-and-forget model, I used CodeBuild to create the PhantomJS Lambda function and trigger the test invocations on Lambda in parallel. This is powerful because many tests can be executed in parallel on Lambda.

Build Spec for PhantomJS

The build specification for PhantomJS testing also includes multiple phases. It is a little different from the preceding example because we are using AWS Lambda for the test execution.

  • The environment variables section contains a set of default variables that are overridden while creating the build project or triggering the build.
  • As part of install phase, the required packages like Selenium and the AWS CLI are installed using yum.
  • During the pre_build phase, the test bed is prepared for test execution.
  • During the build phase, a zip file that will be used to create the PhantomJS Lambda function is created and tests are executed on the Lambda function.
version: 0.2

env:
  variables:
    BROWSER: "phantomjs"
    WebURL: "https://sampletestweb.s3-eu-west-1.amazonaws.com/website/index.html"
    ArtifactBucket: "codebuild-demo-artifact-repository"
    MODULES: "mod1"
    ModuleTable: "test-modules"
    StatusTable: "blog-test-status"
    LambdaRole: "arn:aws:iam::account-id:role/role-name"

phases:
  install:
    commands:
      - apt-get update
      - apt-get -y upgrade
      - apt-get install python python-pip build-essential -y
      - apt-get install zip unzip -y
      - pip install --upgrade pip
      - pip install selenium
      - pip install awscli
      - pip install requests
      - pip install boto3
  pre_build:
    commands:
      - python prepare_test.py
  build:
    commands:
      - cd lambda_function
      - echo "Packaging Lambda Function..."
      - zip -r /tmp/lambda_function.zip ./*
      - func_name=`echo $CODEBUILD_BUILD_ID | awk -F ':' '{print $1}'`-phantomjs
      - echo "Creating Lambda Function..."
      - chmod 777 phantomjs
      - |
         func_list=`aws lambda list-functions | grep FunctionName | awk -F':' '{print $2}' | tr -d ', "'`
         if echo "$func_list" | grep -qw $func_name
         then
             echo "Lambda function already exists."
         else
             aws lambda create-function --function-name $func_name --runtime "python2.7" --role $LambdaRole --handler "testsuite.lambda_handler" --zip-file fileb:///tmp/lambda_function.zip --timeout 150 --memory-size 1024 --environment Variables="{WebURL=$WebURL, StatusTable=$StatusTable}" --tags Name=$func_name
         fi
      - export PhantomJSFunction=$func_name
      - cd ../tests/
      - python testsuite.py

The list of test cases and the test modules that belong to each case are stored in an Amazon DynamoDB table. Based on the list of modules passed as an argument to the CodeBuild project, CodeBuild gets the test cases from that table and executes them. The test execution status and results are stored in another Amazon DynamoDB table. It will read the test status from the status table in DynamoDB and display it.

AWS CodeBuild and AWS Lambda perform the test execution as individual tasks. AWS CodePipeline plays an important role here by enabling continuous delivery and parallel execution of tests for optimized testing.

Here’s how to do it:

In AWS CodePipeline, create a pipeline with four stages:

  • Source (AWS CodeCommit)
  • UI testing (AWS Lambda and AWS CodeBuild)
  • Approval (manual approval)
  • Production (AWS Lambda)

Pipeline stages, the actions in each stage, and transitions between stages are shown in the following diagram.

This design implemented in AWS CodePipeline looks like this:

CodePipeline automatically detects a change in the source repository and triggers the execution of the pipeline.

In the UITest stage, there are two parallel actions:

  • DeployTestWebsite invokes a Lambda function to deploy the test website in S3 as an S3 website.
  • DeployStatusPage invokes another Lambda function to deploy in parallel the status website in S3 as an S3 website.

Next, there are three parallel actions that trigger the CodeBuild project:

  • TestOnChrome launches a container to perform the Selenium tests on Chrome.
  • TestOnFirefox launches another container to perform the Selenium tests on Firefox.
  • TestOnPhantomJS creates a Lambda function and invokes individual Lambda functions per test case to execute the test cases in parallel.

You can monitor the status of the test execution on the status website, as shown here:

When the UI testing is completed successfully, the pipeline continues to an Approval stage in which a notification is sent to the configured SNS topic. The designated team member reviews the test status and approves or rejects the deployment. Upon approval, the pipeline continues to the Production stage, where it invokes a Lambda function and deploys the website to a production S3 bucket.

I used a CloudFormation template to set up my continuous delivery pipeline. The automated-ui-testing.yaml template, available from GitHub, sets up a full-featured pipeline.

When I use the template to create my pipeline, I specify the following:

  • AWS CodeCommit repository.
  • SNS topic to send approval notification.
  • S3 bucket name where the artifacts will be stored.

The stack name should follow the rules for S3 bucket naming because it will be part of the S3 bucket name.

When the stack is created successfully, the URLs for the test website and status website appear in the Outputs section, as shown here:

Conclusion

In this post, I showed how you can use AWS CodePipeline, AWS CodeBuild, AWS Lambda, and a manual approval process to create a continuous delivery pipeline for serverless automated UI testing. Websites running on Amazon EC2 instances or AWS Elastic Beanstalk can also be tested using similar approach.


About the author

Prakash Palanisamy is a Solutions Architect for Amazon Web Services. When he is not working on Serverless, DevOps or Alexa, he will be solving problems in Project Euler. He also enjoys watching educational documentaries.