Tag Archives: dp

Announcing the Winners of the AWS Chatbot Challenge – Conversational, Intelligent Chatbots using Amazon Lex and AWS Lambda

Post Syndicated from Tara Walker original https://aws.amazon.com/blogs/aws/announcing-the-winners-of-the-aws-chatbot-challenge-conversational-intelligent-chatbots-using-amazon-lex-and-aws-lambda/

A couple of months ago on the blog, I announced the AWS Chatbot Challenge in conjunction with Slack. The AWS Chatbot Challenge was an opportunity to build a unique chatbot that helped to solve a problem or that would add value for its prospective users. The mission was to build a conversational, natural language chatbot using Amazon Lex and leverage Lex’s integration with AWS Lambda to execute logic or data processing on the backend.

I know that you all have been anxiously waiting to hear announcements of who were the winners of the AWS Chatbot Challenge as much as I was. Well wait no longer, the winners of the AWS Chatbot Challenge have been decided.

May I have the Envelope Please? (The Trumpets sound)

The winners of the AWS Chatbot Challenge are:

  • First Place: BuildFax Counts by Joe Emison
  • Second Place: Hubsy by Andrew Riess, Andrew Puch, and John Wetzel
  • Third Place: PFMBot by Benny Leong and his team from MoneyLion.
  • Large Organization Winner: ADP Payroll Innovation Bot by Eric Liu, Jiaxing Yan, and Fan Yang

 

Diving into the Winning Chatbot Projects

Let’s take a walkthrough of the details for each of the winning projects to get a view of what made these chatbots distinctive, as well as, learn more about the technologies used to implement the chatbot solution.

 

BuildFax Counts by Joe Emison

The BuildFax Counts bot was created as a real solution for the BuildFax company to decrease the amount the time that sales and marketing teams can get answers on permits or properties with permits meet certain criteria.

BuildFax, a company co-founded by bot developer Joe Emison, has the only national database of building permits, which updates data from approximately half of the United States on a monthly basis. In order to accommodate the many requests that come in from the sales and marketing team regarding permit information, BuildFax has a technical sales support team that fulfills these requests sent to a ticketing system by manually writing SQL queries that run across the shards of the BuildFax databases. Since there are a large number of requests received by the internal sales support team and due to the manual nature of setting up the queries, it may take several days for getting the sales and marketing teams to receive an answer.

The BuildFax Counts chatbot solves this problem by taking the permit inquiry that would normally be sent into a ticket from the sales and marketing team, as input from Slack to the chatbot. Once the inquiry is submitted into Slack, a query executes and the inquiry results are returned immediately.

Joe built this solution by first creating a nightly export of the data in their BuildFax MySQL RDS database to CSV files that are stored in Amazon S3. From the exported CSV files, an Amazon Athena table was created in order to run quick and efficient queries on the data. He then used Amazon Lex to create a bot to handle the common questions and criteria that may be asked by the sales and marketing teams when seeking data from the BuildFax database by modeling the language used from the BuildFax ticketing system. He added several different sample utterances and slot types; both custom and Lex provided, in order to correctly parse every question and criteria combination that could be received from an inquiry.  Using Lambda, Joe created a Javascript Lambda function that receives information from the Lex intent and used it to build a SQL statement that runs against the aforementioned Athena database using the AWS SDK for JavaScript in Node.js library to return inquiry count result and SQL statement used.

The BuildFax Counts bot is used today for the BuildFax sales and marketing team to get back data on inquiries immediately that previously took up to a week to receive results.

Not only is BuildFax Counts bot our 1st place winner and wonderful solution, but its creator, Joe Emison, is a great guy.  Joe has opted to donate his prize; the $5,000 cash, the $2,500 in AWS Credits, and one re:Invent ticket to the Black Girls Code organization. I must say, you rock Joe for helping these kids get access and exposure to technology.

 

Hubsy by Andrew Riess, Andrew Puch, and John Wetzel

Hubsy bot was created to redefine and personalize the way users traditionally manage their HubSpot account. HubSpot is a SaaS system providing marketing, sales, and CRM software. Hubsy allows users of HubSpot to create engagements and log engagements with customers, provide sales teams with deals status, and retrieves client contact information quickly. Hubsy uses Amazon Lex’s conversational interface to execute commands from the HubSpot API so that users can gain insights, store and retrieve data, and manage tasks directly from Facebook, Slack, or Alexa.

In order to implement the Hubsy chatbot, Andrew and the team members used AWS Lambda to create a Lambda function with Node.js to parse the users request and call the HubSpot API, which will fulfill the initial request or return back to the user asking for more information. Terraform was used to automatically setup and update Lambda, CloudWatch logs, as well as, IAM profiles. Amazon Lex was used to build the conversational piece of the bot, which creates the utterances that a person on a sales team would likely say when seeking information from HubSpot. To integrate with Alexa, the Amazon Alexa skill builder was used to create an Alexa skill which was tested on an Echo Dot. Cloudwatch Logs are used to log the Lambda function information to CloudWatch in order to debug different parts of the Lex intents. In order to validate the code before the Terraform deployment, ESLint was additionally used to ensure the code was linted and proper development standards were followed.

 

PFMBot by Benny Leong and his team from MoneyLion

PFMBot, Personal Finance Management Bot,  is a bot to be used with the MoneyLion finance group which offers customers online financial products; loans, credit monitoring, and free credit score service to improve the financial health of their customers. Once a user signs up an account on the MoneyLion app or website, the user has the option to link their bank accounts with the MoneyLion APIs. Once the bank account is linked to the APIs, the user will be able to login to their MoneyLion account and start having a conversation with the PFMBot based on their bank account information.

The PFMBot UI has a web interface built with using Javascript integration. The chatbot was created using Amazon Lex to build utterances based on the possible inquiries about the user’s MoneyLion bank account. PFMBot uses the Lex built-in AMAZON slots and parsed and converted the values from the built-in slots to pass to AWS Lambda. The AWS Lambda functions interacting with Amazon Lex are Java-based Lambda functions which call the MoneyLion Java-based internal APIs running on Spring Boot. These APIs obtain account data and related bank account information from the MoneyLion MySQL Database.

 

ADP Payroll Innovation Bot by Eric Liu, Jiaxing Yan, and Fan Yang

ADP PI (Payroll Innovation) bot is designed to help employees of ADP customers easily review their own payroll details and compare different payroll data by just asking the bot for results. The ADP PI Bot additionally offers issue reporting functionality for employees to report payroll issues and aids HR managers in quickly receiving and organizing any reported payroll issues.

The ADP Payroll Innovation bot is an ecosystem for the ADP payroll consisting of two chatbots, which includes ADP PI Bot for external clients (employees and HR managers), and ADP PI DevOps Bot for internal ADP DevOps team.


The architecture for the ADP PI DevOps bot is different architecture from the ADP PI bot shown above as it is deployed internally to ADP. The ADP PI DevOps bot allows input from both Slack and Alexa. When input comes into Slack, Slack sends the request to Lex for it to process the utterance. Lex then calls the Lambda backend, which obtains ADP data sitting in the ADP VPC running within an Amazon VPC. When input comes in from Alexa, a Lambda function is called that also obtains data from the ADP VPC running on AWS.

The architecture for the ADP PI bot consists of users entering in requests and/or entering issues via Slack. When requests/issues are entered via Slack, the Slack APIs communicate via Amazon API Gateway to AWS Lambda. The Lambda function either writes data into one of the Amazon DynamoDB databases for recording issues and/or sending issues or it sends the request to Lex. When sending issues, DynamoDB integrates with Trello to keep HR Managers abreast of the escalated issues. Once the request data is sent from Lambda to Lex, Lex processes the utterance and calls another Lambda function that integrates with the ADP API and it calls ADP data from within the ADP VPC, which runs on Amazon Virtual Private Cloud (VPC).

Python and Node.js were the chosen languages for the development of the bots.

The ADP PI bot ecosystem has the following functional groupings:

Employee Functionality

  • Summarize Payrolls
  • Compare Payrolls
  • Escalate Issues
  • Evolve PI Bot

HR Manager Functionality

  • Bot Management
  • Audit and Feedback

DevOps Functionality

  • Reduce call volume in service centers (ADP PI Bot).
  • Track issues and generate reports (ADP PI Bot).
  • Monitor jobs for various environment (ADP PI DevOps Bot)
  • View job dashboards (ADP PI DevOps Bot)
  • Query job details (ADP PI DevOps Bot)

 

Summary

Let’s all wish all the winners of the AWS Chatbot Challenge hearty congratulations on their excellent projects.

You can review more details on the winning projects, as well as, all of the submissions to the AWS Chatbot Challenge at: https://awschatbot2017.devpost.com/submissions. If you are curious on the details of Chatbot challenge contest including resources, rules, prizes, and judges, you can review the original challenge website here:  https://awschatbot2017.devpost.com/.

Hopefully, you are just as inspired as I am to build your own chatbot using Lex and Lambda. For more information, take a look at the Amazon Lex developer guide or the AWS AI blog on Building Better Bots Using Amazon Lex (Part 1)

Chat with you soon!

Tara

Announcement: IPS code

Post Syndicated from Robert Graham original http://blog.erratasec.com/2017/08/announcement-ips-code.html

So after 20 years, IBM is killing off my BlackICE code created in April 1998. So it’s time that I rewrite it.

BlackICE was the first “inline” intrusion-detection system, aka. an “intrusion prevention system” or IPS. ISS purchased my company in 2001 and replaced their RealSecure engine with it, and later renamed it Proventia. Then IBM purchased ISS in 2006. Now, they are formally canceling the project and moving customers onto Cisco’s products, which are based on Snort.

So now is a good time to write a replacement. The reason is that BlackICE worked fundamentally differently than Snort, using protocol analysis rather than pattern-matching. In this way, it worked more like Bro than Snort. The biggest benefit of protocol-analysis is speed, making it many times faster than Snort. The second benefit is better detection ability, as I describe in this post on Heartbleed.

So my plan is to create a new project. I’ll be checking in the starter bits into GitHub starting a couple weeks from now. I need to figure out a new name for the project, so I don’t have to rip off a name from William Gibson like I did last time :).

Some notes:

  • Yes, it’ll be GNU open source. I’m a capitalist, so I’ll earn money like snort/nmap dual-licensing it, charging companies who don’t want to open-source their addons. All capitalists GNU license their code.
  • C, not Rust. Sorry, I’m going for extreme scalability. We’ll re-visit this decision later when looking at building protocol parsers.
  • It’ll be 95% compatible with Snort signatures. Their language definition leaves so much ambiguous it’ll be hard to be 100% compatible.
  • It’ll support Snort output as well, though really, Snort’s events suck.
  • Protocol parsers in Lua, so you can use it as a replacement for Bro, writing parsers to extract data you are interested in.
  • Protocol state machine parsers in C, like you see in my Masscan project for X.509.
  • First version IDS only. These days, “inline” means also being able to MitM the SSL stack, so I’m gong to have to think harder on that.
  • Mutli-core worker threads off PF_RING/DPDK/netmap receive queues. Should handle 10gbps, tracking 10 million concurrent connections, with quad-core CPU.
So if you want to contribute to the project, here’s what I need:
  • Requirements from people who work daily with IDS/IPS today. I need you to write up what your products do well that you really like. I need to you write up what they suck at that needs to be fixed. These need to be in some detail.
  • Testing environment to play with. This means having a small server plugged into a real-world link running at a minimum of several gigabits-per-second available for the next year. I’ll sign NDAs related to the data I might see on the network.
  • Coders. I’ll be doing the basic architecture, but protocol parsers, output plugins, etc. will need work. Code will be in C and Lua for the near term. Unfortunately, since I’m going to dual-license, I’ll need waivers before accepting pull requests.
Anyway, follow me on Twitter @erratarob if you want to contribute.

Analyzing AWS Cost and Usage Reports with Looker and Amazon Athena

Post Syndicated from Dillon Morrison original https://aws.amazon.com/blogs/big-data/analyzing-aws-cost-and-usage-reports-with-looker-and-amazon-athena/

This is a guest post by Dillon Morrison at Looker. Looker is, in their own words, “a new kind of analytics platform–letting everyone in your business make better decisions by getting reliable answers from a tool they can use.” 

As the breadth of AWS products and services continues to grow, customers are able to more easily move their technology stack and core infrastructure to AWS. One of the attractive benefits of AWS is the cost savings. Rather than paying upfront capital expenses for large on-premises systems, customers can instead pay variables expenses for on-demand services. To further reduce expenses AWS users can reserve resources for specific periods of time, and automatically scale resources as needed.

The AWS Cost Explorer is great for aggregated reporting. However, conducting analysis on the raw data using the flexibility and power of SQL allows for much richer detail and insight, and can be the better choice for the long term. Thankfully, with the introduction of Amazon Athena, monitoring and managing these costs is now easier than ever.

In the post, I walk through setting up the data pipeline for cost and usage reports, Amazon S3, and Athena, and discuss some of the most common levers for cost savings. I surface tables through Looker, which comes with a host of pre-built data models and dashboards to make analysis of your cost and usage data simple and intuitive.

Analysis with Athena

With Athena, there’s no need to create hundreds of Excel reports, move data around, or deploy clusters to house and process data. Athena uses Apache Hive’s DDL to create tables, and the Presto querying engine to process queries. Analysis can be performed directly on raw data in S3. Conveniently, AWS exports raw cost and usage data directly into a user-specified S3 bucket, making it simple to start querying with Athena quickly. This makes continuous monitoring of costs virtually seamless, since there is no infrastructure to manage. Instead, users can leverage the power of the Athena SQL engine to easily perform ad-hoc analysis and data discovery without needing to set up a data warehouse.

After the data pipeline is established, cost and usage data (the recommended billing data, per AWS documentation) provides a plethora of comprehensive information around usage of AWS services and the associated costs. Whether you need the report segmented by product type, user identity, or region, this report can be cut-and-sliced any number of ways to properly allocate costs for any of your business needs. You can then drill into any specific line item to see even further detail, such as the selected operating system, tenancy, purchase option (on-demand, spot, or reserved), and so on.

Walkthrough

By default, the Cost and Usage report exports CSV files, which you can compress using gzip (recommended for performance). There are some additional configuration options for tuning performance further, which are discussed below.

Prerequisites

If you want to follow along, you need the following resources:

Enable the cost and usage reports

First, enable the Cost and Usage report. For Time unit, select Hourly. For Include, select Resource IDs. All options are prompted in the report-creation window.

The Cost and Usage report dumps CSV files into the specified S3 bucket. Please note that it can take up to 24 hours for the first file to be delivered after enabling the report.

Configure the S3 bucket and files for Athena querying

In addition to the CSV file, AWS also creates a JSON manifest file for each cost and usage report. Athena requires that all of the files in the S3 bucket are in the same format, so we need to get rid of all these manifest files. If you’re looking to get started with Athena quickly, you can simply go into your S3 bucket and delete the manifest file manually, skip the automation described below, and move on to the next section.

To automate the process of removing the manifest file each time a new report is dumped into S3, which I recommend as you scale, there are a few additional steps. The folks at Concurrency labs wrote a great overview and set of scripts for this, which you can find in their GitHub repo.

These scripts take the data from an input bucket, remove anything unnecessary, and dump it into a new output bucket. We can utilize AWS Lambda to trigger this process whenever new data is dropped into S3, or on a nightly basis, or whatever makes most sense for your use-case, depending on how often you’re querying the data. Please note that enabling the “hourly” report means that data is reported at the hour-level of granularity, not that a new file is generated every hour.

Following these scripts, you’ll notice that we’re adding a date partition field, which isn’t necessary but improves query performance. In addition, converting data from CSV to a columnar format like ORC or Parquet also improves performance. We can automate this process using Lambda whenever new data is dropped in our S3 bucket. Amazon Web Services discusses columnar conversion at length, and provides walkthrough examples, in their documentation.

As a long-term solution, best practice is to use compression, partitioning, and conversion. However, for purposes of this walkthrough, we’re not going to worry about them so we can get up-and-running quicker.

Set up the Athena query engine

In your AWS console, navigate to the Athena service, and click “Get Started”. Follow the tutorial and set up a new database (we’ve called ours “AWS Optimizer” in this example). Don’t worry about configuring your initial table, per the tutorial instructions. We’ll be creating a new table for cost and usage analysis. Once you walked through the tutorial steps, you’ll be able to access the Athena interface, and can begin running Hive DDL statements to create new tables.

One thing that’s important to note, is that the Cost and Usage CSVs also contain the column headers in their first row, meaning that the column headers would be included in the dataset and any queries. For testing and quick set-up, you can remove this line manually from your first few CSV files. Long-term, you’ll want to use a script to programmatically remove this row each time a new file is dropped in S3 (every few hours typically). We’ve drafted up a sample script for ease of reference, which we run on Lambda. We utilize Lambda’s native ability to invoke the script whenever a new object is dropped in S3.

For cost and usage, we recommend using the DDL statement below. Since our data is in CSV format, we don’t need to use a SerDe, we can simply specify the “separatorChar, quoteChar, and escapeChar”, and the structure of the files (“TEXTFILE”). Note that AWS does have an OpenCSV SerDe as well, if you prefer to use that.

 

CREATE EXTERNAL TABLE IF NOT EXISTS cost_and_usage	 (
identity_LineItemId String,
identity_TimeInterval String,
bill_InvoiceId String,
bill_BillingEntity String,
bill_BillType String,
bill_PayerAccountId String,
bill_BillingPeriodStartDate String,
bill_BillingPeriodEndDate String,
lineItem_UsageAccountId String,
lineItem_LineItemType String,
lineItem_UsageStartDate String,
lineItem_UsageEndDate String,
lineItem_ProductCode String,
lineItem_UsageType String,
lineItem_Operation String,
lineItem_AvailabilityZone String,
lineItem_ResourceId String,
lineItem_UsageAmount String,
lineItem_NormalizationFactor String,
lineItem_NormalizedUsageAmount String,
lineItem_CurrencyCode String,
lineItem_UnblendedRate String,
lineItem_UnblendedCost String,
lineItem_BlendedRate String,
lineItem_BlendedCost String,
lineItem_LineItemDescription String,
lineItem_TaxType String,
product_ProductName String,
product_accountAssistance String,
product_architecturalReview String,
product_architectureSupport String,
product_availability String,
product_bestPractices String,
product_cacheEngine String,
product_caseSeverityresponseTimes String,
product_clockSpeed String,
product_currentGeneration String,
product_customerServiceAndCommunities String,
product_databaseEdition String,
product_databaseEngine String,
product_dedicatedEbsThroughput String,
product_deploymentOption String,
product_description String,
product_durability String,
product_ebsOptimized String,
product_ecu String,
product_endpointType String,
product_engineCode String,
product_enhancedNetworkingSupported String,
product_executionFrequency String,
product_executionLocation String,
product_feeCode String,
product_feeDescription String,
product_freeQueryTypes String,
product_freeTrial String,
product_frequencyMode String,
product_fromLocation String,
product_fromLocationType String,
product_group String,
product_groupDescription String,
product_includedServices String,
product_instanceFamily String,
product_instanceType String,
product_io String,
product_launchSupport String,
product_licenseModel String,
product_location String,
product_locationType String,
product_maxIopsBurstPerformance String,
product_maxIopsvolume String,
product_maxThroughputvolume String,
product_maxVolumeSize String,
product_maximumStorageVolume String,
product_memory String,
product_messageDeliveryFrequency String,
product_messageDeliveryOrder String,
product_minVolumeSize String,
product_minimumStorageVolume String,
product_networkPerformance String,
product_operatingSystem String,
product_operation String,
product_operationsSupport String,
product_physicalProcessor String,
product_preInstalledSw String,
product_proactiveGuidance String,
product_processorArchitecture String,
product_processorFeatures String,
product_productFamily String,
product_programmaticCaseManagement String,
product_provisioned String,
product_queueType String,
product_requestDescription String,
product_requestType String,
product_routingTarget String,
product_routingType String,
product_servicecode String,
product_sku String,
product_softwareType String,
product_storage String,
product_storageClass String,
product_storageMedia String,
product_technicalSupport String,
product_tenancy String,
product_thirdpartySoftwareSupport String,
product_toLocation String,
product_toLocationType String,
product_training String,
product_transferType String,
product_usageFamily String,
product_usagetype String,
product_vcpu String,
product_version String,
product_volumeType String,
product_whoCanOpenCases String,
pricing_LeaseContractLength String,
pricing_OfferingClass String,
pricing_PurchaseOption String,
pricing_publicOnDemandCost String,
pricing_publicOnDemandRate String,
pricing_term String,
pricing_unit String,
reservation_AvailabilityZone String,
reservation_NormalizedUnitsPerReservation String,
reservation_NumberOfReservations String,
reservation_ReservationARN String,
reservation_TotalReservedNormalizedUnits String,
reservation_TotalReservedUnits String,
reservation_UnitsPerReservation String,
resourceTags_userName String,
resourceTags_usercostcategory String  


)
    ROW FORMAT DELIMITED
      FIELDS TERMINATED BY ','
      ESCAPED BY '\\'
      LINES TERMINATED BY '\n'

STORED AS TEXTFILE
    LOCATION 's3://<<your bucket name>>';

Once you’ve successfully executed the command, you should see a new table named “cost_and_usage” with the below properties. Now we’re ready to start executing queries and running analysis!

Start with Looker and connect to Athena

Setting up Looker is a quick process, and you can try it out for free here (or download from Amazon Marketplace). It takes just a few seconds to connect Looker to your Athena database, and Looker comes with a host of pre-built data models and dashboards to make analysis of your cost and usage data simple and intuitive. After you’re connected, you can use the Looker UI to run whatever analysis you’d like. Looker translates this UI to optimized SQL, so any user can execute and visualize queries for true self-service analytics.

Major cost saving levers

Now that the data pipeline is configured, you can dive into the most popular use cases for cost savings. In this post, I focus on:

  • Purchasing Reserved Instances vs. On-Demand Instances
  • Data transfer costs
  • Allocating costs over users or other Attributes (denoted with resource tags)

On-Demand, Spot, and Reserved Instances

Purchasing Reserved Instances vs On-Demand Instances is arguably going to be the biggest cost lever for heavy AWS users (Reserved Instances run up to 75% cheaper!). AWS offers three options for purchasing instances:

  • On-Demand—Pay as you use.
  • Spot (variable cost)—Bid on spare Amazon EC2 computing capacity.
  • Reserved Instances—Pay for an instance for a specific, allotted period of time.

When purchasing a Reserved Instance, you can also choose to pay all-upfront, partial-upfront, or monthly. The more you pay upfront, the greater the discount.

If your company has been using AWS for some time now, you should have a good sense of your overall instance usage on a per-month or per-day basis. Rather than paying for these instances On-Demand, you should try to forecast the number of instances you’ll need, and reserve them with upfront payments.

The total amount of usage with Reserved Instances versus overall usage with all instances is called your coverage ratio. It’s important not to confuse your coverage ratio with your Reserved Instance utilization. Utilization represents the amount of reserved hours that were actually used. Don’t worry about exceeding capacity, you can still set up Auto Scaling preferences so that more instances get added whenever your coverage or utilization crosses a certain threshold (we often see a target of 80% for both coverage and utilization among savvy customers).

Calculating the reserved costs and coverage can be a bit tricky with the level of granularity provided by the cost and usage report. The following query shows your total cost over the last 6 months, broken out by Reserved Instance vs other instance usage. You can substitute the cost field for usage if you’d prefer. Please note that you should only have data for the time period after the cost and usage report has been enabled (though you can opt for up to 3 months of historical data by contacting your AWS Account Executive). If you’re just getting started, this query will only show a few days.

 

SELECT 
	DATE_FORMAT(from_iso8601_timestamp(cost_and_usage.lineitem_usagestartdate),'%Y-%m') AS "cost_and_usage.usage_start_month",
	COALESCE(SUM(cost_and_usage.lineitem_unblendedcost ), 0) AS "cost_and_usage.total_unblended_cost",
	COALESCE(SUM(CASE WHEN (CASE
         WHEN cost_and_usage.lineitem_lineitemtype = 'DiscountedUsage' THEN 'RI Line Item'
         WHEN cost_and_usage.lineitem_lineitemtype = 'RIFee' THEN 'RI Line Item'
         WHEN cost_and_usage.lineitem_lineitemtype = 'Fee' THEN 'RI Line Item'
         ELSE 'Non RI Line Item'
        END = 'RI Line Item') THEN cost_and_usage.lineitem_unblendedcost  ELSE NULL END), 0) AS "cost_and_usage.total_reserved_unblended_cost",
	1.0 * (COALESCE(SUM(CASE WHEN (CASE
         WHEN cost_and_usage.lineitem_lineitemtype = 'DiscountedUsage' THEN 'RI Line Item'
         WHEN cost_and_usage.lineitem_lineitemtype = 'RIFee' THEN 'RI Line Item'
         WHEN cost_and_usage.lineitem_lineitemtype = 'Fee' THEN 'RI Line Item'
         ELSE 'Non RI Line Item'
        END = 'RI Line Item') THEN cost_and_usage.lineitem_unblendedcost  ELSE NULL END), 0)) / NULLIF((COALESCE(SUM(cost_and_usage.lineitem_unblendedcost ), 0)),0)  AS "cost_and_usage.percent_spend_on_ris",
	COALESCE(SUM(CASE WHEN (CASE
         WHEN cost_and_usage.lineitem_lineitemtype = 'DiscountedUsage' THEN 'RI Line Item'
         WHEN cost_and_usage.lineitem_lineitemtype = 'RIFee' THEN 'RI Line Item'
         WHEN cost_and_usage.lineitem_lineitemtype = 'Fee' THEN 'RI Line Item'
         ELSE 'Non RI Line Item'
        END = 'Non RI Line Item') THEN cost_and_usage.lineitem_unblendedcost  ELSE NULL END), 0) AS "cost_and_usage.total_non_reserved_unblended_cost",
	1.0 * (COALESCE(SUM(CASE WHEN (CASE
         WHEN cost_and_usage.lineitem_lineitemtype = 'DiscountedUsage' THEN 'RI Line Item'
         WHEN cost_and_usage.lineitem_lineitemtype = 'RIFee' THEN 'RI Line Item'
         WHEN cost_and_usage.lineitem_lineitemtype = 'Fee' THEN 'RI Line Item'
         ELSE 'Non RI Line Item'
        END = 'Non RI Line Item') THEN cost_and_usage.lineitem_unblendedcost  ELSE NULL END), 0)) / NULLIF((COALESCE(SUM(cost_and_usage.lineitem_unblendedcost ), 0)),0)  AS "cost_and_usage.percent_spend_on_non_ris"
FROM aws_optimizer.cost_and_usage  AS cost_and_usage

WHERE 
	(((from_iso8601_timestamp(cost_and_usage.lineitem_usagestartdate)) >= ((DATE_ADD('month', -5, DATE_TRUNC('MONTH', CAST(NOW() AS DATE))))) AND (from_iso8601_timestamp(cost_and_usage.lineitem_usagestartdate)) < ((DATE_ADD('month', 6, DATE_ADD('month', -5, DATE_TRUNC('MONTH', CAST(NOW() AS DATE))))))))
GROUP BY 1
ORDER BY 2 DESC
LIMIT 500

The resulting table should look something like the image below (I’m surfacing tables through Looker, though the same table would result from querying via command line or any other interface).

With a BI tool, you can create dashboards for easy reference and monitoring. New data is dumped into S3 every few hours, so your dashboards can update several times per day.

It’s an iterative process to understand the appropriate number of Reserved Instances needed to meet your business needs. After you’ve properly integrated Reserved Instances into your purchasing patterns, the savings can be significant. If your coverage is consistently below 70%, you should seriously consider adjusting your purchase types and opting for more Reserved instances.

Data transfer costs

One of the great things about AWS data storage is that it’s incredibly cheap. Most charges often come from moving and processing that data. There are several different prices for transferring data, broken out largely by transfers between regions and availability zones. Transfers between regions are the most costly, followed by transfers between Availability Zones. Transfers within the same region and same availability zone are free unless using elastic or public IP addresses, in which case there is a cost. You can find more detailed information in the AWS Pricing Docs. With this in mind, there are several simple strategies for helping reduce costs.

First, since costs increase when transferring data between regions, it’s wise to ensure that as many services as possible reside within the same region. The more you can localize services to one specific region, the lower your costs will be.

Second, you should maximize the data you’re routing directly within AWS services and IP addresses. Transfers out to the open internet are the most costly and least performant mechanisms of data transfers, so it’s best to keep transfers within AWS services.

Lastly, data transfers between private IP addresses are cheaper than between elastic or public IP addresses, so utilizing private IP addresses as much as possible is the most cost-effective strategy.

The following query provides a table depicting the total costs for each AWS product, broken out transfer cost type. Substitute the “lineitem_productcode” field in the query to segment the costs by any other attribute. If you notice any unusually high spikes in cost, you’ll need to dig deeper to understand what’s driving that spike: location, volume, and so on. Drill down into specific costs by including “product_usagetype” and “product_transfertype” in your query to identify the types of transfer costs that are driving up your bill.

SELECT 
	cost_and_usage.lineitem_productcode  AS "cost_and_usage.product_code",
	COALESCE(SUM(cost_and_usage.lineitem_unblendedcost), 0) AS "cost_and_usage.total_unblended_cost",
	COALESCE(SUM(CASE WHEN REGEXP_LIKE(cost_and_usage.product_usagetype, 'DataTransfer')    THEN cost_and_usage.lineitem_unblendedcost  ELSE NULL END), 0) AS "cost_and_usage.total_data_transfer_cost",
	COALESCE(SUM(CASE WHEN REGEXP_LIKE(cost_and_usage.product_usagetype, 'DataTransfer-In')    THEN cost_and_usage.lineitem_unblendedcost  ELSE NULL END), 0) AS "cost_and_usage.total_inbound_data_transfer_cost",
	COALESCE(SUM(CASE WHEN REGEXP_LIKE(cost_and_usage.product_usagetype, 'DataTransfer-Out')    THEN cost_and_usage.lineitem_unblendedcost  ELSE NULL END), 0) AS "cost_and_usage.total_outbound_data_transfer_cost"
FROM aws_optimizer.cost_and_usage  AS cost_and_usage

WHERE 
	(((from_iso8601_timestamp(cost_and_usage.lineitem_usagestartdate)) >= ((DATE_ADD('month', -5, DATE_TRUNC('MONTH', CAST(NOW() AS DATE))))) AND (from_iso8601_timestamp(cost_and_usage.lineitem_usagestartdate)) < ((DATE_ADD('month', 6, DATE_ADD('month', -5, DATE_TRUNC('MONTH', CAST(NOW() AS DATE))))))))
GROUP BY 1
ORDER BY 2 DESC
LIMIT 500

When moving between regions or over the open web, many data transfer costs also include the origin and destination location of the data movement. Using a BI tool with mapping capabilities, you can get a nice visual of data flows. The point at the center of the map is used to represent external data flows over the open internet.

Analysis by tags

AWS provides the option to apply custom tags to individual resources, so you can allocate costs over whatever customized segment makes the most sense for your business. For a SaaS company that hosts software for customers on AWS, maybe you’d want to tag the size of each customer. The following query uses custom tags to display the reserved, data transfer, and total cost for each AWS service, broken out by tag categories, over the last 6 months. You’ll want to substitute the cost_and_usage.resourcetags_customersegment and cost_and_usage.customer_segment with the name of your customer field.

 

SELECT * FROM (
SELECT *, DENSE_RANK() OVER (ORDER BY z___min_rank) as z___pivot_row_rank, RANK() OVER (PARTITION BY z__pivot_col_rank ORDER BY z___min_rank) as z__pivot_col_ordering FROM (
SELECT *, MIN(z___rank) OVER (PARTITION BY "cost_and_usage.product_code") as z___min_rank FROM (
SELECT *, RANK() OVER (ORDER BY CASE WHEN z__pivot_col_rank=1 THEN (CASE WHEN "cost_and_usage.total_unblended_cost" IS NOT NULL THEN 0 ELSE 1 END) ELSE 2 END, CASE WHEN z__pivot_col_rank=1 THEN "cost_and_usage.total_unblended_cost" ELSE NULL END DESC, "cost_and_usage.total_unblended_cost" DESC, z__pivot_col_rank, "cost_and_usage.product_code") AS z___rank FROM (
SELECT *, DENSE_RANK() OVER (ORDER BY CASE WHEN "cost_and_usage.customer_segment" IS NULL THEN 1 ELSE 0 END, "cost_and_usage.customer_segment") AS z__pivot_col_rank FROM (
SELECT 
	cost_and_usage.lineitem_productcode  AS "cost_and_usage.product_code",
	cost_and_usage.resourcetags_customersegment  AS "cost_and_usage.customer_segment",
	COALESCE(SUM(cost_and_usage.lineitem_unblendedcost ), 0) AS "cost_and_usage.total_unblended_cost",
	1.0 * (COALESCE(SUM(CASE WHEN REGEXP_LIKE(cost_and_usage.product_usagetype, 'DataTransfer')    THEN cost_and_usage.lineitem_unblendedcost  ELSE NULL END), 0)) / NULLIF((COALESCE(SUM(cost_and_usage.lineitem_unblendedcost ), 0)),0)  AS "cost_and_usage.percent_spend_data_transfers_unblended",
	1.0 * (COALESCE(SUM(CASE WHEN (CASE
         WHEN cost_and_usage.lineitem_lineitemtype = 'DiscountedUsage' THEN 'RI Line Item'
         WHEN cost_and_usage.lineitem_lineitemtype = 'RIFee' THEN 'RI Line Item'
         WHEN cost_and_usage.lineitem_lineitemtype = 'Fee' THEN 'RI Line Item'
         ELSE 'Non RI Line Item'
        END = 'Non RI Line Item') THEN cost_and_usage.lineitem_unblendedcost  ELSE NULL END), 0)) / NULLIF((COALESCE(SUM(cost_and_usage.lineitem_unblendedcost ), 0)),0)  AS "cost_and_usage.unblended_percent_spend_on_ris"
FROM aws_optimizer.cost_and_usage_raw  AS cost_and_usage

WHERE 
	(((from_iso8601_timestamp(cost_and_usage.lineitem_usagestartdate)) >= ((DATE_ADD('month', -5, DATE_TRUNC('MONTH', CAST(NOW() AS DATE))))) AND (from_iso8601_timestamp(cost_and_usage.lineitem_usagestartdate)) < ((DATE_ADD('month', 6, DATE_ADD('month', -5, DATE_TRUNC('MONTH', CAST(NOW() AS DATE))))))))
GROUP BY 1,2) ww
) bb WHERE z__pivot_col_rank <= 16384
) aa
) xx
) zz
 WHERE z___pivot_row_rank <= 500 OR z__pivot_col_ordering = 1 ORDER BY z___pivot_row_rank

The resulting table in this example looks like the results below. In this example, you can tell that we’re making poor use of Reserved Instances because they represent such a small portion of our overall costs.

Again, using a BI tool to visualize these costs and trends over time makes the analysis much easier to consume and take action on.

Summary

Saving costs on your AWS spend is always an iterative, ongoing process. Hopefully with these queries alone, you can start to understand your spending patterns and identify opportunities for savings. However, this is just a peek into the many opportunities available through analysis of the Cost and Usage report. Each company is different, with unique needs and usage patterns. To achieve maximum cost savings, we encourage you to set up an analytics environment that enables your team to explore all potential cuts and slices of your usage data, whenever it’s necessary. Exploring different trends and spikes across regions, services, user types, etc. helps you gain comprehensive understanding of your major cost levers and consistently implement new cost reduction strategies.

Note that all of the queries and analysis provided in this post were generated using the Looker data platform. If you’re already a Looker customer, you can get all of this analysis, additional pre-configured dashboards, and much more using Looker Blocks for AWS.


About the Author

Dillon Morrison leads the Platform Ecosystem at Looker. He enjoys exploring new technologies and architecting the most efficient data solutions for the business needs of his company and their customers. In his spare time, you’ll find Dillon rock climbing in the Bay Area or nose deep in the docs of the latest AWS product release at his favorite cafe (“Arlequin in SF is unbeatable!”).

 

 

 

Raspbian Stretch has arrived for Raspberry Pi

Post Syndicated from Simon Long original https://www.raspberrypi.org/blog/raspbian-stretch/

It’s now just under two years since we released the Jessie version of Raspbian. Those of you who know that Debian run their releases on a two-year cycle will therefore have been wondering when we might be releasing the next version, codenamed Stretch. Well, wonder no longer – Raspbian Stretch is available for download today!

Disney Pixar Toy Story Raspbian Stretch Raspberry Pi

Debian releases are named after characters from Disney Pixar’s Toy Story trilogy. In case, like me, you were wondering: Stretch is a purple octopus from Toy Story 3. Hi, Stretch!

The differences between Jessie and Stretch are mostly under-the-hood optimisations, and you really shouldn’t notice any differences in day-to-day use of the desktop and applications. (If you’re really interested, the technical details are in the Debian release notes here.)

However, we’ve made a few small changes to our image that are worth mentioning.

New versions of applications

Version 3.0.1 of Sonic Pi is included – this includes a lot of new functionality in terms of input/output. See the Sonic Pi release notes for more details of exactly what has changed.

Raspbian Stretch Raspberry Pi

The Chromium web browser has been updated to version 60, the most recent stable release. This offers improved memory usage and more efficient code, so you may notice it running slightly faster than before. The visual appearance has also been changed very slightly.

Raspbian Stretch Raspberry Pi

Bluetooth audio

In Jessie, we used PulseAudio to provide support for audio over Bluetooth, but integrating this with the ALSA architecture used for other audio sources was clumsy. For Stretch, we are using the bluez-alsa package to make Bluetooth audio work with ALSA itself. PulseAudio is therefore no longer installed by default, and the volume plugin on the taskbar will no longer start and stop PulseAudio. From a user point of view, everything should still work exactly as before – the only change is that if you still wish to use PulseAudio for some other reason, you will need to install it yourself.

Better handling of other usernames

The default user account in Raspbian has always been called ‘pi’, and a lot of the desktop applications assume that this is the current user. This has been changed for Stretch, so now applications like Raspberry Pi Configuration no longer assume this to be the case. This means, for example, that the option to automatically log in as the ‘pi’ user will now automatically log in with the name of the current user instead.

One other change is how sudo is handled. By default, the ‘pi’ user is set up with passwordless sudo access. We are no longer assuming this to be the case, so now desktop applications which require sudo access will prompt for the password rather than simply failing to work if a user without passwordless sudo uses them.

Scratch 2 SenseHAT extension

In the last Jessie release, we added the offline version of Scratch 2. While Scratch 2 itself hasn’t changed for this release, we have added a new extension to allow the SenseHAT to be used with Scratch 2. Look under ‘More Blocks’ and choose ‘Add an Extension’ to load the extension.

This works with either a physical SenseHAT or with the SenseHAT emulator. If a SenseHAT is connected, the extension will control that in preference to the emulator.

Raspbian Stretch Raspberry Pi

Fix for Broadpwn exploit

A couple of months ago, a vulnerability was discovered in the firmware of the BCM43xx wireless chipset which is used on Pi 3 and Pi Zero W; this potentially allows an attacker to take over the chip and execute code on it. The Stretch release includes a patch that addresses this vulnerability.

There is also the usual set of minor bug fixes and UI improvements – I’ll leave you to spot those!

How to get Raspbian Stretch

As this is a major version upgrade, we recommend using a clean image; these are available from the Downloads page on our site as usual.

Upgrading an existing Jessie image is possible, but is not guaranteed to work in every circumstance. If you wish to try upgrading a Jessie image to Stretch, we strongly recommend taking a backup first – we can accept no responsibility for loss of data from a failed update.

To upgrade, first modify the files /etc/apt/sources.list and /etc/apt/sources.list.d/raspi.list. In both files, change every occurrence of the word ‘jessie’ to ‘stretch’. (Both files will require sudo to edit.)

Then open a terminal window and execute

sudo apt-get update
sudo apt-get -y dist-upgrade

Answer ‘yes’ to any prompts. There may also be a point at which the install pauses while a page of information is shown on the screen – hold the ‘space’ key to scroll through all of this and then hit ‘q’ to continue.

Finally, if you are not using PulseAudio for anything other than Bluetooth audio, remove it from the image by entering

sudo apt-get -y purge pulseaudio*

The post Raspbian Stretch has arrived for Raspberry Pi appeared first on Raspberry Pi.

New – VPC Endpoints for DynamoDB

Post Syndicated from Randall Hunt original https://aws.amazon.com/blogs/aws/new-vpc-endpoints-for-dynamodb/

Starting today Amazon Virtual Private Cloud (VPC) Endpoints for Amazon DynamoDB are available in all public AWS regions. You can provision an endpoint right away using the AWS Management Console or the AWS Command Line Interface (CLI). There are no additional costs for a VPC Endpoint for DynamoDB.

Many AWS customers run their applications within a Amazon Virtual Private Cloud (VPC) for security or isolation reasons. Previously, if you wanted your EC2 instances in your VPC to be able to access DynamoDB, you had two options. You could use an Internet Gateway (with a NAT Gateway or assigning your instances public IPs) or you could route all of your traffic to your local infrastructure via VPN or AWS Direct Connect and then back to DynamoDB. Both of these solutions had security and throughput implications and it could be difficult to configure NACLs or security groups to restrict access to just DynamoDB. Here is a picture of the old infrastructure.

Creating an Endpoint

Let’s create a VPC Endpoint for DynamoDB. We can make sure our region supports the endpoint with the DescribeVpcEndpointServices API call.


aws ec2 describe-vpc-endpoint-services --region us-east-1
{
    "ServiceNames": [
        "com.amazonaws.us-east-1.dynamodb",
        "com.amazonaws.us-east-1.s3"
    ]
}

Great, so I know my region supports these endpoints and I know what my regional endpoint is. I can grab one of my VPCs and provision an endpoint with a quick call to the CLI or through the console. Let me show you how to use the console.

First I’ll navigate to the VPC console and select “Endpoints” in the sidebar. From there I’ll click “Create Endpoint” which brings me to this handy console.

You’ll notice the AWS Identity and Access Management (IAM) policy section for the endpoint. This supports all of the fine grained access control that DynamoDB supports in regular IAM policies and you can restrict access based on IAM policy conditions.

For now I’ll give full access to my instances within this VPC and click “Next Step”.

This brings me to a list of route tables in my VPC and asks me which of these route tables I want to assign my endpoint to. I’ll select one of them and click “Create Endpoint”.

Keep in mind the note of warning in the console: if you have source restrictions to DynamoDB based on public IP addresses the source IP of your instances accessing DynamoDB will now be their private IP addresses.

After adding the VPC Endpoint for DynamoDB to our VPC our infrastructure looks like this.

That’s it folks! It’s that easy. It’s provided at no cost. Go ahead and start using it today. If you need more details you can read the docs here.

AWS Summit New York – Summary of Announcements

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/aws-summit-new-york-summary-of-announcements/

Whew – what a week! Tara, Randall, Ana, and I have been working around the clock to create blog posts for the announcements that we made at the AWS Summit in New York. Here’s a summary to help you to get started:

Amazon Macie – This new service helps you to discover, classify, and secure content at scale. Powered by machine learning and making use of Natural Language Processing (NLP), Macie looks for patterns and alerts you to suspicious behavior, and can help you with governance, compliance, and auditing. You can read Tara’s post to see how to put Macie to work; you select the buckets of interest, customize the classification settings, and review the results in the Macie Dashboard.

AWS GlueRandall’s post (with deluxe animated GIFs) introduces you to this new extract, transform, and load (ETL) service. Glue is serverless and fully managed, As you can see from the post, Glue crawls your data, infers schemas, and generates ETL scripts in Python. You define jobs that move data from place to place, with a wide selection of transforms, each expressed as code and stored in human-readable form. Glue uses Development Endpoints and notebooks to provide you with a testing environment for the scripts you build. We also announced that Amazon Athena now integrates with Amazon Glue, as does Apache Spark and Hive on Amazon EMR.

AWS Migration Hub – This new service will help you to migrate your application portfolio to AWS. My post outlines the major steps and shows you how the Migration Hub accelerates, tracks,and simplifies your migration effort. You can begin with a discovery step, or you can jump right in and migrate directly. Migration Hub integrates with tools from our migration partners and builds upon the Server Migration Service and the Database Migration Service.

CloudHSM Update – We made a major upgrade to AWS CloudHSM, making the benefits of hardware-based key management available to a wider audience. The service is offered on a pay-as-you-go basis, and is fully managed. It is open and standards compliant, with support for multiple APIs, programming languages, and cryptography extensions. CloudHSM is an integral part of AWS and can be accessed from the AWS Management Console, AWS Command Line Interface (CLI), and through API calls. Read my post to learn more and to see how to set up a CloudHSM cluster.

Managed Rules to Secure S3 Buckets – We added two new rules to AWS Config that will help you to secure your S3 buckets. The s3-bucket-public-write-prohibited rule identifies buckets that have public write access and the s3-bucket-public-read-prohibited rule identifies buckets that have global read access. As I noted in my post, you can run these rules in response to configuration changes or on a schedule. The rules make use of some leading-edge constraint solving techniques, as part of a larger effort to use automated formal reasoning about AWS.

CloudTrail for All Customers – Tara’s post revealed that AWS CloudTrail is now available and enabled by default for all AWS customers. As a bonus, Tara reviewed the principal benefits of CloudTrail and showed you how to review your event history and to deep-dive on a single event. She also showed you how to create a second trail, for use with CloudWatch CloudWatch Events.

Encryption of Data at Rest for EFS – When you create a new file system, you now have the option to select a key that will be used to encrypt the contents of the files on the file system. The encryption is done using an industry-standard AES-256 algorithm. My post shows you how to select a key and to verify that it is being used.

Watch the Keynote
My colleagues Adrian Cockcroft and Matt Wood talked about these services and others on the stage, and also invited some AWS customers to share their stories. Here’s the video:

Jeff;

 

Launch – AWS Glue Now Generally Available

Post Syndicated from Randall Hunt original https://aws.amazon.com/blogs/aws/launch-aws-glue-now-generally-available/

Today we’re excited to announce the general availability of AWS Glue. Glue is a fully managed, serverless, and cloud-optimized extract, transform and load (ETL) service. Glue is different from other ETL services and platforms in a few very important ways.

First, Glue is “serverless” – you don’t need to provision or manage any resources and you only pay for resources when Glue is actively running. Second, Glue provides crawlers that can automatically detect and infer schemas from many data sources, data types, and across various types of partitions. It stores these generated schemas in a centralized Data Catalog for editing, versioning, querying, and analysis. Third, Glue can automatically generate ETL scripts (in Python!) to translate your data from your source formats to your target formats. Finally, Glue allows you to create development endpoints that allow your developers to use their favorite toolchains to construct their ETL scripts. Ok, let’s dive deep with an example.

In my job as a Developer Evangelist I spend a lot of time traveling and I thought it would be cool to play with some flight data. The Bureau of Transportations Statistics is kind enough to share all of this data for anyone to use here. We can easily download this data and put it in an Amazon Simple Storage Service (S3) bucket. This data will be the basis of our work today.

Crawlers

First, we need to create a Crawler for our flights data from S3. We’ll select Crawlers in the Glue console and follow the on screen prompts from there. I’ll specify s3://crawler-public-us-east-1/flight/2016/csv/ as my first datasource (we can add more later if needed). Next, we’ll create a database called flights and give our tables a prefix of flights as well.

The Crawler will go over our dataset, detect partitions through various folders – in this case months of the year, detect the schema, and build a table. We could add additonal data sources and jobs into our crawler or create separate crawlers that push data into the same database but for now let’s look at the autogenerated schema.

I’m going to make a quick schema change to year, moving it from BIGINT to INT. Then I can compare the two versions of the schema if needed.

Now that we know how to correctly parse this data let’s go ahead and do some transforms.

ETL Jobs

Now we’ll navigate to the Jobs subconsole and click Add Job. Will follow the prompts from there giving our job a name, selecting a datasource, and an S3 location for temporary files. Next we add our target by specifying “Create tables in your data target” and we’ll specify an S3 location in Parquet format as our target.

After clicking next, we’re at screen showing our various mappings proposed by Glue. Now we can make manual column adjustments as needed – in this case we’re just going to use the X button to remove a few columns that we don’t need.

This brings us to my favorite part. This is what I absolutely love about Glue.

Glue generated a PySpark script to transform our data based on the information we’ve given it so far. On the left hand side we can see a diagram documenting the flow of the ETL job. On the top right we see a series of buttons that we can use to add annotated data sources and targets, transforms, spigots, and other features. This is the interface I get if I click on transform.

If we add any of these transforms or additional data sources, Glue will update the diagram on the left giving us a useful visualization of the flow of our data. We can also just write our own code into the console and have it run. We can add triggers to this job that fire on completion of another job, a schedule, or on demand. That way if we add more flight data we can reload this same data back into S3 in the format we need.

I could spend all day writing about the power and versatility of the jobs console but Glue still has more features I want to cover. So, while I might love the script editing console, I know many people prefer their own development environments, tools, and IDEs. Let’s figure out how we can use those with Glue.

Development Endpoints and Notebooks

A Development Endpoint is an environment used to develop and test our Glue scripts. If we navigate to “Dev endpoints” in the Glue console we can click “Add endpoint” in the top right to get started. Next we’ll select a VPC, a security group that references itself and then we wait for it to provision.


Once it’s provisioned we can create an Apache Zeppelin notebook server by going to actions and clicking create notebook server. We give our instance an IAM role and make sure it has permissions to talk to our data sources. Then we can either SSH into the server or connect to the notebook to interactively develop our script.

Pricing and Documentation

You can see detailed pricing information here. Glue crawlers, ETL jobs, and development endpoints are all billed in Data Processing Unit Hours (DPU) (billed by minute). Each DPU-Hour costs $0.44 in us-east-1. A single DPU provides 4vCPU and 16GB of memory.

We’ve only covered about half of the features that Glue has so I want to encourage everyone who made it this far into the post to go read the documentation and service FAQs. Glue also has a rich and powerful API that allows you to do anything console can do and more.

We’re also releasing two new projects today. The aws-glue-libs provide a set of utilities for connecting, and talking with Glue. The aws-glue-samples repo contains a set of example jobs.

I hope you find that using Glue reduces the time it takes to start doing things with your data. Look for another post from me on AWS Glue soon because I can’t stop playing with this new service.
Randall

New – AWS SAM Local (Beta) – Build and Test Serverless Applications Locally

Post Syndicated from Randall Hunt original https://aws.amazon.com/blogs/aws/new-aws-sam-local-beta-build-and-test-serverless-applications-locally/

Today we’re releasing a beta of a new tool, SAM Local, that makes it easy to build and test your serverless applications locally. In this post we’ll use SAM local to build, debug, and deploy a quick application that allows us to vote on tabs or spaces by curling an endpoint. AWS introduced Serverless Application Model (SAM) last year to make it easier for developers to deploy serverless applications. If you’re not already familiar with SAM my colleague Orr wrote a great post on how to use SAM that you can read in about 5 minutes. At it’s core, SAM is a powerful open source specification built on AWS CloudFormation that makes it easy to keep your serverless infrastructure as code – and they have the cutest mascot.

SAM Local takes all the good parts of SAM and brings them to your local machine.

There are a couple of ways to install SAM Local but the easiest is through NPM. A quick npm install -g aws-sam-local should get us going but if you want the latest version you can always install straight from the source: go get github.com/awslabs/aws-sam-local (this will create a binary named aws-sam-local, not sam).

I like to vote on things so let’s write a quick SAM application to vote on Spaces versus Tabs. We’ll use a very simple, but powerful, architecture of API Gateway fronting a Lambda function and we’ll store our results in DynamoDB. In the end a user should be able to curl our API curl https://SOMEURL/ -d '{"vote": "spaces"}' and get back the number of votes.

Let’s start by writing a simple SAM template.yaml:

AWSTemplateFormatVersion : '2010-09-09'
Transform: AWS::Serverless-2016-10-31
Resources:
  VotesTable:
    Type: "AWS::Serverless::SimpleTable"
  VoteSpacesTabs:
    Type: "AWS::Serverless::Function"
    Properties:
      Runtime: python3.6
      Handler: lambda_function.lambda_handler
      Policies: AmazonDynamoDBFullAccess
      Environment:
        Variables:
          TABLE_NAME: !Ref VotesTable
      Events:
        Vote:
          Type: Api
          Properties:
            Path: /
            Method: post

So we create a [dynamo_i] table that we expose to our Lambda function through an environment variable called TABLE_NAME.

To test that this template is valid I’ll go ahead and call sam validate to make sure I haven’t fat-fingered anything. It returns Valid! so let’s go ahead and get to work on our Lambda function.

import os
import os
import json
import boto3
votes_table = boto3.resource('dynamodb').Table(os.getenv('TABLE_NAME'))

def lambda_handler(event, context):
    print(event)
    if event['httpMethod'] == 'GET':
        resp = votes_table.scan()
        return {'body': json.dumps({item['id']: int(item['votes']) for item in resp['Items']})}
    elif event['httpMethod'] == 'POST':
        try:
            body = json.loads(event['body'])
        except:
            return {'statusCode': 400, 'body': 'malformed json input'}
        if 'vote' not in body:
            return {'statusCode': 400, 'body': 'missing vote in request body'}
        if body['vote'] not in ['spaces', 'tabs']:
            return {'statusCode': 400, 'body': 'vote value must be "spaces" or "tabs"'}

        resp = votes_table.update_item(
            Key={'id': body['vote']},
            UpdateExpression='ADD votes :incr',
            ExpressionAttributeValues={':incr': 1},
            ReturnValues='ALL_NEW'
        )
        return {'body': "{} now has {} votes".format(body['vote'], resp['Attributes']['votes'])}

So let’s test this locally. I’ll need to create a real DynamoDB database to talk to and I’ll need to provide the name of that database through the enviornment variable TABLE_NAME. I could do that with an env.json file or I can just pass it on the command line. First, I can call:
$ echo '{"httpMethod": "POST", "body": "{\"vote\": \"spaces\"}"}' |\
TABLE_NAME="vote-spaces-tabs" sam local invoke "VoteSpacesTabs"

to test the Lambda – it returns the number of votes for spaces so theoritically everything is working. Typing all of that out is a pain so I could generate a sample event with sam local generate-event api and pass that in to the local invocation. Far easier than all of that is just running our API locally. Let’s do that: sam local start-api. Now I can curl my local endpoints to test everything out.
I’ll run the command: $ curl -d '{"vote": "tabs"}' http://127.0.0.1:3000/ and it returns: “tabs now has 12 votes”. Now, of course I did not write this function perfectly on my first try. I edited and saved several times. One of the benefits of hot-reloading is that as I change the function I don’t have to do any additional work to test the new function. This makes iterative development vastly easier.

Let’s say we don’t want to deal with accessing a real DynamoDB database over the network though. What are our options? Well we can download DynamoDB Local and launch it with java -Djava.library.path=./DynamoDBLocal_lib -jar DynamoDBLocal.jar -sharedDb. Then we can have our Lambda function use the AWS_SAM_LOCAL environment variable to make some decisions about how to behave. Let’s modify our function a bit:

import os
import json
import boto3
if os.getenv("AWS_SAM_LOCAL"):
    votes_table = boto3.resource(
        'dynamodb',
        endpoint_url="http://docker.for.mac.localhost:8000/"
    ).Table("spaces-tabs-votes")
else:
    votes_table = boto3.resource('dynamodb').Table(os.getenv('TABLE_NAME'))

Now we’re using a local endpoint to connect to our local database which makes working without wifi a little easier.

SAM local even supports interactive debugging! In Java and Node.js I can just pass the -d flag and a port to immediately enable the debugger. For Python I could use a library like import epdb; epdb.serve() and connect that way. Then we can call sam local invoke -d 8080 "VoteSpacesTabs" and our function will pause execution waiting for you to step through with the debugger.

Alright, I think we’ve got everything working so let’s deploy this!

First I’ll call the sam package command which is just an alias for aws cloudformation package and then I’ll use the result of that command to sam deploy.

$ sam package --template-file template.yaml --s3-bucket MYAWESOMEBUCKET --output-template-file package.yaml
Uploading to 144e47a4a08f8338faae894afe7563c3  90570 / 90570.0  (100.00%)
Successfully packaged artifacts and wrote output template to file package.yaml.
Execute the following command to deploy the packaged template
aws cloudformation deploy --template-file package.yaml --stack-name 
$ sam deploy --template-file package.yaml --stack-name VoteForSpaces --capabilities CAPABILITY_IAM
Waiting for changeset to be created..
Waiting for stack create/update to complete
Successfully created/updated stack - VoteForSpaces

Which brings us to our API:
.

I’m going to hop over into the production stage and add some rate limiting in case you guys start voting a lot – but otherwise we’ve taken our local work and deployed it to the cloud without much effort at all. I always enjoy it when things work on the first deploy!

You can vote now and watch the results live! http://spaces-or-tabs.s3-website-us-east-1.amazonaws.com/

We hope that SAM Local makes it easier for you to test, debug, and deploy your serverless apps. We have a CONTRIBUTING.md guide and we welcome pull requests. Please tweet at us to let us know what cool things you build. You can see our What’s New post here and the documentation is live here.

Randall

Да разберем GDPR. Готова ли е компанията ви?

Post Syndicated from Йовко Ламбрев original https://yovko.net/gdpr-event/

Вероятно сте чували, а може би още не сте, но Регламентът за защита на личните данни (GDPR) е вече факт. След 4 години на обсъждане, лобиране и събиране на примери и добри практики Европейският съюз създаде нормативен акт, който променя мисленето ни за личните данни. Разбирането на нуждата от GDPR минава през осъзнаването, че четвъртата индустриална революция се случва сега. Все по–често конкурентното предимство на новите бизнес модели спрямо утвърдените такива се състои в достъпа, анализа и управлението на данни.

Политически кампании се печелят и компании излизат на върха на класациите чрез дейности по профилиране, анализ на големи масиви от данни и персонализиран маркетинг.

Какво променя GDPR и готова ли е компанията ви за новите правила или по-точно – кога е трябвало да бъде готова? Какво реално ще трябва да промените – организация, техническа инфраструктура или нагласа на служителите и ръководството? Ще може ли френския държавен орган по защитата на данните да вземе отношение спрямо нарушение, извършено от компания в Пазарджик? Какво е доклад относно въздействието от защитата на данни? Можете ли да продадете бизнеса си или да сключите стратегически договор без такъв доклад?

На 30 август в Пловдив експерти от адвокатско дружество Точева и Мандажиева заедно с Trakia Tech ще се опитат да отговорят на тези въпроси. Обещаваме Ви да е интересно и полезно. Нетърпеливи сме да чуем Вашите въпроси, които ще ни накарат да мислим още по-задълбочено в тази насока. Събитието организираме съвместно с нашите партньори от Капитал и ETNHost.

Работният език е български, а събитието е в малък формат и местата са ограничени, затова регистрацията на адрес capital.bg/gdpr е задължителна.

Очакваме ви в Център за събития Limacon, чийто адрес е: Пловдив, бул. Марица 154A (до големия паркинг на Билла).

Security updates for Tuesday

Post Syndicated from ris original https://lwn.net/Articles/730183/rss

Security updates have been issued by Fedora (cacti, freerdp, remmina, subversion, supervisor, webkitgtk4, and wireshark), Mageia (gdm, librsvg, php, libgd, and swftools), openSUSE (cacti, cacti-spine), Red Hat (java-1.7.0-openjdk and kernel), SUSE (kernel), and Ubuntu (freerdp, kernel, linux-lts-trusty, and shotwell).

New – Amazon Connect and Amazon Lex Integration

Post Syndicated from Randall Hunt original https://aws.amazon.com/blogs/aws/new-amazon-connect-and-amazon-lex-integration/

I’m really excited to share some recent enhancements to two of my favorite services: Amazon Connect and Amazon Lex. Amazon Connect is a self-service, cloud-based contact center service that makes it easy for any business to deliver better customer service at lower cost. Amazon Lex is a service for building conversational interfaces using voice and text. By integrating these two services you can take advantage of Lex‘s automatic speech recognition (ASR) and natural language processing/understading (NLU) capabilities to create great self-service experiences for your customers. To enable this integration the Lex team added support for 8kHz speech input – more on that later. Why should you care about this? Well, if the a bot can solve the majority of your customer’s requests your customers spend less time waiting on hold and more time using your products.

If you need some more background on Amazon Connect or Lex I strongly recommend Jeff’s previous posts[1][2] on these services – especially if you like LEGOs.


Let’s dive in and learn to use this new integration. We’ll take an application that we built on our Twitch channel and modify it for this blog. At the application’s core a user calls an Amazon Connect number which connects them to an Lex bot which invokes an AWS Lambda function based on an intent from Lex. So what does our little application do?

I want to finally settle the question of what the best code editor is: I like vim, it’s a spectacular editor that does one job exceptionally well – editing code (it’s the best). My colleague Jeff likes emacs, a great operating system editor… if you were born with extra joints in your fingers. My colleague Tara loves Visual Studio and sublime. Rather than fighting over what the best editor is I thought we might let you, dear reader, vote. Don’t worry you can even vote for butterflies.

Interested in voting? Call +1 614-569-4019 and tell us which editor you’re voting for! We don’t store your number or record your voice so feel free to vote more than once for vim. Want to see the votes live? http://best-editor-ever.s3-website-us-east-1.amazonaws.com/.

Now, how do we build this little contraption? We’ll cover each component but since we’ve talked about Lex and Lambda before we’ll focus mostly on the Amazon Connect component. I’m going to assume you already have a connect instance running.

Amazon Lex

Let’s start with the Lex side of things. We’ll create a bot named VoteEditor with two intents: VoteEditor with a single slot called editor and ConnectToAgent with no slots. We’ll populate our editor slot full of different code editor names (maybe we’ll leave out emacs).

AWS Lambda

Our Lambda function will also be fairly simple. First we’ll create a Amazon DynamoDB table to store our votes. Then we’ll make a helper method to respond to Lex (build_response) – it will just wrap our message in a Lex friendly response format. Now we just have to figure out our flow logic.


def lambda_handler(event, context):
    if 'ConnectToAgent' == event['currentIntent']['name']:
        return build_response("Ok, connecting you to an agent.")
    elif 'VoteEditor' == event['currentIntent']['name']:
        editor = event['currentIntent']['slots']['editor']
        resp = ddb.update_item(
            Key={"name": editor.lower()},
            UpdateExpression="SET votes = :incr + if_not_exists(votes, :default)",
            ExpressionAttributeValues={":incr": 1, ":default": 0},
            ReturnValues="ALL_NEW"
        )
        msg = "Awesome, now {} has {} votes!".format(
            resp['Attributes']['name'],
            resp['Attributes']['votes'])
        return build_response(msg)

Let’s make sure we understand the code. So, if we got a vote for an editor and it doesn’t exist yet then we add that editor with 1 vote. Otherwise we increase the number of votes on that editor by 1. If we get a request for an agent, we terminate the flow with a nice message. Easy. Now we just tell our Lex bot to use our Lambda function to fulfill our intents. We can test that everything is working over text in the Lex console before moving on.

Amazon Connect

Before we can use our Lex bot in a Contact Flow we have to make sure our Amazon Connect instance has access to it. We can do this by hopping over to the Amazon Connect service console, selecting our instance, and navigating to “Contact Flows”. There should be a section called Lex where you can add your bots!

Now that our Amazon Connect instance can invoke our Lex bot we can create a new Contact Flow that contains our Lex bot. We add the bot to our flow through the “Get customer input” widget from the “Interact” category.

Once we’re on the widget we have a “DTMF” tab for taking input from number keys on a phone or the “Amazon Lex” tab for taking voiceinput and passing it to the Lex service. We’ll use the Lex tab and put in some configuration.

Lots of options, but in short we add the bot we want to use (including the version of the bot), the intents we want to use from our bot, and a short prompt to introduce the bot (and mayb prompt the customer for input).

Our final contact flow looks like this:

A real world example might allow a customer to perform many transactions through a Lex bot. Then on an error or ConnectToAgent intent put the customer into a queue where they could talk to a real person. It could collect and store information about users and populate a rich interface for an agent to use so they could jump right into the conversation with all the context they need.

I want to especially highlight the advantage of 8kHz audio support in Lex. Lex originally only supported speech input that was sampled at a higher rate than the 8 kHz input from the phone. Modern digital communication appliations typically use audio signals sampled at a minimum of 16 kHz. This higher fidelity recroding makes it easier differentiate between sounds like “ess” (/s/) and “eff” (/f/) – or so the audio experts tell me. Phones, however, use a much lower quality recording. Humans, and their ears, are pretty good at using surrounding words to figure out what a voice is saying from a lower quality recording (just check the NASA apollo recordings for proof of this). Most digital phone systems are setup to use 8 kHz sampling by default – it’s a nice tradeoff in bandwidth and fidelity. That’s why your voice sometimes sounds different on the phone. On top of this fundmental sampling rate issue you also have to deal with the fact that a lot of phone call data is already lossy (can you hear me now?). There are thousands of different devices from hundreds of different manufacturers, and tons of different software implentations. So… how do you solve this recognition issue?

The Lex team decided that the best way to address this was to expand the set of models they were using for speech recognition to include an 8kHz model. Support for an 8 kHz telephony audio sampling rate provides increased speech recognition accuracy and fidelity for your contact center interactions. This was a great effort by the team that enables a lot of customers to do more with Amazon Connect.

One final note is that Amazon Connect uses the exact same PostContent endpoint that you can use as an external developer so you don’t have to be a Amazon Connect user to take advantage of this 8kHz feature in Lex.

I hope you guys enjoyed this post and as always the real details are in the docs and API Reference.

Randall

Newly Updated: Example AWS IAM Policies for You to Use and Customize

Post Syndicated from Deren Smith original https://aws.amazon.com/blogs/security/newly-updated-example-policies-for-you-to-use-and-customize/

To help you grant access to specific resources and conditions, the Example Policies page in the AWS Identity and Access Management (IAM) documentation now includes more than thirty policies for you to use or customize to meet your permissions requirements. The AWS Support team developed these policies from their experiences working with AWS customers over the years. The example policies cover common permissions use cases you might encounter across services such as Amazon DynamoDB, Amazon EC2, AWS Elastic Beanstalk, Amazon RDS, Amazon S3, and IAM.

In this blog post, I introduce the updated Example Policies page and explain how to use and customize these policies for your needs.

The new Example Policies page

The Example Policies page in the IAM User Guide now provides an overview of the example policies and includes a link to view each policy on a separate page. Note that each of these policies has been reviewed and approved by AWS Support. If you would like to submit a policy that you have found to be particularly useful, post it on the IAM forum.

To give you an idea of the policies we have included on this page, the following are a few of the EC2 policies on the page:

To see the full list of available policies, see the Example Polices page.

In the following section, I demonstrate how to use a policy from the Example Policies page and customize it for your needs.

How to customize an example policy for your needs

Suppose you want to allow an IAM user, Bob, to start and stop EC2 instances with a specific resource tag. After looking through the Example Policies page, you see the policy, Allows Starting or Stopping EC2 Instances a User Has Tagged, Programmatically and in the Console.

To apply this policy to your specific use case:

  1. Navigate to the Policies section of the IAM console.
  2. Choose Create policy.
    Screenshot of choosing "Create policy"
  3. Choose the Select button next to Create Your Own Policy. You will see an empty policy document with boxes for Policy Name, Description, and Policy Document, as shown in the following screenshot.
  4. Type a name for the policy, copy the policy from the Example Policies page, and paste the policy in the Policy Document box. In this example, I use “start-stop-instances-for-owner-tag” as the policy name and “Allows users to start or stop instances if the instance tag Owner has the value of their user name” as the description.
  5. Update the placeholder text in the policy (see the full policy that follows this step). For example, replace <REGION> with a region from AWS Regions and Endpoints and <ACCOUNTNUMBER> with your 12-digit account number. The IAM policy variable, ${aws:username}, is a dynamic property in the policy that automatically applies to the user to which it is attached. For example, when the policy is attached to Bob, the policy replaces ${aws:username} with Bob. If you do not want to use the key value pair of Owner and ${aws:username}, you can edit the policy to include your desired key value pair. For example, if you want to use the key value pair, CostCenter:1234, you can modify “ec2:ResourceTag/Owner”: “${aws:username}” to “ec2:ResourceTag/CostCenter”: “1234”.
    {
        "Version": "2012-10-17",
        "Statement": [
           {
          "Effect": "Allow",
          "Action": [
              "ec2:StartInstances",
              "ec2:StopInstances"
          ],
                 "Resource": "arn:aws:ec2:<REGION>:<ACCOUNTNUMBER>:instance/*",
                 "Condition": {
              "StringEquals": {
                  "ec2:ResourceTag/Owner": "${aws:username}"
              }
          }
            },
            {
                 "Effect": "Allow",
                 "Action": "ec2:DescribeInstances",
                 "Resource": "*"
            }
        ]
    }

  6. After you have edited the policy, choose Create policy.

You have created a policy that allows an IAM user to stop and start EC2 instances in your account, as long as these instances have the correct resource tag and the policy is attached to your IAM users. You also can attach this policy to an IAM group and apply the policy to users by adding them to that group.

Summary

We updated the Example Policies page in the IAM User Guide so that you have a central location where you can find examples of the most commonly requested and used IAM policies. In addition to these example policies, we recommend that you review the list of AWS managed policies, including the AWS managed policies for job functions. You can choose these predefined policies from the IAM console and associate them with your IAM users, groups, and roles.

We will add more IAM policies to the Example Policies page over time. If you have a useful policy you would like to share with others, post it on the IAM forum. If you have comments about this post, submit them in the “Comments” section below.

– Deren

Awesome Raspberry Pi cases to 3D print at home

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/3d-printed-raspberry-pi-cases/

Unless you’re planning to fit your Raspberry Pi inside a build, you may find yourself in need of a case to protect it from dust, damage and/or the occasional pet attack. Here are some of our favourite 3D-printed cases, for which files are available online so you can recreate them at home.

TARDIS

TARDIS Raspberry PI 3 case – 3D Printing Time lapse

Every Tuesday we’ll 3D print designs from the community and showcase slicer settings, use cases and of course, Time-lapses! This week: TARDIS Raspberry PI 3 case By: https://www.thingiverse.com/Jason3030 https://www.thingiverse.com/thing:2430122/ BCN3D Sigma Blue PLA 3hrs 20min X:73 Y:73 Z:165mm .4mm layer / .6mm nozzle 0% Infill / 4mm retract 230C / 0C 114G 60mm/s —————————————– Shop for parts for your own DIY projects http://adafru.it/3dprinting Download Autodesk Fusion 360 – 1 Year Free License (renew it after that for more free use!)

Since I am an avid Whovian, it’s not surprising that this case made its way onto the list. Its outside is aesthetically pleasing to the aspiring Time Lord, and it snugly fits your treasured Pi.



Pop this case on your desk and chuckle with glee every time someone asks what’s inside it:

Person: What’s that?
You: My Raspberry Pi.
Person: What’s a Raspberry Pi?
You: It’s a computer!
Person: There’s a whole computer in that tiny case?
You: Yes…it’s BIGGER ON THE INSIDE!

I’ll get my coat.

Pi crust

Yes, we all wish we’d thought of it first. What better case for a Raspberry Pi than a pie crust?

3D-printed Raspberry Pi cases

While the case is designed to fit the Raspberry Pi Model B, you will be able to upgrade the build to accommodate newer models with a few tweaks.



Just make sure that if you do, you credit Marco Valenzuela, its original baker.

Consoles

Since many people use the Raspberry Pi to run RetroPie, there is a growing trend of 3D-printed console-style Pi cases.

3D-printed Raspberry Pi cases

So why not pop your Raspberry Pi into a case made to look like your favourite vintage console, such as the Nintendo NES or N64?



You could also use an adapter to fit a Raspberry Pi Zero within an actual Atari cartridge, or go modern and print a PlayStation 4 case!

Functional

Maybe you’re looking to use your Raspberry Pi as a component of a larger project, such as a home automation system, learning suite, or makerspace. In that case you may need to attach it to a wall, under a desk, or behind a monitor.

3D-printed Raspberry Pi cases

Coo! Coo!

The Pidgeon, shown above, allows you to turn your Zero W into a surveillance camera, while the piPad lets you keep a breadboard attached for easy access to your Pi’s GPIO pins.



Functional cases with added brackets are great for incorporating your Pi on the sly. The VESA mount case will allow you to attach your Pi to any VESA-compatible monitor, and the Fallout 4 Terminal is just really cool.

Cute

You might want your case to just look cute, especially if it’s going to sit in full view on your desk or shelf.

3D-printed Raspberry Pi cases

The tired cube above is the only one of our featured 3D prints for which you have to buy the files ($1.30), but its adorable face begged to be shared anyway.



If you’d rather save your money for another day, you may want to check out this adorable monster from Adafruit. Be aware that this case will also need some altering to fit newer versions of the Pi.

Our cases

Finally, there are great options for you if you don’t have access to a 3D printer, or if you would like to help the Raspberry Pi Foundation’s mission. You can buy one of the official Raspberry Pi cases for the Raspberry Pi 3 and Raspberry Pi Zero (and Zero W)!

3D-printed Raspberry Pi cases



As with all official Raspberry Pi accessories (and with the Pi itself), your money goes toward helping the Foundation to put the power of digital making into the hands of people all over the world.

3D-printed Raspberry Pi cases

You could also print a replica of the official Astro Pi cases, in which two Pis are currently orbiting the earth on the International Space Station.

Design your own Raspberry Pi case!

If you’ve built a case for your Raspberry Pi, be it with a 3D printer, laser-cutter, or your bare hands, make sure to share it with us in the comments below, or via our social media channels.

And if you’d like to give 3D printing a go, there are plenty of free online learning resources, and sites that offer tutorials and software to get you started, such as TinkerCAD, Instructables, and Adafruit.

The post Awesome Raspberry Pi cases to 3D print at home appeared first on Raspberry Pi.