Tag Archives: Dyn

Amazon SageMaker Updates – Tokyo Region, CloudFormation, Chainer, and GreenGrass ML

Post Syndicated from Randall Hunt original https://aws.amazon.com/blogs/aws/sagemaker-tokyo-summit-2018/

Today, at the AWS Summit in Tokyo we announced a number of updates and new features for Amazon SageMaker. Starting today, SageMaker is available in Asia Pacific (Tokyo)! SageMaker also now supports CloudFormation. A new machine learning framework, Chainer, is now available in the SageMaker Python SDK, in addition to MXNet and Tensorflow. Finally, support for running Chainer models on several devices was added to AWS Greengrass Machine Learning.

Amazon SageMaker Chainer Estimator


Chainer is a popular, flexible, and intuitive deep learning framework. Chainer networks work on a “Define-by-Run” scheme, where the network topology is defined dynamically via forward computation. This is in contrast to many other frameworks which work on a “Define-and-Run” scheme where the topology of the network is defined separately from the data. A lot of developers enjoy the Chainer scheme since it allows them to write their networks with native python constructs and tools.

Luckily, using Chainer with SageMaker is just as easy as using a TensorFlow or MXNet estimator. In fact, it might even be a bit easier since it’s likely you can take your existing scripts and use them to train on SageMaker with very few modifications. With TensorFlow or MXNet users have to implement a train function with a particular signature. With Chainer your scripts can be a little bit more portable as you can simply read from a few environment variables like SM_MODEL_DIR, SM_NUM_GPUS, and others. We can wrap our existing script in a if __name__ == '__main__': guard and invoke it locally or on sagemaker.


import argparse
import os

if __name__ =='__main__':

    parser = argparse.ArgumentParser()

    # hyperparameters sent by the client are passed as command-line arguments to the script.
    parser.add_argument('--epochs', type=int, default=10)
    parser.add_argument('--batch-size', type=int, default=64)
    parser.add_argument('--learning-rate', type=float, default=0.05)

    # Data, model, and output directories
    parser.add_argument('--output-data-dir', type=str, default=os.environ['SM_OUTPUT_DATA_DIR'])
    parser.add_argument('--model-dir', type=str, default=os.environ['SM_MODEL_DIR'])
    parser.add_argument('--train', type=str, default=os.environ['SM_CHANNEL_TRAIN'])
    parser.add_argument('--test', type=str, default=os.environ['SM_CHANNEL_TEST'])

    args, _ = parser.parse_known_args()

    # ... load from args.train and args.test, train a model, write model to args.model_dir.

Then, we can run that script locally or use the SageMaker Python SDK to launch it on some GPU instances in SageMaker. The hyperparameters will get passed in to the script as CLI commands and the environment variables above will be autopopulated. When we call fit the input channels we pass will be populated in the SM_CHANNEL_* environment variables.


from sagemaker.chainer.estimator import Chainer
# Create my estimator
chainer_estimator = Chainer(
    entry_point='example.py',
    train_instance_count=1,
    train_instance_type='ml.p3.2xlarge',
    hyperparameters={'epochs': 10, 'batch-size': 64}
)
# Train my estimator
chainer_estimator.fit({'train': train_input, 'test': test_input})

# Deploy my estimator to a SageMaker Endpoint and get a Predictor
predictor = chainer_estimator.deploy(
    instance_type="ml.m4.xlarge",
    initial_instance_count=1
)

Now, instead of bringing your own docker container for training and hosting with Chainer, you can just maintain your script. You can see the full sagemaker-chainer-containers on github. One of my favorite features of the new container is built-in chainermn for easy multi-node distribution of your chainer training jobs.

There’s a lot more documentation and information available in both the README and the example notebooks.

AWS GreenGrass ML with Chainer

AWS GreenGrass ML now includes a pre-built Chainer package for all devices powered by Intel Atom, NVIDIA Jetson, TX2, and Raspberry Pi. So, now GreenGrass ML provides pre-built packages for TensorFlow, Apache MXNet, and Chainer! You can train your models on SageMaker then easily deploy it to any GreenGrass-enabled device using GreenGrass ML.

JAWS UG

I want to give a quick shout out to all of our wonderful and inspirational friends in the JAWS UG who attended the AWS Summit in Tokyo today. I’ve very much enjoyed seeing your pictures of the summit. Thanks for making Japan an amazing place for AWS developers! I can’t wait to visit again and meet with all of you.

Randall

New – Pay-per-Session Pricing for Amazon QuickSight, Another Region, and Lots More

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/new-pay-per-session-pricing-for-amazon-quicksight-another-region-and-lots-more/

Amazon QuickSight is a fully managed cloud business intelligence system that gives you Fast & Easy to Use Business Analytics for Big Data. QuickSight makes business analytics available to organizations of all shapes and sizes, with the ability to access data that is stored in your Amazon Redshift data warehouse, your Amazon Relational Database Service (RDS) relational databases, flat files in S3, and (via connectors) data stored in on-premises MySQL, PostgreSQL, and SQL Server databases. QuickSight scales to accommodate tens, hundreds, or thousands of users per organization.

Today we are launching a new, session-based pricing option for QuickSight, along with additional region support and other important new features. Let’s take a look at each one:

Pay-per-Session Pricing
Our customers are making great use of QuickSight and take full advantage of the power it gives them to connect to data sources, create reports, and and explore visualizations.

However, not everyone in an organization needs or wants such powerful authoring capabilities. Having access to curated data in dashboards and being able to interact with the data by drilling down, filtering, or slicing-and-dicing is more than adequate for their needs. Subscribing them to a monthly or annual plan can be seen as an unwarranted expense, so a lot of such casual users end up not having access to interactive data or BI.

In order to allow customers to provide all of their users with interactive dashboards and reports, the Enterprise Edition of Amazon QuickSight now allows Reader access to dashboards on a Pay-per-Session basis. QuickSight users are now classified as Admins, Authors, or Readers, with distinct capabilities and prices:

Authors have access to the full power of QuickSight; they can establish database connections, upload new data, create ad hoc visualizations, and publish dashboards, all for $9 per month (Standard Edition) or $18 per month (Enterprise Edition).

Readers can view dashboards, slice and dice data using drill downs, filters and on-screen controls, and download data in CSV format, all within the secure QuickSight environment. Readers pay $0.30 for 30 minutes of access, with a monthly maximum of $5 per reader.

Admins have all authoring capabilities, and can manage users and purchase SPICE capacity in the account. The QuickSight admin now has the ability to set the desired option (Author or Reader) when they invite members of their organization to use QuickSight. They can extend Reader invites to their entire user base without incurring any up-front or monthly costs, paying only for the actual usage.

To learn more, visit the QuickSight Pricing page.

A New Region
QuickSight is now available in the Asia Pacific (Tokyo) Region:

The UI is in English, with a localized version in the works.

Hourly Data Refresh
Enterprise Edition SPICE data sets can now be set to refresh as frequently as every hour. In the past, each data set could be refreshed up to 5 times a day. To learn more, read Refreshing Imported Data.

Access to Data in Private VPCs
This feature was launched in preview form late last year, and is now available in production form to users of the Enterprise Edition. As I noted at the time, you can use it to implement secure, private communication with data sources that do not have public connectivity, including on-premises data in Teradata or SQL Server, accessed over an AWS Direct Connect link. To learn more, read Working with AWS VPC.

Parameters with On-Screen Controls
QuickSight dashboards can now include parameters that are set using on-screen dropdown, text box, numeric slider or date picker controls. The default value for each parameter can be set based on the user name (QuickSight calls this a dynamic default). You could, for example, set an appropriate default based on each user’s office location, department, or sales territory. Here’s an example:

To learn more, read about Parameters in QuickSight.

URL Actions for Linked Dashboards
You can now connect your QuickSight dashboards to external applications by defining URL actions on visuals. The actions can include parameters, and become available in the Details menu for the visual. URL actions are defined like this:

You can use this feature to link QuickSight dashboards to third party applications (e.g. Salesforce) or to your own internal applications. Read Custom URL Actions to learn how to use this feature.

Dashboard Sharing
You can now share QuickSight dashboards across every user in an account.

Larger SPICE Tables
The per-data set limit for SPICE tables has been raised from 10 GB to 25 GB.

Upgrade to Enterprise Edition
The QuickSight administrator can now upgrade an account from Standard Edition to Enterprise Edition with a click. This enables provisioning of Readers with pay-per-session pricing, private VPC access, row-level security for dashboards and data sets, and hourly refresh of data sets. Enterprise Edition pricing applies after the upgrade.

Available Now
Everything I listed above is available now and you can start using it today!

You can try QuickSight for 60 days at no charge, and you can also attend our June 20th Webinar.

Jeff;

 

Amazon Neptune Generally Available

Post Syndicated from Randall Hunt original https://aws.amazon.com/blogs/aws/amazon-neptune-generally-available/

Amazon Neptune is now Generally Available in US East (N. Virginia), US East (Ohio), US West (Oregon), and EU (Ireland). Amazon Neptune is a fast, reliable, fully-managed graph database service that makes it easy to build and run applications that work with highly connected datasets. At the core of Neptune is a purpose-built, high-performance graph database engine optimized for storing billions of relationships and querying the graph with millisecond latencies. Neptune supports two popular graph models, Property Graph and RDF, through Apache TinkerPop Gremlin and SPARQL, allowing you to easily build queries that efficiently navigate highly connected datasets. Neptune can be used to power everything from recommendation engines and knowledge graphs to drug discovery and network security. Neptune is fully-managed with automatic minor version upgrades, backups, encryption, and fail-over. I wrote about Neptune in detail for AWS re:Invent last year and customers have been using the preview and providing great feedback that the team has used to prepare the service for GA.

Now that Amazon Neptune is generally available there are a few changes from the preview:

Launching an Amazon Neptune Cluster

Launching a Neptune cluster is as easy as navigating to the AWS Management Console and clicking create cluster. Of course you can also launch with CloudFormation, the CLI, or the SDKs.

You can monitor your cluster health and the health of individual instances through Amazon CloudWatch and the console.

Additional Resources

We’ve created two repos with some additional tools and examples here. You can expect continuous development on these repos as we add additional tools and examples.

  • Amazon Neptune Tools Repo
    This repo has a useful tool for converting GraphML files into Neptune compatible CSVs for bulk loading from S3.
  • Amazon Neptune Samples Repo
    This repo has a really cool example of building a collaborative filtering recommendation engine for video game preferences.

Purpose Built Databases

There’s an industry trend where we’re moving more and more onto purpose-built databases. Developers and businesses want to access their data in the format that makes the most sense for their applications. As cloud resources make transforming large datasets easier with tools like AWS Glue, we have a lot more options than we used to for accessing our data. With tools like Amazon Redshift, Amazon Athena, Amazon Aurora, Amazon DynamoDB, and more we get to choose the best database for the job or even enable entirely new use-cases. Amazon Neptune is perfect for workloads where the data is highly connected across data rich edges.

I’m really excited about graph databases and I see a huge number of applications. Looking for ideas of cool things to build? I’d love to build a web crawler in AWS Lambda that uses Neptune as the backing store. You could further enrich it by running Amazon Comprehend or Amazon Rekognition on the text and images found and creating a search engine on top of Neptune.

As always, feel free to reach out in the comments or on twitter to provide any feedback!

Randall

Detecting Lies through Mouse Movements

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2018/05/detecting_lies_.html

Interesting research: “The detection of faked identity using unexpected questions and mouse dynamics,” by Merulin Monaro, Luciano Gamberini, and Guiseppe Sartori.

Abstract: The detection of faked identities is a major problem in security. Current memory-detection techniques cannot be used as they require prior knowledge of the respondent’s true identity. Here, we report a novel technique for detecting faked identities based on the use of unexpected questions that may be used to check the respondent identity without any prior autobiographical information. While truth-tellers respond automatically to unexpected questions, liars have to “build” and verify their responses. This lack of automaticity is reflected in the mouse movements used to record the responses as well as in the number of errors. Responses to unexpected questions are compared to responses to expected and control questions (i.e., questions to which a liar also must respond truthfully). Parameters that encode mouse movement were analyzed using machine learning classifiers and the results indicate that the mouse trajectories and errors on unexpected questions efficiently distinguish liars from truth-tellers. Furthermore, we showed that liars may be identified also when they are responding truthfully. Unexpected questions combined with the analysis of mouse movement may efficiently spot participants with faked identities without the need for any prior information on the examinee.

Boing Boing post.

Replacing macOS Server with Synology NAS

Post Syndicated from Roderick Bauer original https://www.backblaze.com/blog/replacing-macos-server-with-synology-nas/

Synology NAS boxes backed up to the cloud

Businesses and organizations that rely on macOS server for essential office and data services are facing some decisions about the future of their IT services.

Apple recently announced that it is deprecating a significant portion of essential network services in macOS Server, as they described in a support statement posted on April 24, 2018, “Prepare for changes to macOS Server.” Apple’s note includes:

macOS Server is changing to focus more on management of computers, devices, and storage on your network. As a result, some changes are coming in how Server works. A number of services will be deprecated, and will be hidden on new installations of an update to macOS Server coming in spring 2018.

The note lists the services that will be removed in a future release of macOS Server, including calendar and contact support, Dynamic Host Configuration Protocol (DHCP), Domain Name Services (DNS), mail, instant messages, virtual private networking (VPN), NetInstall, Web server, and the Wiki.

Apple assures users who have already configured any of the listed services that they will be able to use them in the spring 2018 macOS Server update, but the statement ends with links to a number of alternative services, including hosted services, that macOS Server users should consider as viable replacements to the features it is removing. These alternative services are all FOSS (Free and Open-Source Software).

As difficult as this could be for organizations that use macOS server, this is not unexpected. Apple left the server hardware space back in 2010, when Steve Jobs announced the company was ending its line of Xserve rackmount servers, which were introduced in May, 2002. Since then, macOS Server has hardly been a prominent part of Apple’s product lineup. It’s not just the product itself that has lost some luster, but the entire category of SMB office and business servers, which has been undergoing a gradual change in recent years.

Some might wonder how important the news about macOS Server is, given that macOS Server represents a pretty small share of the server market. macOS Server has been important to design shops, agencies, education users, and small businesses that likely have been on Macs for ages, but it’s not a significant part of the IT infrastructure of larger organizations and businesses.

What Comes After macOS Server?

Lovers of macOS Server don’t have to fear having their Mac minis pried from their cold, dead hands quite yet. Installed services will continue to be available. In the fall of 2018, new installations and upgrades of macOS Server will require users to migrate most services to other software. Since many of the services of macOS Server were already open-source, this means that a change in software might not be required. It does mean more configuration and management required from those who continue with macOS Server, however.

Users can continue with macOS Server if they wish, but many will see the writing on the wall and look for a suitable substitute.

The Times They Are A-Changin’

For many people working in organizations, what is significant about this announcement is how it reflects the move away from the once ubiquitous server-based IT infrastructure. Services that used to be centrally managed and office-based, such as storage, file sharing, communications, and computing, have moved to the cloud.

In selecting the next office IT platforms, there’s an opportunity to move to solutions that reflect and support how people are working and the applications they are using both in the office and remotely. For many, this means including cloud-based services in office automation, backup, and business continuity/disaster recovery planning. This includes Software as a Service, Platform as a Service, and Infrastructure as a Service (Saas, PaaS, IaaS) options.

IT solutions that integrate well with the cloud are worth strong consideration for what comes after a macOS Server-based environment.

Synology NAS as a macOS Server Alternative

One solution that is becoming popular is to replace macOS Server with a device that has the ability to provide important office services, but also bridges the office and cloud environments. Using Network-Attached Storage (NAS) to take up the server slack makes a lot of sense. Many customers are already using NAS for file sharing, local data backup, automatic cloud backup, and other uses. In the case of Synology, their operating system, Synology DiskStation Manager (DSM), is Linux based, and integrates the basic functions of file sharing, centralized backup, RAID storage, multimedia streaming, virtual storage, and other common functions.

Synology NAS box

Synology NAS

Since DSM is based on Linux, there are numerous server applications available, including many of the same ones that are available for macOS Server, which shares conceptual roots with Linux as it comes from BSD Unix.

Synology DiskStation Manager Package Center screenshot

Synology DiskStation Manager Package Center

According to Ed Lukacs, COO at 2FIFTEEN Systems Management in Salt Lake City, their customers have found the move from macOS Server to Synology NAS not only painless, but positive. DSM works seamlessly with macOS and has been faster for their customers, as well. Many of their customers are running Adobe Creative Suite and Google G Suite applications, so a workflow that combines local storage, remote access, and the cloud, is already well known to them. Remote users are supported by Synology’s QuickConnect or VPN.

Business continuity and backup are simplified by the flexible storage capacity of the NAS. Synology has built-in backup to Backblaze B2 Cloud Storage with Synology’s Cloud Sync, as well as a choice of a number of other B2-compatible applications, such as Cloudberry, Comet, and Arq.

Customers have been able to get up and running quickly, with only initial data transfers requiring some time to complete. After that, management of the NAS can be handled in-house or with the support of a Managed Service Provider (MSP).

Are You Sticking with macOS Server or Moving to Another Platform?

If you’re affected by this change in macOS Server, please let us know in the comments how you’re planning to cope. Are you using Synology NAS for server services? Please tell us how that’s working for you.

The post Replacing macOS Server with Synology NAS appeared first on Backblaze Blog | Cloud Storage & Cloud Backup.

[$] Modifying the Python object model

Post Syndicated from jake original https://lwn.net/Articles/754163/rss

At the 2018 Python Language Summit, Carl Shapiro described some of
the experiments that he and others at Instagram did to look at ways to
improve the
performance of the CPython interpreter.
The talk was somewhat academic in tone and built on what has been learned
in other dynamic languages over the years. By modifying the Python object
model fairly substantially, they were able to roughly double the performance
of the “classic” Richards benchmark.

Amazon Sumerian – Now Generally Available

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/amazon-sumerian-now-generally-available/

We announced Amazon Sumerian at AWS re:Invent 2017. As you can see from Tara‘s blog post (Presenting Amazon Sumerian: An Easy Way to Create VR, AR, and 3D Experiences), Sumerian does not require any specialized programming or 3D graphics expertise. You can build VR, AR, and 3D experiences for a wide variety of popular hardware platforms including mobile devices, head-mounted displays, digital signs, and web browsers.

I’m happy to announce that Sumerian is now generally available. You can create realistic virtual environments and scenes without having to acquire or master specialized tools for 3D modeling, animation, lighting, audio editing, or programming. Once built, you can deploy your finished creation across multiple platforms without having to write custom code or deal with specialized deployment systems and processes.

Sumerian gives you a web-based editor that you can use to quickly and easily create realistic, professional-quality scenes. There’s a visual scripting tool that lets you build logic to control how objects and characters (Sumerian Hosts) respond to user actions. Sumerian also lets you create rich, natural interactions powered by AWS services such as Amazon Lex, Polly, AWS Lambda, AWS IoT, and Amazon DynamoDB.

Sumerian was designed to work on multiple platforms. The VR and AR apps that you create in Sumerian will run in browsers that supports WebGL or WebVR and on popular devices such as the Oculus Rift, HTC Vive, and those powered by iOS or Android.

During the preview period, we have been working with a broad spectrum of customers to put Sumerian to the test and to create proof of concept (PoC) projects designed to highlight an equally broad spectrum of use cases, including employee education, training simulations, field service productivity, virtual concierge, design and creative, and brand engagement. Fidelity Labs (the internal R&D unit of Fidelity Investments), was the first to use a Sumerian host to create an engaging VR experience. Cora (the host) lives within a virtual chart room. She can display stock quotes, pull up company charts, and answer questions about a company’s performance. This PoC uses Amazon Polly to implement text to speech and Amazon Lex for conversational chatbot functionality. Read their blog post and watch the video inside to see Cora in action:

Now that Sumerian is generally available, you have the power to create engaging AR, VR, and 3D experiences of your own. To learn more, visit the Amazon Sumerian home page and then spend some quality time with our extensive collection of Sumerian Tutorials.

Jeff;

 

From Framework to Function: Deploying AWS Lambda Functions for Java 8 using Apache Maven Archetype

Post Syndicated from Ryosuke Iwanaga original https://aws.amazon.com/blogs/compute/from-framework-to-function-deploying-aws-lambda-functions-for-java-8-using-apache-maven-archetype/

As a serverless computing platform that supports Java 8 runtime, AWS Lambda makes it easy to run any type of Java function simply by uploading a JAR file. To help define not only a Lambda serverless application but also Amazon API Gateway, Amazon DynamoDB, and other related services, the AWS Serverless Application Model (SAM) allows developers to use a simple AWS CloudFormation template.

AWS provides the AWS Toolkit for Eclipse that supports both Lambda and SAM. AWS also gives customers an easy way to create Lambda functions and SAM applications in Java using the AWS Command Line Interface (AWS CLI). After you build a JAR file, all you have to do is type the following commands:

aws cloudformation package 
aws cloudformation deploy

To consolidate these steps, customers can use Archetype by Apache Maven. Archetype uses a predefined package template that makes getting started to develop a function exceptionally simple.

In this post, I introduce a Maven archetype that allows you to create a skeleton of AWS SAM for a Java function. Using this archetype, you can generate a sample Java code example and an accompanying SAM template to deploy it on AWS Lambda by a single Maven action.

Prerequisites

Make sure that the following software is installed on your workstation:

  • Java
  • Maven
  • AWS CLI
  • (Optional) AWS SAM CLI

Install Archetype

After you’ve set up those packages, install Archetype with the following commands:

git clone https://github.com/awslabs/aws-serverless-java-archetype
cd aws-serverless-java-archetype
mvn install

These are one-time operations, so you don’t run them for every new package. If you’d like, you can add Archetype to your company’s Maven repository so that other developers can use it later.

With those packages installed, you’re ready to develop your new Lambda Function.

Start a project

Now that you have the archetype, customize it and run the code:

cd /path/to/project_home
mvn archetype:generate \
  -DarchetypeGroupId=com.amazonaws.serverless.archetypes \
  -DarchetypeArtifactId=aws-serverless-java-archetype \
  -DarchetypeVersion=1.0.0 \
  -DarchetypeRepository=local \ # Forcing to use local maven repository
  -DinteractiveMode=false \ # For batch mode
  # You can also specify properties below interactively if you omit the line for batch mode
  -DgroupId=YOUR_GROUP_ID \
  -DartifactId=YOUR_ARTIFACT_ID \
  -Dversion=YOUR_VERSION \
  -DclassName=YOUR_CLASSNAME

You should have a directory called YOUR_ARTIFACT_ID that contains the files and folders shown below:

├── event.json
├── pom.xml
├── src
│   └── main
│       ├── java
│       │   └── Package
│       │       └── Example.java
│       └── resources
│           └── log4j2.xml
└── template.yaml

The sample code is a working example. If you install SAM CLI, you can invoke it just by the command below:

cd YOUR_ARTIFACT_ID
mvn -P invoke verify
[INFO] Scanning for projects...
[INFO]
[INFO] ---------------------------< com.riywo:foo >----------------------------
[INFO] Building foo 1.0
[INFO] --------------------------------[ jar ]---------------------------------
...
[INFO] --- maven-jar-plugin:3.0.2:jar (default-jar) @ foo ---
[INFO] Building jar: /private/tmp/foo/target/foo-1.0.jar
[INFO]
[INFO] --- maven-shade-plugin:3.1.0:shade (shade) @ foo ---
[INFO] Including com.amazonaws:aws-lambda-java-core:jar:1.2.0 in the shaded jar.
[INFO] Replacing /private/tmp/foo/target/lambda.jar with /private/tmp/foo/target/foo-1.0-shaded.jar
[INFO]
[INFO] --- exec-maven-plugin:1.6.0:exec (sam-local-invoke) @ foo ---
2018/04/06 16:34:35 Successfully parsed template.yaml
2018/04/06 16:34:35 Connected to Docker 1.37
2018/04/06 16:34:35 Fetching lambci/lambda:java8 image for java8 runtime...
java8: Pulling from lambci/lambda
Digest: sha256:14df0a5914d000e15753d739612a506ddb8fa89eaa28dcceff5497d9df2cf7aa
Status: Image is up to date for lambci/lambda:java8
2018/04/06 16:34:37 Invoking Package.Example::handleRequest (java8)
2018/04/06 16:34:37 Decompressing /tmp/foo/target/lambda.jar
2018/04/06 16:34:37 Mounting /private/var/folders/x5/ldp7c38545v9x5dg_zmkr5kxmpdprx/T/aws-sam-local-1523000077594231063 as /var/task:ro inside runtime container
START RequestId: a6ae19fe-b1b0-41e2-80bc-68a40d094d74 Version: $LATEST
Log output: Greeting is 'Hello Tim Wagner.'
END RequestId: a6ae19fe-b1b0-41e2-80bc-68a40d094d74
REPORT RequestId: a6ae19fe-b1b0-41e2-80bc-68a40d094d74	Duration: 96.60 ms	Billed Duration: 100 ms	Memory Size: 128 MB	Max Memory Used: 7 MB

{"greetings":"Hello Tim Wagner."}


[INFO] ------------------------------------------------------------------------
[INFO] BUILD SUCCESS
[INFO] ------------------------------------------------------------------------
[INFO] Total time: 10.452 s
[INFO] Finished at: 2018-04-06T16:34:40+09:00
[INFO] ------------------------------------------------------------------------

This maven goal invokes sam local invoke -e event.json, so you can see the sample output to greet Tim Wagner.

To deploy this application to AWS, you need an Amazon S3 bucket to upload your package. You can use the following command to create a bucket if you want:

aws s3 mb s3://YOUR_BUCKET --region YOUR_REGION

Now, you can deploy your application by just one command!

mvn deploy \
    -DawsRegion=YOUR_REGION \
    -Ds3Bucket=YOUR_BUCKET \
    -DstackName=YOUR_STACK
[INFO] Scanning for projects...
[INFO]
[INFO] ---------------------------< com.riywo:foo >----------------------------
[INFO] Building foo 1.0
[INFO] --------------------------------[ jar ]---------------------------------
...
[INFO] --- exec-maven-plugin:1.6.0:exec (sam-package) @ foo ---
Uploading to aws-serverless-java/com.riywo:foo:1.0/924732f1f8e4705c87e26ef77b080b47  11657 / 11657.0  (100.00%)
Successfully packaged artifacts and wrote output template to file target/sam.yaml.
Execute the following command to deploy the packaged template
aws cloudformation deploy --template-file /private/tmp/foo/target/sam.yaml --stack-name <YOUR STACK NAME>
[INFO]
[INFO] --- maven-deploy-plugin:2.8.2:deploy (default-deploy) @ foo ---
[INFO] Skipping artifact deployment
[INFO]
[INFO] --- exec-maven-plugin:1.6.0:exec (sam-deploy) @ foo ---

Waiting for changeset to be created..
Waiting for stack create/update to complete
Successfully created/updated stack - archetype
[INFO] ------------------------------------------------------------------------
[INFO] BUILD SUCCESS
[INFO] ------------------------------------------------------------------------
[INFO] Total time: 37.176 s
[INFO] Finished at: 2018-04-06T16:41:02+09:00
[INFO] ------------------------------------------------------------------------

Maven automatically creates a shaded JAR file, uploads it to your S3 bucket, replaces template.yaml, and creates and updates the CloudFormation stack.

To customize the process, modify the pom.xml file. For example, to avoid typing values for awsRegion, s3Bucket or stackName, write them inside pom.xml and check in your VCS. Afterward, you and the rest of your team can deploy the function by typing just the following command:

mvn deploy

Options

Lambda Java 8 runtime has some types of handlers: POJO, Simple type and Stream. The default option of this archetype is POJO style, which requires to create request and response classes, but they are baked by the archetype by default. If you want to use other type of handlers, you can use handlerType property like below:

## POJO type (default)
mvn archetype:generate \
 ...
 -DhandlerType=pojo

## Simple type - String
mvn archetype:generate \
 ...
 -DhandlerType=simple

### Stream type
mvn archetype:generate \
 ...
 -DhandlerType=stream

See documentation for more details about handlers.

Also, Lambda Java 8 runtime supports two types of Logging class: Log4j 2 and LambdaLogger. This archetype creates LambdaLogger implementation by default, but you can use Log4j 2 if you want:

## LambdaLogger (default)
mvn archetype:generate \
 ...
 -Dlogger=lambda

## Log4j 2
mvn archetype:generate \
 ...
 -Dlogger=log4j2

If you use LambdaLogger, you can delete ./src/main/resources/log4j2.xml. See documentation for more details.

Conclusion

So, what’s next? Develop your Lambda function locally and type the following command: mvn deploy !

With this Archetype code example, available on GitHub repo, you should be able to deploy Lambda functions for Java 8 in a snap. If you have any questions or comments, please submit them below or leave them on GitHub.

[$] Using user-space tracepoints with BPF

Post Syndicated from corbet original https://lwn.net/Articles/753601/rss

Much has been written on LWN about dynamically instrumenting kernel
code. These features are also available to user-space code with a
special kind of probe known as a User Statically-Defined Tracing
(USDT) probe. These probes provide a low-overhead way of
instrumenting user-space code and provide a convenient way to debug applications
running in production. In this final article of the BPF and BCC series
we’ll look at where USDT probes come from and how you can use them to
understand the behavior of your own applications.

AWS Online Tech Talks – May and Early June 2018

Post Syndicated from Devin Watson original https://aws.amazon.com/blogs/aws/aws-online-tech-talks-may-and-early-june-2018/

AWS Online Tech Talks – May and Early June 2018  

Join us this month to learn about some of the exciting new services and solution best practices at AWS. We also have our first re:Invent 2018 webinar series, “How to re:Invent”. Sign up now to learn more, we look forward to seeing you.

Note – All sessions are free and in Pacific Time.

Tech talks featured this month:

Analytics & Big Data

May 21, 2018 | 11:00 AM – 11:45 AM PT Integrating Amazon Elasticsearch with your DevOps Tooling – Learn how you can easily integrate Amazon Elasticsearch Service into your DevOps tooling and gain valuable insight from your log data.

May 23, 2018 | 11:00 AM – 11:45 AM PTData Warehousing and Data Lake Analytics, Together – Learn how to query data across your data warehouse and data lake without moving data.

May 24, 2018 | 11:00 AM – 11:45 AM PTData Transformation Patterns in AWS – Discover how to perform common data transformations on the AWS Data Lake.

Compute

May 29, 2018 | 01:00 PM – 01:45 PM PT – Creating and Managing a WordPress Website with Amazon Lightsail – Learn about Amazon Lightsail and how you can create, run and manage your WordPress websites with Amazon’s simple compute platform.

May 30, 2018 | 01:00 PM – 01:45 PM PTAccelerating Life Sciences with HPC on AWS – Learn how you can accelerate your Life Sciences research workloads by harnessing the power of high performance computing on AWS.

Containers

May 24, 2018 | 01:00 PM – 01:45 PM PT – Building Microservices with the 12 Factor App Pattern on AWS – Learn best practices for building containerized microservices on AWS, and how traditional software design patterns evolve in the context of containers.

Databases

May 21, 2018 | 01:00 PM – 01:45 PM PTHow to Migrate from Cassandra to Amazon DynamoDB – Get the benefits, best practices and guides on how to migrate your Cassandra databases to Amazon DynamoDB.

May 23, 2018 | 01:00 PM – 01:45 PM PT5 Hacks for Optimizing MySQL in the Cloud – Learn how to optimize your MySQL databases for high availability, performance, and disaster resilience using RDS.

DevOps

May 23, 2018 | 09:00 AM – 09:45 AM PT.NET Serverless Development on AWS – Learn how to build a modern serverless application in .NET Core 2.0.

Enterprise & Hybrid

May 22, 2018 | 11:00 AM – 11:45 AM PTHybrid Cloud Customer Use Cases on AWS – Learn how customers are leveraging AWS hybrid cloud capabilities to easily extend their datacenter capacity, deliver new services and applications, and ensure business continuity and disaster recovery.

IoT

May 31, 2018 | 11:00 AM – 11:45 AM PTUsing AWS IoT for Industrial Applications – Discover how you can quickly onboard your fleet of connected devices, keep them secure, and build predictive analytics with AWS IoT.

Machine Learning

May 22, 2018 | 09:00 AM – 09:45 AM PTUsing Apache Spark with Amazon SageMaker – Discover how to use Apache Spark with Amazon SageMaker for training jobs and application integration.

May 24, 2018 | 09:00 AM – 09:45 AM PTIntroducing AWS DeepLens – Learn how AWS DeepLens provides a new way for developers to learn machine learning by pairing the physical device with a broad set of tutorials, examples, source code, and integration with familiar AWS services.

Management Tools

May 21, 2018 | 09:00 AM – 09:45 AM PTGaining Better Observability of Your VMs with Amazon CloudWatch – Learn how CloudWatch Agent makes it easy for customers like Rackspace to monitor their VMs.

Mobile

May 29, 2018 | 11:00 AM – 11:45 AM PT – Deep Dive on Amazon Pinpoint Segmentation and Endpoint Management – See how segmentation and endpoint management with Amazon Pinpoint can help you target the right audience.

Networking

May 31, 2018 | 09:00 AM – 09:45 AM PTMaking Private Connectivity the New Norm via AWS PrivateLink – See how PrivateLink enables service owners to offer private endpoints to customers outside their company.

Security, Identity, & Compliance

May 30, 2018 | 09:00 AM – 09:45 AM PT – Introducing AWS Certificate Manager Private Certificate Authority (CA) – Learn how AWS Certificate Manager (ACM) Private Certificate Authority (CA), a managed private CA service, helps you easily and securely manage the lifecycle of your private certificates.

June 1, 2018 | 09:00 AM – 09:45 AM PTIntroducing AWS Firewall Manager – Centrally configure and manage AWS WAF rules across your accounts and applications.

Serverless

May 22, 2018 | 01:00 PM – 01:45 PM PTBuilding API-Driven Microservices with Amazon API Gateway – Learn how to build a secure, scalable API for your application in our tech talk about API-driven microservices.

Storage

May 30, 2018 | 11:00 AM – 11:45 AM PTAccelerate Productivity by Computing at the Edge – Learn how AWS Snowball Edge support for compute instances helps accelerate data transfers, execute custom applications, and reduce overall storage costs.

June 1, 2018 | 11:00 AM – 11:45 AM PTLearn to Build a Cloud-Scale Website Powered by Amazon EFS – Technical deep dive where you’ll learn tips and tricks for integrating WordPress, Drupal and Magento with Amazon EFS.

 

 

 

 

Creating a 1.3 Million vCPU Grid on AWS using EC2 Spot Instances and TIBCO GridServer

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/creating-a-1-3-million-vcpu-grid-on-aws-using-ec2-spot-instances-and-tibco-gridserver/

Many of my colleagues are fortunate to be able to spend a good part of their day sitting down with and listening to our customers, doing their best to understand ways that we can better meet their business and technology needs. This information is treated with extreme care and is used to drive the roadmap for new services and new features.

AWS customers in the financial services industry (often abbreviated as FSI) are looking ahead to the Fundamental Review of Trading Book (FRTB) regulations that will come in to effect between 2019 and 2021. Among other things, these regulations mandate a new approach to the “value at risk” calculations that each financial institution must perform in the four hour time window after trading ends in New York and begins in Tokyo. Today, our customers report this mission-critical calculation consumes on the order of 200,000 vCPUs, growing to between 400K and 800K vCPUs in order to meet the FRTB regulations. While there’s still some debate about the magnitude and frequency with which they’ll need to run this expanded calculation, the overall direction is clear.

Building a Big Grid
In order to make sure that we are ready to help our FSI customers meet these new regulations, we worked with TIBCO to set up and run a proof of concept grid in the AWS Cloud. The periodic nature of the calculation, along with the amount of processing power and storage needed to run it to completion within four hours, make it a great fit for an environment where a vast amount of cost-effective compute power is available on an on-demand basis.

Our customers are already using the TIBCO GridServer on-premises and want to use it in the cloud. This product is designed to run grids at enterprise scale. It runs apps in a virtualized fashion, and accepts requests for resources, dynamically provisioning them on an as-needed basis. The cloud version supports Amazon Linux as well as the PostgreSQL-compatible edition of Amazon Aurora.

Working together with TIBCO, we set out to create a grid that was substantially larger than the current high-end prediction of 800K vCPUs, adding a 50% safety factor and then rounding up to reach 1.3 million vCPUs (5x the size of the largest on-premises grid). With that target in mind, the account limits were raised as follows:

  • Spot Instance Limit – 120,000
  • EBS Volume Limit – 120,000
  • EBS Capacity Limit – 2 PB

If you plan to create a grid of this size, you should also bring your friendly local AWS Solutions Architect into the loop as early as possible. They will review your plans, provide you with architecture guidance, and help you to schedule your run.

Running the Grid
We hit the Go button and launched the grid, watching as it bid for and obtained Spot Instances, each of which booted, initialized, and joined the grid within two minutes. The test workload used the Strata open source analytics & market risk library from OpenGamma and was set up with their assistance.

The grid grew to 61,299 Spot Instances (1.3 million vCPUs drawn from 34 instance types spanning 3 generations of EC2 hardware) as planned, with just 1,937 instances reclaimed and automatically replaced during the run, and cost $30,000 per hour to run, at an average hourly cost of $0.078 per vCPU. If the same instances had been used in On-Demand form, the hourly cost to run the grid would have been approximately $93,000.

Despite the scale of the grid, prices for the EC2 instances did not move during the bidding process. This is due to the overall size of the AWS Cloud and the smooth price change model that we launched late last year.

To give you a sense of the compute power, we computed that this grid would have taken the #1 position on the TOP 500 supercomputer list in November 2007 by a considerable margin, and the #2 position in June 2008. Today, it would occupy position #360 on the list.

I hope that you enjoyed this AWS success story, and that it gives you an idea of the scale that you can achieve in the cloud!

Jeff;

What’s new in HiveMQ 3.4

Post Syndicated from The HiveMQ Team original https://www.hivemq.com/whats-new-in-hivemq-3-4

We are pleased to announce the release of HiveMQ 3.4. This version of HiveMQ is the most resilient and advanced version of HiveMQ ever. The main focus in this release was directed towards addressing the needs for the most ambitious MQTT deployments in the world for maximum performance and resilience for millions of concurrent MQTT clients. Of course, deployments of all sizes can profit from the improvements in the latest and greatest HiveMQ.

This version is a drop-in replacement for HiveMQ 3.3 and of course supports rolling upgrades with zero-downtime.

HiveMQ 3.4 brings many features that your users, administrators and plugin developers are going to love. These are the highlights:

 

New HiveMQ 3.4 features at a glance

Cluster

HiveMQ 3.4 brings various improvements in terms of scalability, availability, resilience and observability for the cluster mechanism. Many of the new features remain under the hood, but several additions stand out:

Cluster Overload Protection

The new version has a first-of-its-kind Cluster Overload Protection. The whole cluster is able to spot MQTT clients that cause overload on nodes or the cluster as a whole and protects itself from the overload. This mechanism also protects the deployment from cascading failures due to slow or failing underlying hardware (as sometimes seen on cloud providers). This feature is enabled by default and you can learn more about the mechanism in our documentation.

Dynamic Replicates

HiveMQ’s sophisticated cluster mechanism is able to scale in a linear fashion due to extremely efficient and true data distribution mechanics based on a configured replication factor. The most important aspect of every cluster is availability, which is achieved by having eventual consistency functions in place for edge cases. The 3.4 version adds dynamic replicates to the cluster so even the most challenging edge cases involving network splits don’t lead to the sacrifice of consistency for the most important MQTT operations.

Node Stress Level Metrics

All MQTT cluster nodes are now aware of their own stress level and the stress levels of other cluster members. While all stress mitigation is handled internally by HiveMQ, experienced operators may want to monitor the individual node’s stress level (e.g with Grafana) in order to start investigating what caused the increase of load.

WebUI

Operators worldwide love the HiveMQ WebUI introduced with HiveMQ 3.3. We gathered all the fantastic feedback from our users and polished the WebUI, so it’s even more useful for day-to-day broker operations and remote debugging of MQTT clients. The most important changes and additions are:

Trace Recording Download

The unique Trace Recordings functionality is without doubt a lifesaver when the behavior of individual MQTT clients needs further investigation as all interactions with the broker can be traced — at runtime and at scale! Huge production deployments may accumulate multiple gigabytes of trace recordings. HiveMQ now offers a convenient way to collect all trace recordings from all nodes, zips them and allows the download via a simple button on the WebUI. Remote debugging was never easier!

Additional Client Detail Information in WebUI

The mission of the HiveMQ WebUI is to provide easy insights to the whole production MQTT cluster for operators and administrators. Individual MQTT client investigations are a piece of cake, as all available information about clients can be viewed in detail. We further added the ability to view the restrictions a concrete client has:

  • Maximum Inflight Queue Size
  • Client Offline Queue Messages Size
  • Client Offline Message Drop Strategy

Session Invalidation

MQTT persistent sessions are one of the outstanding features of the MQTT protocol specification. Sessions which do not expire but are never reused unnecessarily consume disk space and memory. Administrators can now invalidate individual session directly in the HiveMQ WebUI for client sessions, which can be deleted safely. HiveMQ 3.4 will take care and release the resources on all cluster nodes after a session was invalidated

Web UI Polishing

Most texts on the WebUI were revisited and are now clearer and crisper. The help texts also received a major overhaul and should now be more, well, helpful. In addition, many small improvements were added, which are most of the time invisible but are here to help when you need them most. For example, the WebUI now displays a warning if cluster nodes with old versions are in the cluster (which may happen if a rolling upgrade was not finished properly)

Plugin System

One of the most popular features of HiveMQ is the extensive Plugin System, which virtually enables the integration of HiveMQ to any system and allows hooking into all aspects of the MQTT lifecycle. We listened to the feedback and are pleased to announce many improvements, big and small, for the Plugin System:

Client Session Time-to-live for individual clients

HiveMQ 3.3 offered a global configuration for setting the Time-To-Live for MQTT sessions. With the advent of HiveMQ 3.4, users can now programmatically set Time-To-Live values for individual MQTT clients and can discard a MQTT session immediately.

Individual Inflight Queues

While the Inflight Queue configuration is typically sufficient in the HiveMQ default configuration, there are some use cases that require the adjustment of this configuration. It’s now possible to change the Inflight Queue size for individual clients via the Plugin System.
 
 

Plugin Service Overload Protection

The HiveMQ Plugin System is a power-user tool and it’s possible to do unbelievably useful modifications as well as putting major stress on the system as a whole if the programmer is not careful. In order to protect the HiveMQ instances from accidental overload, a Plugin Service Overload Protection can be configured. This rate limits the Plugin Service usage and gives feedback to the application programmer in case the rate limit is exceeded. This feature is disabled by default but we strongly recommend updating your plugins to profit from this feature.

Session Attribute Store putIfNewer

This is one of the small bits you almost never need but when you do, you’re ecstatic for being able to use it. The Session Attribute Store now offers methods to put values, if the values you want to put are newer or fresher than the values already written. This is extremely useful, if multiple cluster nodes want to write to the Session Attribute Store simultaneously, as this guarantees that outdated values can no longer overwrite newer values.
 
 
 
 

Disconnection Timestamp for OnDisconnectCallback

As the OnDisconnectCallback is executed asynchronously, the client might already be gone when the callback is executed. It’s now easy to obtain the exact timestamp when a MQTT client disconnected, even if the callback is executed later on. This feature might be very interesting for many plugin developers in conjunction with the Session Attribute Store putIfNewer functionality.

Operations

We ❤️ Operators and we strive to provide all the tools needed for operating and administrating a MQTT broker cluster at scale in any environment. A key strategy for successful operations of any system is monitoring. We added some interesting new metrics you might find useful.

System Metrics

In addition to JVM Metrics, HiveMQ now also gathers Operating System Metrics for Linux Systems. So HiveMQ is able to see for itself how the operating system views the process, including native memory, the real CPU usage, and open file usage. These metrics are particularly useful, if you don’t have a monitoring agent for Linux systems setup. All metrics can be found here.

Client Disconnection Metrics

The reality of many MQTT scenarios is that not all clients are able to disconnect gracefully by sending MQTT DISCONNECT messages. HiveMQ now also exposes metrics about clients that disconnected by closing the TCP connection instead of sending a DISCONNECT packet first. This is especially useful for monitoring, if you regularly deal with clients that don’t have a stable connection to the MQTT brokers.

 

JMX enabled by default

JMX, the Java Monitoring Extension, is now enabled by default. Many HiveMQ operators use Application Performance Monitoring tools, which are able to hook into the metrics via JMX or use plain JMX for on-the-fly debugging. While we recommend to use official off-the-shelf plugins for monitoring, it’s now easier than ever to just use JMX if other solutions are not available to you.

Other notable improvements

The 3.4 release of HiveMQ is full of hidden gems and improvements. While it would be too much to highlight all small improvements, these notable changes stand out and contribute to the best HiveMQ release ever.

Topic Level Distribution Configuration

Our recommendation for all huge deployments with millions of devices is: Start with separate topic prefixes by bringing the dynamic topic parts directly to the beginning. The reality is that many customers have topics that are constructed like the following: “devices/{deviceId}/status”. So what happens is that all topics in this example start with a common prefix, “devices”, which is the first topic level. Unfortunately the first topic level doesn’t include a dynamic topic part. In order to guarantee the best scalability of the cluster and the best performance of the topic tree, customers can now configure how many topic levels are used for distribution. In the example outlined here, a topic level distribution of 2 would be perfect and guarantees the best scalability.

Mass disconnect performance improvements

Mass disconnections of MQTT clients can happen. This might be the case when e.g. a load balancer in front of the MQTT broker cluster drops the connections or if a mobile carrier experiences connectivity problems. Prior to HiveMQ 3.4, mass disconnect events caused stress on the cluster. Mass disconnect events are now massively optimized and even tens of millions of connection losses at the same time won’t bring the cluster into stress situations.

 
 
 
 
 
 

Replication Performance Improvements

Due to the distributed nature of a HiveMQ, data needs to be replicated across the cluster in certain events, e.g. when cluster topology changes occur. There are various internal improvements in HiveMQ version 3.4, which increase the replication performance significantly. Our engineers put special love into the replication of Queued Messages, which is now faster than ever, even for multiple millions of Queued Messages that need to be transferred across the cluster.

Updated Native SSL Libraries

The Native SSL Integration of HiveMQ was updated to the newest BoringSSL version. This results in better performance and increased security. In case you’re using SSL and you are not yet using the native SSL integration, we strongly recommend to give it a try, more than 40% performance improvement can be observed for most deployments.

 
 

Improvements for Java 9

While Java 9 was already supported for older HiveMQ versions, HiveMQ 3.4 has full-blown Java 9 support. The minimum Java version still remains Java 7, although we strongly recommend to use Java 8 or newer for the best performance of HiveMQ.

Analyze data in Amazon DynamoDB using Amazon SageMaker for real-time prediction

Post Syndicated from YongSeong Lee original https://aws.amazon.com/blogs/big-data/analyze-data-in-amazon-dynamodb-using-amazon-sagemaker-for-real-time-prediction/

Many companies across the globe use Amazon DynamoDB to store and query historical user-interaction data. DynamoDB is a fast NoSQL database used by applications that need consistent, single-digit millisecond latency.

Often, customers want to turn their valuable data in DynamoDB into insights by analyzing a copy of their table stored in Amazon S3. Doing this separates their analytical queries from their low-latency critical paths. This data can be the primary source for understanding customers’ past behavior, predicting future behavior, and generating downstream business value. Customers often turn to DynamoDB because of its great scalability and high availability. After a successful launch, many customers want to use the data in DynamoDB to predict future behaviors or provide personalized recommendations.

DynamoDB is a good fit for low-latency reads and writes, but it’s not practical to scan all data in a DynamoDB database to train a model. In this post, I demonstrate how you can use DynamoDB table data copied to Amazon S3 by AWS Data Pipeline to predict customer behavior. I also demonstrate how you can use this data to provide personalized recommendations for customers using Amazon SageMaker. You can also run ad hoc queries using Amazon Athena against the data. DynamoDB recently released on-demand backups to create full table backups with no performance impact. However, it’s not suitable for our purposes in this post, so I chose AWS Data Pipeline instead to create managed backups are accessible from other services.

To do this, I describe how to read the DynamoDB backup file format in Data Pipeline. I also describe how to convert the objects in S3 to a CSV format that Amazon SageMaker can read. In addition, I show how to schedule regular exports and transformations using Data Pipeline. The sample data used in this post is from Bank Marketing Data Set of UCI.

The solution that I describe provides the following benefits:

  • Separates analytical queries from production traffic on your DynamoDB table, preserving your DynamoDB read capacity units (RCUs) for important production requests
  • Automatically updates your model to get real-time predictions
  • Optimizes for performance (so it doesn’t compete with DynamoDB RCUs after the export) and for cost (using data you already have)
  • Makes it easier for developers of all skill levels to use Amazon SageMaker

All code and data set in this post are available in this .zip file.

Solution architecture

The following diagram shows the overall architecture of the solution.

The steps that data follows through the architecture are as follows:

  1. Data Pipeline regularly copies the full contents of a DynamoDB table as JSON into an S3
  2. Exported JSON files are converted to comma-separated value (CSV) format to use as a data source for Amazon SageMaker.
  3. Amazon SageMaker renews the model artifact and update the endpoint.
  4. The converted CSV is available for ad hoc queries with Amazon Athena.
  5. Data Pipeline controls this flow and repeats the cycle based on the schedule defined by customer requirements.

Building the auto-updating model

This section discusses details about how to read the DynamoDB exported data in Data Pipeline and build automated workflows for real-time prediction with a regularly updated model.

Download sample scripts and data

Before you begin, take the following steps:

  1. Download sample scripts in this .zip file.
  2. Unzip the src.zip file.
  3. Find the automation_script.sh file and edit it for your environment. For example, you need to replace 's3://<your bucket>/<datasource path>/' with your own S3 path to the data source for Amazon ML. In the script, the text enclosed by angle brackets—< and >—should be replaced with your own path.
  4. Upload the json-serde-1.3.6-SNAPSHOT-jar-with-dependencies.jar file to your S3 path so that the ADD jar command in Apache Hive can refer to it.

For this solution, the banking.csv  should be imported into a DynamoDB table.

Export a DynamoDB table

To export the DynamoDB table to S3, open the Data Pipeline console and choose the Export DynamoDB table to S3 template. In this template, Data Pipeline creates an Amazon EMR cluster and performs an export in the EMRActivity activity. Set proper intervals for backups according to your business requirements.

One core node(m3.xlarge) provides the default capacity for the EMR cluster and should be suitable for the solution in this post. Leave the option to resize the cluster before running enabled in the TableBackupActivity activity to let Data Pipeline scale the cluster to match the table size. The process of converting to CSV format and renewing models happens in this EMR cluster.

For a more in-depth look at how to export data from DynamoDB, see Export Data from DynamoDB in the Data Pipeline documentation.

Add the script to an existing pipeline

After you export your DynamoDB table, you add an additional EMR step to EMRActivity by following these steps:

  1. Open the Data Pipeline console and choose the ID for the pipeline that you want to add the script to.
  2. For Actions, choose Edit.
  3. In the editing console, choose the Activities category and add an EMR step using the custom script downloaded in the previous section, as shown below.

Paste the following command into the new step after the data ­­upload step:

s3://#{myDDBRegion}.elasticmapreduce/libs/script-runner/script-runner.jar,s3://<your bucket name>/automation_script.sh,#{output.directoryPath},#{myDDBRegion}

The element #{output.directoryPath} references the S3 path where the data pipeline exports DynamoDB data as JSON. The path should be passed to the script as an argument.

The bash script has two goals, converting data formats and renewing the Amazon SageMaker model. Subsequent sections discuss the contents of the automation script.

Automation script: Convert JSON data to CSV with Hive

We use Apache Hive to transform the data into a new format. The Hive QL script to create an external table and transform the data is included in the custom script that you added to the Data Pipeline definition.

When you run the Hive scripts, do so with the -e option. Also, define the Hive table with the 'org.openx.data.jsonserde.JsonSerDe' row format to parse and read JSON format. The SQL creates a Hive EXTERNAL table, and it reads the DynamoDB backup data on the S3 path passed to it by Data Pipeline.

Note: You should create the table with the “EXTERNAL” keyword to avoid the backup data being accidentally deleted from S3 if you drop the table.

The full automation script for converting follows. Add your own bucket name and data source path in the highlighted areas.

#!/bin/bash
hive -e "
ADD jar s3://<your bucket name>/json-serde-1.3.6-SNAPSHOT-jar-with-dependencies.jar ; 
DROP TABLE IF EXISTS blog_backup_data ;
CREATE EXTERNAL TABLE blog_backup_data (
 customer_id map<string,string>,
 age map<string,string>, job map<string,string>, 
 marital map<string,string>,education map<string,string>, 
 default map<string,string>, housing map<string,string>,
 loan map<string,string>, contact map<string,string>, 
 month map<string,string>, day_of_week map<string,string>, 
 duration map<string,string>, campaign map<string,string>,
 pdays map<string,string>, previous map<string,string>, 
 poutcome map<string,string>, emp_var_rate map<string,string>, 
 cons_price_idx map<string,string>, cons_conf_idx map<string,string>,
 euribor3m map<string,string>, nr_employed map<string,string>, 
 y map<string,string> ) 
ROW FORMAT SERDE 'org.openx.data.jsonserde.JsonSerDe' 
LOCATION '$1/';

INSERT OVERWRITE DIRECTORY 's3://<your bucket name>/<datasource path>/' 
SELECT concat( customer_id['s'],',', 
 age['n'],',', job['s'],',', 
 marital['s'],',', education['s'],',', default['s'],',', 
 housing['s'],',', loan['s'],',', contact['s'],',', 
 month['s'],',', day_of_week['s'],',', duration['n'],',', 
 campaign['n'],',',pdays['n'],',',previous['n'],',', 
 poutcome['s'],',', emp_var_rate['n'],',', cons_price_idx['n'],',',
 cons_conf_idx['n'],',', euribor3m['n'],',', nr_employed['n'],',', y['n'] ) 
FROM blog_backup_data
WHERE customer_id['s'] > 0 ; 

After creating an external table, you need to read data. You then use the INSERT OVERWRITE DIRECTORY ~ SELECT command to write CSV data to the S3 path that you designated as the data source for Amazon SageMaker.

Depending on your requirements, you can eliminate or process the columns in the SELECT clause in this step to optimize data analysis. For example, you might remove some columns that have unpredictable correlations with the target value because keeping the wrong columns might expose your model to “overfitting” during the training. In this post, customer_id  columns is removed. Overfitting can make your prediction weak. More information about overfitting can be found in the topic Model Fit: Underfitting vs. Overfitting in the Amazon ML documentation.

Automation script: Renew the Amazon SageMaker model

After the CSV data is replaced and ready to use, create a new model artifact for Amazon SageMaker with the updated dataset on S3.  For renewing model artifact, you must create a new training job.  Training jobs can be run using the AWS SDK ( for example, Amazon SageMaker boto3 ) or the Amazon SageMaker Python SDK that can be installed with “pip install sagemaker” command as well as the AWS CLI for Amazon SageMaker described in this post.

In addition, consider how to smoothly renew your existing model without service impact, because your model is called by applications in real time. To do this, you need to create a new endpoint configuration first and update a current endpoint with the endpoint configuration that is just created.

#!/bin/bash
## Define variable 
REGION=$2
DTTIME=`date +%Y-%m-%d-%H-%M-%S`
ROLE="<your AmazonSageMaker-ExecutionRole>" 


# Select containers image based on region.  
case "$REGION" in
"us-west-2" )
    IMAGE="174872318107.dkr.ecr.us-west-2.amazonaws.com/linear-learner:latest"
    ;;
"us-east-1" )
    IMAGE="382416733822.dkr.ecr.us-east-1.amazonaws.com/linear-learner:latest" 
    ;;
"us-east-2" )
    IMAGE="404615174143.dkr.ecr.us-east-2.amazonaws.com/linear-learner:latest" 
    ;;
"eu-west-1" )
    IMAGE="438346466558.dkr.ecr.eu-west-1.amazonaws.com/linear-learner:latest" 
    ;;
 *)
    echo "Invalid Region Name"
    exit 1 ;  
esac

# Start training job and creating model artifact 
TRAINING_JOB_NAME=TRAIN-${DTTIME} 
S3OUTPUT="s3://<your bucket name>/model/" 
INSTANCETYPE="ml.m4.xlarge"
INSTANCECOUNT=1
VOLUMESIZE=5 
aws sagemaker create-training-job --training-job-name ${TRAINING_JOB_NAME} --region ${REGION}  --algorithm-specification TrainingImage=${IMAGE},TrainingInputMode=File --role-arn ${ROLE}  --input-data-config '[{ "ChannelName": "train", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": "s3://<your bucket name>/<datasource path>/", "S3DataDistributionType": "FullyReplicated" } }, "ContentType": "text/csv", "CompressionType": "None" , "RecordWrapperType": "None"  }]'  --output-data-config S3OutputPath=${S3OUTPUT} --resource-config  InstanceType=${INSTANCETYPE},InstanceCount=${INSTANCECOUNT},VolumeSizeInGB=${VOLUMESIZE} --stopping-condition MaxRuntimeInSeconds=120 --hyper-parameters feature_dim=20,predictor_type=binary_classifier  

# Wait until job completed 
aws sagemaker wait training-job-completed-or-stopped --training-job-name ${TRAINING_JOB_NAME}  --region ${REGION}

# Get newly created model artifact and create model
MODELARTIFACT=`aws sagemaker describe-training-job --training-job-name ${TRAINING_JOB_NAME} --region ${REGION}  --query 'ModelArtifacts.S3ModelArtifacts' --output text `
MODELNAME=MODEL-${DTTIME}
aws sagemaker create-model --region ${REGION} --model-name ${MODELNAME}  --primary-container Image=${IMAGE},ModelDataUrl=${MODELARTIFACT}  --execution-role-arn ${ROLE}

# create a new endpoint configuration 
CONFIGNAME=CONFIG-${DTTIME}
aws sagemaker  create-endpoint-config --region ${REGION} --endpoint-config-name ${CONFIGNAME}  --production-variants  VariantName=Users,ModelName=${MODELNAME},InitialInstanceCount=1,InstanceType=ml.m4.xlarge

# create or update the endpoint
STATUS=`aws sagemaker describe-endpoint --endpoint-name  ServiceEndpoint --query 'EndpointStatus' --output text --region ${REGION} `
if [[ $STATUS -ne "InService" ]] ;
then
    aws sagemaker  create-endpoint --endpoint-name  ServiceEndpoint  --endpoint-config-name ${CONFIGNAME} --region ${REGION}    
else
    aws sagemaker  update-endpoint --endpoint-name  ServiceEndpoint  --endpoint-config-name ${CONFIGNAME} --region ${REGION}
fi

Grant permission

Before you execute the script, you must grant proper permission to Data Pipeline. Data Pipeline uses the DataPipelineDefaultResourceRole role by default. I added the following policy to DataPipelineDefaultResourceRole to allow Data Pipeline to create, delete, and update the Amazon SageMaker model and data source in the script.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "sagemaker:CreateTrainingJob",
 "sagemaker:DescribeTrainingJob",
 "sagemaker:CreateModel",
 "sagemaker:CreateEndpointConfig",
 "sagemaker:DescribeEndpoint",
 "sagemaker:CreateEndpoint",
 "sagemaker:UpdateEndpoint",
 "iam:PassRole"
 ],
 "Resource": "*"
 }
 ]
}

Use real-time prediction

After you deploy a model into production using Amazon SageMaker hosting services, your client applications use this API to get inferences from the model hosted at the specified endpoint. This approach is useful for interactive web, mobile, or desktop applications.

Following, I provide a simple Python code example that queries against Amazon SageMaker endpoint URL with its name (“ServiceEndpoint”) and then uses them for real-time prediction.

=== Python sample for real-time prediction ===

#!/usr/bin/env python
import boto3
import json 

client = boto3.client('sagemaker-runtime', region_name ='<your region>' )
new_customer_info = '34,10,2,4,1,2,1,1,6,3,190,1,3,4,3,-1.7,94.055,-39.8,0.715,4991.6'
response = client.invoke_endpoint(
    EndpointName='ServiceEndpoint',
    Body=new_customer_info, 
    ContentType='text/csv'
)
result = json.loads(response['Body'].read().decode())
print(result)
--- output(response) ---
{u'predictions': [{u'score': 0.7528127431869507, u'predicted_label': 1.0}]}

Solution summary

The solution takes the following steps:

  1. Data Pipeline exports DynamoDB table data into S3. The original JSON data should be kept to recover the table in the rare event that this is needed. Data Pipeline then converts JSON to CSV so that Amazon SageMaker can read the data.Note: You should select only meaningful attributes when you convert CSV. For example, if you judge that the “campaign” attribute is not correlated, you can eliminate this attribute from the CSV.
  2. Train the Amazon SageMaker model with the new data source.
  3. When a new customer comes to your site, you can judge how likely it is for this customer to subscribe to your new product based on “predictedScores” provided by Amazon SageMaker.
  4. If the new user subscribes your new product, your application must update the attribute “y” to the value 1 (for yes). This updated data is provided for the next model renewal as a new data source. It serves to improve the accuracy of your prediction. With each new entry, your application can become smarter and deliver better predictions.

Running ad hoc queries using Amazon Athena

Amazon Athena is a serverless query service that makes it easy to analyze large amounts of data stored in Amazon S3 using standard SQL. Athena is useful for examining data and collecting statistics or informative summaries about data. You can also use the powerful analytic functions of Presto, as described in the topic Aggregate Functions of Presto in the Presto documentation.

With the Data Pipeline scheduled activity, recent CSV data is always located in S3 so that you can run ad hoc queries against the data using Amazon Athena. I show this with example SQL statements following. For an in-depth description of this process, see the post Interactive SQL Queries for Data in Amazon S3 on the AWS News Blog. 

Creating an Amazon Athena table and running it

Simply, you can create an EXTERNAL table for the CSV data on S3 in Amazon Athena Management Console.

=== Table Creation ===
CREATE EXTERNAL TABLE datasource (
 age int, 
 job string, 
 marital string , 
 education string, 
 default string, 
 housing string, 
 loan string, 
 contact string, 
 month string, 
 day_of_week string, 
 duration int, 
 campaign int, 
 pdays int , 
 previous int , 
 poutcome string, 
 emp_var_rate double, 
 cons_price_idx double,
 cons_conf_idx double, 
 euribor3m double, 
 nr_employed double, 
 y int 
)
ROW FORMAT DELIMITED 
FIELDS TERMINATED BY ',' ESCAPED BY '\\' LINES TERMINATED BY '\n' 
LOCATION 's3://<your bucket name>/<datasource path>/';

The following query calculates the correlation coefficient between the target attribute and other attributes using Amazon Athena.

=== Sample Query ===

SELECT corr(age,y) AS correlation_age_and_target, 
 corr(duration,y) AS correlation_duration_and_target, 
 corr(campaign,y) AS correlation_campaign_and_target,
 corr(contact,y) AS correlation_contact_and_target
FROM ( SELECT age , duration , campaign , y , 
 CASE WHEN contact = 'telephone' THEN 1 ELSE 0 END AS contact 
 FROM datasource 
 ) datasource ;

Conclusion

In this post, I introduce an example of how to analyze data in DynamoDB by using table data in Amazon S3 to optimize DynamoDB table read capacity. You can then use the analyzed data as a new data source to train an Amazon SageMaker model for accurate real-time prediction. In addition, you can run ad hoc queries against the data on S3 using Amazon Athena. I also present how to automate these procedures by using Data Pipeline.

You can adapt this example to your specific use case at hand, and hopefully this post helps you accelerate your development. You can find more examples and use cases for Amazon SageMaker in the video AWS 2017: Introducing Amazon SageMaker on the AWS website.

 


Additional Reading

If you found this post useful, be sure to check out Serving Real-Time Machine Learning Predictions on Amazon EMR and Analyzing Data in S3 using Amazon Athena.

 


About the Author

Yong Seong Lee is a Cloud Support Engineer for AWS Big Data Services. He is interested in every technology related to data/databases and helping customers who have difficulties in using AWS services. His motto is “Enjoy life, be curious and have maximum experience.”

 

 

IoT Inspector Tool from Princeton

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2018/05/iot_inspector_t.html

Researchers at Princeton University have released IoT Inspector, a tool that analyzes the security and privacy of IoT devices by examining the data they send across the Internet. They’ve already used the tool to study a bunch of different IoT devices. From their blog post:

Finding #3: Many IoT Devices Contact a Large and Diverse Set of Third Parties

In many cases, consumers expect that their devices contact manufacturers’ servers, but communication with other third-party destinations may not be a behavior that consumers expect.

We have found that many IoT devices communicate with third-party services, of which consumers are typically unaware. We have found many instances of third-party communications in our analyses of IoT device network traffic. Some examples include:

  • Samsung Smart TV. During the first minute after power-on, the TV talks to Google Play, Double Click, Netflix, FandangoNOW, Spotify, CBS, MSNBC, NFL, Deezer, and Facebook­even though we did not sign in or create accounts with any of them.
  • Amcrest WiFi Security Camera. The camera actively communicates with cellphonepush.quickddns.com using HTTPS. QuickDDNS is a Dynamic DNS service provider operated by Dahua. Dahua is also a security camera manufacturer, although Amcrest’s website makes no references to Dahua. Amcrest customer service informed us that Dahua was the original equipment manufacturer.

  • Halo Smoke Detector. The smart smoke detector communicates with broker.xively.com. Xively offers an MQTT service, which allows manufacturers to communicate with their devices.

  • Geeni Light Bulb. The Geeni smart bulb communicates with gw.tuyaus.com, which is operated by TuYa, a China-based company that also offers an MQTT service.

We also looked at a number of other devices, such as Samsung Smart Camera and TP-Link Smart Plug, and found communications with third parties ranging from NTP pools (time servers) to video storage services.

Their first two findings are that “Many IoT devices lack basic encryption and authentication” and that “User behavior can be inferred from encrypted IoT device traffic.” No surprises there.

Boingboing post.

Related: IoT Hall of Shame.

Danish Traffic to Pirate Sites Increases 67% in Just a Year

Post Syndicated from Andy original https://torrentfreak.com/danish-traffic-to-pirate-sites-increases-67-in-just-a-year-180501/

For close to 20 years, rightsholders have tried to stem the tide of mainstream Internet piracy. Yet despite increasingly powerful enforcement tools, infringement continues on a grand scale.

While the problem is global, rightsholder groups often zoom in on their home turf, to see how the fight is progressing locally. Covering Denmark, the Rights Alliance Data Report 2017 paints a fairly pessimistic picture.

Published this week, the industry study – which uses SimilarWeb and MarkMonitor data – finds that Danes visited 2,000 leading pirate sites 596 million times in 2017. That represents a 67% increase over the 356 million visits to unlicensed platforms made by citizens during 2016.

The report notes that, at least in part, this explosive growth can be attributed to mobile-compatible sites and services, which make it easier than ever to consume illicit content on the move, as well as at home.

In a sea of unauthorized streaming sites, Rights Alliance highlights one platform above all the others as a particularly bad influence in 2017 – 123movies (also known as GoMovies and GoStream, among others).

“The popularity of this service rose sharply in 2017 from 40 million visits in 2016 to 175 million visits in 2017 – an increase of 337 percent, of which most of the traffic originates from mobile devices,” the report notes.

123movies recently announced its closure but before that the platform was subjected to web-blocking in several jurisdictions.

Rights Alliance says that Denmark has one of the most effective blocking systems in the world but that still doesn’t stop huge numbers of people from consuming pirate content from sites that aren’t yet blocked.

“Traffic to infringing sites is overwhelming, and therefore blocking a few sites merely takes the top of the illegal activities,” Rights Alliance chief Maria Fredenslund informs TorrentFreak.

“Blocking is effective by stopping 75% of traffic to blocked sites but certainly, an upscaled effort is necessary.”

Rights Alliance also views the promotion of legal services as crucial to its anti-piracy strategy so when people visit a blocked site, they’re also directed towards legitimate platforms.

“That is why we are working at the moment with Denmark’s Ministry of Culture and ISPs on a campaign ‘Share With Care 2′ which promotes legal services e.g. by offering a search function for legal services which will be placed in combination with the signs that are put on blocked websites,” the anti-piracy group notes.

But even with such measures in place, the thirst for unlicensed content is great. In 2017 alone, 500 of the most popular films and TV shows were downloaded from P2P networks like BitTorrent more than 15 million times from Danish IP addresses, that’s up from 11.9 million in 2016.

Given the dramatic rise in visits to pirate sites overall, the suggestion is that plenty of consumers are still getting through. Rights Alliance says that the number of people being restricted is also hampered by people who don’t use their ISP’s DNS service, which is the method used to block sites in Denmark.

Additionally, interest in VPNs and similar anonymization and bypass-capable technologies is on the increase. Between 3.5% and 5% of Danish Internet users currently use a VPN, a number that’s expected to go up. Furthermore, Rights Alliance reports greater interest in “closed” pirate communities.

“The data is based on closed [BitTorrent] networks. We also address the challenges with private communities on Facebook and other [social media] platforms,” Fredenslund explains.

“Due to the closed doors of these platforms it is not possible for us to say anything precisely about the amount of infringing activities there. However, we receive an increasing number of notices from our members who discover that their products are distributed illegally and also we do an increased monitoring of these platforms.”

But while more established technologies such as torrents and regular web-streaming continue in considerable volumes, newer IPTV-style services accessible via apps and dedicated platforms are also gaining traction.

“The volume of visitors to these services’ websites has been sharply rising in 2017 – an increase of 84 percent from January to December,” Rights Alliance notes.

“Even though the number of visitors does not say anything about actual consumption, as users usually only visit pages one time to download the program, the number gives an indication that the interest in IPTV is increasing.”

To combat this growth market, Rights Alliance says it wants to establish web-blockades against sites hosting the software applications.

Also on the up are visits to platforms offering live sports illegally. In 2017, Danish IP addresses made 2.96 million visits to these services, corresponding to almost 250,000 visits per month and representing an annual increase of 28%.

Rights Alliance informs TF that in future a ‘live’ blocking mechanism similar to the one used by the Premier League in the UK could be deployed in Denmark.

“We already have a dynamic blocking system, and we see an increasing demand for illegal TV products, so this could be a natural next step,” Fredenslund explains.

Another small but perhaps significant detail is how users are accessing pirate sites. According to the report, large volumes of people are now visiting platforms directly, with more than 50% doing so in preference to referrals from search engines such as Google.

In terms of deterrence, the Rights Alliance report sticks to the tried-and-tested approaches seen so often in the anti-piracy arena.

Firstly, the group notes that it’s increasingly encountering people who are paying for legal services such as Netflix and Spotify so believe that allows them to grab something extra from a pirate site. However, in common with similar organizations globally, the group counters that pirate sites can serve malware or have other nefarious business interests behind the scenes, so people should stay away.

Whether significant volumes will heed this advice will remain to be seen but if a 67% increase last year is any predictor of the future, piracy is here to stay – and then some. Rights Alliance says it is ready for the challenge but will need some assistance to achieve its goals.

“As it is evident from the traffic data, criminal activities are not something that we, private companies (right holders in cooperation with ISPs), can handle alone,” Fredenslund says.

“Therefore, we are very pleased that DK Government recently announced that the IP taskforce which was set down as a trial period has now been made permanent. In that regard it is important and necessary that the police will also obtain the authority to handle blocking of massively infringing websites. Police do not have the authority to carry out blocking as it is today.”

The full report is available here (Danish, pdf)

Source: TF, for the latest info on copyright, file-sharing, torrent sites and more. We also have VPN reviews, discounts, offers and coupons.