Tag Archives: ebuild

Using AWS CodePipeline, AWS CodeBuild, and AWS Lambda for Serverless Automated UI Testing

Post Syndicated from Prakash Palanisamy original https://aws.amazon.com/blogs/devops/using-aws-codepipeline-aws-codebuild-and-aws-lambda-for-serverless-automated-ui-testing/

Testing the user interface of a web application is an important part of the development lifecycle. In this post, I’ll explain how to automate UI testing using serverless technologies, including AWS CodePipeline, AWS CodeBuild, and AWS Lambda.

I built a website for UI testing that is hosted in S3. I used Selenium to perform cross-browser UI testing on Chrome, Firefox, and PhantomJS, a headless WebKit browser with Ghost Driver, an implementation of the WebDriver Wire Protocol. I used Python to create test cases for ChromeDriver, FirefoxDriver, or PhatomJSDriver based the browser against which the test is being executed.

Resources referred to in this post, including the AWS CloudFormation template, test and status websites hosted in S3, AWS CodeBuild build specification files, AWS Lambda function, and the Python script that performs the test are available in the serverless-automated-ui-testing GitHub repository.

S3 Hosted Test Website:

AWS CodeBuild supports custom containers so we can use the Selenium/standalone-Firefox and Selenium/standalone-Chrome containers, which include prebuild Firefox and Chrome browsers, respectively. Xvfb performs the graphical operation in virtual memory without any display hardware. It will be installed in the CodeBuild containers during the install phase.

Build Spec for Chrome and Firefox

The build specification for Chrome and Firefox testing includes multiple phases:

  • The environment variables section contains a set of default variables that are overridden while creating the build project or triggering the build.
  • As part of install phase, required packages like Xvfb and Selenium are installed using yum.
  • During the pre_build phase, the test bed is prepared for test execution.
  • During the build phase, the appropriate DISPLAY is set and the tests are executed.
version: 0.2

env:
  variables:
    BROWSER: "chrome"
    WebURL: "https://sampletestweb.s3-eu-west-1.amazonaws.com/website/index.html"
    ArtifactBucket: "codebuild-demo-artifact-repository"
    MODULES: "mod1"
    ModuleTable: "test-modules"
    StatusTable: "blog-test-status"

phases:
  install:
    commands:
      - apt-get update
      - apt-get -y upgrade
      - apt-get install xvfb python python-pip build-essential -y
      - pip install --upgrade pip
      - pip install selenium
      - pip install awscli
      - pip install requests
      - pip install boto3
      - cp xvfb.init /etc/init.d/xvfb
      - chmod +x /etc/init.d/xvfb
      - update-rc.d xvfb defaults
      - service xvfb start
      - export PATH="$PATH:`pwd`/webdrivers"
  pre_build:
    commands:
      - python prepare_test.py
  build:
    commands:
      - export DISPLAY=:5
      - cd tests
      - echo "Executing simple test..."
      - python testsuite.py

Because Ghost Driver runs headless, it can be executed on AWS Lambda. In keeping with a fire-and-forget model, I used CodeBuild to create the PhantomJS Lambda function and trigger the test invocations on Lambda in parallel. This is powerful because many tests can be executed in parallel on Lambda.

Build Spec for PhantomJS

The build specification for PhantomJS testing also includes multiple phases. It is a little different from the preceding example because we are using AWS Lambda for the test execution.

  • The environment variables section contains a set of default variables that are overridden while creating the build project or triggering the build.
  • As part of install phase, the required packages like Selenium and the AWS CLI are installed using yum.
  • During the pre_build phase, the test bed is prepared for test execution.
  • During the build phase, a zip file that will be used to create the PhantomJS Lambda function is created and tests are executed on the Lambda function.
version: 0.2

env:
  variables:
    BROWSER: "phantomjs"
    WebURL: "https://sampletestweb.s3-eu-west-1.amazonaws.com/website/index.html"
    ArtifactBucket: "codebuild-demo-artifact-repository"
    MODULES: "mod1"
    ModuleTable: "test-modules"
    StatusTable: "blog-test-status"
    LambdaRole: "arn:aws:iam::account-id:role/role-name"

phases:
  install:
    commands:
      - apt-get update
      - apt-get -y upgrade
      - apt-get install python python-pip build-essential -y
      - apt-get install zip unzip -y
      - pip install --upgrade pip
      - pip install selenium
      - pip install awscli
      - pip install requests
      - pip install boto3
  pre_build:
    commands:
      - python prepare_test.py
  build:
    commands:
      - cd lambda_function
      - echo "Packaging Lambda Function..."
      - zip -r /tmp/lambda_function.zip ./*
      - func_name=`echo $CODEBUILD_BUILD_ID | awk -F ':' '{print $1}'`-phantomjs
      - echo "Creating Lambda Function..."
      - chmod 777 phantomjs
      - |
         func_list=`aws lambda list-functions | grep FunctionName | awk -F':' '{print $2}' | tr -d ', "'`
         if echo "$func_list" | grep -qw $func_name
         then
             echo "Lambda function already exists."
         else
             aws lambda create-function --function-name $func_name --runtime "python2.7" --role $LambdaRole --handler "testsuite.lambda_handler" --zip-file fileb:///tmp/lambda_function.zip --timeout 150 --memory-size 1024 --environment Variables="{WebURL=$WebURL, StatusTable=$StatusTable}" --tags Name=$func_name
         fi
      - export PhantomJSFunction=$func_name
      - cd ../tests/
      - python testsuite.py

The list of test cases and the test modules that belong to each case are stored in an Amazon DynamoDB table. Based on the list of modules passed as an argument to the CodeBuild project, CodeBuild gets the test cases from that table and executes them. The test execution status and results are stored in another Amazon DynamoDB table. It will read the test status from the status table in DynamoDB and display it.

AWS CodeBuild and AWS Lambda perform the test execution as individual tasks. AWS CodePipeline plays an important role here by enabling continuous delivery and parallel execution of tests for optimized testing.

Here’s how to do it:

In AWS CodePipeline, create a pipeline with four stages:

  • Source (AWS CodeCommit)
  • UI testing (AWS Lambda and AWS CodeBuild)
  • Approval (manual approval)
  • Production (AWS Lambda)

Pipeline stages, the actions in each stage, and transitions between stages are shown in the following diagram.

This design implemented in AWS CodePipeline looks like this:

CodePipeline automatically detects a change in the source repository and triggers the execution of the pipeline.

In the UITest stage, there are two parallel actions:

  • DeployTestWebsite invokes a Lambda function to deploy the test website in S3 as an S3 website.
  • DeployStatusPage invokes another Lambda function to deploy in parallel the status website in S3 as an S3 website.

Next, there are three parallel actions that trigger the CodeBuild project:

  • TestOnChrome launches a container to perform the Selenium tests on Chrome.
  • TestOnFirefox launches another container to perform the Selenium tests on Firefox.
  • TestOnPhantomJS creates a Lambda function and invokes individual Lambda functions per test case to execute the test cases in parallel.

You can monitor the status of the test execution on the status website, as shown here:

When the UI testing is completed successfully, the pipeline continues to an Approval stage in which a notification is sent to the configured SNS topic. The designated team member reviews the test status and approves or rejects the deployment. Upon approval, the pipeline continues to the Production stage, where it invokes a Lambda function and deploys the website to a production S3 bucket.

I used a CloudFormation template to set up my continuous delivery pipeline. The automated-ui-testing.yaml template, available from GitHub, sets up a full-featured pipeline.

When I use the template to create my pipeline, I specify the following:

  • AWS CodeCommit repository.
  • SNS topic to send approval notification.
  • S3 bucket name where the artifacts will be stored.

The stack name should follow the rules for S3 bucket naming because it will be part of the S3 bucket name.

When the stack is created successfully, the URLs for the test website and status website appear in the Outputs section, as shown here:

Conclusion

In this post, I showed how you can use AWS CodePipeline, AWS CodeBuild, AWS Lambda, and a manual approval process to create a continuous delivery pipeline for serverless automated UI testing. Websites running on Amazon EC2 instances or AWS Elastic Beanstalk can also be tested using similar approach.


About the author

Prakash Palanisamy is a Solutions Architect for Amazon Web Services. When he is not working on Serverless, DevOps or Alexa, he will be solving problems in Project Euler. He also enjoys watching educational documentaries.

Simplify Your Jenkins Builds with AWS CodeBuild

Post Syndicated from Paul Roberts original https://aws.amazon.com/blogs/devops/simplify-your-jenkins-builds-with-aws-codebuild/

Jeff Bezos famously said, “There’s a lot of undifferentiated heavy lifting that stands between your idea and that success.” He went on to say, “…70% of your time, energy, and dollars go into the undifferentiated heavy lifting and only 30% of your energy, time, and dollars gets to go into the core kernel of your idea.”

If you subscribe to this maxim, you should not be spending valuable time focusing on operational issues related to maintaining the Jenkins build infrastructure. Companies such as Riot Games have over 1.25 million builds per year and have written several lengthy blog posts about their experiences designing a complex, custom Docker-powered Jenkins build farm. Dealing with Jenkins slaves at scale is a job in itself and Riot has engineers focused on managing the build infrastructure.

Typical Jenkins Build Farm

 

As with all technology, the Jenkins build farm architectures have evolved. Today, instead of manually building your own container infrastructure, there are Jenkins Docker plugins available to help reduce the operational burden of maintaining these environments. There is also a community-contributed Amazon EC2 Container Service (Amazon ECS) plugin that helps remove some of the overhead, but you still need to configure and manage the overall Amazon ECS environment.

There are various ways to create and manage your Jenkins build farm, but there has to be a way that significantly reduces your operational overhead.

Introducing AWS CodeBuild

AWS CodeBuild is a fully managed build service that removes the undifferentiated heavy lifting of provisioning, managing, and scaling your own build servers. With CodeBuild, there is no software to install, patch, or update. CodeBuild scales up automatically to meet the needs of your development teams. In addition, CodeBuild is an on-demand service where you pay as you go. You are charged based only on the number of minutes it takes to complete your build.

One AWS customer, Recruiterbox, helps companies hire simply and predictably through their software platform. Two years ago, they began feeling the operational pain of maintaining their own Jenkins build farms. They briefly considered moving to Amazon ECS, but chose an even easier path forward instead. Recuiterbox transitioned to using Jenkins with CodeBuild and are very happy with the results. You can read more about their journey here.

Solution Overview: Jenkins and CodeBuild

To remove the heavy lifting from managing your Jenkins build farm, AWS has developed a Jenkins AWS CodeBuild plugin. After the plugin has been enabled, a developer can configure a Jenkins project to pick up new commits from their chosen source code repository and automatically run the associated builds. After the build is successful, it will create an artifact that is stored inside an S3 bucket that you have configured. If an error is detected somewhere, CodeBuild will capture the output and send it to Amazon CloudWatch logs. In addition to storing the logs on CloudWatch, Jenkins also captures the error so you do not have to go hunting for log files for your build.

 

AWS CodeBuild with Jenkins Plugin

 

The following example uses AWS CodeCommit (Git) as the source control management (SCM) and Amazon S3 for build artifact storage. Logs are stored in CloudWatch. A development pipeline that uses Jenkins with CodeBuild plugin architecture looks something like this:

 

AWS CodeBuild Diagram

Initial Solution Setup

To keep this blog post succinct, I assume that you are using the following components on AWS already and have applied the appropriate IAM policies:

·         AWS CodeCommit repo.

·         Amazon S3 bucket for CodeBuild artifacts.

·         SNS notification for text messaging of the Jenkins admin password.

·         IAM user’s key and secret.

·         A role that has a policy with these permissions. Be sure to edit the ARNs with your region, account, and resource name. Use this role in the AWS CloudFormation template referred to later in this post.

 

Jenkins Installation with CodeBuild Plugin Enabled

To make the integration with Jenkins as frictionless as possible, I have created an AWS CloudFormation template here: https://s3.amazonaws.com/proberts-public/jenkins.yaml. Download the template, sign in the AWS CloudFormation console, and then use the template to create a stack.

 

CloudFormation Inputs

Jenkins Project Configuration

After the stack is complete, log in to the Jenkins EC2 instance using the user name “admin” and the password sent to your mobile device. Now that you have logged in to Jenkins, you need to create your first project. Start with a Freestyle project and configure the parameters based on your CodeBuild and CodeCommit settings.

 

AWS CodeBuild Plugin Configuration in Jenkins

 

Additional Jenkins AWS CodeBuild Plugin Configuration

 

After you have configured the Jenkins project appropriately you should be able to check your build status on the Jenkins polling log under your project settings:

 

Jenkins Polling Log

 

Now that Jenkins is polling CodeCommit, you can check the CodeBuild dashboard under your Jenkins project to confirm your build was successful:

Jenkins AWS CodeBuild Dashboard

Wrapping Up

In a matter of minutes, you have been able to provision Jenkins with the AWS CodeBuild plugin. This will greatly simplify your build infrastructure management. Now kick back and relax while CodeBuild does all the heavy lifting!


About the Author

Paul Roberts is a Strategic Solutions Architect for Amazon Web Services. When he is not working on Serverless, DevOps, or Artificial Intelligence, he is often found in Lake Tahoe exploring the various mountain ranges with his family.

AWS IAM Policy Summaries Now Help You Identify Errors and Correct Permissions in Your IAM Policies

Post Syndicated from Joy Chatterjee original https://aws.amazon.com/blogs/security/iam-policy-summaries-now-help-you-identify-errors-and-correct-permissions-in-your-iam-policies/

In March, we made it easier to view and understand the permissions in your AWS Identity and Access Management (IAM) policies by using IAM policy summaries. Today, we updated policy summaries to help you identify and correct errors in your IAM policies. When you set permissions using IAM policies, for each action you specify, you must match that action to supported resources or conditions. Now, you will see a warning if these policy elements (Actions, Resources, and Conditions) defined in your IAM policy do not match.

When working with policies, you may find that although the policy has valid JSON syntax, it does not grant or deny the desired permissions because the Action element does not have an applicable Resource element or Condition element defined in the policy. For example, you may want to create a policy that allows users to view a specific Amazon EC2 instance. To do this, you create a policy that specifies ec2:DescribeInstances for the Action element and the Amazon Resource Name (ARN) of the instance for the Resource element. When testing this policy, you find AWS denies this access because ec2:DescribeInstances does not support resource-level permissions and requires access to list all instances. Therefore, to grant access to this Action element, you need to specify a wildcard (*) in the Resource element of your policy for this Action element in order for the policy to function correctly.

To help you identify and correct permissions, you will now see a warning in a policy summary if the policy has either of the following:

  • An action that does not support the resource specified in a policy.
  • An action that does not support the condition specified in a policy.

In this blog post, I walk through two examples of how you can use policy summaries to help identify and correct these types of errors in your IAM policies.

How to use IAM policy summaries to debug your policies

Example 1: An action does not support the resource specified in a policy

Let’s say a human resources (HR) representative, Casey, needs access to the personnel files stored in HR’s Amazon S3 bucket. To do this, I create the following policy to grant all actions that begin with s3:List. In addition, I grant access to s3:GetObject in the Action element of the policy. To ensure that Casey has access only to a specific bucket and not others, I specify the bucket ARN in the Resource element of the policy.

Note: This policy does not grant the desired permissions.

This policy does not work. Do not copy.
{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Sid": "ThisPolicyDoesNotGrantAllListandGetActions",
            "Effect": "Allow",
            "Action": ["s3:List*",
                       "s3:GetObject"],
            "Resource": ["arn:aws:s3:::HumanResources"]
        }
    ]
}

After I create the policy, HRBucketPermissions, I select this policy from the Policies page to view the policy summary. From here, I check to see if there are any warnings or typos in the policy. I see a warning at the top of the policy detail page because the policy does not grant some permissions specified in the policy, which is caused by a mismatch among the actions, resources, or conditions.

Screenshot showing the warning at the top of the policy

To view more details about the warning, I choose Show remaining so that I can understand why the permissions do not appear in the policy summary. As shown in the following screenshot, I see no access to the services that are not granted by the IAM policy in the policy, which is expected. However, next to S3, I see a warning that one or more S3 actions do not have an applicable resource.

Screenshot showing that one or more S3 actions do not have an applicable resource

To understand why the specific actions do not have a supported resource, I choose S3 from the list of services and choose Show remaining. I type List in the filter to understand why some of the list actions are not granted by the policy. As shown in the following screenshot, I see these warnings:

  • This action does not support resource-level permissions. This means the action does not support resource-level permissions and requires a wildcard (*) in the Resource element of the policy.
  • This action does not have an applicable resource. This means the action supports resource-level permissions, but not the resource type defined in the policy. In this example, I specified an S3 bucket for an action that supports only an S3 object resource type.

From these warnings, I see that s3:ListAllMyBuckets, s3:ListBucketMultipartUploadsParts3:ListObjects , and s3:GetObject do not support an S3 bucket resource type, which results in Casey not having access to the S3 bucket. To correct the policy, I choose Edit policy and update the policy with three statements based on the resource that the S3 actions support. Because Casey needs access to view and read all of the objects in the HumanResources bucket, I add a wildcard (*) for the S3 object path in the Resource ARN.

{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Sid": "TheseActionsSupportBucketResourceType",
            "Effect": "Allow",
            "Action": ["s3:ListBucket",
                       "s3:ListBucketByTags",
                       "s3:ListBucketMultipartUploads",
                       "s3:ListBucketVersions"],
            "Resource": ["arn:aws:s3:::HumanResources"]
        },{
            "Sid": "TheseActionsRequireAllResources",
            "Effect": "Allow",
            "Action": ["s3:ListAllMyBuckets",
                       "s3:ListMultipartUploadParts",
                       "s3:ListObjects"],
            "Resource": [ "*"]
        },{
            "Sid": "TheseActionsRequireSupportsObjectResourceType",
            "Effect": "Allow",
            "Action": ["s3:GetObject"],
            "Resource": ["arn:aws:s3:::HumanResources/*"]
        }
    ]
}

After I make these changes, I see the updated policy summary and see that warnings are no longer displayed.

Screenshot of the updated policy summary that no longer shows warnings

In the previous example, I showed how to identify and correct permissions errors that include actions that do not support a specified resource. In the next example, I show how to use policy summaries to identify and correct a policy that includes actions that do not support a specified condition.

Example 2: An action does not support the condition specified in a policy

For this example, let’s assume Bob is a project manager who requires view and read access to all the code builds for his team. To grant him this access, I create the following JSON policy that specifies all list and read actions to AWS CodeBuild and defines a condition to limit access to resources in the us-west-2 Region in which Bob’s team develops.

This policy does not work. Do not copy. 
{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Sid": "ListReadAccesstoCodeServices",
            "Effect": "Allow",
            "Action": [
                "codebuild:List*",
                "codebuild:BatchGet*"
            ],
            "Resource": ["*"], 
             "Condition": {
                "StringEquals": {
                    "ec2:Region": "us-west-2"
                }
            }
        }
    ]	
}

After I create the policy, PMCodeBuildAccess, I select this policy from the Policies page to view the policy summary in the IAM console. From here, I check to see if the policy has any warnings or typos. I see an error at the top of the policy detail page because the policy does not grant any permissions.

Screenshot with an error showing the policy does not grant any permissions

To view more details about the error, I choose Show remaining to understand why no permissions result from the policy. I see this warning: One or more conditions do not have an applicable action. This means that the condition is not supported by any of the actions defined in the policy.

From the warning message (see preceding screenshot), I realize that ec2:Region is not a supported condition for any actions in CodeBuild. To correct the policy, I separate the list actions that do not support resource-level permissions into a separate Statement element and specify * as the resource. For the remaining CodeBuild actions that support resource-level permissions, I use the ARN to specify the us-west-2 Region in the project resource type.

CORRECT POLICY 
{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Sid": "TheseActionsSupportAllResources",
            "Effect": "Allow",
            "Action": [
                "codebuild:ListBuilds",
                "codebuild:ListProjects",
                "codebuild:ListRepositories",
                "codebuild:ListCuratedEnvironmentImages",
                "codebuild:ListConnectedOAuthAccounts"
            ],
            "Resource": ["*"] 
        }, {
            "Sid": "TheseActionsSupportAResource",
            "Effect": "Allow",
            "Action": [
                "codebuild:ListBuildsForProject",
                "codebuild:BatchGet*"
            ],
            "Resource": ["arn:aws:codebuild:us-west-2:123456789012:project/*"] 
        }

    ]	
}

After I make the changes, I view the updated policy summary and see that no warnings are displayed.

Screenshot showing the updated policy summary with no warnings

When I choose CodeBuild from the list of services, I also see that for the actions that support resource-level permissions, the access is limited to the us-west-2 Region.

Screenshow showing that for the Actions that support resource-level permissions, the access is limited to the us-west-2 region.

Conclusion

Policy summaries make it easier to view and understand the permissions and resources in your IAM policies by displaying the permissions granted by the policies. As I’ve demonstrated in this post, you can also use policy summaries to help you identify and correct your IAM policies. To understand the types of warnings that policy summaries support, you can visit Troubleshoot IAM Policies. To view policy summaries in your AWS account, sign in to the IAM console and navigate to any policy on the Policies page of the IAM console or the Permissions tab on a user’s page.

If you have comments about this post, submit them in the “Comments” section below. If you have questions about or suggestions for this solution, start a new thread on the IAM forum or contact AWS Support.

– Joy

Delivering Graphics Apps with Amazon AppStream 2.0

Post Syndicated from Deepak Suryanarayanan original https://aws.amazon.com/blogs/compute/delivering-graphics-apps-with-amazon-appstream-2-0/

Sahil Bahri, Sr. Product Manager, Amazon AppStream 2.0

Do you need to provide a workstation class experience for users who run graphics apps? With Amazon AppStream 2.0, you can stream graphics apps from AWS to a web browser running on any supported device. AppStream 2.0 offers a choice of GPU instance types. The range includes the newly launched Graphics Design instance, which allows you to offer a fast, fluid user experience at a fraction of the cost of using a graphics workstation, without upfront investments or long-term commitments.

In this post, I discuss the Graphics Design instance type in detail, and how you can use it to deliver a graphics application such as Siemens NX―a popular CAD/CAM application that we have been testing on AppStream 2.0 with engineers from Siemens PLM.

Graphics Instance Types on AppStream 2.0

First, a quick recap on the GPU instance types available with AppStream 2.0. In July, 2017, we launched graphics support for AppStream 2.0 with two new instance types that Jeff Barr discussed on the AWS Blog:

  • Graphics Desktop
  • Graphics Pro

Many customers in industries such as engineering, media, entertainment, and oil and gas are using these instances to deliver high-performance graphics applications to their users. These instance types are based on dedicated NVIDIA GPUs and can run the most demanding graphics applications, including those that rely on CUDA graphics API libraries.

Last week, we added a new lower-cost instance type: Graphics Design. This instance type is a great fit for engineers, 3D modelers, and designers who use graphics applications that rely on the hardware acceleration of DirectX, OpenGL, or OpenCL APIs, such as Siemens NX, Autodesk AutoCAD, or Adobe Photoshop. The Graphics Design instance is based on AMD’s FirePro S7150x2 Server GPUs and equipped with AMD Multiuser GPU technology. The instance type uses virtualized GPUs to achieve lower costs, and is available in four instance sizes to scale and match the requirements of your applications.

Instance vCPUs Instance RAM (GiB) GPU Memory (GiB)
stream.graphics-design.large 2 7.5 GiB 1
stream.graphics-design.xlarge 4 15.3 GiB 2
stream.graphics-design.2xlarge 8 30.5 GiB 4
stream.graphics-design.4xlarge 16 61 GiB 8

The following table compares all three graphics instance types on AppStream 2.0, along with example applications you could use with each.

  Graphics Design Graphics Desktop Graphics Pro
Number of instance sizes 4 1 3
GPU memory range
1–8 GiB 4 GiB 8–32 GiB
vCPU range 2–16 8 16–32
Memory range 7.5–61 GiB 15 GiB 122–488 GiB
Graphics libraries supported AMD FirePro S7150x2 NVIDIA GRID K520 NVIDIA Tesla M60
Price range (N. Virginia AWS Region) $0.25 – $2.00/hour $0.5/hour $2.05 – $8.20/hour
Example applications Adobe Premiere Pro, AutoDesk Revit, Siemens NX AVEVA E3D, SOLIDWORKS AutoDesk Maya, Landmark DecisionSpace, Schlumberger Petrel

Example graphics instance set up with Siemens NX

In the section, I walk through setting up Siemens NX with Graphics Design instances on AppStream 2.0. After set up is complete, users can able to access NX from within their browser and also access their design files from a file share. You can also use these steps to set up and test your own graphics applications on AppStream 2.0. Here’s the workflow:

  1. Create a file share to load and save design files.
  2. Create an AppStream 2.0 image with Siemens NX installed.
  3. Create an AppStream 2.0 fleet and stack.
  4. Invite users to access Siemens NX through a browser.
  5. Validate the setup.

To learn more about AppStream 2.0 concepts and set up, see the previous post Scaling Your Desktop Application Streams with Amazon AppStream 2.0. For a deeper review of all the setup and maintenance steps, see Amazon AppStream 2.0 Developer Guide.

Step 1: Create a file share to load and save design files

To launch and configure the file server

  1. Open the EC2 console and choose Launch Instance.
  2. Scroll to the Microsoft Windows Server 2016 Base Image and choose Select.
  3. Choose an instance type and size for your file server (I chose the general purpose m4.large instance). Choose Next: Configure Instance Details.
  4. Select a VPC and subnet. You launch AppStream 2.0 resources in the same VPC. Choose Next: Add Storage.
  5. If necessary, adjust the size of your EBS volume. Choose Review and Launch, Launch.
  6. On the Instances page, give your file server a name, such as My File Server.
  7. Ensure that the security group associated with the file server instance allows for incoming traffic from the security group that you select for your AppStream 2.0 fleets or image builders. You can use the default security group and select the same group while creating the image builder and fleet in later steps.

Log in to the file server using a remote access client such as Microsoft Remote Desktop. For more information about connecting to an EC2 Windows instance, see Connect to Your Windows Instance.

To enable file sharing

  1. Create a new folder (such as C:\My Graphics Files) and upload the shared files to make available to your users.
  2. From the Windows control panel, enable network discovery.
  3. Choose Server Manager, File and Storage Services, Volumes.
  4. Scroll to Shares and choose Start the Add Roles and Features Wizard. Go through the wizard to install the File Server and Share role.
  5. From the left navigation menu, choose Shares.
  6. Choose Start the New Share Wizard to set up your folder as a file share.
  7. Open the context (right-click) menu on the share and choose Properties, Permissions, Customize Permissions.
  8. Choose Permissions, Add. Add Read and Execute permissions for everyone on the network.

Step 2:  Create an AppStream 2.0 image with Siemens NX installed

To connect to the image builder and install applications

  1. Open the AppStream 2.0 management console and choose Images, Image Builder, Launch Image Builder.
  2. Create a graphics design image builder in the same VPC as your file server.
  3. From the Image builder tab, select your image builder and choose Connect. This opens a new browser tab and display a desktop to log in to.
  4. Log in to your image builder as ImageBuilderAdmin.
  5. Launch the Image Assistant.
  6. Download and install Siemens NX and other applications on the image builder. I added Blender and Firefox, but you could replace these with your own applications.
  7. To verify the user experience, you can test the application performance on the instance.

Before you finish creating the image, you must mount the file share by enabling a few Microsoft Windows services.

To mount the file share

  1. Open services.msc and check the following services:
  • DNS Client
  • Function Discovery Resource Publication
  • SSDP Discovery
  • UPnP Device H
  1. If any of the preceding services have Startup Type set to Manual, open the context (right-click) menu on the service and choose Start. Otherwise, open the context (right-click) menu on the service and choose Properties. For Startup Type, choose Manual, Apply. To start the service, choose Start.
  2. From the Windows control panel, enable network discovery.
  3. Create a batch script that mounts a file share from the storage server set up earlier. The file share is mounted automatically when a user connects to the AppStream 2.0 environment.

Logon Script Location: C:\Users\Public\logon.bat

Script Contents:

:loop

net use H: \\path\to\network\share 

PING localhost -n 30 >NUL

IF NOT EXIST H:\ GOTO loop

  1. Open gpedit.msc and choose User Configuration, Windows Settings, Scripts. Set logon.bat as the user logon script.
  2. Next, create a batch script that makes the mounted drive visible to the user.

Logon Script Location: C:\Users\Public\startup.bat

Script Contents:
REG DELETE “HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Policies\Explorer” /v “NoDrives” /f

  1. Open Task Scheduler and choose Create Task.
  2. Choose General, provide a task name, and then choose Change User or Group.
  3. For Enter the object name to select, enter SYSTEM and choose Check Names, OK.
  4. Choose Triggers, New. For Begin the task, choose At startup. Under Advanced Settings, change Delay task for to 5 minutes. Choose OK.
  5. Choose Actions, New. Under Settings, for Program/script, enter C:\Users\Public\startup.bat. Choose OK.
  6. Choose Conditions. Under Power, clear the Start the task only if the computer is on AC power Choose OK.
  7. To view your scheduled task, choose Task Scheduler Library. Close Task Scheduler when you are done.

Step 3:  Create an AppStream 2.0 fleet and stack

To create a fleet and stack

  1. In the AppStream 2.0 management console, choose Fleets, Create Fleet.
  2. Give the fleet a name, such as Graphics-Demo-Fleet, that uses the newly created image and the same VPC as your file server.
  3. Choose Stacks, Create Stack. Give the stack a name, such as Graphics-Demo-Stack.
  4. After the stack is created, select it and choose Actions, Associate Fleet. Associate the stack with the fleet you created in step 1.

Step 4:  Invite users to access Siemens NX through a browser

To invite users

  1. Choose User Pools, Create User to create users.
  2. Enter a name and email address for each user.
  3. Select the users just created, and choose Actions, Assign Stack to provide access to the stack created in step 2. You can also provide access using SAML 2.0 and connect to your Active Directory if necessary. For more information, see the Enabling Identity Federation with AD FS 3.0 and Amazon AppStream 2.0 post.

Your user receives an email invitation to set up an account and use a web portal to access the applications that you have included in your stack.

Step 5:  Validate the setup

Time for a test drive with Siemens NX on AppStream 2.0!

  1. Open the link for the AppStream 2.0 web portal shared through the email invitation. The web portal opens in your default browser. You must sign in with the temporary password and set a new password. After that, you get taken to your app catalog.
  2. Launch Siemens NX and interact with it using the demo files available in the shared storage folder – My Graphics Files. 

After I launched NX, I captured the screenshot below. The Siemens PLM team also recorded a video with NX running on AppStream 2.0.

Summary

In this post, I discussed the GPU instances available for delivering rich graphics applications to users in a web browser. While I demonstrated a simple setup, you can scale this out to launch a production environment with users signing in using Active Directory credentials,  accessing persistent storage with Amazon S3, and using other commonly requested features reviewed in the Amazon AppStream 2.0 Launch Recap – Domain Join, Simple Network Setup, and Lots More post.

To learn more about AppStream 2.0 and capabilities added this year, see Amazon AppStream 2.0 Resources.

Demonoid Hopes to Return to Its Former Glory

Post Syndicated from Ernesto original https://torrentfreak.com/demonoid-hopes-to-return-to-its-former-glory-170910/

Demonoid has been around for well over a decade but the site is not really known for having a stable presence.

Quite the opposite, the torrent tracker has a ‘habit’ of going offline for weeks or even months on end, only to reappear as if nothing ever happened.

Earlier this year the site made another one if its trademark comebacks and it has been sailing relatively smoothly since then. Interestingly, the site is once again under the wings of a familiar face, its original founder Deimos.

Deimos decided to take the lead again after some internal struggles. “I gave control to the wrong guys while the problems started, but it’s time to control stuff again,” Deimos told us earlier.

Since the return a few months back, the site’s main focus has been on rebuilding the community and improving the site. Some may have already noticed the new logo, but more changes are coming, both on the front and backend.

“The backend development is going a bit slow, it’s a big change that will allow the server to run off a bunch of small servers all over the world,” Deimos informs TorrentFreak.

“For the frontend, we’re working on new features including a karma system, integrated forums, buddy list, etc. That part is faster to build once you have everything in the back working,” he adds.

Demonoid’s new logo

Deimos has been on and off the site a few times, but he and a few others most recently returned to get it back on track and increase its popularity. While the site has around eight million registered users, many of these have moved elsewhere in recent years.

“I want to to see the community we had back. Don’t know if it’s possible but that’s my aim,” Deimos says, admitting that he may not stay on forever.

Many torrent sites have come and gone in recent years, but they are still here today. Looking back, Demonoid has come a long way. What many people don’t know, is that it was originally a place to share demo tapes of metal bands. Hence the name DEMOnoid.

“It originally started as a modified PHP based forum that allowed posting of .torrent files. At some point, we started using a full torrent indexing script written in PHP that included a tracker, and started building the first version of the indexing site it is today,” Deimos says.

The site required users to have an invite to sign up, making it a semi-private tracker. This wasn’t done to encourage people to maintain a certain ratio, as some other trackers do, but mostly to keep unsavory characters away.

“The invitation system was implemented to keep spammers, trolls and the like out,” Deimos says. “Originally it was due to some very problematic people who happened to have a death metal band, back in the DEMOnoid days.

“We try to keep it open as often as possible but when we start to get these kinds of issues, we close it,” he adds.

In recent years, the site has had quite a few setbacks, but Deimos doesn’t want to dwell on these in public. Instead, he prefers to focus on the future. While torrent sites are no longer at the center of media distribution, there will always be a place for dedicated sharing communities.

Whether Demonoid will ever return to its former glory is a big unknown for now, but Deimos is sure to do his best.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and ANONYMOUS VPN services.

No, Google Drive is Definitely Not The New Pirate Bay

Post Syndicated from Andy original https://torrentfreak.com/no-google-drive-is-definitely-not-the-new-pirate-bay-170910/

Running close to two decades old, the world of true mainstream file-sharing is less of a mystery to the general public than it’s ever been.

Most people now understand the concept of shifting files from one place to another, and a significant majority will be aware of the opportunities to do so with infringing content.

Unsurprisingly, this is a major thorn in the side of rightsholders all over the world, who have been scrambling since the turn of the century in a considerable effort to stem the tide. The results of their work have varied, with some sectors hit harder than others.

One area that has taken a bit of a battering recently involves the dominant peer-to-peer platforms reliant on underlying BitTorrent transfers. Several large-scale sites have shut down recently, not least KickassTorrents, Torrentz, and ExtraTorrent, raising questions of what bad news may arrive next for inhabitants of Torrent Land.

Of course, like any other Internet-related activity, sharing has continued to evolve over the years, with streaming and cloud-hosting now a major hit with consumers. In the main, sites which skirt the borders of legality have been the major hosting and streaming players over the years, but more recently it’s become clear that even the most legitimate companies can become unwittingly involved in the piracy scene.

As reported here on TF back in 2014 and again several times this year (1,2,3), cloud-hosting services operated by Google, including Google Drive, are being used to store and distribute pirate content.

That news was echoed again this week, with a report on Gadgets360 reiterating that Google Drive is still being used for movie piracy. What followed were a string of follow up reports, some of which declared Google’s service to be ‘The New Pirate Bay.’

No. Just no.

While it’s always tempting for publications to squeeze a reference to The Pirate Bay into a piracy article due to the site’s popularity, it’s particularly out of place in this comparison. In no way, shape, or form can a centralized store of data like Google Drive ever replace the underlying technology of sites like The Pirate Bay.

While the casual pirate might love the idea of streaming a movie with a couple of clicks to a browser of his or her choice, the weakness of the cloud system cannot be understated. To begin with, anything hosted by Google is vulnerable to immediate takedown on demand, usually within a matter of hours.

“Google Drive has a variety of piracy counter-measures in place,” a spokesperson told Mashable this week, “and we are continuously working to improve our protections to prevent piracy across all of our products.”

When will we ever hear anything like that from The Pirate Bay? Answer: When hell freezes over. But it’s not just compliance with takedown requests that make Google Drive-hosted files vulnerable.

At the point Google Drive responds to a takedown request, it takes down the actual file. On the other hand, even if Pirate Bay responded to notices (which it doesn’t), it would be unable to do anything about the sharing going on underneath. Removing a torrent file or magnet link from TPB does nothing to negatively affect the decentralized swarm of people sharing files among themselves. Those files stay intact and sharing continues, no matter what happens to the links above.

Importantly, people sharing using BitTorrent do so without any need for central servers – the whole process is decentralized as long as a user can lay his or her hands on a torrent file or magnet link. Those using Google Drive, however, rely on a totally centralized system, where not only is Google king, but it can and will stop the entire party after receiving a few lines of text from a rightsholder.

There is a very good reason why sites like The Pirate Bay have been around for close to 15 years while platforms such as Megaupload, Hotfile, Rapidshare, and similar platforms have all met their makers. File-hosting platforms are expensive-to-run warehouses full of files, each of which brings direct liability for their hosts, once they’re made aware that those files are infringing. These days the choice is clear – take the files down or get brought down, it’s as simple as that.

The Pirate Bay, on the other hand, is nothing more than a treasure map (albeit a valuable one) that points the way to content spread all around the globe in the most decentralized way possible. There are no files to delete, no content to disappear. Comparing a vulnerable Google Drive to this kind of robust system couldn’t be further from the mark.

That being said, this is the way things are going. The cloud, it seems, is here to stay in all its forms. Everyone has access to it and uploading content is easier – much easier – than uploading it to a BitTorrent network. A Google Drive upload is simplicity itself for anyone with a mouse and a file; the same cannot be said about The Pirate Bay.

For this reason alone, platforms like Google Drive and the many dozens of others offering a similar service will continue to become havens for pirated content, until the next big round of legislative change. At the moment, each piece of content has to be removed individually but in the future, it’s possible that pre-emptive filters will kill uploads of pirated content before they see the light of day.

When this comes to pass, millions of people will understand why Google Drive, with its bots checking every file upload for alleged infringement, is not The Pirate Bay. At this point, if people have left it too long, it might be too late to reinvigorate BitTorrent networks to their former glory.

People will try to rebuild them, of course, but realizing why they shouldn’t have been left behind at all is probably the best protection.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and ANONYMOUS VPN services.

Summary of the DebConf 2038 BoF

Post Syndicated from corbet original https://lwn.net/Articles/732794/rss

Steve McIntyre reports from a BoF session on the year-2038 problem at
DebConf 17. “It’s important that we work on fixing issues *now* to stop people
building broken things that will bite us. We all expect that our own
computer systems will be fine by 2038; Debian systems will be fixed
and working! We’ll have rebuilt the world with new interfaces and
found the issues. The issues are going to be in the IoT, with systems
that we won’t be able to simply rebuild/verify/test – they’ll fail. We
need to get the underlying systems right ASAP for those systems.

Implement Continuous Integration and Delivery of Apache Spark Applications using AWS

Post Syndicated from Luis Caro Perez original https://aws.amazon.com/blogs/big-data/implement-continuous-integration-and-delivery-of-apache-spark-applications-using-aws/

When you develop Apache Spark–based applications, you might face some additional challenges when dealing with continuous integration and deployment pipelines, such as the following common issues:

  • Applications must be tested on real clusters using automation tools (live test)
  • Any user or developer must be able to easily deploy and use different versions of both the application and infrastructure to be able to debug, experiment on, and test different functionality.
  • Infrastructure needs to be evaluated and tested along with the application that uses it.

In this post, we walk you through a solution that implements a continuous integration and deployment pipeline supported by AWS services. The pipeline offers the following workflow:

  • Deploy the application to a QA stage after a commit is performed to the source code.
  • Perform a unit test using Spark local mode.
  • Deploy to a dynamically provisioned Amazon EMR cluster and test the Spark application on it
  • Update the application as an AWS Service Catalog product version, allowing a user to deploy any version (commit) of the application on demand.

Solution overview

The following diagram shows the pipeline workflow.

The solution uses AWS CodePipeline, which allows users to orchestrate and automate the build, test, and deploy stages for application source code. The solution consists of a pipeline that contains the following stages:

  • Source: Both the Spark application source code in addition to the AWS CloudFormation template file for deploying the application are committed to version control. In this example, we use AWS CodeCommit. For an example of the application source code, see zip. 
  • Build: In this stage, you use Apache Maven both to generate the application .jar binaries and to execute all of the application unit tests that end with *Spec.scala. In this example, we use AWS CodeBuild, which runs the unit tests given that they are designed to use Spark local mode.
  • QADeploy: In this stage, the .jar file built previously is deployed using the CloudFormation template included with the application source code. All the resources are created in this stage, such as networks, EMR clusters, and so on. 
  • LiveTest: In this stage, you use Apache Maven to execute all the application tests that end with *SpecLive.scala. The tests submit EMR steps to the cluster created as part of the QADeploy step. The tests verify that the steps ran successfully and their results. 
  • LiveTestApproval: This stage is included in case a pipeline administrator approval is required to deploy the application to the next stages. The pipeline pauses in this stage until an administrator manually approves the release. 
  • QACleanup: In this stage, you use an AWS Lambda function to delete the CloudFormation template deployed as part of the QADeploy stage. The function does not affect any resources other than those deployed as part of the QADeploy stage. 
  • DeployProduct: In this stage, you use a Lambda function that creates or updates an AWS Service Catalog product and portfolio. Every time the pipeline releases a change to the application, the AWS Service Catalog product gets a new version, with the commit of the change as the version description. 

Try it out!

Use the provided sample template to get started using this solution. This template creates the pipeline described earlier with all of its stages. It performs an initial commit of the sample Spark application in order to trigger the first release change. To deploy the template, use the following AWS CLI command:

aws cloudformation create-stack  --template-url https://s3.amazonaws.com/aws-bigdata-blog/artifacts/sparkAppDemoForPipeline/emrSparkpipeline.yaml --stack-name emr-spark-pipeline --capabilities CAPABILITY_NAMED_IAM

After the template finishes creating resources, you see the pipeline name on the stack Outputs tab. After that, open the AWS CodePipeline console and select the newly created pipeline.

After a couple of minutes, AWS CodePipeline detects the initial commit applied by the CloudFormation stack and starts the first release.

You can watch how the pipeline goes through the Build, QADeploy, and LiveTest stages until it finally reaches the LiveTestApproval stage.

At this point, you can check the results of the test in the log files of the Build and LiveTest stage jobs on AWS CodeBuild. If you check the CloudFormation console, you see that a new template has been deployed as part of the QADeploy stage.

You can also visit the EMR console and view how the LiveTest stage submitted steps to the EMR cluster.

After performing the review, manually approve the revision on the LiveTestApproval stage by using the AWS CodePipeline console.

After the revision is approved, the pipeline proceeds to use a Lambda function that destroys the resources deployed on the QAdeploy stage. Finally, it creates or updates a product and portfolio in AWS Service Catalog. After the final stage of the pipeline is complete, you can check that the product is created successfully on the AWS Service Catalog console.

You can check the product versions and notice that the first version is the initial commit performed by the CloudFormation template.

You can proceed to share the created portfolio with any users in your AWS account and allow them to deploy any version of the Spark application. You can also perform a commit on the AWS CodeCommit repository. The pipeline is triggered automatically and repeats the pipeline execution to deploy a new version of the product.

To destroy all of the resources created by the stack, make sure all the deployed stacks using AWS Service Catalog or the QAdeploy stage are destroyed. Then, destroy the pipeline template using the following AWS CLI command:

 

aws cloudformation delete-stack --stack-name emr-spark-pipeline

Conclusion

You can use the sample template and Spark application shared in this post and adapt them for the specific needs of your own application. The pipeline can have as many stages as needed and it can be used to automatically deploy to AWS Service Catalog or a production environment using CloudFormation.

If you have questions or suggestions, please comment below.


Additional Reading

Learn how to implement authorization and auditing on Amazon EMR using Apache Ranger.

 


About the Authors

Luis Caro is a Big Data Consultant for AWS Professional Services. He works with our customers to provide guidance and technical assistance on big data projects, helping them improving the value of their solutions when using AWS.

 

 

Samuel Schmidt is a Big Data Consultant for AWS Professional Services. He works with our customers to provide guidance and technical assistance on big data projects, helping them improving the value of their solutions when using AWS.

 

 

 

Automating Blue/Green Deployments of Infrastructure and Application Code using AMIs, AWS Developer Tools, & Amazon EC2 Systems Manager

Post Syndicated from Ramesh Adabala original https://aws.amazon.com/blogs/devops/bluegreen-infrastructure-application-deployment-blog/

Previous DevOps blog posts have covered the following use cases for infrastructure and application deployment automation:

An AMI provides the information required to launch an instance, which is a virtual server in the cloud. You can use one AMI to launch as many instances as you need. It is security best practice to customize and harden your base AMI with required operating system updates and, if you are using AWS native services for continuous security monitoring and operations, you are strongly encouraged to bake into the base AMI agents such as those for Amazon EC2 Systems Manager (SSM), Amazon Inspector, CodeDeploy, and CloudWatch Logs. A customized and hardened AMI is often referred to as a “golden AMI.” The use of golden AMIs to create EC2 instances in your AWS environment allows for fast and stable application deployment and scaling, secure application stack upgrades, and versioning.

In this post, using the DevOps automation capabilities of Systems Manager, AWS developer tools (CodePipeLine, CodeDeploy, CodeCommit, CodeBuild), I will show you how to use AWS CodePipeline to orchestrate the end-to-end blue/green deployments of a golden AMI and application code. Systems Manager Automation is a powerful security feature for enterprises that want to mature their DevSecOps practices.

Here are the high-level phases and primary services covered in this use case:

 

You can access the source code for the sample used in this post here: https://github.com/awslabs/automating-governance-sample/tree/master/Bluegreen-AMI-Application-Deployment-blog.

This sample will create a pipeline in AWS CodePipeline with the building blocks to support the blue/green deployments of infrastructure and application. The sample includes a custom Lambda step in the pipeline to execute Systems Manager Automation to build a golden AMI and update the Auto Scaling group with the golden AMI ID for every rollout of new application code. This guarantees that every new application deployment is on a fully patched and customized AMI in a continuous integration and deployment model. This enables the automation of hardened AMI deployment with every new version of application deployment.

 

 

We will build and run this sample in three parts.

Part 1: Setting up the AWS developer tools and deploying a base web application

Part 1 of the AWS CloudFormation template creates the initial Java-based web application environment in a VPC. It also creates all the required components of Systems Manager Automation, CodeCommit, CodeBuild, and CodeDeploy to support the blue/green deployments of the infrastructure and application resulting from ongoing code releases.

Part 1 of the AWS CloudFormation stack creates these resources:

After Part 1 of the AWS CloudFormation stack creation is complete, go to the Outputs tab and click the Elastic Load Balancing link. You will see the following home page for the base web application:

Make sure you have all the outputs from the Part 1 stack handy. You need to supply them as parameters in Part 3 of the stack.

Part 2: Setting up your CodeCommit repository

In this part, you will commit and push your sample application code into the CodeCommit repository created in Part 1. To access the initial git commands to clone the empty repository to your local machine, click Connect to go to the AWS CodeCommit console. Make sure you have the IAM permissions required to access AWS CodeCommit from command line interface (CLI).

After you’ve cloned the repository locally, download the sample application files from the part2 folder of the Git repository and place the files directly into your local repository. Do not include the aws-codedeploy-sample-tomcat folder. Go to the local directory and type the following commands to commit and push the files to the CodeCommit repository:

git add .
git commit -a -m "add all files from the AWS Java Tomcat CodeDeploy application"
git push

After all the files are pushed successfully, the repository should look like this:

 

Part 3: Setting up CodePipeline to enable blue/green deployments     

Part 3 of the AWS CloudFormation template creates the pipeline in AWS CodePipeline and all the required components.

a) Source: The pipeline is triggered by any change to the CodeCommit repository.

b) BuildGoldenAMI: This Lambda step executes the Systems Manager Automation document to build the golden AMI. After the golden AMI is successfully created, a new launch configuration with the new AMI details will be updated into the Auto Scaling group of the application deployment group. You can watch the progress of the automation in the EC2 console from the Systems Manager –> Automations menu.

c) Build: This step uses the application build spec file to build the application build artifact. Here are the CodeBuild execution steps and their status:

d) Deploy: This step clones the Auto Scaling group, launches the new instances with the new AMI, deploys the application changes, reroutes the traffic from the elastic load balancer to the new instances and terminates the old Auto Scaling group. You can see the execution steps and their status in the CodeDeploy console.

After the CodePipeline execution is complete, you can access the application by clicking the Elastic Load Balancing link. You can find it in the output of Part 1 of the AWS CloudFormation template. Any consecutive commits to the application code in the CodeCommit repository trigger the pipelines and deploy the infrastructure and code with an updated AMI and code.

 

If you have feedback about this post, add it to the Comments section below. If you have questions about implementing the example used in this post, open a thread on the Developer Tools forum.


About the author

 

Ramesh Adabala is a Solutions Architect in Southeast Enterprise Solution Architecture team at Amazon Web Services.

Create Multiple Builds from the Same Source Using Different AWS CodeBuild Build Specification Files

Post Syndicated from Prakash Palanisamy original https://aws.amazon.com/blogs/devops/create-multiple-builds-from-the-same-source-using-different-aws-codebuild-build-specification-files/

In June 2017, AWS CodeBuild announced you can now specify an alternate build specification file name or location in an AWS CodeBuild project.

In this post, I’ll show you how to use different build specification files in the same repository to create different builds. You’ll find the source code for this post in our GitHub repo.

Requirements

The AWS CLI must be installed and configured.

Solution Overview

I have created a C program (cbsamplelib.c) that will be used to create a shared library and another utility program (cbsampleutil.c) to use that library. I’ll use a Makefile to compile these files.

I need to put this sample application in RPM and DEB packages so end users can easily deploy them. I have created a build specification file for RPM. It will use make to compile this code and the RPM specification file (cbsample.rpmspec) configured in the build specification to create the RPM package. Similarly, I have created a build specification file for DEB. It will create the DEB package based on the control specification file (cbsample.control) configured in this build specification.

RPM Build Project:

The following build specification file (buildspec-rpm.yml) uses build specification version 0.2. As described in the documentation, this version has different syntax for environment variables. This build specification includes multiple phases:

  • As part of the install phase, the required packages is installed using yum.
  • During the pre_build phase, the required directories are created and the required files, including the RPM build specification file, are copied to the appropriate location.
  • During the build phase, the code is compiled, and then the RPM package is created based on the RPM specification.

As defined in the artifact section, the RPM file will be uploaded as a build artifact.

version: 0.2

env:
  variables:
    build_version: "0.1"

phases:
  install:
    commands:
      - yum install rpm-build make gcc glibc -y
  pre_build:
    commands:
      - curr_working_dir=`pwd`
      - mkdir -p ./{RPMS,SRPMS,BUILD,SOURCES,SPECS,tmp}
      - filename="cbsample-$build_version"
      - echo $filename
      - mkdir -p $filename
      - cp ./*.c ./*.h Makefile $filename
      - tar -zcvf /root/$filename.tar.gz $filename
      - cp /root/$filename.tar.gz ./SOURCES/
      - cp cbsample.rpmspec ./SPECS/
  build:
    commands:
      - echo "Triggering RPM build"
      - rpmbuild --define "_topdir `pwd`" -ba SPECS/cbsample.rpmspec
      - cd $curr_working_dir

artifacts:
  files:
    - RPMS/x86_64/cbsample*.rpm
  discard-paths: yes

Using cb-centos-project.json as a reference, create the input JSON file for the CLI command. This project uses an AWS CodeCommit repository named codebuild-multispec and a file named buildspec-rpm.yml as the build specification file. To create the RPM package, we need to specify a custom image name. I’m using the latest CentOS 7 image available in the Docker Hub. I’m using a role named CodeBuildServiceRole. It contains permissions similar to those defined in CodeBuildServiceRole.json. (You need to change the resource fields in the policy, as appropriate.)

{
    "name": "rpm-build-project",
    "description": "Project which will build RPM from the source.",
    "source": {
        "type": "CODECOMMIT",
        "location": "https://git-codecommit.eu-west-1.amazonaws.com/v1/repos/codebuild-multispec",
        "buildspec": "buildspec-rpm.yml"
    },
    "artifacts": {
        "type": "S3",
        "location": "codebuild-demo-artifact-repository"
    },
    "environment": {
        "type": "LINUX_CONTAINER",
        "image": "centos:7",
        "computeType": "BUILD_GENERAL1_SMALL"
    },
    "serviceRole": "arn:aws:iam::012345678912:role/service-role/CodeBuildServiceRole",
    "timeoutInMinutes": 15,
    "encryptionKey": "arn:aws:kms:eu-west-1:012345678912:alias/aws/s3",
    "tags": [
        {
            "key": "Name",
            "value": "RPM Demo Build"
        }
    ]
}

After the cli-input-json file is ready, execute the following command to create the build project.

$ aws codebuild create-project --name CodeBuild-RPM-Demo --cli-input-json file://cb-centos-project.json

{
    "project": {
        "name": "CodeBuild-RPM-Demo", 
        "serviceRole": "arn:aws:iam::012345678912:role/service-role/CodeBuildServiceRole", 
        "tags": [
            {
                "value": "RPM Demo Build", 
                "key": "Name"
            }
        ], 
        "artifacts": {
            "namespaceType": "NONE", 
            "packaging": "NONE", 
            "type": "S3", 
            "location": "codebuild-demo-artifact-repository", 
            "name": "CodeBuild-RPM-Demo"
        }, 
        "lastModified": 1500559811.13, 
        "timeoutInMinutes": 15, 
        "created": 1500559811.13, 
        "environment": {
            "computeType": "BUILD_GENERAL1_SMALL", 
            "privilegedMode": false, 
            "image": "centos:7", 
            "type": "LINUX_CONTAINER", 
            "environmentVariables": []
        }, 
        "source": {
            "buildspec": "buildspec-rpm.yml", 
            "type": "CODECOMMIT", 
            "location": "https://git-codecommit.eu-west-1.amazonaws.com/v1/repos/codebuild-multispec"
        }, 
        "encryptionKey": "arn:aws:kms:eu-west-1:012345678912:alias/aws/s3", 
        "arn": "arn:aws:codebuild:eu-west-1:012345678912:project/CodeBuild-RPM-Demo", 
        "description": "Project which will build RPM from the source."
    }
}

When the project is created, run the following command to start the build. After the build has started, get the build ID. You can use the build ID to get the status of the build.

$ aws codebuild start-build --project-name CodeBuild-RPM-Demo
{
    "build": {
        "buildComplete": false, 
        "initiator": "prakash", 
        "artifacts": {
            "location": "arn:aws:s3:::codebuild-demo-artifact-repository/CodeBuild-RPM-Demo"
        }, 
        "projectName": "CodeBuild-RPM-Demo", 
        "timeoutInMinutes": 15, 
        "buildStatus": "IN_PROGRESS", 
        "environment": {
            "computeType": "BUILD_GENERAL1_SMALL", 
            "privilegedMode": false, 
            "image": "centos:7", 
            "type": "LINUX_CONTAINER", 
            "environmentVariables": []
        }, 
        "source": {
            "buildspec": "buildspec-rpm.yml", 
            "type": "CODECOMMIT", 
            "location": "https://git-codecommit.eu-west-1.amazonaws.com/v1/repos/codebuild-multispec"
        }, 
        "currentPhase": "SUBMITTED", 
        "startTime": 1500560156.761, 
        "id": "CodeBuild-RPM-Demo:57a36755-4d37-4b08-9c11-1468e1682abc", 
        "arn": "arn:aws:codebuild:eu-west-1: 012345678912:build/CodeBuild-RPM-Demo:57a36755-4d37-4b08-9c11-1468e1682abc"
    }
}

$ aws codebuild list-builds-for-project --project-name CodeBuild-RPM-Demo
{
    "ids": [
        "CodeBuild-RPM-Demo:57a36755-4d37-4b08-9c11-1468e1682abc"
    ]
}

$ aws codebuild batch-get-builds --ids CodeBuild-RPM-Demo:57a36755-4d37-4b08-9c11-1468e1682abc
{
    "buildsNotFound": [], 
    "builds": [
        {
            "buildComplete": true, 
            "phases": [
                {
                    "phaseStatus": "SUCCEEDED", 
                    "endTime": 1500560157.164, 
                    "phaseType": "SUBMITTED", 
                    "durationInSeconds": 0, 
                    "startTime": 1500560156.761
                }, 
                {
                    "contexts": [], 
                    "phaseType": "PROVISIONING", 
                    "phaseStatus": "SUCCEEDED", 
                    "durationInSeconds": 24, 
                    "startTime": 1500560157.164, 
                    "endTime": 1500560182.066
                }, 
                {
                    "contexts": [], 
                    "phaseType": "DOWNLOAD_SOURCE", 
                    "phaseStatus": "SUCCEEDED", 
                    "durationInSeconds": 15, 
                    "startTime": 1500560182.066, 
                    "endTime": 1500560197.906
                }, 
                {
                    "contexts": [], 
                    "phaseType": "INSTALL", 
                    "phaseStatus": "SUCCEEDED", 
                    "durationInSeconds": 19, 
                    "startTime": 1500560197.906, 
                    "endTime": 1500560217.515
                }, 
                {
                    "contexts": [], 
                    "phaseType": "PRE_BUILD", 
                    "phaseStatus": "SUCCEEDED", 
                    "durationInSeconds": 0, 
                    "startTime": 1500560217.515, 
                    "endTime": 1500560217.662
                }, 
                {
                    "contexts": [], 
                    "phaseType": "BUILD", 
                    "phaseStatus": "SUCCEEDED", 
                    "durationInSeconds": 0, 
                    "startTime": 1500560217.662, 
                    "endTime": 1500560217.995
                }, 
                {
                    "contexts": [], 
                    "phaseType": "POST_BUILD", 
                    "phaseStatus": "SUCCEEDED", 
                    "durationInSeconds": 0, 
                    "startTime": 1500560217.995, 
                    "endTime": 1500560218.074
                }, 
                {
                    "contexts": [], 
                    "phaseType": "UPLOAD_ARTIFACTS", 
                    "phaseStatus": "SUCCEEDED", 
                    "durationInSeconds": 0, 
                    "startTime": 1500560218.074, 
                    "endTime": 1500560218.542
                }, 
                {
                    "contexts": [], 
                    "phaseType": "FINALIZING", 
                    "phaseStatus": "SUCCEEDED", 
                    "durationInSeconds": 4, 
                    "startTime": 1500560218.542, 
                    "endTime": 1500560223.128
                }, 
                {
                    "phaseType": "COMPLETED", 
                    "startTime": 1500560223.128
                }
            ], 
            "logs": {
                "groupName": "/aws/codebuild/CodeBuild-RPM-Demo", 
                "deepLink": "https://console.aws.amazon.com/cloudwatch/home?region=eu-west-1#logEvent:group=/aws/codebuild/CodeBuild-RPM-Demo;stream=57a36755-4d37-4b08-9c11-1468e1682abc", 
                "streamName": "57a36755-4d37-4b08-9c11-1468e1682abc"
            }, 
            "artifacts": {
                "location": "arn:aws:s3:::codebuild-demo-artifact-repository/CodeBuild-RPM-Demo"
            }, 
            "projectName": "CodeBuild-RPM-Demo", 
            "timeoutInMinutes": 15, 
            "initiator": "prakash", 
            "buildStatus": "SUCCEEDED", 
            "environment": {
                "computeType": "BUILD_GENERAL1_SMALL", 
                "privilegedMode": false, 
                "image": "centos:7", 
                "type": "LINUX_CONTAINER", 
                "environmentVariables": []
            }, 
            "source": {
                "buildspec": "buildspec-rpm.yml", 
                "type": "CODECOMMIT", 
                "location": "https://git-codecommit.eu-west-1.amazonaws.com/v1/repos/codebuild-multispec"
            }, 
            "currentPhase": "COMPLETED", 
            "startTime": 1500560156.761, 
            "endTime": 1500560223.128, 
            "id": "CodeBuild-RPM-Demo:57a36755-4d37-4b08-9c11-1468e1682abc", 
            "arn": "arn:aws:codebuild:eu-west-1:012345678912:build/CodeBuild-RPM-Demo:57a36755-4d37-4b08-9c11-1468e1682abc"
        }
    ]
}

DEB Build Project:

In this project, we will use the build specification file named buildspec-deb.yml. Like the RPM build project, this specification includes multiple phases. Here I use a Debian control file to create the package in DEB format. After a successful build, the DEB package will be uploaded as build artifact.

version: 0.2

env:
  variables:
    build_version: "0.1"

phases:
  install:
    commands:
      - apt-get install gcc make -y
  pre_build:
    commands:
      - mkdir -p ./cbsample-$build_version/DEBIAN
      - mkdir -p ./cbsample-$build_version/usr/lib
      - mkdir -p ./cbsample-$build_version/usr/include
      - mkdir -p ./cbsample-$build_version/usr/bin
      - cp -f cbsample.control ./cbsample-$build_version/DEBIAN/control
  build:
    commands:
      - echo "Building the application"
      - make
      - cp libcbsamplelib.so ./cbsample-$build_version/usr/lib
      - cp cbsamplelib.h ./cbsample-$build_version/usr/include
      - cp cbsampleutil ./cbsample-$build_version/usr/bin
      - chmod +x ./cbsample-$build_version/usr/bin/cbsampleutil
      - dpkg-deb --build ./cbsample-$build_version

artifacts:
  files:
    - cbsample-*.deb

Here we use cb-ubuntu-project.json as a reference to create the CLI input JSON file. This project uses the same AWS CodeCommit repository (codebuild-multispec) but a different buildspec file in the same repository (buildspec-deb.yml). We use the default CodeBuild image to create the DEB package. We use the same IAM role (CodeBuildServiceRole).

{
    "name": "deb-build-project",
    "description": "Project which will build DEB from the source.",
    "source": {
        "type": "CODECOMMIT",
        "location": "https://git-codecommit.eu-west-1.amazonaws.com/v1/repos/codebuild-multispec",
        "buildspec": "buildspec-deb.yml"
    },
    "artifacts": {
        "type": "S3",
        "location": "codebuild-demo-artifact-repository"
    },
    "environment": {
        "type": "LINUX_CONTAINER",
        "image": "aws/codebuild/ubuntu-base:14.04",
        "computeType": "BUILD_GENERAL1_SMALL"
    },
    "serviceRole": "arn:aws:iam::012345678912:role/service-role/CodeBuildServiceRole",
    "timeoutInMinutes": 15,
    "encryptionKey": "arn:aws:kms:eu-west-1:012345678912:alias/aws/s3",
    "tags": [
        {
            "key": "Name",
            "value": "Debian Demo Build"
        }
    ]
}

Using the CLI input JSON file, create the project, start the build, and check the status of the project.

$ aws codebuild create-project --name CodeBuild-DEB-Demo --cli-input-json file://cb-ubuntu-project.json

$ aws codebuild list-builds-for-project --project-name CodeBuild-DEB-Demo

$ aws codebuild batch-get-builds --ids CodeBuild-DEB-Demo:e535c4b0-7067-4fbe-8060-9bb9de203789

After successful completion of the RPM and DEB builds, check the S3 bucket configured in the artifacts section for the build packages. Build projects will create a directory in the name of the build project and copy the artifacts inside it.

$ aws s3 ls s3://codebuild-demo-artifact-repository/CodeBuild-RPM-Demo/
2017-07-20 16:16:59       8108 cbsample-0.1-1.el7.centos.x86_64.rpm

$ aws s3 ls s3://codebuild-demo-artifact-repository/CodeBuild-DEB-Demo/
2017-07-20 16:37:22       5420 cbsample-0.1.deb

Override Buildspec During Build Start:

It’s also possible to override the build specification file of an existing project when starting a build. If we want to create the libs RPM package instead of the whole RPM, we will use the build specification file named buildspec-libs-rpm.yml. This build specification file is similar to the earlier RPM build. The only difference is that it uses a different RPM specification file to create libs RPM.

version: 0.2

env:
  variables:
    build_version: "0.1"

phases:
  install:
    commands:
      - yum install rpm-build make gcc glibc -y
  pre_build:
    commands:
      - curr_working_dir=`pwd`
      - mkdir -p ./{RPMS,SRPMS,BUILD,SOURCES,SPECS,tmp}
      - filename="cbsample-libs-$build_version"
      - echo $filename
      - mkdir -p $filename
      - cp ./*.c ./*.h Makefile $filename
      - tar -zcvf /root/$filename.tar.gz $filename
      - cp /root/$filename.tar.gz ./SOURCES/
      - cp cbsample-libs.rpmspec ./SPECS/
  build:
    commands:
      - echo "Triggering RPM build"
      - rpmbuild --define "_topdir `pwd`" -ba SPECS/cbsample-libs.rpmspec
      - cd $curr_working_dir

artifacts:
  files:
    - RPMS/x86_64/cbsample-libs*.rpm
  discard-paths: yes

Using the same RPM build project that we created earlier, start a new build and set the value of the `–buildspec-override` parameter to buildspec-libs-rpm.yml .

$ aws codebuild start-build --project-name CodeBuild-RPM-Demo --buildspec-override buildspec-libs-rpm.yml
{
    "build": {
        "buildComplete": false, 
        "initiator": "prakash", 
        "artifacts": {
            "location": "arn:aws:s3:::codebuild-demo-artifact-repository/CodeBuild-RPM-Demo"
        }, 
        "projectName": "CodeBuild-RPM-Demo", 
        "timeoutInMinutes": 15, 
        "buildStatus": "IN_PROGRESS", 
        "environment": {
            "computeType": "BUILD_GENERAL1_SMALL", 
            "privilegedMode": false, 
            "image": "centos:7", 
            "type": "LINUX_CONTAINER", 
            "environmentVariables": []
        }, 
        "source": {
            "buildspec": "buildspec-libs-rpm.yml", 
            "type": "CODECOMMIT", 
            "location": "https://git-codecommit.eu-west-1.amazonaws.com/v1/repos/codebuild-multispec"
        }, 
        "currentPhase": "SUBMITTED", 
        "startTime": 1500562366.239, 
        "id": "CodeBuild-RPM-Demo:82d05f8a-b161-401c-82f0-83cb41eba567", 
        "arn": "arn:aws:codebuild:eu-west-1:012345678912:build/CodeBuild-RPM-Demo:82d05f8a-b161-401c-82f0-83cb41eba567"
    }
}

After the build is completed successfully, check to see if the package appears in the artifact S3 bucket under the CodeBuild-RPM-Demo build project folder.

$ aws s3 ls s3://codebuild-demo-artifact-repository/CodeBuild-RPM-Demo/
2017-07-20 16:16:59       8108 cbsample-0.1-1.el7.centos.x86_64.rpm
2017-07-20 16:53:54       5320 cbsample-libs-0.1-1.el7.centos.x86_64.rpm

Conclusion

In this post, I have shown you how multiple buildspec files in the same source repository can be used to run multiple AWS CodeBuild build projects. I have also shown you how to provide a different buildspec file when starting the build.

For more information about AWS CodeBuild, see the AWS CodeBuild documentation. You can get started with AWS CodeBuild by using this step by step guide.


About the author

Prakash Palanisamy is a Solutions Architect for Amazon Web Services. When he is not working on Serverless, DevOps or Alexa, he will be solving problems in Project Euler. He also enjoys watching educational documentaries.

The KickassTorrents Shutdown, One Year Later

Post Syndicated from Ernesto original https://torrentfreak.com/the-kickasstorrents-shutdown-one-year-later-170720/

Exactly one year ago, on July 20th 2016, the torrent community was in dire straits.

Polish law enforcement officers had just apprehended Artem Vaulin, the alleged founder of KickassTorrents (KAT) at a local airport.

The arrest was part of a U.S. criminal case which also listed two other men as key players. At the time, KAT was the most-used torrent site around, so the authorities couldn’t have hit a more prominent target.

The criminal case was the end of the torrent site, but also the start of a lengthy court battle for the defendants.

To this day, Artem remains in Poland. He’s currently out on bail awaiting the final decision on the extradition request from the United States, while the other two defendants remain at large. If he is extradited, it’s expected that an extensive court battle will follow.

Although the original KickassTorrents is website no longer around, the ‘brand’ is still very much alive. Soon after the site went down several KAT copies and mirrors appeared. For many, however, the original site is still dearly missed.

The most prominent effort to create a replacement is the product of a group of well-known staffers from the original site. They began to rebuild the community by launching a forum for estranged KAT users last summer. A few months later they expanded their KATcr project to a full blown torrent site, mimicking the looks of the original.

Today, one year after it all started, we reach out to the new KATcr team to hear about their memories and future plans.

“Looking back it was shocking and disheartening for everyone, we know it happens but didn’t expect our ship to sink like that. We’ve written history there though, made many friends, learned a hell of a lot, and achieved so much,” Mr.Gooner recalls.

“It’s thanks to the original site and the loyal, supporting users that we were able to rebuild our ship and set sail again,” he adds.

While KATcr was able to put up a forum within days, getting fully organized was a more complex operation. Several former admins came on board, but without access to the original code or database, it took a few months to build a KAT replacement from scratch.

KATcr today

The site eventually relaunched as a full-blown torrent site last December. Although it doesn’t get as much traffic as the original KAT, many former users have found their way ‘back.’

“Minus a few hiccups and various other minor issues most new sites experience, traffic is increasing at a good rate. We are continuously improving and our name is well and truly out there now. The door is open and everyone is welcomed with open arms, we know all too well what it’s like to lose our home,” Mr.Gooner notes.

A lot of people would think twice before attempting to fill the shoes of a site that was hunted down by the US Department of Justice. However, the KATcr team believes that they are acting within the boundaries of the law.

“As far as we are concerned we operate to every letter of the law,” Mr.Gooner states in full confidence.

In the future, the site hopes to expand its userbase even further. Although it’s now been a year since the original KAT was pulled offline, the KATcr team prefers to look ahead, instead of dwelling in the past. There are some people who are still missed, but other than that, the focus is forward.

“I mostly miss those that are no longer with us. But rather than living in the past, the present day and the future is what matters, so we don’t tend to look back to miss anything else,” Mr.Gooner says.

Looking ahead is what alleged KickassTorrents operator Artem Vaulin will do as well. His concerns are different though.

The most pressing question that has to be answered in the near future is whether Poland will extradite him to the United States. Through his lawyers, he previously floated the idea of surrendering to the US voluntarily to “resolve” the pending charges, but only under the right conditions.

Meanwhile, he remains in Poland on bail.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and ANONYMOUS VPN services.

Launch – .NET Core Support In AWS CodeStar and AWS Codebuild

Post Syndicated from Tara Walker original https://aws.amazon.com/blogs/aws/launch-net-core-support-in-aws-codestar-and-aws-codebuild/

A few months ago, I introduced the AWS CodeStar service, which allows you to quickly develop, build, and deploy applications on AWS. AWS CodeStar helps development teams to increase the pace of releasing applications and solutions while reducing some of the challenges of building great software.

When the CodeStar service launched in April, it was released with several project templates for Amazon EC2, AWS Elastic Beanstalk, and AWS Lambda using five different programming languages; JavaScript, Java, Python, Ruby, and PHP. Each template provisions the underlying AWS Code Services and configures an end-end continuous delivery pipeline for the targeted application using AWS CodeCommit, AWS CodeBuild, AWS CodePipeline, and AWS CodeDeploy.

As I have participated in some of the AWS Summits around the world discussing AWS CodeStar, many of you have shown curiosity in learning about the availability of .NET templates in CodeStar and utilizing CodeStar to deploy .NET applications. Therefore, it is with great pleasure and excitement that I announce that you can now develop, build, and deploy cross-platform .NET Core applications with the AWS CodeStar and AWS CodeBuild services.

AWS CodeBuild has added the ability to build and deploy .NET Core application code to both Amazon EC2 and AWS Lambda. This new CodeBuild capability has enabled the addition of two new project templates in AWS CodeStar for .NET Core applications.  These new project templates enable you to deploy .NET Code applications to Amazon EC2 Linux Instances, and provides everything you need to get started quickly, including .NET Core sample code and a full software development toolchain.

Of course, I can’t wait to try out the new addition to the project templates within CodeStar and the update .NET application build options with CodeBuild. For my test scenario, I will use CodeStar to create, build, and deploy my .NET Code ASP.Net web application on EC2. Then, I will extend my ASP.Net application by creating a .NET Lambda function to be compiled and deployed with CodeBuild as a part of my application’s pipeline. This Lambda function can then be called and used within my ASP.Net application to extend the functionality of my web application.

So, let’s get started!

First, I’ll log into the CodeStar console and start a new CodeStar project. I am presented with the option to select a project template.


Right now, I would like to focus on building .NET Core projects, therefore, I’ll filter the project templates by selecting the C# in the Programming Languages section. Now, CodeStar only shows me the new .NET Core project templates that I can use to build web applications and services with ASP.NET Core.

I think I’ll use the ASP.NET Core web application project template for my first CodeStar .NET Core application. As you can see by the project template information display, my web application will be deployed on Amazon EC2, which signifies to me that my .NET Core code will be compiled and packaged using AWS CodeBuild and deployed to EC2 using the AWS CodeDeploy service.


My hunch about the services is confirmed on the next screen when CodeStar shows the AWS CodePipeline and the AWS services that will be configured for my new project. I’ll name this web application project, ASPNetCore4Tara, and leave the default Project ID that CodeStar generates from the project name. Yes, I know that this is one of the goofiest names I could ever come up with, but, hey, it will do for this test project so I’ll go ahead and click the Next button. I should mention that you have the option to edit your Amazon EC2 configuration for your project on this screen before CodeStar starts configuring and provisioning the services needed to run your application.

Since my ASP.Net Core web application will be deployed to an Amazon EC2 instance, I will need to choose an Amazon EC2 Key Pair for encryption of the login used to allow me to SSH into this instance. For my ASPNetCore4Tara project, I will use an existing Amazon EC2 key pair I have previously used for launching my other EC2 instances. However, if I was creating this project and I did not have an EC2 key pair or if I didn’t have access to the .pem file (private key file) for an existing EC2 key pair, I would have to first visit the EC2 console and create a new EC2 key pair to use for my project. This is important because if you remember, without having the EC2 key pair with the associated .pem file, I would not be able to log into my EC2 instance.

With my EC2 key pair selected and confirmation that I have the related private file checked, I am ready to click the Create Project button.


After CodeStar completes the creation of the project and the provisioning of the project related AWS services, I am ready to view the CodeStar sample application from the application endpoint displayed in the CodeStar dashboard. This sample application should be familiar to you if have been working with the CodeStar service or if you had an opportunity to read the blog post about the AWS CodeStar service launch. I’ll click the link underneath Application Endpoints to view the sample ASP.NET Core web application.

Now I’ll go ahead and clone the generated project and connect my Visual Studio IDE to the project repository. I am going to make some changes to the application and since AWS CodeBuild now supports .NET Core builds and deployments to both Amazon EC2 and AWS Lambda, I will alter my build specification file appropriately for the changes to my web application that will include the use of the Lambda function.  Don’t worry if you are not familiar with how to clone the project and connect it to the Visual Studio IDE, CodeStar provides in-console step-by-step instructions to assist you.

First things first, I will open up the Visual Studio IDE and connect to AWS CodeCommit repository provisioned for my ASPNetCore4Tara project. It is important to note that the Visual Studio 2017 IDE is required for .NET Core projects in AWS CodeStar and the AWS Toolkit for Visual Studio 2017 will need to be installed prior to connecting your project repository to the IDE.

In order to connect to my repo within Visual Studio, I will open up Team Explorer and select the Connect link under the AWS CodeCommit option under Hosted Service Providers. I will click Ok to keep my default AWS profile toolkit credentials.

I’ll then click Clone under the Manage Connections and AWS CodeCommit hosted provider section.

Once I select my aspnetcore4tara repository in the Clone AWS CodeCommit Repository dialog, I only have to enter my IAM role’s HTTPS Git credentials in the Git Credentials for AWS CodeCommit dialog and my process is complete. If you’re following along and receive a dialog for Git Credential Manager login, don’t worry just your enter the same IAM role’s Git credentials.


My project is now connected to the aspnetcore4tara CodeCommit repository and my web application is loaded to editing. As you will notice in the screenshot below, the sample project is structured as a standard ASP.NET Core MVC web application.

With the project created, I can make changes and updates. Since I want to update this project with a .NET Lambda function, I’ll quickly start a new project in Visual Studio to author a very simple C# Lambda function to be compiled with the CodeStar project. This AWS Lambda function will be included in the CodeStar ASP.NET Core web application project.

The Lambda function I’ve created makes a call to the REST API of NASA’s popular Astronomy Picture of the Day website. The API sends back the latest planetary image and related information in JSON format. You can see the Lambda function code below.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;

using System.Net.Http;
using Amazon.Lambda.Core;

// Assembly attribute to enable the Lambda function's JSON input to be converted into a .NET class.
[assembly: LambdaSerializer(typeof(Amazon.Lambda.Serialization.Json.JsonSerializer))]

namespace NASAPicOfTheDay
{
    public class SpacePic
    {
        HttpClient httpClient = new HttpClient();
        string nasaRestApi = "https://api.nasa.gov/planetary/apod?api_key=DEMO_KEY";

        /// <summary>
        /// A simple function that retreives NASA Planetary Info and 
        /// Picture of the Day
        /// </summary>
        /// <param name="context"></param>
        /// <returns>nasaResponse-JSON String</returns>
        public async Task<string> GetNASAPicInfo(ILambdaContext context)
        {
            string nasaResponse;
            
            //Call NASA Picture of the Day API
            nasaResponse = await httpClient.GetStringAsync(nasaRestApi);
            Console.WriteLine("NASA API Response");
            Console.WriteLine(nasaResponse);
            
            //Return NASA response - JSON format
            return nasaResponse; 
        }
    }
}

I’ll now publish this C# Lambda function and test by using the Publish to AWS Lambda option provided by the AWS Toolkit for Visual Studio with NASAPicOfTheDay project. After publishing the function, I can test it and verify that it is working correctly within Visual Studio and/or the AWS Lambda console. You can learn more about building AWS Lambda functions with C# and .NET at: http://docs.aws.amazon.com/lambda/latest/dg/dotnet-programming-model.html

 

Now that I have my Lambda function completed and tested, all that is left is to update the CodeBuild buildspec.yml file within my aspnetcore4tara CodeStar project to include publishing and deploying of the Lambda function.

To accomplish this, I will create a new folder named functions and copy the folder that contains my Lambda function .NET project to my aspnetcore4tara web application project directory.

 

 

To build and publish my AWS Lambda function, I will use commands in the buildspec.yml file from the aws-lambda-dotnet tools library, which helps .NET Core developers develop AWS Lambda functions. I add a file, funcprof, to the NASAPicOfTheDay folder which contains customized profile information for use with aws-lambda-dotnet tools. All that is left is to update the buildspec.yml file used by CodeBuild for the ASPNetCore4Tara project build to include the packaging and the deployment of the NASAPictureOfDay AWS Lambda function. The updated buildspec.yml is as follows:

version: 0.2
phases:
  env:
  variables:
    basePath: 'hold'
  install:
    commands:
      - echo set basePath for project
      - basePath=$(pwd)
      - echo $basePath
      - echo Build restore and package Lambda function using AWS .NET Tools...
      - dotnet restore functions/*/NASAPicOfTheDay.csproj
      - cd functions/NASAPicOfTheDay
      - dotnet lambda package -c Release -f netcoreapp1.0 -o ../lambda_build/nasa-lambda-function.zip
  pre_build:
    commands:
      - echo Deploy Lambda function used in ASPNET application using AWS .NET Tools. Must be in path of Lambda function build 
      - cd $basePath
      - cd functions/NASAPicOfTheDay
      - dotnet lambda deploy-function NASAPicAPI -c Release -pac ../lambda_build/nasa-lambda-function.zip --profile-location funcprof -fd 'NASA API for Picture of the Day' -fn NASAPicAPI -fh NASAPicOfTheDay::NASAPicOfTheDay.SpacePic::GetNASAPicInfo -frun dotnetcore1.0 -frole arn:aws:iam::xxxxxxxxxxxx:role/lambda_exec_role -framework netcoreapp1.0 -fms 256 -ft 30  
      - echo Lambda function is now deployed - Now change directory back to Base path
      - cd $basePath
      - echo Restore started on `date`
      - dotnet restore AspNetCoreWebApplication/AspNetCoreWebApplication.csproj
  build:
    commands:
      - echo Build started on `date`
      - dotnet publish -c release -o ./build_output AspNetCoreWebApplication/AspNetCoreWebApplication.csproj
artifacts:
  files:
    - AspNetCoreWebApplication/build_output/**/*
    - scripts/**/*
    - appspec.yml
    

That’s it! All that is left is for me to add and commit all my file additions and updates to the AWS CodeCommit git repository provisioned for my ASPNetCore4Tara project. This kicks off the AWS CodePipeline for the project which will now use AWS CodeBuild new support for .NET Core to build and deploy both the ASP.NET Core web application and the .NET AWS Lambda function.

 

Summary

The support for .NET Core in AWS CodeStar and AWS CodeBuild opens the door for .NET developers to take advantage of the benefits of Continuous Integration and Delivery when building .NET based solutions on AWS.  Read more about .NET Core support in AWS CodeStar and AWS CodeBuild here or review product pages for AWS CodeStar and/or AWS CodeBuild for more information on using the services.

Enjoy building .NET projects more efficiently with Amazon Web Services using .NET Core with AWS CodeStar and AWS CodeBuild.

Tara

 

Blue/Green Deployments with Amazon EC2 Container Service

Post Syndicated from Nathan Taber original https://aws.amazon.com/blogs/compute/bluegreen-deployments-with-amazon-ecs/

This post and accompanying code was generously contributed by:

Jeremy Cowan
Solutions Architect
Anuj Sharma
DevOps Cloud Architect
Peter Dalbhanjan
Solutions Architect

Deploying software updates in traditional non-containerized environments is hard and fraught with risk. When you write your deployment package or script, you have to assume that the target machine is in a particular state. If your staging environment is not an exact mirror image of your production environment, your deployment could fail. These failures frequently cause outages that persist until you re-deploy the last known good version of your application. If you are an Operations Manager, this is what keeps you up at night.

Increasingly, customers want to do testing in production environments without exposing customers to the new version until the release has been vetted. Others want to expose a small percentage of their customers to the new release to gather feedback about a feature before it’s released to the broader population. This is often referred to as canary analysis or canary testing. In this post, I introduce patterns to implement blue/green and canary deployments using Application Load Balancers and target groups.

If you’d like to try this approach to blue/green deployments, we have open sourced the code and AWS CloudFormation templates in the ecs-blue-green-deployment GitHub repo. The workflow builds an automated CI/CD pipeline that deploys your service onto an ECS cluster and offers a controlled process to swap target groups when you’re ready to promote the latest version of your code to production. You can quickly set up the environment in three steps and see the blue/green swap in action. We’d love for you to try it and send us your feedback!

Benefits of blue/green

Blue/green deployments are a type of immutable deployment that help you deploy software updates with less risk. The risk is reduced by creating separate environments for the current running or “blue” version of your application, and the new or “green” version of your application.

This type of deployment gives you an opportunity to test features in the green environment without impacting the current running version of your application. When you’re satisfied that the green version is working properly, you can gradually reroute the traffic from the old blue environment to the new green environment by modifying DNS. By following this method, you can update and roll back features with near zero downtime.

A typical blue/green deployment involves shifting traffic between 2 distinct environments.

This ability to quickly roll traffic back to the still-operating blue environment is one of the key benefits of blue/green deployments. With blue/green, you should be able to roll back to the blue environment at any time during the deployment process. This limits downtime to the time it takes to realize there’s an issue in the green environment and shift the traffic back to the blue environment. Furthermore, the impact of the outage is limited to the portion of traffic going to the green environment, not all traffic. If the blast radius of deployment errors is reduced, so is the overall deployment risk.

Containers make it simpler

Historically, blue/green deployments were not often used to deploy software on-premises because of the cost and complexity associated with provisioning and managing multiple environments. Instead, applications were upgraded in place.

Although this approach worked, it had several flaws, including the ability to roll back quickly from failures. Rollbacks typically involved re-deploying a previous version of the application, which could affect the length of an outage caused by a bad release. Fixing the issue took precedence over the need to debug, so there were fewer opportunities to learn from your mistakes.

Containers can ease the adoption of blue/green deployments because they’re easily packaged and behave consistently as they’re moved between environments. This consistency comes partly from their immutability. To change the configuration of a container, update its Dockerfile and rebuild and re-deploy the container rather than updating the software in place.

Containers also provide process and namespace isolation for your applications, which allows you to run multiple versions of them side by side on the same Docker host without conflicts. Given their small sizes relative to virtual machines, you can binpack more containers per host than VMs. This lets you make more efficient use of your computing resources, reducing the cost of blue/green deployments.

Fully Managed Updates with Amazon ECS

Amazon EC2 Container Service (ECS) performs rolling updates when you update an existing Amazon ECS service. A rolling update involves replacing the current running version of the container with the latest version. The number of containers Amazon ECS adds or removes from service during a rolling update is controlled by adjusting the minimum and maximum number of healthy tasks allowed during service deployments.

When you update your service’s task definition with the latest version of your container image, Amazon ECS automatically starts replacing the old version of your container with the latest version. During a deployment, Amazon ECS drains connections from the current running version and registers your new containers with the Application Load Balancer as they come online.

Target groups

A target group is a logical construct that allows you to run multiple services behind the same Application Load Balancer. This is possible because each target group has its own listener.

When you create an Amazon ECS service that’s fronted by an Application Load Balancer, you have to designate a target group for your service. Ordinarily, you would create a target group for each of your Amazon ECS services. However, the approach we’re going to explore here involves creating two target groups: one for the blue version of your service, and one for the green version of your service. We’re also using a different listener port for each target group so that you can test the green version of your service using the same path as the blue service.

With this configuration, you can run both environments in parallel until you’re ready to cut over to the green version of your service. You can also do things such as restricting access to the green version to testers on your internal network, using security group rules and placement constraints. For example, you can target the green version of your service to only run on instances that are accessible from your corporate network.

Swapping Over

When you’re ready to replace the old blue service with the new green service, call the ModifyListener API operation to swap the listener’s rules for the target group rules. The change happens instantaneously. Afterward, the green service is running in the target group with the port 80 listener and the blue service is running in the target group with the port 8080 listener. The diagram below is an illustration of the approach described.

Scenario

Two services are defined, each with their own target group registered to the same Application Load Balancer but listening on different ports. Deployment is completed by swapping the listener rules between the two target groups.

The second service is deployed with a new target group listening on a different port but registered to the same Application Load Balancer.

By using 2 listeners, requests to blue services are directed to the target group with the port 80 listener, while requests to the green services are directed to target group with the port 8080 listener.

After automated or manual testing, the deployment can be completed by swapping the listener rules on the Application Load Balancer and sending traffic to the green service.

Caveats

There are a few caveats to be mindful of when using this approach. This method:

  • Assumes that your application code is completely stateless. Store state outside of the container.
  • Doesn’t gracefully drain connections. The swapping of target groups is sudden and abrupt. Therefore, be cautious about using this approach if your service has long-running transactions.
  • Doesn’t allow you to perform canary deployments. While the method gives you the ability to quickly switch between different versions of your service, it does not allow you to divert a portion of the production traffic to a canary or control the rate at which your service is deployed across the cluster.

Canary testing

While this type of deployment automates much of the heavy lifting associated with rolling deployments, it doesn’t allow you to interrupt the deployment if you discover an issue midstream. Rollbacks using the standard Amazon ECS deployment require updating the service’s task definition with the last known good version of the container. Then, you wait for Amazon ECS to schedule and deploy it across the cluster. If the latest version introduces a breaking change that went undiscovered during testing, this might be too slow.

With canary testing, if you discover the green environment is not operating as expected, there is no impact on the blue environment. You can route traffic back to it, minimizing impaired operation or downtime, and limiting the blast radius of impact.

This type of deployment is particularly useful for A/B testing where you want to expose a new feature to a subset of users to get their feedback before making it broadly available.

For canary style deployments, you can use a variation of the blue/green swap that involves deploying the blue and the green service to the same target group. Although this method is not as fast as the swap, it allows you to control the rate at which your containers are replaced by adjusting the task count for each service. Furthermore, it gives you the ability to roll back by adjusting the number of tasks for the blue and green services respectively. Unlike the swap approach described above, connections to your containers are drained gracefully. We plan to address canary style deployments for Amazon ECS in a future post.

Conclusion

With AWS, you can operationalize your blue/green deployments using Amazon ECS, an Application Load Balancer, and target groups. I encourage you to adapt the code published to the ecs-blue-green-deployment GitHub repo for your use cases and look forward to reading your feedback.

If you’re interested in learning more, I encourage you to read the Blue/Green Deployments on AWS and Practicing Continuous Integration and Continuous Delivery on AWS whitepapers.

If you have questions or suggestions, please comment below.

AWS Hot Startups – June 2017

Post Syndicated from Tina Barr original https://aws.amazon.com/blogs/aws/aws-hot-startups-june-2017/

Thanks for stopping by for another round of AWS Hot Startups! This month we are featuring:

  • CloudRanger – helping companies understand the cloud with visual representation.
  • quintly – providing social media analytics for brands on a single dashboard.
  • Tango Card – reinventing rewards programs for businesses and their customers worldwide.

Don’t forget to check out May’s Hot Startups in case you missed them.

CloudRanger (Letterkenny, Ireland)   

The idea for CloudRanger started where most great ideas do – at a bar in Las Vegas. During a late-night conversation with his friends at re:Invent 2014, Dave Gildea (Founder and CEO) used cocktail napkins and drink coasters to visually illustrate servers and backups, and the light on his phone to represent scheduling. By the end of the night, the idea for automated visual server management was born. With CloudRanger, companies can easily create backup and retention policies, visual scheduling, and simple restoration of snapshots and AMIs. The team behind CloudRanger believes that when servers and cloud resources are represented visually, they are easier to manage and understand. Users are able to see their servers, which turns them into a tangible and important piece of business inventory.

CloudRanger is an excellent platform for MSPs who manage many different AWS accounts, and need a quick method to display many servers and audit certain attributes. The company’s goal is to give anyone the ability to create backup policies in multiple regions, apply them using a tag-based methodology, and manage backups. Servers can be scheduled from one simple dashboard, and restoration is easy and step-by-step. With CloudRanger’s visual representation of resources, customers are encouraged to fully understand their backup policies, schedules, and servers.

As an AWS Partner, CloudRanger has built a globally redundant system after going all-in with AWS. They are using over 25 AWS services for everything including enterprise-level security, automation and 24/7 runtimes, and an emphasis on Machine Learning for efficiency in the sales process. CloudRanger continues to rely more on AWS as new services and features are released, and are replacing current services with AWS CodePipeline and AWS CodeBuild. CloudRanger was also named Startup Company of the Year at a recent Irish tech event!

To learn more about CloudRanger, visit their website.

quintly (Cologne, Germany)

In 2010, brothers Alexander Peiniger and Frederik Peiniger started a journey to help companies track their social media profiles and improve their strategies against competitors. The startup began under the name “Social.Media.Tracking” and then “AllFacebook Stats” before officially becoming quintly in 2013. With quintly, brands and agencies can analyze, benchmark, and optimize their social media activities on a global scale. The innovative dashboarding system gives clients an overview across all social media profiles on the most important networks (Facebook, Twitter, YouTube, Google+, LinkedIn, Instagram, etc.) and then derives an optimal social media strategy from those profiles. Today, quintly has users in over 180 countries and paying clients in over 65 countries including major agency networks and Fortune 500 companies.

Getting an overview of a brand’s social media activities can be time-consuming, and turning insights into actions is a challenge that not all brands master. Quintly offers a variety of features designed to help clients improve their social media reach. With their web-based SaaS product, brands and agencies can compare their social media performance against competitors and their best practices. Not only can clients learn from their own historic performance, but they can leverage data from any other brand around the world.

Since the company’s founding, quintly built and operates its SaaS offering on top of AWS services, leveraging Amazon EC2, Amazon ECS, Elastic Load Balancing, and Amazon Route53 to host their Docker-based environment. Large amounts of data are stored in Amazon DynamoDB and Amazon RDS, and they use Amazon CloudWatch to monitor and seamlessly scale to the current needs. In addition, quintly is using Amazon Machine Learning to add additional attributes to the data and to drive better decisions for their clients. With the help of AWS, quintly has been able to focus on their core business while having a scalable and well-performing solution to solve their technical needs.

For more on quintly, check out their Social Media Analytics blog.

Tango Card (Seattle, Washington)

Based in the heart of West Seattle, Tango Card is revolutionizing rewards programs for companies around the world. Too often customers redeem points in a loyalty or rebate program only to wait weeks for their prize to arrive. Companies generously give their employees appreciation gifts, but the gifts can be generic and impersonal. With Tango Card, companies can choose from a variety of rewards that fit the needs of their specific program, event, or business incentive. The extensive Rewards Catalog includes options for e-gift cards that are sure to excite any recipient. There are plenty of options for everyone from traditional e-gift cards to nonprofit donations to cash equivalent rewards.

Tango Card uses a combination of desired rewards, modern technology, and expert service to change the rewards and incentive experience. The Reward Delivery Platform offers solutions including Blast Rewards, Reward Link, and Rewards as a Service API (RaaS). Blast Rewards enables companies to purchase and send e-gift cards in bulk in just one business day. Reward Link lets recipients choose from an assortment of e-gift cards, prepaid cards, digital checks, and donations and is delivered instantly. Finally, Rewards as a Service is a robust digital gift card API that is built to support apps and platforms. With RaaS, Tango Card can send out e-gift cards on company-branded email templates or deliver them directly within a user interface.

The entire Tango Card Reward Delivery Platform leverages many AWS services. They use Amazon EC2 Container Service (ECS) for rapid deployment of containerized micro services, and Amazon Relational Database Service (RDS) for low overhead managed databases. Tango Card is also leveraging Amazon Virtual Private Cloud (VPC), AWS Key Management Service (KMS), and AWS Identity and Access Management (IMS).

To learn more about Tango Card, check out their blog!

I would also like to thank Alexander Moss-Bolanos for helping with the Hot Startups posts this year.

Thanks for reading and we’ll see you next month!

-Tina Barr

Continuous Delivery of Nested AWS CloudFormation Stacks Using AWS CodePipeline

Post Syndicated from Prakash Palanisamy original https://aws.amazon.com/blogs/devops/continuous-delivery-of-nested-aws-cloudformation-stacks-using-aws-codepipeline/

In CodePipeline Update – Build Continuous Delivery Workflows for CloudFormation Stacks, Jeff Barr discusses infrastructure as code and how to use AWS CodePipeline for continuous delivery. In this blog post, I discuss the continuous delivery of nested CloudFormation stacks using AWS CodePipeline, with AWS CodeCommit as the source repository and AWS CodeBuild as a build and testing tool. I deploy the stacks using CloudFormation change sets following a manual approval process.

Here’s how to do it:

In AWS CodePipeline, create a pipeline with four stages:

  • Source (AWS CodeCommit)
  • Build and Test (AWS CodeBuild and AWS CloudFormation)
  • Staging (AWS CloudFormation and manual approval)
  • Production (AWS CloudFormation and manual approval)

Pipeline stages, the actions in each stage, and transitions between stages are shown in the following diagram.

CloudFormation templates, test scripts, and the build specification are stored in AWS CodeCommit repositories. These files are used in the Source stage of the pipeline in AWS CodePipeline.

The AWS::CloudFormation::Stack resource type is used to create child stacks from a master stack. The CloudFormation stack resource requires the templates of the child stacks to be stored in the S3 bucket. The location of the template file is provided as a URL in the properties section of the resource definition.

The following template creates three child stacks:

  • Security (IAM, security groups).
  • Database (an RDS instance).
  • Web stacks (EC2 instances in an Auto Scaling group, elastic load balancer).
Description: Master stack which creates all required nested stacks

Parameters:
  TemplatePath:
    Type: String
    Description: S3Bucket Path where the templates are stored
  VPCID:
    Type: "AWS::EC2::VPC::Id"
    Description: Enter a valid VPC Id
  PrivateSubnet1:
    Type: "AWS::EC2::Subnet::Id"
    Description: Enter a valid SubnetId of private subnet in AZ1
  PrivateSubnet2:
    Type: "AWS::EC2::Subnet::Id"
    Description: Enter a valid SubnetId of private subnet in AZ2
  PublicSubnet1:
    Type: "AWS::EC2::Subnet::Id"
    Description: Enter a valid SubnetId of public subnet in AZ1
  PublicSubnet2:
    Type: "AWS::EC2::Subnet::Id"
    Description: Enter a valid SubnetId of public subnet in AZ2
  S3BucketName:
    Type: String
    Description: Name of the S3 bucket to allow access to the Web Server IAM Role.
  KeyPair:
    Type: "AWS::EC2::KeyPair::KeyName"
    Description: Enter a valid KeyPair Name
  AMIId:
    Type: "AWS::EC2::Image::Id"
    Description: Enter a valid AMI ID to launch the instance
  WebInstanceType:
    Type: String
    Description: Enter one of the possible instance type for web server
    AllowedValues:
      - t2.large
      - m4.large
      - m4.xlarge
      - c4.large
  WebMinSize:
    Type: String
    Description: Minimum number of instances in auto scaling group
  WebMaxSize:
    Type: String
    Description: Maximum number of instances in auto scaling group
  DBSubnetGroup:
    Type: String
    Description: Enter a valid DB Subnet Group
  DBUsername:
    Type: String
    Description: Enter a valid Database master username
    MinLength: 1
    MaxLength: 16
    AllowedPattern: "[a-zA-Z][a-zA-Z0-9]*"
  DBPassword:
    Type: String
    Description: Enter a valid Database master password
    NoEcho: true
    MinLength: 1
    MaxLength: 41
    AllowedPattern: "[a-zA-Z0-9]*"
  DBInstanceType:
    Type: String
    Description: Enter one of the possible instance type for database
    AllowedValues:
      - db.t2.micro
      - db.t2.small
      - db.t2.medium
      - db.t2.large
  Environment:
    Type: String
    Description: Select the appropriate environment
    AllowedValues:
      - dev
      - test
      - uat
      - prod

Resources:
  SecurityStack:
    Type: "AWS::CloudFormation::Stack"
    Properties:
      TemplateURL:
        Fn::Sub: "https://s3.amazonaws.com/${TemplatePath}/security-stack.yml"
      Parameters:
        S3BucketName:
          Ref: S3BucketName
        VPCID:
          Ref: VPCID
        Environment:
          Ref: Environment
      Tags:
        - Key: Name
          Value: SecurityStack

  DatabaseStack:
    Type: "AWS::CloudFormation::Stack"
    Properties:
      TemplateURL:
        Fn::Sub: "https://s3.amazonaws.com/${TemplatePath}/database-stack.yml"
      Parameters:
        DBSubnetGroup:
          Ref: DBSubnetGroup
        DBUsername:
          Ref: DBUsername
        DBPassword:
          Ref: DBPassword
        DBServerSecurityGroup:
          Fn::GetAtt: SecurityStack.Outputs.DBServerSG
        DBInstanceType:
          Ref: DBInstanceType
        Environment:
          Ref: Environment
      Tags:
        - Key: Name
          Value:   DatabaseStack

  ServerStack:
    Type: "AWS::CloudFormation::Stack"
    Properties:
      TemplateURL:
        Fn::Sub: "https://s3.amazonaws.com/${TemplatePath}/server-stack.yml"
      Parameters:
        VPCID:
          Ref: VPCID
        PrivateSubnet1:
          Ref: PrivateSubnet1
        PrivateSubnet2:
          Ref: PrivateSubnet2
        PublicSubnet1:
          Ref: PublicSubnet1
        PublicSubnet2:
          Ref: PublicSubnet2
        KeyPair:
          Ref: KeyPair
        AMIId:
          Ref: AMIId
        WebSG:
          Fn::GetAtt: SecurityStack.Outputs.WebSG
        ELBSG:
          Fn::GetAtt: SecurityStack.Outputs.ELBSG
        DBClientSG:
          Fn::GetAtt: SecurityStack.Outputs.DBClientSG
        WebIAMProfile:
          Fn::GetAtt: SecurityStack.Outputs.WebIAMProfile
        WebInstanceType:
          Ref: WebInstanceType
        WebMinSize:
          Ref: WebMinSize
        WebMaxSize:
          Ref: WebMaxSize
        Environment:
          Ref: Environment
      Tags:
        - Key: Name
          Value: ServerStack

Outputs:
  WebELBURL:
    Description: "URL endpoint of web ELB"
    Value:
      Fn::GetAtt: ServerStack.Outputs.WebELBURL

During the Validate stage, AWS CodeBuild checks for changes to the AWS CodeCommit source repositories. It uses the ValidateTemplate API to validate the CloudFormation template and copies the child templates and configuration files to the appropriate location in the S3 bucket.

The following AWS CodeBuild build specification validates the CloudFormation templates listed under the TEMPLATE_FILES environment variable and copies them to the S3 bucket specified in the TEMPLATE_BUCKET environment variable in the AWS CodeBuild project. Optionally, you can use the TEMPLATE_PREFIX environment variable to specify a path inside the bucket. This updates the configuration files to use the location of the child template files. The location of the template files is provided as a parameter to the master stack.

version: 0.1

environment_variables:
  plaintext:
    CHILD_TEMPLATES: |
      security-stack.yml
      server-stack.yml
      database-stack.yml
    TEMPLATE_FILES: |
      master-stack.yml
      security-stack.yml
      server-stack.yml
      database-stack.yml
    CONFIG_FILES: |
      config-prod.json
      config-test.json
      config-uat.json

phases:
  install:
    commands:
      npm install jsonlint -g
  pre_build:
    commands:
      - echo "Validating CFN templates"
      - |
        for cfn_template in $TEMPLATE_FILES; do
          echo "Validating CloudFormation template file $cfn_template"
          aws cloudformation validate-template --template-body file://$cfn_template
        done
      - |
        for conf in $CONFIG_FILES; do
          echo "Validating CFN parameters config file $conf"
          jsonlint -q $conf
        done
  build:
    commands:
      - echo "Copying child stack templates to S3"
      - |
        for child_template in $CHILD_TEMPLATES; do
          if [ "X$TEMPLATE_PREFIX" = "X" ]; then
            aws s3 cp "$child_template" "s3://$TEMPLATE_BUCKET/$child_template"
          else
            aws s3 cp "$child_template" "s3://$TEMPLATE_BUCKET/$TEMPLATE_PREFIX/$child_template"
          fi
        done
      - echo "Updating template configurtion files to use the appropriate values"
      - |
        for conf in $CONFIG_FILES; do
          if [ "X$TEMPLATE_PREFIX" = "X" ]; then
            echo "Replacing \"TEMPLATE_PATH_PLACEHOLDER\" for \"$TEMPLATE_BUCKET\" in $conf"
            sed -i -e "s/TEMPLATE_PATH_PLACEHOLDER/$TEMPLATE_BUCKET/" $conf
          else
            echo "Replacing \"TEMPLATE_PATH_PLACEHOLDER\" for \"$TEMPLATE_BUCKET/$TEMPLATE_PREFIX\" in $conf"
            sed -i -e "s/TEMPLATE_PATH_PLACEHOLDER/$TEMPLATE_BUCKET\/$TEMPLATE_PREFIX/" $conf
          fi
        done

artifacts:
  files:
    - master-stack.yml
    - config-*.json

After the template files are copied to S3, CloudFormation creates a test stack and triggers AWS CodeBuild as a test action.

Then the AWS CodeBuild build specification executes validate-env.py, the Python script used to determine whether resources created using the nested CloudFormation stacks conform to the specifications provided in the CONFIG_FILE.

version: 0.1

environment_variables:
  plaintext:
    CONFIG_FILE: env-details.yml

phases:
  install:
    commands:
      - pip install --upgrade pip
      - pip install boto3 --upgrade
      - pip install pyyaml --upgrade
      - pip install yamllint --upgrade
  pre_build:
    commands:
      - echo "Validating config file $CONFIG_FILE"
      - yamllint $CONFIG_FILE
  build:
    commands:
      - echo "Validating resources..."
      - python validate-env.py
      - exit $?

Upon successful completion of the test action, CloudFormation deletes the test stack and proceeds to the UAT stage in the pipeline.

During this stage, CloudFormation creates a change set against the UAT stack and then executes the change set. This updates the UAT environment and makes it available for acceptance testing. The process continues to a manual approval action. After the QA team validates the UAT environment and provides an approval, the process moves to the Production stage in the pipeline.

During this stage, CloudFormation creates a change set for the nested production stack and the process continues to a manual approval step. Upon approval (usually by a designated executive), the change set is executed and the production deployment is completed.
 

Setting up a continuous delivery pipeline

 
I used a CloudFormation template to set up my continuous delivery pipeline. The codepipeline-cfn-codebuild.yml template, available from GitHub, sets up a full-featured pipeline.

When I use the template to create my pipeline, I specify the following:

  • AWS CodeCommit repositories.
  • SNS topics to send approval notifications.
  • S3 bucket name where the artifacts will be stored.

The CFNTemplateRepoName points to the AWS CodeCommit repository where CloudFormation templates, configuration files, and build specification files are stored.

My repo contains following files:

The continuous delivery pipeline is ready just seconds after clicking Create Stack. After it’s created, the pipeline executes each stage. Upon manual approvals for the UAT and Production stages, the pipeline successfully enables continuous delivery.


 

Implementing a change in nested stack

 
To make changes to a child stack in a nested stack (for example, to update a parameter value or add or change resources), update the master stack. The changes must be made in the appropriate template or configuration files and then checked in to the AWS CodeCommit repository. This triggers the following deployment process:

 

Conclusion

 
In this post, I showed how you can use AWS CodePipeline, AWS CloudFormation, AWS CodeBuild, and a manual approval process to create a continuous delivery pipeline for both infrastructure as code and application deployment.

For more information about AWS CodePipeline, see the AWS CodePipeline documentation. You can get started in just a few clicks. All CloudFormation templates, AWS CodeBuild build specification files, and the Python script that performs the validation are available in codepipeline-nested-cfn GitHub repository.


About the author

 
Prakash Palanisamy is a Solutions Architect for Amazon Web Services. When he is not working on Serverless, DevOps or Alexa, he will be solving problems in Project Euler. He also enjoys watching educational documentaries.

How to Create an AMI Builder with AWS CodeBuild and HashiCorp Packer – Part 2

Post Syndicated from Heitor Lessa original https://aws.amazon.com/blogs/devops/how-to-create-an-ami-builder-with-aws-codebuild-and-hashicorp-packer-part-2/

Written by AWS Solutions Architects Jason Barto and Heitor Lessa

 
In Part 1 of this post, we described how AWS CodeBuild, AWS CodeCommit, and HashiCorp Packer can be used to build an Amazon Machine Image (AMI) from the latest version of Amazon Linux. In this post, we show how to use AWS CodePipeline, AWS CloudFormation, and Amazon CloudWatch Events to continuously ship new AMIs. We use Ansible by Red Hat to harden the OS on the AMIs through a well-known set of security controls outlined by the Center for Internet Security in its CIS Amazon Linux Benchmark.

You’ll find the source code for this post in our GitHub repo.

At the end of this post, we will have the following architecture:

Requirements

 
To follow along, you will need Git and a text editor. Make sure Git is configured to work with AWS CodeCommit, as described in Part 1.

Technologies

 
In addition to the services and products used in Part 1 of this post, we also use these AWS services and third-party software:

AWS CloudFormation gives developers and systems administrators an easy way to create and manage a collection of related AWS resources, provisioning and updating them in an orderly and predictable fashion.

Amazon CloudWatch Events enables you to react selectively to events in the cloud and in your applications. Specifically, you can create CloudWatch Events rules that match event patterns, and take actions in response to those patterns.

AWS CodePipeline is a continuous integration and continuous delivery service for fast and reliable application and infrastructure updates. AWS CodePipeline builds, tests, and deploys your code every time there is a code change, based on release process models you define.

Amazon SNS is a fast, flexible, fully managed push notification service that lets you send individual messages or to fan out messages to large numbers of recipients. Amazon SNS makes it simple and cost-effective to send push notifications to mobile device users or email recipients. The service can even send messages to other distributed services.

Ansible is a simple IT automation system that handles configuration management, application deployment, cloud provisioning, ad-hoc task-execution, and multinode orchestration.

Getting Started

 
We use CloudFormation to bootstrap the following infrastructure:

Component Purpose
AWS CodeCommit repository Git repository where the AMI builder code is stored.
S3 bucket Build artifact repository used by AWS CodePipeline and AWS CodeBuild.
AWS CodeBuild project Executes the AWS CodeBuild instructions contained in the build specification file.
AWS CodePipeline pipeline Orchestrates the AMI build process, triggered by new changes in the AWS CodeCommit repository.
SNS topic Notifies subscribed email addresses when an AMI build is complete.
CloudWatch Events rule Defines how the AMI builder should send a custom event to notify an SNS topic.
Region AMI Builder Launch Template
N. Virginia (us-east-1)
Ireland (eu-west-1)

After launching the CloudFormation template linked here, we will have a pipeline in the AWS CodePipeline console. (Failed at this stage simply means we don’t have any data in our newly created AWS CodeCommit Git repository.)

Next, we will clone the newly created AWS CodeCommit repository.

If this is your first time connecting to a AWS CodeCommit repository, please see instructions in our documentation on Setup steps for HTTPS Connections to AWS CodeCommit Repositories.

To clone the AWS CodeCommit repository (console)

  1. From the AWS Management Console, open the AWS CloudFormation console.
  2. Choose the AMI-Builder-Blogpost stack, and then choose Output.
  3. Make a note of the Git repository URL.
  4. Use git to clone the repository.

For example: git clone https://git-codecommit.eu-west-1.amazonaws.com/v1/repos/AMI-Builder_repo

To clone the AWS CodeCommit repository (CLI)

# Retrieve CodeCommit repo URL
git_repo=$(aws cloudformation describe-stacks --query 'Stacks[0].Outputs[?OutputKey==`GitRepository`].OutputValue' --output text --stack-name "AMI-Builder-Blogpost")

# Clone repository locally
git clone ${git_repo}

Bootstrap the Repo with the AMI Builder Structure

 
Now that our infrastructure is ready, download all the files and templates required to build the AMI.

Your local Git repo should have the following structure:

.
├── ami_builder_event.json
├── ansible
├── buildspec.yml
├── cloudformation
├── packer_cis.json

Next, push these changes to AWS CodeCommit, and then let AWS CodePipeline orchestrate the creation of the AMI:

git add .
git commit -m "My first AMI"
git push origin master

AWS CodeBuild Implementation Details

 
While we wait for the AMI to be created, let’s see what’s changed in our AWS CodeBuild buildspec.yml file:

...
phases:
  ...
  build:
    commands:
      ...
      - ./packer build -color=false packer_cis.json | tee build.log
  post_build:
    commands:
      - egrep "${AWS_REGION}\:\sami\-" build.log | cut -d' ' -f2 > ami_id.txt
      # Packer doesn't return non-zero status; we must do that if Packer build failed
      - test -s ami_id.txt || exit 1
      - sed -i.bak "s/<<AMI-ID>>/$(cat ami_id.txt)/g" ami_builder_event.json
      - aws events put-events --entries file://ami_builder_event.json
      ...
artifacts:
  files:
    - ami_builder_event.json
    - build.log
  discard-paths: yes

In the build phase, we capture Packer output into a file named build.log. In the post_build phase, we take the following actions:

  1. Look up the AMI ID created by Packer and save its findings to a temporary file (ami_id.txt).
  2. Forcefully make AWS CodeBuild to fail if the AMI ID (ami_id.txt) is not found. This is required because Packer doesn’t fail if something goes wrong during the AMI creation process. We have to tell AWS CodeBuild to stop by informing it that an error occurred.
  3. If an AMI ID is found, we update the ami_builder_event.json file and then notify CloudWatch Events that the AMI creation process is complete.
  4. CloudWatch Events publishes a message to an SNS topic. Anyone subscribed to the topic will be notified in email that an AMI has been created.

Lastly, the new artifacts phase instructs AWS CodeBuild to upload files built during the build process (ami_builder_event.json and build.log) to the S3 bucket specified in the Outputs section of the CloudFormation template. These artifacts can then be used as an input artifact in any later stage in AWS CodePipeline.

For information about customizing the artifacts sequence of the buildspec.yml, see the Build Specification Reference for AWS CodeBuild.

CloudWatch Events Implementation Details

 
CloudWatch Events allow you to extend the AMI builder to not only send email after the AMI has been created, but to hook up any of the supported targets to react to the AMI builder event. This event publication means you can decouple from Packer actions you might take after AMI completion and plug in other actions, as you see fit.

For more information about targets in CloudWatch Events, see the CloudWatch Events API Reference.

In this case, CloudWatch Events should receive the following event, match it with a rule we created through CloudFormation, and publish a message to SNS so that you can receive an email.

Example CloudWatch custom event

[
        {
            "Source": "com.ami.builder",
            "DetailType": "AmiBuilder",
            "Detail": "{ \"AmiStatus\": \"Created\"}",
            "Resources": [ "ami-12cd5guf" ]
        }
]

Cloudwatch Events rule

{
  "detail-type": [
    "AmiBuilder"
  ],
  "source": [
    "com.ami.builder"
  ],
  "detail": {
    "AmiStatus": [
      "Created"
    ]
  }
}

Example SNS message sent in email

{
    "version": "0",
    "id": "f8bdede0-b9d7...",
    "detail-type": "AmiBuilder",
    "source": "com.ami.builder",
    "account": "<<aws_account_number>>",
    "time": "2017-04-28T17:56:40Z",
    "region": "eu-west-1",
    "resources": ["ami-112cd5guf "],
    "detail": {
        "AmiStatus": "Created"
    }
}

Packer Implementation Details

 
In addition to the build specification file, there are differences between the current version of the HashiCorp Packer template (packer_cis.json) and the one used in Part 1.

Variables

  "variables": {
    "vpc": "{{env `BUILD_VPC_ID`}}",
    "subnet": "{{env `BUILD_SUBNET_ID`}}",
         “ami_name”: “Prod-CIS-Latest-AMZN-{{isotime \”02-Jan-06 03_04_05\”}}”
  },
  • ami_name: Prefixes a name used by Packer to tag resources during the Builders sequence.
  • vpc and subnet: Environment variables defined by the CloudFormation stack parameters.

We no longer assume a default VPC is present and instead use the VPC and subnet specified in the CloudFormation parameters. CloudFormation configures the AWS CodeBuild project to use these values as environment variables. They are made available throughout the build process.

That allows for more flexibility should you need to change which VPC and subnet will be used by Packer to launch temporary resources.

Builders

  "builders": [{
    ...
    "ami_name": “{{user `ami_name`| clean_ami_name}}”,
    "tags": {
      "Name": “{{user `ami_name`}}”,
    },
    "run_tags": {
      "Name": “{{user `ami_name`}}",
    },
    "run_volume_tags": {
      "Name": “{{user `ami_name`}}",
    },
    "snapshot_tags": {
      "Name": “{{user `ami_name`}}",
    },
    ...
    "vpc_id": "{{user `vpc` }}",
    "subnet_id": "{{user `subnet` }}"
  }],

We now have new properties (*_tag) and a new function (clean_ami_name) and launch temporary resources in a VPC and subnet specified in the environment variables. AMI names can only contain a certain set of ASCII characters. If the input in project deviates from the expected characters (for example, includes whitespace or slashes), Packer’s clean_ami_name function will fix it.

For more information, see functions on the HashiCorp Packer website.

Provisioners

  "provisioners": [
    {
        "type": "shell",
        "inline": [
            "sudo pip install ansible"
        ]
    }, 
    {
        "type": "ansible-local",
        "playbook_file": "ansible/playbook.yaml",
        "role_paths": [
            "ansible/roles/common"
        ],
        "playbook_dir": "ansible",
        "galaxy_file": "ansible/requirements.yaml"
    },
    {
      "type": "shell",
      "inline": [
        "rm .ssh/authorized_keys ; sudo rm /root/.ssh/authorized_keys"
      ]
    }

We used shell provisioner to apply OS patches in Part 1. Now, we use shell to install Ansible on the target machine and ansible-local to import, install, and execute Ansible roles to make our target machine conform to our standards.

Packer uses shell to remove temporary keys before it creates an AMI from the target and temporary EC2 instance.

Ansible Implementation Details

 
Ansible provides OS patching through a custom Common role that can be easily customized for other tasks.

CIS Benchmark and Cloudwatch Logs are implemented through two Ansible third-party roles that are defined in ansible/requirements.yaml as seen in the Packer template.

The Ansible provisioner uses Ansible Galaxy to download these roles onto the target machine and execute them as instructed by ansible/playbook.yaml.

For information about how these components are organized, see the Playbook Roles and Include Statements in the Ansible documentation.

The following Ansible playbook (ansible</playbook.yaml) controls the execution order and custom properties:

---
- hosts: localhost
  connection: local
  gather_facts: true    # gather OS info that is made available for tasks/roles
  become: yes           # majority of CIS tasks require root
  vars:
    # CIS Controls whitepaper:  http://bit.ly/2mGAmUc
    # AWS CIS Whitepaper:       http://bit.ly/2m2Ovrh
    cis_level_1_exclusions:
    # 3.4.2 and 3.4.3 effectively blocks access to all ports to the machine
    ## This can break automation; ignoring it as there are stronger mechanisms than that
      - 3.4.2 
      - 3.4.3
    # CloudWatch Logs will be used instead of Rsyslog/Syslog-ng
    ## Same would be true if any other software doesn't support Rsyslog/Syslog-ng mechanisms
      - 4.2.1.4
      - 4.2.2.4
      - 4.2.2.5
    # Autofs is not installed in newer versions, let's ignore
      - 1.1.19
    # Cloudwatch Logs role configuration
    logs:
      - file: /var/log/messages
        group_name: "system_logs"
  roles:
    - common
    - anthcourtney.cis-amazon-linux
    - dharrisio.aws-cloudwatch-logs-agent

Both third-party Ansible roles can be easily configured through variables (vars). We use Ansible playbook variables to exclude CIS controls that don’t apply to our case and to instruct the CloudWatch Logs agent to stream the /var/log/messages log file to CloudWatch Logs.

If you need to add more OS or application logs, you can easily duplicate the playbook and make changes. The CloudWatch Logs agent will ship configured log messages to CloudWatch Logs.

For more information about parameters you can use to further customize third-party roles, download Ansible roles for the Cloudwatch Logs Agent and CIS Amazon Linux from the Galaxy website.

Committing Changes

 
Now that Ansible and CloudWatch Events are configured as a part of the build process, commiting any changes to the AWS CodeComit Git Repository will triger a new AMI build process that can be followed through the AWS CodePipeline console.

When the build is complete, an email will be sent to the email address you provided as a part of the CloudFormation stack deployment. The email serves as notification that an AMI has been built and is ready for use.

Summary

 
We used AWS CodeCommit, AWS CodePipeline, AWS CodeBuild, Packer, and Ansible to build a pipeline that continuously builds new, hardened CIS AMIs. We used Amazon SNS so that email addresses subscribed to a SNS topic are notified upon completion of the AMI build.

By treating our AMI creation process as code, we can iterate and track changes over time. In this way, it’s no different from a software development workflow. With that in mind, software patches, OS configuration, and logs that need to be shipped to a central location are only a git commit away.

Next Steps

 
Here are some ideas to extend this AMI builder:

  • Hook up a Lambda function in Cloudwatch Events to update EC2 Auto Scaling configuration upon completion of the AMI build.
  • Use AWS CodePipeline parallel steps to build multiple Packer images.
  • Add a commit ID as a tag for the AMI you created.
  • Create a scheduled Lambda function through Cloudwatch Events to clean up old AMIs based on timestamp (name or additional tag).
  • Implement Windows support for the AMI builder.
  • Create a cross-account or cross-region AMI build.

Cloudwatch Events allow the AMI builder to decouple AMI configuration and creation so that you can easily add your own logic using targets (AWS Lambda, Amazon SQS, Amazon SNS) to add events or recycle EC2 instances with the new AMI.

If you have questions or other feedback, feel free to leave it in the comments or contribute to the AMI Builder repo on GitHub.

Notes on open-sourcing abandoned code

Post Syndicated from Robert Graham original http://blog.erratasec.com/2017/06/notes-on-open-sourcing-abandoned-code.html

Some people want a law that compels companies to release their source code for “abandoned software”, in the name of cybersecurity, so that customers who bought it can continue to patch bugs long after the seller has stopped supporting the product. This is a bad policy, for a number of reasons.

Code is Speech

First of all, code is speech. That was the argument why Phil Zimmerman could print the source code to PGP in a book, ship it overseas, and then have somebody scan the code back into a computer. Compelled speech is a violation of free speech. That was one of the arguments in the Apple vs. FBI case, where the FBI demanded that Apple write code for them, compelling speech.

Compelling the opening of previously closed source is compelled speech.

There might still be legal arguments that get away with it. After all state already compels some speech, such as warning labels, where is services a narrow, legitimate government interest. So the courts may allow it. Also, like many free-speech issues (e.g. the legality of hate-speech), people may legitimately disagree with the courts about what “is” legal and what “should” be legal.

But here’s the thing. What rights “should” be protected changes depending on what side you are on. Whether something deserves the protection of “free speech” depends upon whether the speaker is “us” or the speaker is “them”. If it’s “them”, then you’ll find all sorts of reasons why their speech is a special case, and what it doesn’t deserve protection.

That’s what’s happening here. The legitimate government purpose of “product safety” looms large, the “code is speech” doesn’t, because they hate closed-source code, and hate Microsoft in particular. The open-source community has been strong on “code is speech” when it applies to them, but weak when it applies to closed-source.

Define abandoned

What, precisely, does ‘abandoned’ mean? Consider Windows 3.1. Microsoft hasn’t sold it for decades. Yet, it’s not precisely abandoned either, because they still sell modern versions of Windows. Being forced to show even 30 year old source code would give competitors a significant advantage in creating Windows-compatible code like WINE.

When code is truly abandoned, such as when the vendor has gone out of business, chances are good they don’t have the original source code anyway. Thus, in order for this policy to have any effect, you’d have to force vendors to give a third-party escrow service a copy of their code whenever they release a new version of their product.

All the source code

And that is surprisingly hard and costly. Most companies do not precisely know what source code their products are based upon. Yes, technically, all the code is in that ZIP file they gave to the escrow service, but it doesn’t build. Essential build steps are missing, so that source code won’t compile. It’s like the dependency hell that many open-source products experience, such as downloading and installing two different versions of Python at different times during the build. Except, it’s a hundred times worse.

Often times building closed-source requires itself an obscure version of a closed-source tool that itself has been abandoned by its original vendor. You often times can’t even define which is the source code. For example, engine control units (ECUs) are Matlab code that compiles down to C, which is then integrated with other C code, all of which is (using a special compiler) is translated to C. Unless you have all these closed source products, some of which are no longer sold, the source-code to the ECU will not help you in patch bugs.

For small startups running fast, such as off Kickstarter, forcing them to escrow code that actually builds would force upon them an undue burden, harming innovation.

Binary patch and reversing

Then there is the issue of why you need the source code in the first place. Here’s the deal with binary exploits like buffer-overflows: if you know enough to exploit it, you know enough to patch it. Just add some binary code onto the end of the function the program that verifies the input, then replace where the vulnerability happens to a jump instruction to the new code.

I know this is possible and fairly trivial because I’ve done it myself. Indeed, one of the reason Microsoft has signed kernel components is specifically because they got tired of me patching the live kernel this way (and, almost sued me for reverse engineering their code in violation of their EULA).

Given the aforementioned difficulties in building software, this would be the easier option for third parties trying to fix bugs. The only reason closed-source companies don’t do this already is because they need to fix their products permanently anyway, which involves checking in the change into their source control systems and rebuilding.

Conclusion

So what we see here is that there is no compelling benefit to forcing vendors to release code for “abandoned” products, while at the same time, there are significant costs involved, not the least of which is a violation of the principle that “code is speech”.

It doesn’t exist as a serious proposal. It only exists as a way to support open-source advocacy and security advocacy. Both would gladly stomp on your rights and drive up costs in order to achieve their higher moral goal.


Bonus: so let’s say you decide that “Window XP” has been abandoned, which is exactly the intent of proponents. You think what would happen is that we (the open-source community) would then be able to continue to support WinXP and patch bugs.

But what we’d see instead is a lot more copies of WinXP floating around, with vulnerabilities, as people decided to use it instead of paying hundreds of dollars for a new Windows 10 license.

Indeed, part of the reason for Micrsoft abandoning WinXP is because it’s riddled with flaws that can’t practically be fixed, whereas the new features of Win10 fundamentally fixes them. Getting rid of SMBv1 is just one of many examples.

Event: AWS Serverless Roadshow – Hands-on Workshops

Post Syndicated from Tara Walker original https://aws.amazon.com/blogs/aws/event-aws-serverless-roadshow-hands-on-workshops/

Surely, some of you have contemplated how you would survive the possible Zombie apocalypse or how you would build your exciting new startup to disrupt the transportation industry when Unicorn haven is uncovered. Well, there is no need to worry; I know just the thing to get you prepared to handle both of those scenarios: the AWS Serverless Computing Workshop Roadshow.

With the roadshow’s serverless workshops, you can get hands-on experience building serverless applications and microservices so you can rebuild what remains of our great civilization after a widespread viral infection causes human corpses to reanimate around the world in the AWS Zombie Microservices Workshop. In addition, you can give your startup a jump on the competition with the Wild Rydes workshop in order to revolutionize the transportation industry; just in time for a pilot’s crash landing leading the way to the discovery of abundant Unicorn pastures found on the outskirts of the female Amazonian warrior inhabited island of Themyscira also known as Paradise Island.

These free, guided hands-on workshops will introduce the basics of building serverless applications and microservices for common and uncommon scenarios using services like AWS Lambda, Amazon API Gateway, Amazon DynamoDB, Amazon S3, Amazon Kinesis, AWS Step Functions, and more. Let me share some advice before you decide to tackle Zombies and mount Unicorns – don’t forget to bring your laptop to the workshop and make sure you have an AWS account established and available for use for the event.

Check out the schedule below and get prepared today by registering for an upcoming workshop in a city near you. Remember these are workshops are completely free, so participation is on a first come, first served basis. So register and get there early, we need Zombie hunters and Unicorn riders across the globe.  Learn more about AWS Serverless Computing Workshops here and register for your city using links below.

Event Location Date
Wild Rydes New York Thursday, June 8
Wild Rydes Austin Thursday, June 22
Wild Rydes Santa Monica Thursday, July 20
Zombie Apocalypse Chicago Thursday, July 20
Wild Rydes Atlanta Tuesday, September 12
Zombie Apocalypse Dallas Tuesday, September 19

 

I look forward to fighting zombies and riding unicorns with you all.

Tara