Tag Archives: eyes

Recording lost seconds with the Augenblick blink camera

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/augenblick-camera/

Warning: a GIF used in today’s blog contains flashing images.

Students at the University of Bremen, Germany, have built a wearable camera that records the seconds of vision lost when you blink. Augenblick uses a Raspberry Pi Zero and Camera Module alongside muscle sensors to record footage whenever you close your eyes, producing a rather disjointed film of the sights you miss out on.

Augenblick blink camera recording using a Raspberry Pi Zero

Blink and you’ll miss it

The average person blinks up to five times a minute, with each blink lasting 0.5 to 0.8 seconds. These half-seconds add up to about 30 minutes a day. What sights are we losing during these minutes? That is the question asked by students Manasse Pinsuwan and René Henrich when they set out to design Augenblick.

Blinking is a highly invasive mechanism for our eyesight. Every day we close our eyes thousands of times without noticing it. Our mind manages to never let us wonder what exactly happens in the moments that we miss.

Capturing lost moments

For Augenblick, the wearer sticks MyoWare Muscle Sensor pads to their face, and these detect the electrical impulses that trigger blinking.

Augenblick blink camera recording using a Raspberry Pi Zero

Two pads are applied over the orbicularis oculi muscle that forms a ring around the eye socket, while the third pad is attached to the cheek as a neutral point.

Biology fact: there are two muscles responsible for blinking. The orbicularis oculi muscle closes the eye, while the levator palpebrae superioris muscle opens it — and yes, they both sound like the names of Harry Potter spells.

The sensor is read 25 times a second. Whenever it detects that the orbicularis oculi is active, the Camera Module records video footage.

Augenblick blink recording using a Raspberry Pi Zero

Pressing a button on the side of the Augenblick glasses set the code running. An LED lights up whenever the camera is recording and also serves to confirm the correct placement of the sensor pads.

Augenblick blink camera recording using a Raspberry Pi Zero

The Pi Zero saves the footage so that it can be stitched together later to form a continuous, if disjointed, film.

Learn more about the Augenblick blink camera

You can find more information on the conception, design, and build process of Augenblick here in German, with a shorter explanation including lots of photos here in English.

And if you’re keen to recreate this project, our free project resource for a wearable Pi Zero time-lapse camera will come in handy as a starting point.

The post Recording lost seconds with the Augenblick blink camera appeared first on Raspberry Pi.

Pirate IPTV Service Goes Bust After Premier League Deal, Exposing Users

Post Syndicated from Andy original https://torrentfreak.com/pirate-iptv-service-goes-bust-after-premier-league-deal-exposing-users-180913/

For those out of the loop, unauthorized IPTV services offering many thousands of unlicensed channels have been gaining in popularity in recent years. They’re relatively cheap, fairly reliable, and offer acceptable levels of service.

They are, however, a huge thorn in the side of rightsholders who are desperate to bring them to their knees. One such organization is the UK’s Premier League, which has been disrupting IPTV services over the past year, hoping they’ll shut down.

Most have simply ridden the wave of blocks but one provider, Ace Hosting in the UK, showed signs of stress last year, revealing that it would no longer sell new subscriptions. There was little doubt in most people’s minds that the Premier League had gotten uncomfortably close to the IPTV provider.

Now, many months later, the amazing story can be told. It’s both incredible and shocking and will leave many shaking their heads in disbelief. First up, some background.

Doing things ‘properly’ – incorporation of a pirate service…

Considering how most operators of questionable services like to stay in the shade, it may come as a surprise to learn that Ace Hosting Limited is a proper company. Incorporated and registered at Companies House on January 3, 2017, Ace has two registered directors – family team Ian and Judith Isaac.

In common with several other IPTV operators in the UK who are also officially registered with the authorities, Ace Hosting has never filed any meaningful accounts. There’s a theory that the corporate structure is basically one of convenience, one that allows for the handling of large volumes of cash while limiting liability. The downside, of course, is that people are often more easily identified, in part due to the comprehensive paper trail.

Thanks to what can only be described as a slow-motion train wreck, the Ace Hosting debacle is revealing a bewildering set of circumstances. Last December, when Ace said it would stop signing up new members due to legal pressure, a serious copyright threat had already been filed against it.

Premier League v Ace Hosting

Documents seen by TorrentFreak reveal that the Premier League sent legal threats to Ace Hosting on December 15, 2017, just days before the subscription closure announcement. Somewhat surprisingly, Ace apparently felt it could pay the Premier League a damages amount and keep on trading.

But early March 2018, with the Premier League threatening Ace with all kinds of bad things, the company made a strange announcement.

“The ISPs in the UK and across Europe have recently become much more aggressive in blocking our service while football games are in progress,” Ace said in a statement.

“In order to get ourselves off of the ISP blacklist we are going to black out the EPL games for all users (including VPN users) starting on Monday. We believe that this will enable us to rebuild the bypass process and successfully provide you with all EPL games.”

It seems doubtful that Ace really intended to thumb its nose at the Premier League but it had continued to sell subscriptions since receiving threats in December, so all things seemed possible. But on March 24 that all changed, when Ace effectively announced its closure.

Premier League 1, Ace Hosting 0

“It is with sorrow that we announce that we are no longer accepting renewals, upgrades to existing subscriptions or the purchase of new credits. We plan to support existing subscriptions until they expire,” the team wrote.

“EPL games including highlights continue to be blocked and are not expected to be reinstated before the end of the season.”

Indeed, just days later the Premier League demanded a six-figure settlement sum from Ace Hosting, presumably to make a lawsuit disappear. It was the straw that broke the camel’s back.

“When the proposed damages amount was received it was clear that the Company would not be able to cover the cost and that there was a very high probability that even with a negotiated settlement that the Company was insolvent,” documents relating to Ace’s liquidation read.

At this point, Ace says it immediately ceased trading but while torrent sites usually shut down and disappear into the night, Ace’s demise is now a matter of record.

Creditors – the good, the bad, and the ugly

On April 11, 2018, Ace’s directors contacted business recovery and insolvency specialists Begbies Traynor (Central) LLP to obtain advice on the company’s financial position. Begbies Traynor was instructed by Ace on April 23 and on May 8, Ace Hosting director Ian Isaac determined that his company could not pay its debts.

First the good news. According to an official report, Ace Hosting has considerable cash in the bank – £255,472.00 to be exact. Now the bad news – Ace has debts of £717,278.84. – the details of which are intriguing to say the least.

First up, Ace has ‘trade creditors’ to whom it owes £104,356. The vast majority of this sum is a settlement Ace agreed to pay to the Premier League.

“The directors entered into a settlement agreement with the Football Association Premier League Limited prior to placing the Company into liquidation as a result of a purported copyright infringement. However, there is a residual claim from the Football Association Premier League Limited which is included within trade creditors totaling £100,000,” Ace’s statement of affairs reads.

Bizarrely (given the nature of the business, at least) Ace also owes £260,000 to Her Majesty’s Revenue and Customs (HMRC) in unpaid VAT and corporation tax, which is effectively the government’s cut of the pirate IPTV business’s labors.

Former Ace Hosting subscriber? Your cash is as good as gone

Finally – and this is where things get a bit sweaty for Joe Public – there are 15,768 “consumer creditors”, split between ‘retail’ and ‘business’ customers of the service. Together they are owed a staggering £353,000.

Although the documentation isn’t explicit, retail customers appear to be people who have purchased an Ace IPTV subscription that still had time to run when the service closed down. Business customers seem likely to be resellers of the service, who purchased ‘credits’ and didn’t get time to sell them before Ace disappeared.

The poison chalice here is that those who are owed money by Ace can actually apply to get some of it back, but that could be extremely risky.

“Creditor claims have not yet been adjudicated but we estimate that the majority of customers who paid for subscription services will receive less than £3 if there is a distribution to unsecured creditors. Furthermore, customer details will be passed to the relevant authorities if there is any suggestion of unlawful conduct,” documentation reads.

We spoke with a former Ace customer who had this to say about the situation.

“It was generally a good service notwithstanding their half-arsed attempts to evade the EPL block. At its heart there were people who seemed to know how to operate a decent service, although the customer-facing side of things was not the greatest,” he said.

“And no, I won’t be claiming a refund. I went into it with my eyes fully open so I don’t hold anyone responsible, except myself. In any case, anyone who wants a refund has to complete a claim form and provide proof of ID (LOL).”

The bad news for former subscribers continues…potentially

While it’s likely that most people will forgo their £3, the bad news isn’t over for subscribers. Begbies Traynor is warning that the liquidators will decide whether to hand over subscribers’ personal details to the Premier League and/or the authorities.

In any event, sometime in the next couple of weeks the names and addresses of all subscribers will be made “available for inspection” at an address in Wiltshire for two days, meaning that any interested parties could potentially gain access to sensitive information.

The bottom line is that Ace Hosting is in the red to the tune of £461,907 and will eventually disappear into the bowels of history. Whether its operators will have to answer for their conduct will remain to be seen but it seems unimaginable at this stage that things will end well.

Subscribers probably won’t get sucked in but in a story as bizarre as this one, anything could yet happen.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and more. We also have VPN reviews, discounts, offers and coupons.

Cryptocurrency Security Challenges

Post Syndicated from Roderick Bauer original https://www.backblaze.com/blog/cryptocurrency-security-challenges/

Physical coins representing cyrptocurrencies

Most likely you’ve read the tantalizing stories of big gains from investing in cryptocurrencies. Someone who invested $1,000 into bitcoins five years ago would have over $85,000 in value now. Alternatively, someone who invested in bitcoins three months ago would have seen their investment lose 20% in value. Beyond the big price fluctuations, currency holders are possibly exposed to fraud, bad business practices, and even risk losing their holdings altogether if they are careless in keeping track of the all-important currency keys.

It’s certain that beyond the rewards and risks, cryptocurrencies are here to stay. We can’t ignore how they are changing the game for how money is handled between people and businesses.

Some Advantages of Cryptocurrency

  • Cryptocurrency is accessible to anyone.
  • Decentralization means the network operates on a user-to-user (or peer-to-peer) basis.
  • Transactions can completed for a fraction of the expense and time required to complete traditional asset transfers.
  • Transactions are digital and cannot be counterfeited or reversed arbitrarily by the sender, as with credit card charge-backs.
  • There aren’t usually transaction fees for cryptocurrency exchanges.
  • Cryptocurrency allows the cryptocurrency holder to send exactly what information is needed and no more to the merchant or recipient, even permitting anonymous transactions (for good or bad).
  • Cryptocurrency operates at the universal level and hence makes transactions easier internationally.
  • There is no other electronic cash system in which your account isn’t owned by someone else.

On top of all that, blockchain, the underlying technology behind cryptocurrencies, is already being applied to a variety of business needs and itself becoming a hot sector of the tech economy. Blockchain is bringing traceability and cost-effectiveness to supply-chain management — which also improves quality assurance in areas such as food, reducing errors and improving accounting accuracy, smart contracts that can be automatically validated, signed and enforced through a blockchain construct, the possibility of secure, online voting, and many others.

Like any new, booming marketing there are risks involved in these new currencies. Anyone venturing into this domain needs to have their eyes wide open. While the opportunities for making money are real, there are even more ways to lose money.

We’re going to cover two primary approaches to staying safe and avoiding fraud and loss when dealing with cryptocurrencies. The first is to thoroughly vet any person or company you’re dealing with to judge whether they are ethical and likely to succeed in their business segment. The second is keeping your critical cryptocurrency keys safe, which we’ll deal with in this and a subsequent post.

Caveat Emptor — Buyer Beware

The short history of cryptocurrency has already seen the demise of a number of companies that claimed to manage, mine, trade, or otherwise help their customers profit from cryptocurrency. Mt. Gox, GAW Miners, and OneCoin are just three of the many companies that disappeared with their users’ money. This is the traditional equivalent of your bank going out of business and zeroing out your checking account in the process.

That doesn’t happen with banks because of regulatory oversight. But with cryptocurrency, you need to take the time to investigate any company you use to manage or trade your currencies. How long have they been around? Who are their investors? Are they affiliated with any reputable financial institutions? What is the record of their founders and executive management? These are all important questions to consider when evaluating a company in this new space.

Would you give the keys to your house to a service or person you didn’t thoroughly know and trust? Some companies that enable you to buy and sell currencies online will routinely hold your currency keys, which gives them the ability to do anything they want with your holdings, including selling them and pocketing the proceeds if they wish.

That doesn’t mean you shouldn’t ever allow a company to keep your currency keys in escrow. It simply means that you better know with whom you’re doing business and if they’re trustworthy enough to be given that responsibility.

Keys To the Cryptocurrency Kingdom — Public and Private

If you’re an owner of cryptocurrency, you know how this all works. If you’re not, bear with me for a minute while I bring everyone up to speed.

Cryptocurrency has no physical manifestation, such as bills or coins. It exists purely as a computer record. And unlike currencies maintained by governments, such as the U.S. dollar, there is no central authority regulating its distribution and value. Cryptocurrencies use a technology called blockchain, which is a decentralized way of keeping track of transactions. There are many copies of a given blockchain, so no single central authority is needed to validate its authenticity or accuracy.

The validity of each cryptocurrency is determined by a blockchain. A blockchain is a continuously growing list of records, called “blocks”, which are linked and secured using cryptography. Blockchains by design are inherently resistant to modification of the data. They perform as an open, distributed ledger that can record transactions between two parties efficiently and in a verifiable, permanent way. A blockchain is typically managed by a peer-to-peer network collectively adhering to a protocol for validating new blocks. Once recorded, the data in any given block cannot be altered retroactively without the alteration of all subsequent blocks, which requires collusion of the network majority. On a scaled network, this level of collusion is impossible — making blockchain networks effectively immutable and trustworthy.

Blockchain process

The other element common to all cryptocurrencies is their use of public and private keys, which are stored in the currency’s wallet. A cryptocurrency wallet stores the public and private “keys” or “addresses” that can be used to receive or spend the cryptocurrency. With the private key, it is possible to write in the public ledger (blockchain), effectively spending the associated cryptocurrency. With the public key, it is possible for others to send currency to the wallet.

What is a cryptocurrency address?

Cryptocurrency “coins” can be lost if the owner loses the private keys needed to spend the currency they own. It’s as if the owner had lost a bank account number and had no way to verify their identity to the bank, or if they lost the U.S. dollars they had in their wallet. The assets are gone and unusable.

The Cryptocurrency Wallet

Given the importance of these keys, and lack of recourse if they are lost, it’s obviously very important to keep track of your keys.

If you’re being careful in choosing reputable exchanges, app developers, and other services with whom to trust your cryptocurrency, you’ve made a good start in keeping your investment secure. But if you’re careless in managing the keys to your bitcoins, ether, Litecoin, or other cryptocurrency, you might as well leave your money on a cafe tabletop and walk away.

What Are the Differences Between Hot and Cold Wallets?

Just like other numbers you might wish to keep track of — credit cards, account numbers, phone numbers, passphrases — cryptocurrency keys can be stored in a variety of ways. Those who use their currencies for day-to-day purchases most likely will want them handy in a smartphone app, hardware key, or debit card that can be used for purchases. These are called “hot” wallets. Some experts advise keeping the balances in these devices and apps to a minimal amount to avoid hacking or data loss. We typically don’t walk around with thousands of dollars in U.S. currency in our old-style wallets, so this is really a continuation of the same approach to managing spending money.

Bread mobile app screenshot

A “hot” wallet, the Bread mobile app

Some investors with large balances keep their keys in “cold” wallets, or “cold storage,” i.e. a device or location that is not connected online. If funds are needed for purchases, they can be transferred to a more easily used payment medium. Cold wallets can be hardware devices, USB drives, or even paper copies of your keys.

Trezor hardware wallet

A “cold” wallet, the Trezor hardware wallet

Ledger Nano S hardware wallet

A “cold” wallet, the Ledger Nano S

Bitcoin paper wallet

A “cold” Bitcoin paper wallet

Wallets are suited to holding one or more specific cryptocurrencies, and some people have multiple wallets for different currencies and different purposes.

A paper wallet is nothing other than a printed record of your public and private keys. Some prefer their records to be completely disconnected from the internet, and a piece of paper serves that need. Just like writing down an account password on paper, however, it’s essential to keep the paper secure to avoid giving someone the ability to freely access your funds.

How to Keep your Keys, and Cryptocurrency Secure

In a post this coming Thursday, Securing Your Cryptocurrency, we’ll discuss the best strategies for backing up your cryptocurrency so that your currencies don’t become part of the millions that have been lost. We’ll cover the common (and uncommon) approaches to backing up hot wallets, cold wallets, and using paper and metal solutions to keeping your keys safe.

In the meantime, please tell us of your experiences with cryptocurrencies — good and bad — and how you’ve dealt with the issue of cryptocurrency security.

The post Cryptocurrency Security Challenges appeared first on Backblaze Blog | Cloud Storage & Cloud Backup.

NIST Issues Call for "Lightweight Cryptography" Algorithms

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2018/05/nist_issues_cal.html

This is interesting:

Creating these defenses is the goal of NIST’s lightweight cryptography initiative, which aims to develop cryptographic algorithm standards that can work within the confines of a simple electronic device. Many of the sensors, actuators and other micromachines that will function as eyes, ears and hands in IoT networks will work on scant electrical power and use circuitry far more limited than the chips found in even the simplest cell phone. Similar small electronics exist in the keyless entry fobs to newer-model cars and the Radio Frequency Identification (RFID) tags used to locate boxes in vast warehouses.

All of these gadgets are inexpensive to make and will fit nearly anywhere, but common encryption methods may demand more electronic resources than they possess.

The NSA’s SIMON and SPECK would certainly qualify.

No, Ray Ozzie hasn’t solved crypto backdoors

Post Syndicated from Robert Graham original https://blog.erratasec.com/2018/04/no-ray-ozzie-hasnt-solved-crypto.html

According to this Wired article, Ray Ozzie may have a solution to the crypto backdoor problem. No, he hasn’t. He’s only solving the part we already know how to solve. He’s deliberately ignoring the stuff we don’t know how to solve. We know how to make backdoors, we just don’t know how to secure them.

The vault doesn’t scale

Yes, Apple has a vault where they’ve successfully protected important keys. No, it doesn’t mean this vault scales. The more people and the more often you have to touch the vault, the less secure it becomes. We are talking thousands of requests per day from 100,000 different law enforcement agencies around the world. We are unlikely to protect this against incompetence and mistakes. We are definitely unable to secure this against deliberate attack.

A good analogy to Ozzie’s solution is LetsEncrypt for getting SSL certificates for your website, which is fairly scalable, using a private key locked in a vault for signing hundreds of thousands of certificates. That this scales seems to validate Ozzie’s proposal.

But at the same time, LetsEncrypt is easily subverted. LetsEncrypt uses DNS to verify your identity. But spoofing DNS is easy, as was recently shown in the recent BGP attack against a cryptocurrency. Attackers can create fraudulent SSL certificates with enough effort. We’ve got other protections against this, such as discovering and revoking the SSL bad certificate, so while damaging, it’s not catastrophic.

But with Ozzie’s scheme, equivalent attacks would be catastrophic, as it would lead to unlocking the phone and stealing all of somebody’s secrets.

In particular, consider what would happen if LetsEncrypt’s certificate was stolen (as Matthew Green points out). The consequence is that this would be detected and mass revocations would occur. If Ozzie’s master key were stolen, nothing would happen. Nobody would know, and evildoers would be able to freely decrypt phones. Ozzie claims his scheme can work because SSL works — but then his scheme includes none of the many protections necessary to make SSL work.

What I’m trying to show here is that in a lab, it all looks nice and pretty, but when attacked at scale, things break down — quickly. We have so much experience with failure at scale that we can judge Ozzie’s scheme as woefully incomplete. It’s not even up to the standard of SSL, and we have a long list of SSL problems.

Cryptography is about people more than math

We have a mathematically pure encryption algorithm called the “One Time Pad”. It can’t ever be broken, provably so with mathematics.

It’s also perfectly useless, as it’s not something humans can use. That’s why we use AES, which is vastly less secure (anything you encrypt today can probably be decrypted in 100 years). AES can be used by humans whereas One Time Pads cannot be. (I learned the fallacy of One Time Pad’s on my grandfather’s knee — he was a WW II codebreaker who broke German messages trying to futz with One Time Pads).

The same is true with Ozzie’s scheme. It focuses on the mathematical model but ignores the human element. We already know how to solve the mathematical problem in a hundred different ways. The part we don’t know how to secure is the human element.

How do we know the law enforcement person is who they say they are? How do we know the “trusted Apple employee” can’t be bribed? How can the law enforcement agent communicate securely with the Apple employee?

You think these things are theoretical, but they aren’t. Consider financial transactions. It used to be common that you could just email your bank/broker to wire funds into an account for such things as buying a house. Hackers have subverted that, intercepting messages, changing account numbers, and stealing millions. Most banks/brokers require additional verification before doing such transfers.

Let me repeat: Ozzie has only solved the part we already know how to solve. He hasn’t addressed these issues that confound us.

We still can’t secure security, much less secure backdoors

We already know how to decrypt iPhones: just wait a year or two for somebody to discover a vulnerability. FBI claims it’s “going dark”, but that’s only for timely decryption of phones. If they are willing to wait a year or two a vulnerability will eventually be found that allows decryption.

That’s what’s happened with the “GrayKey” device that’s been all over the news lately. Apple is fixing it so that it won’t work on new phones, but it works on old phones.

Ozzie’s solution is based on the assumption that iPhones are already secure against things like GrayKey. Like his assumption “if Apple already has a vault for private keys, then we have such vaults for backdoor keys”, Ozzie is saying “if Apple already had secure hardware/software to secure the phone, then we can use the same stuff to secure the backdoors”. But we don’t really have secure vaults and we don’t really have secure hardware/software to secure the phone.

Again, to stress this point, Ozzie is solving the part we already know how to solve, but ignoring the stuff we don’t know how to solve. His solution is insecure for the same reason phones are already insecure.

Locked phones aren’t the problem

Phones are general purpose computers. That means anybody can install an encryption app on the phone regardless of whatever other security the phone might provide. The police are powerless to stop this. Even if they make such encryption crime, then criminals will still use encryption.

That leads to a strange situation that the only data the FBI will be able to decrypt is that of people who believe they are innocent. Those who know they are guilty will install encryption apps like Signal that have no backdoors.

In the past this was rare, as people found learning new apps a barrier. These days, apps like Signal are so easy even drug dealers can figure out how to use them.

We know how to get Apple to give us a backdoor, just pass a law forcing them to. It may look like Ozzie’s scheme, it may be something more secure designed by Apple’s engineers. Sure, it will weaken security on the phone for everyone, but those who truly care will just install Signal. But again we are back to the problem that Ozzie’s solving the problem we know how to solve while ignoring the much larger problem, that of preventing people from installing their own encryption.

The FBI isn’t necessarily the problem

Ozzie phrases his solution in terms of U.S. law enforcement. Well, what about Europe? What about Russia? What about China? What about North Korea?

Technology is borderless. A solution in the United States that allows “legitimate” law enforcement requests will inevitably be used by repressive states for what we believe would be “illegitimate” law enforcement requests.

Ozzie sees himself as the hero helping law enforcement protect 300 million American citizens. He doesn’t see himself what he really is, the villain helping oppress 1.4 billion Chinese, 144 million Russians, and another couple billion living in oppressive governments around the world.

Conclusion

Ozzie pretends the problem is political, that he’s created a solution that appeases both sides. He hasn’t. He’s solved the problem we already know how to solve. He’s ignored all the problems we struggle with, the problems we claim make secure backdoors essentially impossible. I’ve listed some in this post, but there are many more. Any famous person can create a solution that convinces fawning editors at Wired Magazine, but if Ozzie wants to move forward he’s going to have to work harder to appease doubting cryptographers.

OTON GLASS: turning text to speech

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/oton-glass/

With OTON GLASS, users are able to capture text with a blink and have it read back to them in their chosen language. It’s wonderful tool for people with dyslexia or poor vision, or for travellers abroad.

OTON GLASS

A wearable device for people who have difficulty reading.

OTON GLASS

Inspired by his father’s dyslexia, Keisuke Shimakage of the Media Creation Research Department at the Institute of Advanced Media Arts and Sciences, Japan, began to develop OTON GLASS:

I was determined to develop OTON GLASS because of my father’s dyslexia experience. In 2012, my father had a brain tumor, and developed dyslexia after his operation — the catalyst for OTON GLASS. Fortunately, he recovered fully after rehabilitation. However, many people have congenital dyslexia regardless of their health.

Assembling a team of engineers and designers, Keisuke got to work.

A collage images illustrating the history of developing OTON GLASS — OTON GLASS RASPBERRY PI GLASSES FOR DYSLEXIC USERS

The OTON GLASS device includes a Raspberry Pi 3, two cameras, and an earphone. One camera on the inside of the frame tracks the user’s eyes, and when it detects the blinked trigger, the outward-facing camera captures an image of what the user is looking at. This image is then processed by the Raspberry Pi via a program that performs optical character recognition. If the Pi detects written words, it converts them to speech, which the earphone plays back for the user.

A collage of images and text explaining how OTON GLASS works — OTON GLASS RASPBERRY PI GLASSES FOR DYSLEXIC USERS

The initial prototype of OTON GLASS had a 15-second delay between capturing text and replaying audio. This was cut down to three seconds in the team’s second prototype, designed in CAD software and housed within a 3D-printed case. The makers were then able to do real-world testing of the prototype to collect feedback from dyslexic users, and continued to upgrade the device based on user opinions.

Awards buzz

OTON GLASS is on its way to public distribution this year, and is currently doing the rounds at various trade and tech shows throughout Japan. Models are also available for trial at the Japan Blind Party Association, Kobe Eye Centre, and Nippon Keihan Library. In 2016, the device was runner-up for the James Dyson Award, and it has also garnered attention at various other awards shows and in the media. We’re looking forward to getting out hands on OTON GLASS, and we can’t wait to find out where team will take this device in the future.

The post OTON GLASS: turning text to speech appeared first on Raspberry Pi.

Ode to ‘Locate My Computer’

Post Syndicated from Yev original https://www.backblaze.com/blog/laptop-locator-can-save-you/

Laptop locator signal

Some things don’t get the credit they deserve. For one of our engineers, Billy, the Locate My Computer feature is near and dear to his heart. It took him a while to build it, and it requires some regular updates, even after all these years. Billy loves the Locate My Computer feature, but really loves knowing how it’s helped customers over the years. One recent story made us decide to write a bit of a greatest hits post as an ode to one of our favorite features — Locate My Computer.

What is it?

Locate My Computer, as you’ll read in the stories below, came about because some of our users had their computers stolen and were trying to find a way to retrieve their devices. They realized that while some of their programs and services like Find My Mac were wiped, in some cases, Backblaze was still running in the background. That created the ability to use our software to figure out where the computer was contacting us from. After manually helping some of the individuals that wrote in, we decided to build it in as a feature. Little did we know the incredible stories it would lead to. We’ll get into that, but first, a little background on why the whole thing came about.

Identifying the Customer Need

“My friend’s laptop was stolen. He tracked the thief via @Backblaze for weeks & finally identified him on Facebook & Twitter. Digital 007.”

Mat —
In December 2010, we saw a tweet from @DigitalRoyalty which read: “My friend’s laptop was stolen. He tracked the thief via @Backblaze for weeks & finally identified him on Facebook & Twitter. Digital 007.” Our CEO was manning Twitter at the time and reached out for the whole story. It turns out that Mat Miller had his laptop stolen, and while he was creating some restores a few days later, he noticed a new user was created on his computer and was backing up data. He restored some of those files, saw some information that could help identify the thief, and filed a police report. Read the whole story: Digital 007 — Outwitting The Thief.

Mark —
Following Mat Miller’s story we heard from Mark Bao, an 18-year old entrepreneur and student at Bentley University who had his laptop stolen. The laptop was stolen out of Mark’s dorm room and the thief started using it in a variety of ways, including audition practice for Dancing with the Stars. Once Mark logged in to Backblaze and saw that there were new files being uploaded, including a dance practice video, he was able to reach out to campus police and got his laptop back. You can read more about the story on: 18 Year Old Catches Thief Using Backblaze.

After Mat and Mark’s story we thought we were onto something. In addition to those stories that had garnered some media attention, we would occasionally get requests from users that said something along the lines of, “Hey, my laptop was stolen, but I had Backblaze installed. Could you please let me know if it’s still running, and if so, what the IP address is so that I can go to the authorities?” We would help them where we could, but knew that there was probably a much more efficient method of helping individuals and businesses keep track of their computers.

Some of the Greatest Hits, and the Mafia Story

In May of 2011, we launched “Locate My Computer.” This was our way of adding a feature to our already-popular backup client that would allow users to see a rough representation of where their computer was located, and the IP address associated with its last known transmission. After speaking to law enforcement, we learned that those two things were usually enough for the authorities to subpoena an ISP and get the physical address of the last known place the computer phoned home from. From there, they could investigate and, if the device was still there, return it to its rightful owner.

Bridgette —
Once the feature went live the stories got even more interesting. Almost immediately after we launched Locate My Computer, we were contacted by Bridgette, who told us of a break-in at her house. Luckily no one was home at the time, but the thief was able to get away with her iMac, DSLR, and a few other prized possessions. As soon as she reported the robbery to the police, they were able to use the Locate My Computer feature to find the thief’s location and recover her missing items. We even made a case study out of Bridgette’s experience. You can read it at: Backblaze And The Stolen iMac.

“Joe” —
The crazy recovery stories didn’t end there. Shortly after Bridgette’s story, we received an email from a user (“Joe” — to protect the innocent) who was traveling to Argentina from the United States and had his laptop stolen. After he contacted the police department in Buenos Aires, and explained to them that he was using Backblaze (which the authorities thought was a computer tracking service, and in this case, we were), they were able to get the location of the computer from an ISP in Argentina. When they went to investigate, they realized that the perpetrators were foreign nationals connected to the mafia, and that in addition to a handful of stolen laptops, they were also in the possession of over $1,000,000 in counterfeit currency! Read the whole story about “Joe” and how: Backblaze Found $1 Million in Counterfeit Cash!

The Maker —
After “Joe,” we thought that our part in high-profile “busts was over, but we were wrong. About a year later we received word from a “maker” who told us that he was able to act as an “internet super-sleuth” and worked hard to find his stolen computer. After a Maker Faire in Detroit, the maker’s car was broken into while they were getting BBQ following a successful show. While some of the computers were locked and encrypted, others were in hibernation mode and wide open to prying eyes. After the police report was filed, the maker went to Backblaze to retrieve his lost files and remembered seeing the little Locate My Computer button. That’s when the story gets really interesting. The victim used a combination of ingenuity, Craigslist, Backblaze, and the local police department to get his computer back, and make a drug bust along the way. Head over to Makezine.com to read about how:How Tracking Down My Stolen Computer Triggered a Drug Bust.

Una —
While we kept hearing praise and thanks from our customers who were able to recover their data and find their computers, a little while passed before we would hear a story that was as incredible as the ones above. In July of 2016, we received an email from Una who told us one of the most amazing stories of perseverance that we’d ever heard. With the help of Backblaze and a sympathetic constable in Australia, Una tracked her stolen computer’s journey across 6 countries. She got her computer back and we wrote up the whole story: How Una Found Her Stolen Laptop.

And the Hits Keep on Coming

The most recent story came from “J,” and we’ll share the whole thing with you because it has a really nice conclusion:

Back in September of 2017, I brought my laptop to work to finish up some administrative work before I took off for a vacation. I work in a mall where traffic [is] plenty and more specifically I work at a kiosk in the middle of the mall. This allows for a high amount of traffic passing by every few seconds. I turned my back for about a minute to put away some paperwork. At the time I didn’t notice my laptop missing. About an hour later when I was gathering my belongings for the day I noticed it was gone. I was devastated. This was a high end MacBook Pro that I just purchased. So we are not talking about a little bit of money here. This was a major investment.

Time [went] on. When I got back from my vacation I reached out to my LP (Loss Prevention) team to get images from our security to submit to the police with some thread of hope that they would find whomever stole it. December approached and I did not hear anything. I gave up hope and assumed that the laptop was scrapped. I put an iCloud lock on it and my Find My Mac feature was saying that laptop was “offline.” I just assumed that they opened it, saw it was locked, and tried to scrap it for parts.

Towards the end of January I got an email from Backblaze saying that the computer was successfully backed up. This came as a shock to me as I thought it was wiped. But I guess however they wiped it didn’t remove Backblaze from the SSD. None the less, I was very happy. I sifted through the backup and found the person’s name via the search history. Then, using the Locate my Computer feature I saw where it came online. I reached out on social media to the person in question and updated the police. I finally got ahold of the person who stated she bought it online a few weeks backs. We made arrangements and I’m happy to say that I am typing this email on my computer right now.

J finished by writing: “Not only did I want to share this story with you but also wanted to say thanks! Apple’s find my computer system failed. The police failed to find it. But Backblaze saved the day. This has been the best $5 a month I have ever spent. Not only that but I got all my stuff back. Which made the deal even better! It was like it was never gone.”

Have a Story of Your Own?

We’re more than thrilled to have helped all of these people restore their lost data using Backblaze. Recovering the actual machine using Locate My Computer though, that’s the icing on the cake. We’re proud of what we’ve been able to build here at Backblaze, and we really enjoy hearing stories from people who have used our service to successfully get back up and running, whether that meant restoring their data or recovering their actual computer.

If you have any interesting data recovery or computer recovery stories that you’d like to share with us, please email press@backblaze.com and we’ll share it with Billy and the rest of the Backblaze team. We love hearing them!

The post Ode to ‘Locate My Computer’ appeared first on Backblaze Blog | Cloud Storage & Cloud Backup.

Cabinet of Secret Documents from Australia

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2018/02/cabinet_of_secr.html

This story of leaked Australian government secrets is unlike any other I’ve heard:

It begins at a second-hand shop in Canberra, where ex-government furniture is sold off cheaply.

The deals can be even cheaper when the items in question are two heavy filing cabinets to which no-one can find the keys.

They were purchased for small change and sat unopened for some months until the locks were attacked with a drill.

Inside was the trove of documents now known as The Cabinet Files.

The thousands of pages reveal the inner workings of five separate governments and span nearly a decade.

Nearly all the files are classified, some as “top secret” or “AUSTEO”, which means they are to be seen by Australian eyes only.

Yes, that really happened. The person who bought and opened the file cabinets contacted the Australian Broadcasting Corp, who is now publishing a bunch of it.

There’s lots of interesting (and embarassing) stuff in the documents, although most of it is local politics. I am more interested in the government’s reaction to the incident: they’re pushing for a law making it illegal for the press to publish government secrets it received through unofficial channels.

“The one thing I would point out about the legislation that does concern me particularly is that classified information is an element of the offence,” he said.

“That is to say, if you’ve got a filing cabinet that is full of classified information … that means all the Crown has to prove if they’re prosecuting you is that it is classified ­ nothing else.

“They don’t have to prove that you knew it was classified, so knowledge is beside the point.”

[…]

Many groups have raised concerns, including media organisations who say they unfairly target journalists trying to do their job.

But really anyone could be prosecuted just for possessing classified information, regardless of whether they know about it.

That might include, for instance, if you stumbled across a folder of secret files in a regular skip bin while walking home and handed it over to a journalist.

This illustrates a fundamental misunderstanding of the threat. The Australian Broadcasting Corp gets their funding from the government, and was very restrained in what they published. They waited months before publishing as they coordinated with the Australian government. They allowed the government to secure the files, and then returned them. From the government’s perspective, they were the best possible media outlet to receive this information. If the government makes it illegal for the Australian press to publish this sort of material, the next time it will be sent to the BBC, the Guardian, the New York Times, or Wikileaks. And since people no longer read their news from newspapers sold in stores but on the Internet, the result will be just as many people reading the stories with far fewer redactions.

The proposed law is older than this leak, but the leak is giving it new life. The Australian opposition party is being cagey on whether they will support the law. They don’t want to appear weak on national security, so I’m not optimistic.

EDITED TO ADD (2/8): The Australian government backed down on that new security law.

EDITED TO ADD (2/13): Excellent political cartoon.

Game night 2: Detention, Viatoree, Paletta

Post Syndicated from Eevee original https://eev.ee/blog/2018/01/16/game-night-2-detention-viatoree-paletta/

Game night continues with:

  • Detention
  • Viatoree
  • Paletta

These are impressions, not reviews. I try to avoid major/ending spoilers, but big plot points do tend to leave impressions.

Detention

longish · inventory horror · jan 2017 · lin/mac/win · $12 on steam · website

Inventory horror” is a hell of a genre.

I think this one came from a Twitter thread where glip asked for indie horror recommendations. It’s apparently well-known enough to have a Wikipedia article, but I hadn’t heard of it before.

I love love love the aesthetic here. It’s obviously 2Dish from a side view (though there’s plenty of parallax in a lot of places), and it’s all done with… papercraft? I think of it as papercraft. Everything is built out of painted chunks that look like they were cut out of paper. It’s most obvious when watching the protagonist move around; her legs and skirt swivel as she walks.

Less obvious are the occasional places where tiny details repeat in the background because a paper cutout was reused. I don’t bring that up as a dig on the art; on the contrary, I really liked noticing that once or twice. It made the world feel like it was made with a tileset (albeit with very large chunky tiles), like it’s slightly artificial. I’m used to seeing sidescrollers made from tiles, of course, but the tiles are usually colorful and cartoony pixel art; big gritty full-color tiles are unusual and eerie.

And that’s a good thing in a horror game! Detention’s setting is already slightly unreal, and it’s made all the moreso by my Western perspective: it takes place in a Taiwanese school in the 60’s, a time when Taiwan was apparently under martial law. The Steam page tells you this, but I didn’t even know that much when we started playing, so I’d effectively been dropped somewhere on the globe and left to collect the details myself. Even figuring out we were in Taiwan (rather than mainland China) felt like an insight.

Thinking back, it was kind of a breath of fresh air. Games can be pretty heavy-handed about explaining the setting, but I never got that feeling from Detention. There’s more than enough context to get what’s going on, but there are no “stop and look at the camera while monologuing some exposition” moments. The developers are based in Taiwan, so it’s possible the setting is plenty familiar to them, and my perception of it is a complete accident. Either way, it certainly made an impact. Death of the author and whatnot, I suppose.

One thing in particular that stood out: none of the Chinese text in the environment is directly translated. The protagonist’s thoughts still give away what it says — “this is the nurse’s office” and the like — but that struck me as pretty different from simply repeating the text in English as though I were reading a sign in an RPG. The text is there, perfectly legible, but I can’t read it; I can only ask the protagonist to read it and offer her thoughts. It drives home that I’m experiencing the world through the eyes of the protagonist, who is their own person with their own impression of everything. Again, this is largely an emergent property of the game’s being designed in a culture that is not mine, but I’m left wondering how much thought went into this style of localization.

The game itself sees you wandering through a dark and twisted version of the protagonist’s school, collecting items and solving puzzles with them. There’s no direct combat, though some places feature a couple varieties of spirits called lingered which you have to carefully avoid. As the game progresses, the world starts to break down, alternating between increasingly abstract and increasingly concrete as we find out who the protagonist is and why she’s here.

The payoff is very personal and left a lasting impression… though as I look at the Wikipedia page now, it looks like the ending we got was the non-canon bad ending?! Well, hell. The bad ending is still great, then.

The whole game has a huge Silent Hill vibe, only without the combat and fog. Frankly, the genre might work better without combat; personal demons are more intimidating and meaningful when you can’t literally shoot them with a gun until they’re dead.

FINAL SCORE: 拾

Viatoree

short · platformer · sep 2013 · win · free on itch

I found this because @itchio tweeted about it, and the phrase “atmospheric platform exploration game” is the second most beautiful sequence of words in the English language.

The first paragraph on the itch.io page tells you the setup. That paragraph also contains more text than the entire game. In short: there are five things, and you need to find them. You can walk, jump, and extend your arms straight up to lift yourself to the ceiling. That’s it. No enemies, no shooting, no NPCs (more or less).

The result is, indeed, an atmospheric platform exploration game. The foreground is entirely 1-bit pixel art, save for the occasional white pixel to indicate someone’s eyes, and the background is only a few shades of the same purple hue. The game becomes less about playing and more about just looking at the environmental detail, appreciating how much texture the game manages to squeeze out of chunky colorless pixels. The world is still alive, too, much moreso than most platformers; tiny critters appear here and there, doing some wandering of their own, completely oblivious to you.

The game is really short, but it… just… makes me happy. I’m happy that this can exist, that not only is it okay for someone to make a very compact and short game, but that the result can still resonate with me. Not everything needs to be a sprawling epic or ask me to dedicate hours of time. It takes a few tiny ideas, runs with them, does what it came to do, and ends there. I love games like this.

That sounds silly to write out, but it’s been hard to get into my head! I do like experimenting, but I also feel compelled to reach for the grandiose, and grandiose experiment sounds more like mad science than creative exploration. For whatever reason, Viatoree convinced me that it’s okay to do a small thing, in a way that no other jam game has. It was probably the catalyst that led me to make Roguelike Simulator, and I thank it for that.

Unfortunately, we collected four of the five macguffins before hitting upon on a puzzle we couldn’t make heads or tails of. After about ten minutes of fruitless searching, I decided to abandon this one unfinished, rather than bore my couch partner to tears. Maybe I’ll go take another stab at it after I post this.

FINAL SCORE: ●●●●○

Paletta

medium · puzzle story · nov 2017 · win · free on itch

Paletta, another RPG Maker work, won second place in the month-long Indie Game Maker Contest 2017. Nice! Apparently MOOP came in fourth in the same jam; also nice! I guess that’s why both of them ended up on the itch front page.

The game is set in a world drained of color, and you have to go restore it. Each land contains one lost color, and each color gives you a corresponding spell, which is generally used for some light puzzle-solving in further lands. It’s a very cute and light-hearted game, and it actually does an impressive job of obscuring its RPG Maker roots.

The world feels a little small to me, despite having fairly spacious maps. The progression is pretty linear: you enter one land, talk to a small handful of NPCs, solve the one puzzle, get the color, and move on. I think all the areas were continuously connected, too, which may have thrown me off a bit — these areas are described as though they were vast regions, but they’re all a hundred feet wide and nestled right next to each other.

I love playing with color as a concept, and I wish the game had run further with it somehow. Rescuing a color does add some color back to the world, but at times it seemed like the color that reappeared was somewhat arbitrary? It’s not like you rescue green and now all the green is back. Thinking back on it now, I wonder if each rescued color actually changed a fixed set of sprites from gray to colorized? But it’s been a month (oops) and now I’m not sure.

I’m not trying to pick on the authors for the brevity of their jam game and also first game they’ve ever finished. I enjoyed playing it and found it plenty charming! It just happens that this time, what left the biggest impression on me was a nebulous feeling that something was missing. I think that’s still plenty important to ponder.

FINAL SCORE: ❤️💛💚💙💜

Eevee mugshot set for Doom

Post Syndicated from Eevee original https://eev.ee/release/2017/11/23/eevee-mugshot-set-for-doom/

Screenshot of Industrial Zone from Doom II, with an Eevee face replacing the usual Doom marine in the status bar

A full replacement of Doomguy’s vast array of 42 expressions.

You can get it yourself if you want to play Doom as me, for some reason? It does nothing but replace a few sprites, so it works with any Doom flavor (including vanilla) on 1, 2, or Final. Just run Doom with -file eeveemug.wad. With GZDoom, you can load it automatically.


I don’t entirely know why I did this. I drew the first one on a whim, then realized there was nothing really stopping me from making a full set, so I spent a day doing that.

The funny thing is that I usually play Doom with ZDoom’s “alternate” HUD. It’s a full-screen overlay rather than a huge bar, and — crucially — it does not show the mugshot. It can’t even be configured to show the mugshot. As far as I’m aware, it can’t even be modded to show the mugshot. So I have to play with the OG status bar if I want to actually use the thing I made.

Preview of the Eevee mugshot sprites arranged in a grid, where the Eevee becomes more beaten up in each subsequent column

I’m pretty happy with the results overall! I think I did a decent job emulating the Doom “surreal grit” style. I did the shading with Aseprite‘s shading mode — instead of laying down a solid color, it shifts pixels along a ramp of colors you select every time you draw over them. Doom’s palette has a lot of browns, so I made a ramp out of all of them and kept going over furry areas, nudging pixels into being lighter or darker, until I liked the texture. It was a lot like making a texture in a sketch with a lot of scratchy pencil strokes.

I also gleaned some interesting things about smoothness and how the eye interprets contours? I tried to explain this on Twitter and had a hell of a time putting it into words, but the short version is that it’s amazing to see the difference a single misplaced pixel can make, especially as you slide that pixel between dark and light.


Doom's palette of 256 colors, many of which are very long gradients of reds and browns

Speaking of which, Doom’s palette is incredibly weird to work with. Thank goodness Eevees are brown! The game does have to draw arbitrary levels of darkness all with the same palette, which partly explains the number of dark colors and gradients — but I believe a number of the colors are exact duplicates, so close they might as well be duplicates, or completely unused in stock Doom assets. I guess they had no reason to optimize for people trying to add arbitrary art to the game 25 years later, though. (And nowadays, GZDoom includes a truecolor software renderer, so the palette is becoming less and less important.)

I originally wanted the god mode sprite to be a Sylveon, but Sylveon is made of pink and azure and blurple, and I don’t think I could’ve pulled it off with this set of colors. I even struggled with the color of the mane a bit — I usually color it with pretty pale colors, but Doom only has a couple of those, and they’re very saturated. I ended up using a lot more dark yellows than I would normally, and thankfully it worked out pretty well.

The most significant change I made between the original sprite and the final set was the eye color:

A comparison between an original Doom mugshot sprite, the first sprite I drew, and how it ended up

(This is STFST20, a frame from the default three-frame “glacing around” animation that plays when the player has between 40 and 59 health. Doom Wiki has a whole article on the mugshot if you’re interested.)

The blue eyes in my original just do not work at all. The Doom palette doesn’t have a lot of subtle colors, and its blues in particular are incredibly bad. In the end, I made the eyes basically black, though with a couple pixels of very dark blue in them.

After I decided to make the full set, I started by making a neutral and completely healthy front pose, then derived the others from that (with a very complicated system of layers). You can see some of the side effects of that here: the face doesn’t actually turn when glancing around, because hoo boy that would’ve been a lot of work, and so the cheek fluff is visible on both sides.

I also notice that there are two columns of identical pixels in each eye! I fixed that in the glance to the right, but must’ve forgotten about it here. Oh, well; I didn’t even notice until I zoomed in just now.

A general comparison between the Doom mugshots and my Eevee ones, showing each pose in its healthy state plus the neutral pose in every state of deterioration

The original sprites might not be quite aligned correctly in the above image. The available space in the status bar is 35×31, of which a couple pixels go to an inset border, leaving 33×30. I drew all of my sprites at that size, but the originals are all cropped and have varying offsets (part of the Doom sprite format). I extremely can’t be assed to check all of those offsets for over a dozen sprites, so I just told ImageMagick to center them. (I only notice right now that some of the original sprites are even a full 31 pixels tall and draw over the top border that I was so careful to stay out of!)

Anyway, this is a representative sample of the Doom mugshot poses.

The top row shows all eight frames at full health. The first three are the “idle” state, drawn when nothing else is going on; the sprite usually faces forwards, but glances around every so often at random. The forward-facing sprite is the one I finalized first.

I tried to take a lot of cues from the original sprite, seeing as I wanted to match the style. I’d never tried drawing a sprite with a large palette and a small resolution before, and the first thing that struck me was Doomguy’s lips — the upper lip, lips themselves, and shadow under the lower lip are all created with only one row of pixels each. I thought that was amazing. Now I even kinda wish I’d exaggerated that effect a bit more, but I was wary of going too dark when there’s a shadow only a couple pixels away. I suppose Doomguy has the advantage of having, ah, a chin.

I did much the same for the eyebrows, which was especially necessary because Doomguy has more of a forehead than my Eevee does. I probably could’ve exaggerated those a bit more, as well! Still, I love how they came out — especially in the simple looking-around frames, where even a two-pixel eyebrow raise is almost comically smug.

The fourth frame is a wild-ass grin (even named STFEVL0), which shows for a short time after picking up a new weapon. Come to think of it, that’s a pretty rare occurrence when playing straight through one of the Doom games; you keep your weapons between levels.

The fifth through seventh are also a set. If the player takes damage, the status bar will briefly show one of these frames to indicate where the damage is coming from. You may notice that where Doomguy bravely faces the source of the pain, I drew myself wincing and recoiling away from it.

The middle frame of that set also appears while the player is firing continuously (regardless of damage), so I couldn’t really make it match the left and right ones. I like the result anyway. It was also great fun figuring out the expressions with the mouth — that’s another place where individual pixels make a huge difference.

Finally, the eighth column is the legendary “ouch” face, which appears when the player takes more than 20 damage at once. It may look completely alien to you, because vanilla Doom has a bug that only shows this face when the player gains 20 or more health while taking damage. This is vanishingly rare (though possible!), so the frame virtually never appears in vanilla Doom. Lots of source ports have fixed this bug, making the ouch face it a bit better known, but I usually play without the mugshot visible so it still looks super weird to me. I think my own spin on it is a bit less, ah, body horror?

The second row shows deterioration. It is pretty weird drawing yourself getting beaten up.

A lot of Doomguy’s deterioration is in the form of blood dripping from under his hair, which I didn’t think would translate terribly well to a character without hair. Instead, I went a little cartoony with it, adding bandages here and there. I had a little bit of a hard time with the bloodshot eyes at this resolution, which I realize as I type it is a very poor excuse when I had eyes three times bigger than Doomguy’s. I do love the drooping ears, with the possible exception of the fifth state, which I’m not sure is how that would actually look…? Oh well. I also like the bow becoming gradually unravelled, eventually falling off entirely when you die.

Oh, yes, the sixth frame there (before the gap) is actually for a dead player. Doomguy’s bleeding becomes markedly more extreme here, but again that didn’t really work for me, so I went a little sillier with it. A little. It’s still pretty weird drawing yourself dead.

That leaves only god mode, which is incredible. I love that glow. I love the faux whisker shapes it makes. I love how it fades into the background. I love that 100% pure “oh this is pretty good” smile. It all makes me want to just play Doom in god mode forever.

Now that I’ve looked closely at these sprites again, I spy a good half dozen little inconsistencies and nitpicks, which I’m going to refrain from spelling out. I did do this in only a day, and I think it came out pretty dang well considering.

Maybe I’ll try something else like this in the future. Not quite sure what, though; there aren’t many small and self-contained sets of sprites like this in Doom. Monsters are several times bigger and have a zillion different angles. Maybe some pickups, which only have one frame?


Hmm. Parting thought: I’m not quite sure where I should host this sort of one-off thing. It arguably belongs on Itch, but seems really out of place alongside entire released games. It also arguably belongs on the idgames archive, but I’m hesitant to put it there because it’s such an obscure thing of little interest to a general audience. At the moment it’s just a file I’ve uploaded to wherever on my own space, but I now have three little Doom experiments with no real permanent home.

[$] Using eBPF and XDP in Suricata

Post Syndicated from jake original https://lwn.net/Articles/737771/rss

Much software that uses the Linux kernel does so at comparative
arms-length: when it needs the kernel, perhaps for a read or write, it
performs a system call, then (at least from its point of view) continues
operation later, with whatever the kernel chooses to give it in reply. Some
software, however, gets pretty intimately involved with the kernel as part
of its normal operation, for example by using eBPF for low-level packet
processing. Suricata is such a program; Eric Leblond
spoke about it at Kernel Recipes 2017 in a talk entitled “eBPF and XDP
seen from the
eyes of a meerkat”.

A Raspberry Pi Halloween projects spectacular

Post Syndicated from Janina Ander original https://www.raspberrypi.org/blog/halloween-projects-2017/

Come with us on a journey to discover the 2017 Raspberry Pi Halloween projects that caught our eye, raised our hair, or sent us screaming into the night.

A clip of someone being pulled towards a trap door by hands reaching up from it - Raspberry Pi Halloween projects

Happy Halloween

Whether you’re easily scared or practically unshakeable, you can celebrate Halloween with Pi projects of any level of creepiness.

Even makers of a delicate constitution will enjoy making this Code Club Ghostbusters game, or building an interactive board game using Halloween lights with this MagPi tutorial by Mike Cook. And how about a wearable, cheerily LED-enhanced pumpkin created with the help of this CoderDojo resource? Cute, no?

Felt pumpkin with blinking LED smiley face - Raspberry Pi Halloween projects

Speaking of wearables, Derek Woodroffe’s be-tentacled hat may writhe disconcertingly, but at least it won’t reach out for you. Although, you could make it do that, if you were a terrible person.

Slightly queasy Halloween

Your decorations don’t have to be terrifying: this carved Pumpkin Pi and the Poplawskis’ Halloween decorations are controlled remotely via the web, but they’re more likely to give you happy goosebumps than cold sweats.

A clip of blinking Halloween decorations covering a house - Raspberry Pi Halloween projects

The Snake Eyes Bonnet pumpkin and the monster-face projection controlled by Pis that we showed you in our Halloween Twitter round-up look fairly friendly. Even the 3D-printed jack-o’-lantern by wermy, creator of mintyPi, is kind of adorable, if you ignore the teeth. And who knows, that AlexaPi-powered talking skull that’s staring at you could be an affable fellow who just fancies a chat, right? Right?

Horror-struck Halloween

OK, fine. You’re after something properly frightening. How about the haunted magic mirror by Kapitein Haak, or this one, with added Philips Hue effects, by Ben Eagan. As if your face first thing in the morning wasn’t shocking enough.

Haunted magic mirror demonstration - Raspberry Pi Halloween projects

If you find those rigid-faced, bow-lipped, plastic dolls more sinister than sweet – and you’re right to do so: they’re horrible – you won’t like this evil toy. Possessed by an unquiet shade, it’s straight out of my nightmares.

Earlier this month we covered Adafruit’s haunted portrait how-to. This build by Dominick Marino takes that concept to new, terrifying, heights.

Haunted portrait project demo - Raspberry Pi Halloween projects

Why not add some motion-triggered ghost projections to your Halloween setup? They’ll go nicely with the face-tracking, self-winding, hair-raising jack-in-the-box you can make thanks to Sean Hodgins’ YouTube tutorial.

And then, last of all, there’s this.

The Saw franchise's Billy the puppet on a tricycle - Raspberry Pi Halloween projects

NO.

This recreation of Billy the Puppet from the Saw franchise is Pi-powered, it’s mobile, and it talks. You can remotely control it, and I am not even remotely OK with it. That being said, if you’re keen to have one of your own, be my guest. Just follow the guide on Instructables. It’s your funeral.

Make your Halloween

It’s been a great year for scary Raspberry Pi makes, and we hope you have a blast using your Pi to get into the Halloween spirit.

And speaking of spirits, Matt Reed of RedPepper has created a Pi-based ghost detector! It uses Google’s Speech Neural Network AI to listen for voices in the ether, and it’s live-streaming tonight. Perfect for watching while you’re waiting for the trick-or-treaters to show up.

The post A Raspberry Pi Halloween projects spectacular appeared first on Raspberry Pi.

Twitter makers love Halloween

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/twitter-love-halloween/

Halloween is almost upon us! In honour of one of the maker community’s favourite howlidays, here are some posts from enthusiastic makers on Twitter to get you inspired and prepared for the big event.

Lorraine’s VR Puppet

Lorraine Underwood on Twitter

Using a @Raspberry_Pi with @pimoroni tilt hat to make a cool puppet for #Halloween https://t.co/pOeTFZ0r29

Made with a Pimoroni Pan-Tilt HAT, a Raspberry Pi, and some VR software on her phone, Lorraine Underwood‘s puppet is going to be a rather fitting doorman to interact with this year’s trick-or-treaters. Follow her project’s progress as she posts it on her blog.

Firr’s Monster-Mashing House

Firr on Twitter

Making my house super spooky for Halloween! https://t.co/w553l40BT0

Harnessing the one song guaranteed to earworm its way into my mind this October, Firr has upgraded his house to sing for all those daring enough to approach it this coming All Hallows’ Eve.

Firr used resources from Adafruit, along with three projectors, two Raspberry Pis, and some speakers, to create this semi-interactive display.

While the eyes can move on their own, a joystick can be added for direct control. Firr created a switch that goes between autonomous animation and direct control.

Find out more on the htxt.africa website.

Justin’s Snake Eyes Pumpkin

Justin Smith on Twitter

First #pumpkin of the season for Friday the 13th! @PaintYourDragon’s snake eyes bonnet for the #RaspberryPi to handle the eye animation. https://t.co/TSlUUxYP5Q

The Animated Snake Eyes Bonnet is definitely one of the freakiest products to come from the Adafruit lab, and it’s the perfect upgrade for any carved pumpkin this Halloween. Attach the bonnet to a Raspberry Pi 3, or the smaller Zero or Zero W, and thus add animated eyes to your scary orange masterpiece, as Justin Smith demonstrates in his video. The effect will terrify even the bravest of trick-or-treaters! Just make sure you don’t light a candle in there too…we’re not sure how fire-proof the tech is.

And then there’s this…

EmmArarrghhhhhh on Twitter

Squishy eye keyboard? Anyone? Made with @Raspberry_Pi @pimoroni’s Explorer HAT Pro and a pile of stuff from @Poundland 😂👀‼️ https://t.co/qLfpLLiXqZ

Yeah…the line between frightening and funny is never thinner than on Halloween.

Make and share this Halloween!

For more Halloween project ideas, check out our free resources including Scary ‘Spot the difference’ and the new Pioneers-inspired Pride and Prejudice‘ for zombies.

Halloween Pride and Prejudice Zombies Raspberry Pi

It is a truth universally acknowledged that a single man in possession of the zombie virus must be in want of braaaaaaains.

No matter whether you share your Halloween builds on Twitter, Facebook, G+, Instagram, or YouTube, we want to see them — make sure to tag us in your posts. We also have a comment section below this post, so go ahead and fill it with your ideas, links to completed projects, and general chat about the world of RasBOOrry Pi!

…sorry, that’s a hideous play on words. I apologise.

The post Twitter makers love Halloween appeared first on Raspberry Pi.

IoT Cybersecurity: What’s Plan B?

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2017/10/iot_cybersecuri.html

In August, four US Senators introduced a bill designed to improve Internet of Things (IoT) security. The IoT Cybersecurity Improvement Act of 2017 is a modest piece of legislation. It doesn’t regulate the IoT market. It doesn’t single out any industries for particular attention, or force any companies to do anything. It doesn’t even modify the liability laws for embedded software. Companies can continue to sell IoT devices with whatever lousy security they want.

What the bill does do is leverage the government’s buying power to nudge the market: any IoT product that the government buys must meet minimum security standards. It requires vendors to ensure that devices can not only be patched, but are patched in an authenticated and timely manner; don’t have unchangeable default passwords; and are free from known vulnerabilities. It’s about as low a security bar as you can set, and that it will considerably improve security speaks volumes about the current state of IoT security. (Full disclosure: I helped draft some of the bill’s security requirements.)

The bill would also modify the Computer Fraud and Abuse and the Digital Millennium Copyright Acts to allow security researchers to study the security of IoT devices purchased by the government. It’s a far narrower exemption than our industry needs. But it’s a good first step, which is probably the best thing you can say about this legislation.

However, it’s unlikely this first step will even be taken. I am writing this column in August, and have no doubt that the bill will have gone nowhere by the time you read it in October or later. If hearings are held, they won’t matter. The bill won’t have been voted on by any committee, and it won’t be on any legislative calendar. The odds of this bill becoming law are zero. And that’s not just because of current politics — I’d be equally pessimistic under the Obama administration.

But the situation is critical. The Internet is dangerous — and the IoT gives it not just eyes and ears, but also hands and feet. Security vulnerabilities, exploits, and attacks that once affected only bits and bytes now affect flesh and blood.

Markets, as we’ve repeatedly learned over the past century, are terrible mechanisms for improving the safety of products and services. It was true for automobile, food, restaurant, airplane, fire, and financial-instrument safety. The reasons are complicated, but basically, sellers don’t compete on safety features because buyers can’t efficiently differentiate products based on safety considerations. The race-to-the-bottom mechanism that markets use to minimize prices also minimizes quality. Without government intervention, the IoT remains dangerously insecure.

The US government has no appetite for intervention, so we won’t see serious safety and security regulations, a new federal agency, or better liability laws. We might have a better chance in the EU. Depending on how the General Data Protection Regulation on data privacy pans out, the EU might pass a similar security law in 5 years. No other country has a large enough market share to make a difference.

Sometimes we can opt out of the IoT, but that option is becoming increasingly rare. Last year, I tried and failed to purchase a new car without an Internet connection. In a few years, it’s going to be nearly impossible to not be multiply connected to the IoT. And our biggest IoT security risks will stem not from devices we have a market relationship with, but from everyone else’s cars, cameras, routers, drones, and so on.

We can try to shop our ideals and demand more security, but companies don’t compete on IoT safety — and we security experts aren’t a large enough market force to make a difference.

We need a Plan B, although I’m not sure what that is. E-mail me if you have any ideas.

This essay previously appeared in the September/October issue of IEEE Security & Privacy.

Sean Hodgins’ Haunted Jack in the Box

Post Syndicated from Janina Ander original https://www.raspberrypi.org/blog/sean-hodgins-haunted-jack-box/

After making a delightful Bitcoin lottery using a Raspberry Pi, Sean Hodgins brings us more Pi-powered goodness in time for every maker’s favourite holiday: Easter! Just kidding, it’s Halloween. Check out his hair-raising new build, the Haunted Jack in the Box.

Haunted Jack in the Box – DIY Raspberry Pi Project

This project uses a raspberry pi and face detection using the pi camera to determine when someone is looking at it. Plenty of opportunities to scare people with it. You can make your own!

Haunted jack-in-the-box?

Imagine yourself wandering around a dimly lit house. Your eyes idly scan a shelf. Suddenly, out of nowhere, a twangy melody! What was that? You take a closer look…there seems to be a box in jolly colours…with a handle that’s spinning by itself?!

Sidling up to Sean Hodgins' Haunted Jack in the Box

What’s…going on?

You freeze, unable to peel your eyes away, and BAM!, out pops a maniacally grinning clown. You promptly pee yourself. Happy Halloween, courtesy of Sean Hodgins.

Clip of Sean Hodgins' Haunted Jack in the Box

Eerie disembodied voice: You’re welco-o-o-ome!

How has Sean built this?

Sean purchased a jack-in-the-box toy and replaced its bottom side with one that would hold the necessary electronic components. He 3D-printed this part, but says you could also just build it by hand.

The bottom of the box houses a Raspberry Pi 3 Model B and a servomotor which can turn the windup handle. There’s also a magnetic reed switch which helps the Pi decide when to trigger the Jack. Sean hooked up the components to the Pi’s GPIO pins, and used an elastic band as a drive belt to connect the pulleys on the motor and the handle.

Film clip showing the inside of Sean Hodgin's Haunted Jack in the Box

Sean explains that he has used a lot of double-sided tape and superglue in this build. The bottom and top are held together with two screws, because, as he describes it, “the Jack coming out is a little violent.”

In addition to his video walk-through, he provides build instructions on Instructables, Hackaday, Hackster, and Imgur — pick your poison. And be sure to subscribe to Sean’s YouTube channel to see what he comes up with next.

Wait, how does the haunted part work?

But if I explain it, it won’t be scary anymore! OK, fiiiine.

With the help of a a Camera Module and OpenCV, Sean implemented facial recognition: Jack knows when someone is looking at his box, and responds by winding up and popping out.

View of command line output of the Python script for Sean Hodgins' Haunted Jack in the Box

Testing the haunting script

Sean’s Python script is available here, but as he points out, there are many ways in which you could adapt this code, and the build itself, to be even more frightening.

So very haunted

What would you do with this build? Add creepy laughter? Soundbites from It? Lighting effects? Maybe even infrared light and a NoIR Camera Module, so that you can scare people in total darkness? There are so many possibilities for this project — tell us your idea in the comments.

The post Sean Hodgins’ Haunted Jack in the Box appeared first on Raspberry Pi.

Spooktacular Halloween Haunted Portrait

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/spooktacular-halloween-haunted-portrait/

October has come at last, and with it, the joy of Halloween is now upon us. So while I spend the next 30 days quoting Hocus Pocus at every opportunity, here’s Adafruit’s latest spooky build … the spooktacular Haunted Portrait.

Adafruit Raspberry Pi Haunted Portrait

Haunted Portraits

If you’ve visited a haunted house such as Disney’s Haunted Mansion, or walked the halls of Hogwarts at Universal Studios, you will have seen a ‘moving portrait’. Whether it’s the classic ‘did that painting just blink?’ approach, or occupants moving in and out of frame, they’re an effective piece of spooky decoration – and now you can make your own!

Adafruit’s AdaBox

John Park, maker extraordinaire, recently posted a live make video where he used the contents of the Raspberry Pi-themed AdaBox 005 to create a blinking portrait.

AdaBox 005 Raspberry Pi Haunted Portrait

The Adabox is Adafruit’s own maker subscription service where plucky makers receive a mystery parcel containing exciting tech and inspirational builds. Their more recent delivery, the AdaBox 005, contains a Raspberry Pi Zero, their own Joy Bonnet, a case, and peripherals, including Pimoroni’s no-solder Hammer Headers.

AdaBox 005 Raspberry Pi Haunted Portrait

While you can purchase the AdaBoxes as one-off buys, subscribers get extra goodies. With AdaBox 005, they received bonus content including Raspberry Pi swag in the form of stickers, and a copy of The MagPi Magazine.

AdaBox 005 Raspberry Pi Haunted Portrait

The contents of AdaBox 005 allows makers to build their own Raspberry Pi Zero tiny gaming machine. But the ever-working minds of the Adafruit team didn’t want to settle there, so they decided to create more tutorials based on the box’s contents, such as John Park’s Haunted Portrait.

Bringing a portrait to life

Alongside the AdaBox 005 content, all of which can be purchased from Adafruit directly, you’ll need a flat-screen monitor and a fancy frame. The former could be an old TV or computer screen while the latter, unless you happen to have an ornate frame that perfectly fits your monitor, can be made from cardboard, CNC-cut wood or gold-painted macaroni and tape … probably.

Adafruit Raspberry Pi Haunted Portrait

You’ll need to attach headers to your Raspberry Pi Zero. For those of you who fear the soldering iron, the Hammer Headers can be hammered into place without the need for melty hot metal. If you’d like to give soldering a go, you can follow Laura’s Getting Started With Soldering tutorial video.

Adafruit Raspberry Pi Haunted Portrait Hammer Header

In his tutorial, John goes on to explain how to set up the Joy Bonnet (if you wish to use it as an added controller), set your Raspberry Pi to display in portrait mode, and manipulate an image in Photoshop or GIMP to create the blinking effect.

Adafruit Raspberry Pi Haunted Portrait

Blinking eyes are just the start of the possibilities for this project. This is your moment to show off your image manipulation skills! Why not have the entire head flash to show the skull within? Or have an ethereal image appear in the background of an otherwise unexceptional painting of a bowl of fruit?

In the final stages of the tutorial, John explains how to set an image slideshow running on the Pi, and how to complete the look with the aforementioned ornate frame. He also goes into detail about the importance of using a matte effect screen or transparent gels to give a more realistic ‘painted’ feel.

You’ll find everything you need to make your own haunted portrait here, including a link to John’s entire live stream.

Get spooky!

We’re going to make this for Pi Towers. In fact, I’m wondering whether I could create an entire gallery of portraits specifically for our reception area and see how long it takes people to notice …

… though I possibly shouldn’t have given my idea away on this rather public blog post.

If you make the Haunted Portrait, or any other Halloween-themed Pi build, make sure you share it with us via social media, or in the comments below.

The post Spooktacular Halloween Haunted Portrait appeared first on Raspberry Pi.

RaspiReader: build your own fingerprint reader

Post Syndicated from Janina Ander original https://www.raspberrypi.org/blog/raspireader-fingerprint-scanner/

Three researchers from Michigan State University have developed a low-cost, open-source fingerprint reader which can detect fake prints. They call it RaspiReader, and they’ve built it using a Raspberry Pi 3 and two Camera Modules. Joshua and his colleagues have just uploaded all the info you need to build your own version — let’s go!

GIF of fingerprint match points being aligned on fingerprint, not real output of RaspiReader software

Sadly not the real output of the RaspiReader

Falsified fingerprints

We’ve probably all seen a movie in which a burglar crosses a room full of laser tripwires and then enters the safe full of loot by tricking the fingerprint-secured lock with a fake print. Turns out, the second part is not that unrealistic: you can fake fingerprints using a range of materials, such as glue or latex.

Examples of live and fake fingerprints collected by the RaspiReader team

The RaspiReader team collected live and fake fingerprints to test the device

If the spoof print layer capping the spoofer’s finger is thin enough, it can even fool readers that detect blood flow, pulse, or temperature. This is becoming a significant security risk, not least for anyone who unlocks their smartphone using a fingerprint.

The RaspiReader

This is where Anil K. Jain comes in: Professor Jain leads a biometrics research group. Under his guidance, Joshua J. Engelsma and Kai Cao set out to develop a fingerprint reader with improved spoof-print detection. Ultimately, they aim to help the development of more secure commercial technologies. With their project, the team has also created an amazing resource for anyone who wants to build their own fingerprint reader.

So that replicating their device would be easy, they wanted to make it using inexpensive, readily available components, which is why they turned to Raspberry Pi technology.

RaspiReader fingerprint scanner by PRIP lab

The Raspireader and its output

Inside the RaspiReader’s 3D-printed housing, LEDs shine light through an acrylic prism, on top of which the user rests their finger. The prism refracts the light so that the two Camera Modules can take images from different angles. The Pi receives these images via a Multi Camera Adapter Module feeding into the CSI port. Collecting two images means the researchers’ spoof detection algorithm has more information to work with.

Comparison of live and spoof fingerprints

Real on the left, fake on the right

RaspiReader software

The Camera Adaptor uses the RPi.GPIO Python package. The RaspiReader performs image processing, and its spoof detection takes image colour and 3D friction ridge patterns into account. The detection algorithm extracts colour local binary patterns … please don’t ask me to explain! You can have a look at the researchers’ manuscript if you want to get stuck into the fine details of their project.

Build your own fingerprint reader

I’ve had my eyes glued to my inbox waiting for Josh to send me links to instructions and files for this build, and here they are (thanks, Josh)! Check out the video tutorial, which walks you through how to assemble the RaspiReader:

RaspiReader: Cost-Effective Open-Source Fingerprint Reader

Building a cost-effective, open-source, and spoof-resilient fingerprint reader for $160* in under an hour. Code: https://github.com/engelsjo/RaspiReader Links to parts: 1. PRISM – https://www.amazon.com/gp/product/B00WL3OBK4/ref=oh_aui_detailpage_o05_s00?ie=UTF8&psc=1 (Better fit) https://www.thorlabs.com/thorproduct.cfm?partnumber=PS611 2. RaspiCams – https://www.amazon.com/gp/product/B012V1HEP4/ref=oh_aui_detailpage_o00_s00?ie=UTF8&psc=1 3. Camera Multiplexer https://www.amazon.com/gp/product/B012UQWOOQ/ref=oh_aui_detailpage_o04_s01?ie=UTF8&psc=1 4. Raspberry Pi Kit: https://www.amazon.com/CanaKit-Raspberry-Clear-Power-Supply/dp/B01C6EQNNK/ref=sr_1_6?ie=UTF8&qid=1507058509&sr=8-6&keywords=raspberry+pi+3b Whitepaper: https://arxiv.org/abs/1708.07887 * Prices can vary based on Amazon’s pricing. P.s.

You can find a parts list with links to suppliers in the video description — the whole build costs around $160. All the STL files for the housing and the Python scripts you need to run on the Pi are available on Josh’s GitHub.

Enhance your home security

The RaspiReader is a great resource for researchers, and it would also be a terrific project to build at home! Is there a more impressive way to protect a treasured possession, or secure access to your computer, than with a DIY fingerprint scanner?

Check out this James-Bond-themed blog post for Raspberry Pi resources to help you build a high-security lair. If you want even more inspiration, watch this video about a laser-secured cookie jar which Estefannie made for us. And be sure to share your successful fingerprint scanner builds with us via social media!

The post RaspiReader: build your own fingerprint reader appeared first on Raspberry Pi.

Adafruit’s read-only Raspberry Pi

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/adafruits-read-only/

For passive projects such as point-of-sale displays, video loopers, and your upcoming Halloween builds, Adafruit have come up with a read-only solution for powering down your Raspberry Pi without endangering your SD card.

Adafruit read-only raspberry pi

Pulling the plug

At home, at a coding club, or at a Jam, you rarely need to pull the plug on your Raspberry Pi without going through the correct shutdown procedure. To ensure a long life for your SD card and its contents, you should always turn off you Pi by selecting the shutdown option from the menu. This way the Pi saves any temporary files to the card before relinquishing power.

Dramatic reconstruction

By pulling the plug while your OS is still running, you might corrupt these files, which could result in the Pi failing to boot up again. The only fix? Wipe the SD card clean and start over, waving goodbye to all files you didn’t back up.

Passive projects

But what if it’s not as easy as selecting shutdown, because your Raspberry Pi is embedded deep inside the belly of a project? Maybe you’ve hot-glued your Zero W into a pumpkin which is now screwed to the roof of your porch, or your store has a bank of Pi-powered monitors playing ads and the power is set to shut off every evening. Without the ability to shut down your Pi via the menu, you risk the SD card’s contents every time you power down your project.

Read-only

Just in time of the plethora of Halloween projects we’re looking forward to this month, the clever folk at Adafruit have designed a solution for this issue. They’ve shared a script which forces the Raspberry Pi to run in read-only mode, so that powering it down via a plug pull will not corrupt the SD card.

But how?

The script makes the Pi save temporary files to the RAM instead of the SD card. Of course, this means that no files or new software can be written to the card. However, if that’s not necessary for your Pi project, you might be happy to make the trade-off. Note that you can only use Adafruit’s script on Raspbian Lite.

Find more about the read-only Raspberry Pi solution, including the script and optional GPIO-halt utility, on the Adafruit Learn page. And be aware that making your Pi read-only is irreversible, so be sure to back up the contents of your SD card before you implement the script.

Halloween!

It’s October, and we’re now allowed to get excited about Halloween and all of the wonderful projects you plan on making for the big night.

Adafruit read-only raspberry pi

Adafruit’s animated snake eyes

We’ll be covering some of our favourite spooky build on social media throughout the month — make sure to share yours with us, either in the comments below or on Facebook, Twitter, Instagram, or G+.

The post Adafruit’s read-only Raspberry Pi appeared first on Raspberry Pi.