Tag Archives: fabrication

3D-printed speakers from the Technical University of Denmark

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/technical-university-denmark-speakers/

Students taking Design of Mechatronics at the Technical University of Denmark have created some seriously elegant and striking Raspberry Pi speakers. Their builds are part of a project asking them to “explore, design and build a 3D printed speaker, around readily available electronics and components”.

The students have been uploading their designs, incorporating Raspberry Pis and HiFiBerry HATs, to Thingiverse throughout April. The task is a collaboration with luxury brand Bang & Olufsen’s Create initiative, and the results wouldn’t look out of place in a high-end showroom; I’d happily take any of these home.

The Sphere

Søren Qvist Sphere 3D-printed laser-cut Raspberry Pi Speaker
Søren Qvist Sphere 3D-printed laser-cut Raspberry Pi Speaker
Søren Qvist Sphere 3D-printed laser-cut Raspberry Pi Speaker

Søren Qvist’s wall-mounted kitchen sphere uses 3D-printed and laser-cut parts, along with the HiFiBerry HAT and B&O speakers to create a sleek-looking design.

Hex One

Otto Ømann Hex One 3D-printed laser-cut Raspberry Pi Speaker

Otto Ømann Hex One 3D-printed laser-cut Raspberry Pi Speaker

Otto Ømann’s group have designed the Hex One – a work-in-progress wireless 360° speaker. A particular objective for their project is to create a speaker using as many 3D-printed parts as possible.

Portable B&O-Create Speaker



“The design is supposed to resemble that of a B&O speaker, and from a handful of categories we chose to create a portable and wearable speaker,” explain Gustav Larsen and his team.

Desktop Loudspeaker

Oliver Repholtz Behrens loudspeaker

Oliver Repholtz Behrens loudspeaker

Oliver Repholtz Behrens and team have housed a Raspberry Pi and HiFiBerry HAT inside this this stylish airplay speaker. You can follow their design progress on their team blog.

B&O TILE



Tue Thomsen’s six-person team Mechatastic have produced the B&O TILE. “The speaker consists of four 3D-printed cabinet and top parts, where the top should be covered by fabric,” they explain. “The speaker insides consists of laser-cut wood to hold the tweeter and driver and encase the Raspberry Pi.”

The team aimed to design a speaker that would be at home in a kitchen. With a removable upper casing allowing for a choice of colour, the TILE can be customised to fit particular tastes and colour schemes.

Build your own speakers with Raspberry Pis

Raspberry Pi’s onboard audio jack, along with third-party HATs such as the HiFiBerry and Pimoroni Speaker pHAT, make speaker design and fabrication with the Pi an interesting alternative to pre-made tech. These builds don’t tend to be technically complex, and they provide some lovely examples of tech-based projects that reflect makers’ own particular aesthetic style.

If you have access to a 3D printer or a laser cutter, perhaps at a nearby maker space, then those can be excellent resources, but fancy kit isn’t a requirement. Basic joinery and crafting with card or paper are just a couple of ways you can build things that are all your own, using familiar tools and materials. We think more people would enjoy getting hands-on with this sort of thing if they gave it a whirl, and we publish a free magazine to help.

Raspberry Pi Zero AirPlay Speaker

Looking for a new project to build around the Raspberry Pi Zero, I came across the pHAT DAC from Pimoroni. This little add-on board adds audio playback capabilities to the Pi Zero. Because the pHAT uses the GPIO pins, the USB OTG port remains available for a wifi dongle.

This video by Frederick Vandenbosch is a great example of building AirPlay speakers using a Pi and HAT, and a quick search will find you lots more relevant tutorials and ideas.

Have you built your own? Share your speaker-based Pi builds with us in the comments.

The post 3D-printed speakers from the Technical University of Denmark appeared first on Raspberry Pi.

What is HAMR and How Does It Enable the High-Capacity Needs of the Future?

Post Syndicated from Andy Klein original https://www.backblaze.com/blog/hamr-hard-drives/

HAMR drive illustration

During Q4, Backblaze deployed 100 petabytes worth of Seagate hard drives to our data centers. The newly deployed Seagate 10 and 12 TB drives are doing well and will help us meet our near term storage needs, but we know we’re going to need more drives — with higher capacities. That’s why the success of new hard drive technologies like Heat-Assisted Magnetic Recording (HAMR) from Seagate are very relevant to us here at Backblaze and to the storage industry in general. In today’s guest post we are pleased to have Mark Re, CTO at Seagate, give us an insider’s look behind the hard drive curtain to tell us how Seagate engineers are developing the HAMR technology and making it market ready starting in late 2018.

What is HAMR and How Does It Enable the High-Capacity Needs of the Future?

Guest Blog Post by Mark Re, Seagate Senior Vice President and Chief Technology Officer

Earlier this year Seagate announced plans to make the first hard drives using Heat-Assisted Magnetic Recording, or HAMR, available by the end of 2018 in pilot volumes. Even as today’s market has embraced 10TB+ drives, the need for 20TB+ drives remains imperative in the relative near term. HAMR is the Seagate research team’s next major advance in hard drive technology.

HAMR is a technology that over time will enable a big increase in the amount of data that can be stored on a disk. A small laser is attached to a recording head, designed to heat a tiny spot on the disk where the data will be written. This allows a smaller bit cell to be written as either a 0 or a 1. The smaller bit cell size enables more bits to be crammed into a given surface area — increasing the areal density of data, and increasing drive capacity.

It sounds almost simple, but the science and engineering expertise required, the research, experimentation, lab development and product development to perfect this technology has been enormous. Below is an overview of the HAMR technology and you can dig into the details in our technical brief that provides a point-by-point rundown describing several key advances enabling the HAMR design.

As much time and resources as have been committed to developing HAMR, the need for its increased data density is indisputable. Demand for data storage keeps increasing. Businesses’ ability to manage and leverage more capacity is a competitive necessity, and IT spending on capacity continues to increase.

History of Increasing Storage Capacity

For the last 50 years areal density in the hard disk drive has been growing faster than Moore’s law, which is a very good thing. After all, customers from data centers and cloud service providers to creative professionals and game enthusiasts rarely go shopping looking for a hard drive just like the one they bought two years ago. The demands of increasing data on storage capacities inevitably increase, thus the technology constantly evolves.

According to the Advanced Storage Technology Consortium, HAMR will be the next significant storage technology innovation to increase the amount of storage in the area available to store data, also called the disk’s “areal density.” We believe this boost in areal density will help fuel hard drive product development and growth through the next decade.

Why do we Need to Develop Higher-Capacity Hard Drives? Can’t Current Technologies do the Job?

Why is HAMR’s increased data density so important?

Data has become critical to all aspects of human life, changing how we’re educated and entertained. It affects and informs the ways we experience each other and interact with businesses and the wider world. IDC research shows the datasphere — all the data generated by the world’s businesses and billions of consumer endpoints — will continue to double in size every two years. IDC forecasts that by 2025 the global datasphere will grow to 163 zettabytes (that is a trillion gigabytes). That’s ten times the 16.1 ZB of data generated in 2016. IDC cites five key trends intensifying the role of data in changing our world: embedded systems and the Internet of Things (IoT), instantly available mobile and real-time data, cognitive artificial intelligence (AI) systems, increased security data requirements, and critically, the evolution of data from playing a business background to playing a life-critical role.

Consumers use the cloud to manage everything from family photos and videos to data about their health and exercise routines. Real-time data created by connected devices — everything from Fitbit, Alexa and smart phones to home security systems, solar systems and autonomous cars — are fueling the emerging Data Age. On top of the obvious business and consumer data growth, our critical infrastructure like power grids, water systems, hospitals, road infrastructure and public transportation all demand and add to the growth of real-time data. Data is now a vital element in the smooth operation of all aspects of daily life.

All of this entails a significant infrastructure cost behind the scenes with the insatiable, global appetite for data storage. While a variety of storage technologies will continue to advance in data density (Seagate announced the first 60TB 3.5-inch SSD unit for example), high-capacity hard drives serve as the primary foundational core of our interconnected, cloud and IoT-based dependence on data.

HAMR Hard Drive Technology

Seagate has been working on heat assisted magnetic recording (HAMR) in one form or another since the late 1990s. During this time we’ve made many breakthroughs in making reliable near field transducers, special high capacity HAMR media, and figuring out a way to put a laser on each and every head that is no larger than a grain of salt.

The development of HAMR has required Seagate to consider and overcome a myriad of scientific and technical challenges including new kinds of magnetic media, nano-plasmonic device design and fabrication, laser integration, high-temperature head-disk interactions, and thermal regulation.

A typical hard drive inside any computer or server contains one or more rigid disks coated with a magnetically sensitive film consisting of tiny magnetic grains. Data is recorded when a magnetic write-head flies just above the spinning disk; the write head rapidly flips the magnetization of one magnetic region of grains so that its magnetic pole points up or down, to encode a 1 or a 0 in binary code.

Increasing the amount of data you can store on a disk requires cramming magnetic regions closer together, which means the grains need to be smaller so they won’t interfere with each other.

Heat Assisted Magnetic Recording (HAMR) is the next step to enable us to increase the density of grains — or bit density. Current projections are that HAMR can achieve 5 Tbpsi (Terabits per square inch) on conventional HAMR media, and in the future will be able to achieve 10 Tbpsi or higher with bit patterned media (in which discrete dots are predefined on the media in regular, efficient, very dense patterns). These technologies will enable hard drives with capacities higher than 100 TB before 2030.

The major problem with packing bits so closely together is that if you do that on conventional magnetic media, the bits (and the data they represent) become thermally unstable, and may flip. So, to make the grains maintain their stability — their ability to store bits over a long period of time — we need to develop a recording media that has higher coercivity. That means it’s magnetically more stable during storage, but it is more difficult to change the magnetic characteristics of the media when writing (harder to flip a grain from a 0 to a 1 or vice versa).

That’s why HAMR’s first key hardware advance required developing a new recording media that keeps bits stable — using high anisotropy (or “hard”) magnetic materials such as iron-platinum alloy (FePt), which resist magnetic change at normal temperatures. Over years of HAMR development, Seagate researchers have tested and proven out a variety of FePt granular media films, with varying alloy composition and chemical ordering.

In fact the new media is so “hard” that conventional recording heads won’t be able to flip the bits, or write new data, under normal temperatures. If you add heat to the tiny spot on which you want to write data, you can make the media’s coercive field lower than the magnetic field provided by the recording head — in other words, enable the write head to flip that bit.

So, a challenge with HAMR has been to replace conventional perpendicular magnetic recording (PMR), in which the write head operates at room temperature, with a write technology that heats the thin film recording medium on the disk platter to temperatures above 400 °C. The basic principle is to heat a tiny region of several magnetic grains for a very short time (~1 nanoseconds) to a temperature high enough to make the media’s coercive field lower than the write head’s magnetic field. Immediately after the heat pulse, the region quickly cools down and the bit’s magnetic orientation is frozen in place.

Applying this dynamic nano-heating is where HAMR’s famous “laser” comes in. A plasmonic near-field transducer (NFT) has been integrated into the recording head, to heat the media and enable magnetic change at a specific point. Plasmonic NFTs are used to focus and confine light energy to regions smaller than the wavelength of light. This enables us to heat an extremely small region, measured in nanometers, on the disk media to reduce its magnetic coercivity,

Moving HAMR Forward

HAMR write head

As always in advanced engineering, the devil — or many devils — is in the details. As noted earlier, our technical brief provides a point-by-point short illustrated summary of HAMR’s key changes.

Although hard work remains, we believe this technology is nearly ready for commercialization. Seagate has the best engineers in the world working towards a goal of a 20 Terabyte drive by 2019. We hope we’ve given you a glimpse into the amount of engineering that goes into a hard drive. Keeping up with the world’s insatiable appetite to create, capture, store, secure, manage, analyze, rapidly access and share data is a challenge we work on every day.

With thousands of HAMR drives already being made in our manufacturing facilities, our internal and external supply chain is solidly in place, and volume manufacturing tools are online. This year we began shipping initial units for customer tests, and production units will ship to key customers by the end of 2018. Prepare for breakthrough capacities.

The post What is HAMR and How Does It Enable the High-Capacity Needs of the Future? appeared first on Backblaze Blog | Cloud Storage & Cloud Backup.

A printing GIF camera? Is that even a thing?

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/printing-gif-camera/

Abhishek Singh’s printing GIF camera uses two Raspberry Pis, the Model 3 and the Zero W, to take animated images and display them on an ejectable secondary screen.

Instagif – A DIY Camera that prints GIFs instantly

I built a camera that snaps a GIF and ejects a little cartridge so you can hold a moving photo in your hand! I’m calling it the “Instagif NextStep”.

The humble GIF

Created in 1987, Graphics Interchange Format files, better known as GIFs, have somewhat taken over the internet. And whether you pronounce it G-IF or J-IF, you’ve probably used at least one to express an emotion, animate images on your screen, or create small, movie-like memories of events.

In 2004, all patents on the humble GIF expired, which added to the increased usage of the file format. And by the early 2010s, sites such as giphy.com and phone-based GIF keyboards were introduced into our day-to-day lives.

A GIF from a scene in The Great Gatsby - Raspberry Pi GIF Camera

Welcome to the age of the GIF

Polaroid cameras

Polaroid cameras have a somewhat older history. While the first documented instant camera came into existence in 1923, commercial iterations made their way to market in the 1940s, with Polaroid’s model 95 Land Camera.

In recent years, the instant camera has come back into fashion, with camera stores and high street fashion retailers alike stocking their shelves with pastel-coloured, affordable models. But nothing beats the iconic look of the Polaroid Spirit series, and the rainbow colour stripe that separates it from its competitors.

Polaroid Spirit Camera - Raspberry Pi GIF Camera

Shake it like a Polaroid picture…

And if you’re one of our younger readers and find yourself wondering where else you’ve seen those stripes, you’re probably more familiar with previous versions of the Instagram logo, because, well…

Instagram Logo - Raspberry Pi GIF Camera

I’m sorry for the comment on the previous image. It was just too easy.

Abhishek Singh’s printing GIF camera

Abhishek labels his creation the Instagif NextStep, and cites his inspiration for the project as simply wanting to give it a go, and to see if he could hold a ‘moving photo’.

“What I love about these kinds of projects is that they involve a bunch of different skill sets and disciplines”, he explains at the start of his lengthy, highly GIFed and wonderfully detailed imugr tutorial. “Hardware, software, 3D modeling, 3D printing, circuit design, mechanical/electrical engineering, design, fabrication etc. that need to be integrated for it to work seamlessly. Ironically, this is also what I hate about these kinds of projects”

Care to see how the whole thing comes together? Well, in the true spirit of the project, Abhishek created this handy step-by-step GIF.

Piecing it together

I thought I’ll start off with the entire assembly and then break down the different elements. As you can see, everything is assembled from the base up in layers helping in easy assembly and quick disassembly for troubleshooting

The build comes in two parts – the main camera housing a Raspberry Pi 3 and Camera Module V2, and the ejectable cartridge fitted with Raspberry Pi Zero W and Adafruit PiTFT screen.

When the capture button is pressed, the camera takes 3 seconds’ worth of images and converts them into .gif format via a Python script. Once compressed and complete, the Pi 3 sends the file to the Zero W via a network connection. When it is satisfied that the Zero W has the image, the Pi 3 automatically ejects the ‘printed GIF’ cartridge, and the image is displayed.

A demonstration of how the GIF is displayed on the Raspberry Pi GIF Camera

For a full breakdown of code, 3D-printable files, and images, check out the full imgur post. You can see more of Abhishek’s work at his website here.

Create GIFs with a Raspberry Pi

Want to create GIFs with your Raspberry Pi? Of course you do. Who wouldn’t? So check out our free time-lapse animations resource. As with all our learning resources, the project is free for you to use at home and in your clubs or classrooms. And once you’ve mastered the art of Pi-based GIF creation, why not incorporate it into another project? Say, a motion-detecting security camera or an on-the-go tweeting GIF camera – the possibilities are endless.

And make sure you check out Abhishek’s other Raspberry Pi GIF project, Peeqo, who we covered previously in the blog. So cute. SO CUTE.

The post A printing GIF camera? Is that even a thing? appeared first on Raspberry Pi.

Community Profile: Matt Reed

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/community-profile-matt-reed/

This column is from The MagPi issue 51. You can download a PDF of the full issue for free, or subscribe to receive the print edition in your mailbox or the digital edition on your tablet. All proceeds from the print and digital editions help the Raspberry Pi Foundation achieve its charitable goals.

Matt Reed‘s background is in web design/development, extending to graphic design in which he acquired his BFA at the University of Tennessee, Knoxville. In his youth, his passion focused on car stereo systems, designing elaborate builds that his wallet couldn’t afford. However, this enriched his maker skill set by introducing woodwork, electronics, and fabrication exploration into his creations.

Matt Reed Raspberry Pi redpepper MagPi Magazine

Matt hosts the redpepper ‘Touch of Tech’ online series, highlighting the latest in interesting and unusual tech releases

Having joined the integrated marketing agency redpepper eight years ago, Matt originally worked in the design and production of microsites. However, as his interests continued to grow, demand began to evolve, and products such as the Arduino and Raspberry Pi came into the mix. Matt soon found himself moving away from the screen toward physical builds.

“I’m interested in anything that uses tech in a clever way, whether it be AR, VR, front-end, back-end, app dev, servers, hardware, UI, UX, motion graphics, art, science, or human behaviour. I really enjoy coming up with ideas people can relate to.”

Matt’s passion is to make tech seem cool, creative, empowering, and approachable, and his projects reflect this. Away from the Raspberry Pi, Matt has built some amazing creations such as the Home Alone Holidaython, an app that lets you recreate the famous curtain shadow party in Kevin McCallister’s living room. Pick the shadow you want to appear, and projectors illuminate the design against a sheet across the redpepper office window. Christmas on Tweet Street LIVE! captures hilariously negative Christmas-themed tweets from Twitter, displaying them across a traditional festive painting, while DOOR8ELL allows office visitors the opportunity to Slack-message their required staff member via an arcade interface, complete with 8-bit graphics. There’s also been a capacitive piano built with jelly keys, a phone app to simulate the destruction of cars as you sit in traffic, and a working QR code made entirely from Oreos.

Matt Reed Raspberry Pi redpepper MagPi Magazine

The BoomIlluminator, an interactive art installation for the Red Bull Creation Qualifier, used LEDs within empty Red Bull cans that reacted to the bass of any music played. A light show across the cans was then relayed to peoples’ phones, extending the experience.

Playing the ‘technology advocate’ role at redpepper, Matt continues to bridge the gap between the company’s day-to-day business and the fun, intuitive uses of tech. Not only do they offer technological marketing solutions via their rpLab, they have continued to grow, incorporating Google’s Sprint methodology into idea-building and brainstorming within days of receiving a request, “so having tools that are powerful, flexible, and cost-effective like the Pi is invaluable.”

Matt Reed Raspberry Pi redpepper MagPi Magazine

Walk into a room with Doorjam enabled, and suddenly your favourite tune is playing via boombox speakers. Simply select your favourite song from Spotify, walk within range of a Bluetooth iBeacon, and you’re ready to make your entrance in style.

“I just love the intersection of art and science,” Matt explains when discussing his passion for tech. “Having worked with Linux servers for most of my career, the Pi was the natural extension for my interest in hardware. Running Node.js on the Pi has become my go-to toolset.”

Matt Reed Raspberry Pi redpepper MagPi Magazine

Slackbot Bot: Users of the multi-channel messenger service Slack will appreciate this one. Beacons throughout the office allow users to locate Slackbot Bot, which features a tornado siren mounted on a Roomba, and send it to predetermined locations to deliver messages. “It was absolutely hilarious to test in the office.”

We’ve seen Matt’s Raspberry Pi-based portfolio grow over the last couple of years. A few of his builds have been featured in The MagPi, and his Raspberry Preserve was placed 13th in the Top 50 Raspberry Pi Builds in issue 50.

Matt Reed Raspberry Pi redpepper MagPi Magazine

Matt Reed’s ‘Raspberry Preserve’ build allows uses to store their precious photos in a unique memory jar

There’s no denying that Matt will continue to be ‘one to watch’ in the world of quirky, original tech builds. You can follow his work at his website or via his Twitter account.

The post Community Profile: Matt Reed appeared first on Raspberry Pi.

The Raspberry Pi-powered loom

Post Syndicated from Liz Upton original https://www.raspberrypi.org/blog/the-raspberry-pi-powered-loom/

We’re a small organisation full of makers, and I think at least two of us own a hand loom for weaving textiles. (One of the reasons I enjoy the TV show Vikings so much is the casual looming that’s going on as backdrop in many of the indoor scenes – the textile sort, not the impending-doom sort, although there’s plenty of that too.)

siggy laergatha loom

Siggy and Laergatha (personal role model) get down to a spot of light weaving before commencing to crush skulls and pillage.

Here in the 21st century, Lorna and I use hand looms because powered looms are very expensive. They’re also usually pretty enormous, being meant for enterprise rather than home use. This is pesky, because there’s a lot of repetitive action involved, which can be hell on the carpal tunnels; weaving can be slow, tough work.

loom

Suspicious automation

Enter the Raspberry Pi.

Fred Hoefler has taken a desktop loom and added a Raspberry Pi to automate it. (Your computer’s fine: this video has no sound.)

Loom Operation

The general sequence of events for running my Raspberry Pi controlled loom. The project was really a proof of concept idea rather than an actual production model. This video is intended to supplement my blog at www.photographic-perspectives.com Sorry, there is not audio with this.

Fred wrote about the project on his website, explaining that he came up with the idea for very personal reasons. His wife Gina has been a weaver for 30 years, but she began to experience difficulties with the physical aspects of using her loom as she grew older. Conversations with other unwillingly retired weavers told Fred that Gina’s situation was not uncommon, and led him to design something to help. His device is intended to help older weavers who have trouble with the hard work of throwing the shuttle and holding down the pedals. Assistive looms cost upwards of $10,000: Fred’s solution comes in at a tidy $150, factoring in loom, Pi, and some motors from Amazon. So this isn’t for hobbyists like me: this loom can be a way for people whose livelihoods depend on being able to weave to continue working long after they might have had to retire.

One of the most satisfying things about the Raspberry Pi for me is its power to drive cost out of devices like this, and to change the way we work. This is a simple build, but it has so much potential to keep someone’s income flowing: we hope to see more as Fred develops the project.

The post The Raspberry Pi-powered loom appeared first on Raspberry Pi.

In which I have to debunk a second time

Post Syndicated from Robert Graham original http://blog.erratasec.com/2016/11/in-which-i-have-to-debunk-second-time.html

So Slate is doubling-down on their discredited story of a secret Trump server. Tip for journalists: if you are going to argue against an expert debunking your story, try to contact that expert first, so they don’t have to do what I’m going to do here, showing obvious flaws. Also, pay attention to the data.

The experts didn’t find anything

The story claims:

“I spoke with many DNS experts. They found the evidence strongly suggestive of a relationship between the Trump Organization and the bank”.

No, he didn’t. He gave experts limited information and asked them whether it’s consistent with a conspiracy theory. He didn’t ask if it was “suggestive” of the conspiracy theory, or that this was the best theory that fit the data.

This is why “experts” quoted in the press need to go through “media training”, to avoid getting your reputation harmed by bad journalists who try their best to put words in your mouth. You’ll be trained to recognize bad journalists like this, and how not to get sucked into their fabrications.

Jean Camp isn’t an expert

On the other hand, Jean Camp isn’t an expert. I’ve never heard of her before. She gets details wrong. Take for example in this blogpost where she discusses lookups for the domain mail.trump-email.com.moscow.alfaintra.net. She says:

This query is unusual in that is merges two hostnames into one. It makes the most sense as a human error in inserting a new hostname in some dialog window, but neglected to hit the backspace to delete the old hostname.

Uh, no. It’s normal DNS behavior with non-FQDNs. If the lookup for a name fails, computers will try again, pasting the local domain on the end. In other words, when Twitter’s DNS was taken offline by the DDoS attack a couple weeks ago, those monitoring DNS saw a zillion lookups for names like “www.twitter.com.example.com“.

I’ve reproduced this on my desktop by configuring the suffix moscow.alfaintra.net.

I then pinged “mail1.trump-email.com” and captured the packets. As you can see, after the initial lookups fail, Windows tried appending the suffix.

I don’t know what Jean Camp is an expert of, but this is sorta a basic DNS concept. It’s surprising she’d get it wrong. Of course, she may be an expert in DNS who simply had a brain fart (this happens to all of us), but looking across her posts and tweets, she doesn’t seem to be somebody who has a lot of experience with DNS. Sorry for impugning her credibility, but that’s the way the story is written. It demands that we trust the quoted “experts”. 
Call up your own IT department at Slate. Ask your IT nerds if this is how DNS operates. Note: I’m saying your average, unremarkable IT nerds can debunk an “expert” you quote in your story.
Understanding “spam” and “blacklists”

The new article has a paragraph noting that the IP address doesn’t appear on spam blocklists:

Was the server sending spam—unsolicited mail—as opposed to legitimate commercial marketing? There are databases that assiduously and comprehensively catalog spam. I entered the internet protocal address for mail1.trump-email.com to check if it ever showed up in Spamhaus and DNSBL.info. There were no traces of the IP address ever delivering spam.

This is a profound misunderstanding of how these things work.

Colloquially, we call those sending mass marketing emails, like Cendyn, “spammers”. But those running blocklists have a narrower definition. If  emails contain an option to “opt-out” of future emails, then it’s technically not “spam”.

Cendyn is constantly getting added to blocklists when people complain. They spend considerable effort contacting the many organizations maintaining blocklists, proving they do “opt-outs”, and getting “white-listed” instead of “black-listed”. Indeed, the entire spam-blacklisting industry is a bit of scam — getting white-listed often involves a bit of cash.

Those maintaining blacklists only go back a few months. The article is in error saying there’s no record ever of Cendyn sending spam. Instead, if an address comes up clean, it means there’s no record for the past few months. And, if Cendyn is in the white-lists, there would be no record of “spam” at all, anyway.

As somebody who frequently scans the entire Internet, I’m constantly getting on/off blacklists. It’s a real pain. At the moment, my scanner address “209.126.230.71” doesn’t appear to be on any blacklists. Next time a scan kicks off, it’ll probably get added — but only by a few, because most have white-listed it.

There is no IP address limitation

The story repeats the theory, which I already debunked, that the server has a weird configuration that limits who can talk to it:

The scientists theorized that the Trump and Alfa Bank servers had a secretive relationship after testing the behavior of mail1.trump-email.com using sites like Pingability. When they attempted to ping the site, they received the message “521 lvpmta14.lstrk.net does not accept mail from you.”

No, that’s how Listrake (who is the one who actually controls the server) configures all their marketing servers. Anybody can confirm this themselves by ping all the servers in this range:
In case you don’t want to do scans yourself, you can look up on Shodan and see that there’s at least 4000 servers around the Internet who give the same error message.

Again, go back to Chris Davis in your original story ask him about this. He’ll confirm that there’s nothing nefarious or weird going on here, that it’s just how Listrak has decided to configure all it’s spam-sending engines.

Either this conspiracy goes much deeper, with hundreds of servers involved, or this is a meaningless datapoint.
Where did the DNS logs come from?
Tea Leaves and Jean Camp are showing logs of private communications. Where did these logs come from? This information isn’t public. It means somebody has done something like hack into Alfa Bank. Or it means researchers who monitor DNS (for maintaing DNS, and for doing malware research) have broken their NDAs and possibly the law.
The data is incomplete and inconsistent. Those who work for other companies, like Dyn, claim it doesn’t match their own data. We have good reason to doubt these logs. There’s a good chance that the source doesn’t have as comprehensive a view as “Tea Leaves” claim. There’s also a good chance the data has been manipulated.
Specifically, I have as source who claims records for trump-email.com were changed in June, meaning either my source or Tea Leaves is lying.
Until we know more about the source of the data, it’s impossible to believe the conclusions that only Alfa Bank was doing DNS lookups.

By the way, if you are a company like Alfa Bank, and you don’t want the “research” community from seeing leaked intranet DNS requests, then you should probably reconfigure your DNS resolvers. You’ll want to look into RFC7816 “query minimization”, supported by the Unbound and Knot resolvers.

Do the graphs show interesting things?

The original “Tea Leaves” researchers are clearly acting in bad faith. They are trying to twist the data to match their conclusions. For example, in the original article, they claim that peaks in the DNS activity match campaign events. But looking at the graph, it’s clear these are unrelated. It display the common cognitive bias of seeing patterns that aren’t there.
Likewise, they claim that the timing throughout the day matches what you’d expect from humans interacting back and forth between Moscow and New York. No. This is what the activity looks like, graphing the number of queries by hour:
As you can see, there’s no pattern. When workers go home at 5pm in New York City, it’s midnight in Moscow. If humans were involved, you’d expect an eight hour lull during that time. Likewise, when workers arrive at 9am in New York City, you expect a spike in traffic for about an hour until workers in Moscow go home. You see none of that here. What you instead see is a random distribution throughout the day — the sort of distribution you’d expect if this were DNS lookups from incoming spam.
The point is that we know the original “Tea Leaves” researchers aren’t trustworthy, that they’ve convinced themselves of things that just aren’t there.
Does Trump control the server in question?

OMG, this post asks the question, after I’ve debunked the original story, and still gotten the answer wrong.
The answer is that Listrak controls the server. Not even Cendyn controls it, really, they just contract services from Listrak. In other words, not only does Trump not control it, the next level company (Cendyn) also doesn’t control it.
Does Trump control the domain in question?
OMG, this new story continues to make the claim the Trump Organization controls the domain trump-email.com, despite my debunking that Cendyn controls the domain.
Look at the WHOIS info yourself. All the contact info goes to Cendyn. It fits the pattern Cendyn chooses for their campaigns.
  • trump-email.com
  • mjh-email.com
  • denihan-email.com
  • hyatt-email.com
Cendyn even spells “Trump Orgainzation” wrong.

There’s a difference between a “server” and a “name”

The article continues to make trivial technical errors, like confusing what a server is with what a domain name is. For example:

One of the intriguing facts in my original piece was that the Trump server was shut down on Sept. 23, two days after the New York Times made inquiries to Alfa Bank

The server has never been shutdown. Instead, the name “mail1.trump-email.com” was removed from Cendyn’s DNS servers.
It’s impossible to debunk everything in these stories because they garble the technical details so much that it’s impossible to know what the heck they are claiming.
Why did Cendyn change things after Alfa Bank was notified?

It’s a curious coincidence that Cendyn changed their DNS records a couple days after the NYTimes contacted Alfa Bank.
But “coincidence” is all it is. I have years of experience with investigating data breaches. I know that such coincidences abound. There’s always weird coincidence that you are certain are meaningful, but which by the end of the investigation just aren’t.
The biggest source of coincidences is that IT is always changing things and always messing things up. It’s the nature of IT. Thus, you’ll always see a change in IT that matches some other event. Those looking for conspiracies ignore the changes that don’t match, and focus on the one that does, so it looms suspiciously.
As I’ve mentioned before, I have source that says Cendyn changed things around in June. This makes me believe that “Tea Leaves” is editing changes to highlight the one in September.
In any event, many people have noticed that the registrar email “Emily McMullin” has the same last name as Evan McMullin running against Trump in Utah. This supports my point: when you do hacking investigations, you find irrelevant connections all over the freakin’ place.
“Experts stand by their analysis”

This new article states:

I’ve checked back with eight of the nine computer scientists and engineers I consulted for my original story, and they all stood by their fundamental analysis

Well, of course, they don’t want to look like idiots. But notice the subtle rephrasing of the question: the experts stand by their analysis. It doesn’t mean the same thing as standing behind the reporters analysis. The experts made narrow judgements, which even I stand behind as mostly correct, given the data they were given at the time. None of them were asked whether the entire conspiracy theory holds up.
What you should ask is people like Chris Davis or Paul Vixie whether they stand behind my analysis in the past two posts. Or really, ask any expert. I’ve documented things in sufficient clarity. For example, go back to Chris Davis and ask him again about the “limited IP address” theory, and whether it holds up against my scan of that data center above.
Conclusion

Other major news outlets all passed on the story, because even non experts know it’s flawed. The data means nothing. The Slate journalist nonetheless went forward with the story, tricking experts, and finding some non-experts.
But as I’ve shown, given a complete technical analysis, the story falls apart. Most of what’s strange is perfectly normal. The data itself (the DNS logs) are untrustworthy. It builds upon unknown things (like how the mail server rejects IP address) as “unknowable” things that confirm the conspiracy, when they are in fact simply things unknown at the current time, which can become knowable with a little research.

What I show in my first post, and this post, is more data. This data shows context. This data explains the unknowns that Slate present. Moreover, you don’t have to trust me — anybody can replicate my work and see for themselves.


Analog malicious hardware

Post Syndicated from corbet original http://lwn.net/Articles/688751/rss

Worth a read: this
paper [PDF]
From Kaiyuan Yang et al. on how an analog back door can be
placed into a hardware platform like a CPU. “In this paper, we show
how a fabrication-time attacker can leverage analog circuits to create a
hardware attack that is small (i.e., requires as little as one gate) and
stealthy (i.e., requires an unlikely trigger sequence before effecting
[sic] a
chip’s functionality). In the open spaces of an already placed and routed
design, we construct a circuit that uses capacitors to siphon charge from
nearby wires as they transition between digital values. When the capacitors
fully charge, they deploy an attack that forces a victim flip-flop to a
desired value. We weaponize this attack into a remotely-controllable
privilege escalation by attaching the capacitor to a wire controllable and
by selecting a victim flip-flop that holds the privilege bit for our
processor.

Home-made CNC milling machine

Post Syndicated from Liz Upton original https://www.raspberrypi.org/blog/home-made-cnc-milling-machine/

For the uninitiated, a CNC milling machine is basically the opposite of a 3D printer. With a 3D printer, you’re adding medium from a nozzle to a blank space to create an object. A CNC milling machine starts with a chunk of medium and removes parts of it to create an object, drilling out parts of the medium with great precision while moving its spindle on more than one axis.

CNC milling machines (the CNC means Computer Numeric Control) are really expensive.

Screengrab from eBay today

Screengrab from eBay today

So Colin May did what any thinking engineer would do to bring the price down. He built his own, using a Raspberry Pi for its brains.

CNC machine

Colin says:

My friend and I thought about building a CNC Machine for a while. But we didn’t want it to be just an ordinary CNC Machine. We wanted to make a very unique machine that could have very unique attributes. We set out to make a CNC Machine that could do different types of Machining. For example, routing, laser engraving, 3D printing, drag knife, etc. We took about a few months to design the basics of the machine. For example, what kind of linear motion we would have for each axis, what kind of material we would use for it, what kind of style to make it, etc. We chose our build area to be 24″ X 24″ X 7″. After those few months of finalizing everything, we took our first step into physically making the machine. Note: This is made for the average consumer, for home use, and for someone who doesn’t have the money to invest in a $1000 CNC router or 3D printer.

Colin’s machine is still a work in progress, but it’s showing great promise, and we’re very interested to see where he takes it next. Here’s some prototype output:

chillipepper logo

First test of the machine

test output

Second test

And here’s some video. (Turn the sound down if you’ve got a dentist phobia.)

Raspberry Pi CNC Machine Test Pt: 2

Uploaded by Colin may on 2016-04-24.

Colin is intending to add extra functionality: 3D print capability, and some other machine tools – to the setup. You can follow his build and replicate it over at Instructables. Thanks Colin – we’re looking forward to seeing more!

 

The post Home-made CNC milling machine appeared first on Raspberry Pi.