Tag Archives: fact

On ISO standardization of blockchains

Post Syndicated from Robert Graham original http://blog.erratasec.com/2017/08/on-iso-standardization-of-blockchains.html

So ISO, the primary international standards organization, is seeking to standardize blockchain technologies. On the surface, this seems a reasonable idea, creating a common standard that everyone can interoperate with.

But it can be silly idea in practice. I mean, it should not be assumed that this is a good thing to do.

The value of official standards

You don’t need the official imprimatur of a government committee for something to be a “standard”. The Internet itself is a prime example of that.

In the 1980s, the ISO and the IETF (Internet Engineering Task Force) pursued competing standards for creating a world-wide “internet”. The IETF was an informal group of technologist that had essentially no official standing.

The ISO version of the Internet failed. Their process was to bring multiple stakeholders from business, government, and universities together in committees to debate competing interests. The result was something so horrible that it could never work in practice.

The IETF succeeded. It consisted of engineers just building things. Rather than officially “standardized”, these things were “described”, so that others knew enough to build their own version that interoperated. Once lots of different people built interoperating versions of something, then it became a “standard”.

In other words, the way the Internet came to be, standardization followed interoperability — it didn’t create interoperability.

In the end, the ISO gave up on their standards and adopted the IETF standards. The ISO brought no value to the development of Internet standards. Whether they ratified the Internet’s “TCP/IP” standard, ignored it, or condemned it, the Internet would exist today anyway, and a competing ISO-blessed internetwork would not.

The same question exists for blockchain technologies. Groups are off busy innovating quickly, creating their own standards. If the ISO blesses one, or creates its own, it’s unlikely to have any impact on interoperability.

Blockchain vs. chaining blocks

The excitement over blockchains is largely driven by people who don’t know the details, who don’t understand the difference between a blockchain like Bitcoin and the problem they are trying to solve.

Consider a record keeping system, especially public records. Storing them in a blockchain seems like a natural idea.

But in fact, it’s a terrible idea. A Bitcoin-style blockchain has a lot of features you don’t want, like “proof-of-work” signing. It is also missing necessary features, like bulk storage with redundancy (backups). Sure, Bitcoin has redundancy, but by brute force, storing the blockchain in thousands of places around the Internet. This is far from what a public records system would need, which would store a lot more data with far fewer backup copies (fewer than 10).

The only real overlap between Bitcoin and a public records system is a “signing chain”. But this is something that already existed before Bitcoin. It’s what Bitcoin blockchain was built on top of — it’s not the blockchain itself.

It’s like people discovering “cryptography” for the first time when they looked at Bitcoin, ignoring the thousand year history of crypto, and now every time they see a need for “crypto” they think “Bitcoin blockchain”.

Consensus and forking

The entire point of Bitcoin, the reason it was created, was as the antithesis to centralized standardization like ISO. Standardizing blockchains misses the entire point of their existence. The Bitcoin manifesto is that standardization comes from acclamation not proclamation, and that many different standards are preferable to a single one.

This is not just a theoretical idea but one built into Bitcoin’s blockchain technology. “Consensus” is achieved by the proof-of-work mechanism, so that those who do the most work are the ones that drive the consensus. When irreconcilable differences arise, the blockchain “forks”, with each side continuing on with their now non-interoperable blockchains. Such forks are not a sin, but part of the natural evolution.

We saw this with the recent fork of Bitcoin. There are now so many transactions that they exceed the size of blocks. One group chose a change to make transactions smaller. Another group chose a change to make block sizes larger.

It is this problem, of consensus, that is the innovation that Bitcoin created with blockchains, not the chain signing of public transaction records.

Ethereum

What “blockchain standardization” is going to mean in practice is not the blockchain itself, but trying to standardize the Ethereum version. What makes Ethereum different is the “smart contracts” programming language, which has financial institutions excited.

This is a bad idea because from a cybersecurity perspective, Ethereum’s programming language is flawed. Different bugs in “smart contracts” have led to multiple $100-million hacks, such as the infamous “DAO collapse”.

While it has interesting possibilities, we should be scared of standardizing Ethereum’s language before it works.

Conclusion

People who matter are too busy innovating, creating their own blockchain standards. There is little that the ISO can do to improve this. Their official imprimatur is not needed to foster innovation and interoperability — if they are consequential at anything, it’ll just be interfering.

Rightscorp Bleeds Another Million, Borrows $200K From Customer BMG

Post Syndicated from Andy original https://torrentfreak.com/rightscorp-bleeds-another-million-borrows-200k-from-customer-bmg-170819/

Anti-piracy outfit Rightscorp is one of the many companies trying to turn Internet piracy into profit. The company has a somewhat novel approach but has difficulty balancing the books.

Essentially, Rightscorp operates like other so-called copyright-trolling operations, in that it monitors alleged offenders on BitTorrent networks, tracks them to their ISPs, then attempts to extract a cash settlement. Rightscorp does this by sending DMCA notices with settlement agreements attached, in the hope that at-this-point-anonymous Internet users break cover in panic. This can lead to a $20 or $30 ‘fine’ or in some cases dozens of multiples of that.

But despite settling hundreds of thousands of these cases, profit has thus far proven elusive, with the company hemorrhaging millions in losses. The company has just filed its results for the first half of 2017 and they contain more bad news.

In the six months ended June 2017, revenues obtained from copyright settlements reached just $138,514, that’s 35% down on the $214,326 generated in the same period last year. However, the company did manage to book $148,332 in “consulting revenue” in the first half of this year, a business area that generated no revenue in 2016.

Overall then, total revenue for the six month period was $286,846 – up from $214,326 last year. While that’s a better picture in its own right, Rightscorp has a lot of costs attached to its business.

After paying out $69,257 to copyright holders and absorbing $1,190,696 in general and administrative costs, among other things, the company’s total operating expenses topped out at $1,296,127 for the first six months of the year.

To make a long story short, the company made a net loss of $1,068,422, which was more than the $995,265 loss it made last year and despite improved revenues. The company ended June with just $1,725 in cash.

“These factors raise substantial doubt about the Company’s ability to continue as a going concern within one year after the date that the financial statements are issued,” the company’s latest statement reads.

This hanging-by-a-thread narrative has followed Rightscorp for the past few years but there’s information in the latest accounts which indicates how bad things were at the start of the year.

In January 2016, Rightscorp and several copyright holders, including Hollywood studio Warner Bros, agreed to settle a class-action lawsuit over intimidating robo-calls that were made to alleged infringers. The defendants agreed to set aside $450,000 to cover the costs, and it appears that Rightscorp was liable for at least $200,000 of that.

Rightscorp hasn’t exactly been flush with cash, so it was interesting to read that its main consumer piracy settlement client, music publisher BMG, actually stepped in to pay off the class-action settlement.

“At December 31, 2016, the Company had accrued $200,000 related to the settlement of a class action complaint. On January 7, 2017, BMG Rights Management (US) LLC (“BMG”) advanced the Company $200,000, which was used to pay off the settlement. The advance from BMG is to be applied to future billings from the Company to BMG for consulting services,” Rightscorp’s filing reads.

With Rightscorp’s future BMG revenue now being gobbled up by what appears to be loan repayments, it becomes difficult to see how the anti-piracy outfit can make enough money to pay off the $200,000 debt. However, its filing notes that on July 21, 2017, the company issued “an aggregate of 10,000,000 shares of common stock to an investor for a purchase price of $200,000.” While that amount matches the BMG debt, the filing doesn’t reveal who the investor is.

The filing also reveals that on July 31, Rightscorp entered into two agreements to provide services “to a holder of multiple copyrights.” The copyright holder isn’t named, but the deal reveals that it’s in Rightscorp’s best interests to get immediate payment from people to whom it sends cash settlement demands.

“[Rightscorp] will receive 50% of all gross proceeds of any settlement revenue received by the Client from pre-lawsuit ‘advisory notices,’ and 37.5% of all gross proceeds received by the Client from ‘final warning’ notices sent immediately prior to a lawsuit,” the filing notes.

Also of interest is that Rightscorp has offered not to work with any of the copyright holders’ direct competitors, providing certain thresholds are met – $10,000 revenue in the first month to $100,000 after 12 months. But there’s more to the deal.

Rightscorp will also provide a number of services to this client including detecting and verifying copyright works on P2P networks, providing information about infringers, plus reporting, litigation support, and copyright protection advisory services.

For this, Rightscorp will earn $10,000 for the first three months, rising to $85,000 per month after 16 months, valuable revenue for a company fighting for its life.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and ANONYMOUS VPN services.

Porn Producer Says He’ll Prove That AMC TV Exec is a BitTorrent Pirate

Post Syndicated from Andy original https://torrentfreak.com/porn-producer-says-hell-prove-that-amc-tv-exec-is-a-bittorrent-pirate-170818/

When people are found sharing copyrighted pornographic content online in the United States, there’s always a chance that an angry studio will attempt to track down the perpertrator in pursuit of a cash settlement.

That’s what adult studio Flava Works did recently, after finding its content being shared without permission on a number of gay-focused torrent sites. It’s now clear that their target was Marc Juris, President & General Manager of AMC-owned WE tv. Until this week, however, that information was secret.

As detailed in our report yesterday, Flava Works contacted Juris with an offer of around $97,000 to settle the case before trial. And, crucially, before Juris was publicly named in a lawsuit. If Juris decided not to pay, that amount would increase significantly, Flava Works CEO Phillip Bleicher told him at the time.

Not only did Juris not pay, he actually went on the offensive, filing a ‘John Doe’ complaint in a California district court which accused Flava Works of extortion and blackmail. It’s possible that Juris felt that this would cause Flava Works to back off but in fact, it had quite the opposite effect.

In a complaint filed this week in an Illinois district court, Flava Works named Juris and accused him of a broad range of copyright infringement offenses.

The complaint alleges that Juris was a signed-up member of Flava Works’ network of websites, from where he downloaded pornographic content as his subscription allowed. However, it’s claimed that Juris then uploaded this material elsewhere, in breach of copyright law.

“Defendant downloaded copyrighted videos of Flava Works as part of his paid memberships and, in violation of the terms and conditions of the paid sites, posted and distributed the aforesaid videos on other websites, including websites with peer to peer sharing and torrents technology,” the complaint reads.

“As a result of Defendant’ conduct, third parties were able to download the copyrighted videos, without permission of Flava Works.”

In addition to demanding injunctions against Juris, Flava Works asks the court for a judgment in its favor amounting to a cool $1.2m, more than twelve times the amount it was initially prepared to settle for. It’s a huge amount, but according to CEO Phillip Bleicher, it’s what his company is owed, despite Juris being a former customer.

“Juris was a member of various Flava Works websites at various times dating back to 2006. He is no longer a member and his login info has been blocked by us to prevent him from re-joining,” Bleicher informs TF.

“We allow full downloads, although each download a person performs, it tags the video with a hidden code that identifies who the user was that downloaded it and their IP info and date / time.”

We asked Bleicher how he can be sure that the content downloaded from Flava Works and re-uploaded elsewhere was actually uploaded by Juris. Fine details weren’t provided but he’s insistent that the company’s evidence holds up.

“We identified him directly, this was done by cross referencing all his IP logins with Flava Works, his email addresses he used and his usernames. We can confirm that he is/was a member of Gay-Torrents.org and Gayheaven.org. We also believe (we will find out in discovery) that he is a member of a Russian file sharing site called GayTorrent.Ru,” he says.

While the technicalities of who downloaded and shared what will be something for the court to decide, there’s still Juris’ allegations that Bleicher used extortion-like practices to get him to settle and used his relative fame against him. Bleicher says that’s not how things played out.

“[Juris] hired an attorney and they agreed to settle out of court. But then we saw him still accessing the file sharing sites (one site shows a user’s last login) and we were waiting on the settlement agreement to be drafted up by his attorney,” he explains.

“When he kept pushing the date of when we would see an agreement back we gave him a final deadline and said that after this date we would sue [him] and with all lawsuits – we make a press release.”

Bleicher says at this point Juris replaced his legal team and hired lawyer Mark Geragos, who Bleicher says tried to “bully” him, warning him of potential criminal offenses.

“Your threats in the last couple months to ‘expose’ Mr. Juris knowing he is a high profile individual, i.e., today you threatened to issue a press release, to induce him into wiring you close to $100,000 is outright extortion and subject to criminal prosecution,” Geragos wrote.

“I suggest you direct your attention to various statutes which specifically criminalize your conduct in the various jurisdictions where you have threatened suit.”

Interestingly, Geragos then went on to suggest that the lawsuit may ultimately backfire, since going public might affect Flava Works’ reputation in the gay market.

“With respect to Mr. Juris, your actions have been nothing but extortion and we reject your attempts and will vigorously pursue all available remedies against you,” Geragos’ email reads.

“We intend to use the platform you have provided to raise awareness in the LGBTQ community of this new form of digital extortion that you promote.”

But Bleicher, it seems, is up for a fight.

“Marc knows what he did and enjoyed downloading our videos and sharing them and those of videos of other studios, but now he has been caught,” he told the lawyer.

“This is the kind of case I would like to take all the way to trial, win or lose. It shows
people that want to steal our copyrighted videos that we aggressively protect our intellectual property.”

But to the tune of $1.2m? Apparently so.

“We could get up to $150,000 per infringement – we have solid proof of eight full videos – not to mention we have caught [Juris] downloading many other studios’ videos too – I think – but not sure – the number was over 75,” Bleicher told TF.

It’s quite rare for this kind of dispute to play out in public, especially considering Juris’ profile and occupation. Only time will tell if this will ultimately end in a settlement, but Bleicher and Juris seemed determined at this stage to stand by their ground and fight this out in court.

Complaint (pdf)

Source: TF, for the latest info on copyright, file-sharing, torrent sites and ANONYMOUS VPN services.

Unfixable Automobile Computer Security Vulnerability

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2017/08/unfixable_autom.html

There is an unpatchable vulnerability that affects most modern cars. It’s buried in the Controller Area Network (CAN):

Researchers say this flaw is not a vulnerability in the classic meaning of the word. This is because the flaw is more of a CAN standard design choice that makes it unpatchable.

Patching the issue means changing how the CAN standard works at its lowest levels. Researchers say car manufacturers can only mitigate the vulnerability via specific network countermeasures, but cannot eliminate it entirely.

Details on how the attack works are here:

The CAN messages, including errors, are called “frames.” Our attack focuses on how CAN handles errors. Errors arise when a device reads values that do not correspond to the original expected value on a frame. When a device detects such an event, it writes an error message onto the CAN bus in order to “recall” the errant frame and notify the other devices to entirely ignore the recalled frame. This mishap is very common and is usually due to natural causes, a transient malfunction, or simply by too many systems and modules trying to send frames through the CAN at the same time.

If a device sends out too many errors, then­ — as CAN standards dictate — ­it goes into a so-called Bus Off state, where it is cut off from the CAN and prevented from reading and/or writing any data onto the CAN. This feature is helpful in isolating clearly malfunctioning devices and stops them from triggering the other modules/systems on the CAN.

This is the exact feature that our attack abuses. Our attack triggers this particular feature by inducing enough errors such that a targeted device or system on the CAN is made to go into the Bus Off state, and thus rendered inert/inoperable. This, in turn, can drastically affect the car’s performance to the point that it becomes dangerous and even fatal, especially when essential systems like the airbag system or the antilock braking system are deactivated. All it takes is a specially-crafted attack device, introduced to the car’s CAN through local access, and the reuse of frames already circulating in the CAN rather than injecting new ones (as previous attacks in this manner have done).

Slashdot thread.

timeShift(GrafanaBuzz, 1w) Issue 9

Post Syndicated from Blogs on Grafana Labs Blog original https://grafana.com/blog/2017/08/18/timeshiftgrafanabuzz-1w-issue-9/

Matt from Grafana NYC spent the week visiting Stockholm to focus on v5.0 with Torkel. Despite warnings otherwise, the weather has been beautiful, making a nice backdrop for many UX discussions. Very, very excited to soon show what we’ve been working on.


Latest Release

Grafana v4.4.3 is Available for download

To see the full changelog, head over to our community site.


Grafana <3 Prometheus

Our very own Carl Bergquist spoke at PromCon 2017 yesterday in Munich, highlighting recent Grafana features and enhancements.

We also used the opportunity to debut our coming Prometheus query editor with a load of new functionality; seems the community approves,
in fact this is our most popular tweet ever!


From the Blogosphere

  • Wikimedia Metrics: A tweet this week reminded us of the public metrics Wikimedia exposes using Grafana. Exploring the performance stats in real time for the 5th mot popular site on the internet is pretty fun.

  • Creating Grafana Annotations with InfluxDB: Nice short article by Max Chadwick showing how to quickly add InfluxDB as a source for Grafana annotations.


This week’s MVC (Most Valuable Contributor)

This week’s MVC highlights what is great about Open Source software.

ericslaw
ericslaw submitted his first PR to a public project this past week. Speaking from personal experience, submitting a PR can feel daunting and and we were lucky that he chose Grafana. Even the smallest contributions, like Eric fixing a bogus link within our templating has big impact.


Tweet of the Week

We scour Twitter each week to find an interesting/beautiful dashboard and show it off! #monitoringLove

Seems the excitement about Prometheus and Grafana has also caught the attention of a certain superhero.



What do you think?

That wraps up another issue. Hope you’re finding these roundups valuable. Let us know how we’re doing! Submit a comment on this article below, or post something at our community forum. Help us make this better!

Follow us on Twitter, like us on Facebook, and join the Grafana Labs community.

Analyzing AWS Cost and Usage Reports with Looker and Amazon Athena

Post Syndicated from Dillon Morrison original https://aws.amazon.com/blogs/big-data/analyzing-aws-cost-and-usage-reports-with-looker-and-amazon-athena/

This is a guest post by Dillon Morrison at Looker. Looker is, in their own words, “a new kind of analytics platform–letting everyone in your business make better decisions by getting reliable answers from a tool they can use.” 

As the breadth of AWS products and services continues to grow, customers are able to more easily move their technology stack and core infrastructure to AWS. One of the attractive benefits of AWS is the cost savings. Rather than paying upfront capital expenses for large on-premises systems, customers can instead pay variables expenses for on-demand services. To further reduce expenses AWS users can reserve resources for specific periods of time, and automatically scale resources as needed.

The AWS Cost Explorer is great for aggregated reporting. However, conducting analysis on the raw data using the flexibility and power of SQL allows for much richer detail and insight, and can be the better choice for the long term. Thankfully, with the introduction of Amazon Athena, monitoring and managing these costs is now easier than ever.

In the post, I walk through setting up the data pipeline for cost and usage reports, Amazon S3, and Athena, and discuss some of the most common levers for cost savings. I surface tables through Looker, which comes with a host of pre-built data models and dashboards to make analysis of your cost and usage data simple and intuitive.

Analysis with Athena

With Athena, there’s no need to create hundreds of Excel reports, move data around, or deploy clusters to house and process data. Athena uses Apache Hive’s DDL to create tables, and the Presto querying engine to process queries. Analysis can be performed directly on raw data in S3. Conveniently, AWS exports raw cost and usage data directly into a user-specified S3 bucket, making it simple to start querying with Athena quickly. This makes continuous monitoring of costs virtually seamless, since there is no infrastructure to manage. Instead, users can leverage the power of the Athena SQL engine to easily perform ad-hoc analysis and data discovery without needing to set up a data warehouse.

After the data pipeline is established, cost and usage data (the recommended billing data, per AWS documentation) provides a plethora of comprehensive information around usage of AWS services and the associated costs. Whether you need the report segmented by product type, user identity, or region, this report can be cut-and-sliced any number of ways to properly allocate costs for any of your business needs. You can then drill into any specific line item to see even further detail, such as the selected operating system, tenancy, purchase option (on-demand, spot, or reserved), and so on.

Walkthrough

By default, the Cost and Usage report exports CSV files, which you can compress using gzip (recommended for performance). There are some additional configuration options for tuning performance further, which are discussed below.

Prerequisites

If you want to follow along, you need the following resources:

Enable the cost and usage reports

First, enable the Cost and Usage report. For Time unit, select Hourly. For Include, select Resource IDs. All options are prompted in the report-creation window.

The Cost and Usage report dumps CSV files into the specified S3 bucket. Please note that it can take up to 24 hours for the first file to be delivered after enabling the report.

Configure the S3 bucket and files for Athena querying

In addition to the CSV file, AWS also creates a JSON manifest file for each cost and usage report. Athena requires that all of the files in the S3 bucket are in the same format, so we need to get rid of all these manifest files. If you’re looking to get started with Athena quickly, you can simply go into your S3 bucket and delete the manifest file manually, skip the automation described below, and move on to the next section.

To automate the process of removing the manifest file each time a new report is dumped into S3, which I recommend as you scale, there are a few additional steps. The folks at Concurrency labs wrote a great overview and set of scripts for this, which you can find in their GitHub repo.

These scripts take the data from an input bucket, remove anything unnecessary, and dump it into a new output bucket. We can utilize AWS Lambda to trigger this process whenever new data is dropped into S3, or on a nightly basis, or whatever makes most sense for your use-case, depending on how often you’re querying the data. Please note that enabling the “hourly” report means that data is reported at the hour-level of granularity, not that a new file is generated every hour.

Following these scripts, you’ll notice that we’re adding a date partition field, which isn’t necessary but improves query performance. In addition, converting data from CSV to a columnar format like ORC or Parquet also improves performance. We can automate this process using Lambda whenever new data is dropped in our S3 bucket. Amazon Web Services discusses columnar conversion at length, and provides walkthrough examples, in their documentation.

As a long-term solution, best practice is to use compression, partitioning, and conversion. However, for purposes of this walkthrough, we’re not going to worry about them so we can get up-and-running quicker.

Set up the Athena query engine

In your AWS console, navigate to the Athena service, and click “Get Started”. Follow the tutorial and set up a new database (we’ve called ours “AWS Optimizer” in this example). Don’t worry about configuring your initial table, per the tutorial instructions. We’ll be creating a new table for cost and usage analysis. Once you walked through the tutorial steps, you’ll be able to access the Athena interface, and can begin running Hive DDL statements to create new tables.

One thing that’s important to note, is that the Cost and Usage CSVs also contain the column headers in their first row, meaning that the column headers would be included in the dataset and any queries. For testing and quick set-up, you can remove this line manually from your first few CSV files. Long-term, you’ll want to use a script to programmatically remove this row each time a new file is dropped in S3 (every few hours typically). We’ve drafted up a sample script for ease of reference, which we run on Lambda. We utilize Lambda’s native ability to invoke the script whenever a new object is dropped in S3.

For cost and usage, we recommend using the DDL statement below. Since our data is in CSV format, we don’t need to use a SerDe, we can simply specify the “separatorChar, quoteChar, and escapeChar”, and the structure of the files (“TEXTFILE”). Note that AWS does have an OpenCSV SerDe as well, if you prefer to use that.

 

CREATE EXTERNAL TABLE IF NOT EXISTS cost_and_usage	 (
identity_LineItemId String,
identity_TimeInterval String,
bill_InvoiceId String,
bill_BillingEntity String,
bill_BillType String,
bill_PayerAccountId String,
bill_BillingPeriodStartDate String,
bill_BillingPeriodEndDate String,
lineItem_UsageAccountId String,
lineItem_LineItemType String,
lineItem_UsageStartDate String,
lineItem_UsageEndDate String,
lineItem_ProductCode String,
lineItem_UsageType String,
lineItem_Operation String,
lineItem_AvailabilityZone String,
lineItem_ResourceId String,
lineItem_UsageAmount String,
lineItem_NormalizationFactor String,
lineItem_NormalizedUsageAmount String,
lineItem_CurrencyCode String,
lineItem_UnblendedRate String,
lineItem_UnblendedCost String,
lineItem_BlendedRate String,
lineItem_BlendedCost String,
lineItem_LineItemDescription String,
lineItem_TaxType String,
product_ProductName String,
product_accountAssistance String,
product_architecturalReview String,
product_architectureSupport String,
product_availability String,
product_bestPractices String,
product_cacheEngine String,
product_caseSeverityresponseTimes String,
product_clockSpeed String,
product_currentGeneration String,
product_customerServiceAndCommunities String,
product_databaseEdition String,
product_databaseEngine String,
product_dedicatedEbsThroughput String,
product_deploymentOption String,
product_description String,
product_durability String,
product_ebsOptimized String,
product_ecu String,
product_endpointType String,
product_engineCode String,
product_enhancedNetworkingSupported String,
product_executionFrequency String,
product_executionLocation String,
product_feeCode String,
product_feeDescription String,
product_freeQueryTypes String,
product_freeTrial String,
product_frequencyMode String,
product_fromLocation String,
product_fromLocationType String,
product_group String,
product_groupDescription String,
product_includedServices String,
product_instanceFamily String,
product_instanceType String,
product_io String,
product_launchSupport String,
product_licenseModel String,
product_location String,
product_locationType String,
product_maxIopsBurstPerformance String,
product_maxIopsvolume String,
product_maxThroughputvolume String,
product_maxVolumeSize String,
product_maximumStorageVolume String,
product_memory String,
product_messageDeliveryFrequency String,
product_messageDeliveryOrder String,
product_minVolumeSize String,
product_minimumStorageVolume String,
product_networkPerformance String,
product_operatingSystem String,
product_operation String,
product_operationsSupport String,
product_physicalProcessor String,
product_preInstalledSw String,
product_proactiveGuidance String,
product_processorArchitecture String,
product_processorFeatures String,
product_productFamily String,
product_programmaticCaseManagement String,
product_provisioned String,
product_queueType String,
product_requestDescription String,
product_requestType String,
product_routingTarget String,
product_routingType String,
product_servicecode String,
product_sku String,
product_softwareType String,
product_storage String,
product_storageClass String,
product_storageMedia String,
product_technicalSupport String,
product_tenancy String,
product_thirdpartySoftwareSupport String,
product_toLocation String,
product_toLocationType String,
product_training String,
product_transferType String,
product_usageFamily String,
product_usagetype String,
product_vcpu String,
product_version String,
product_volumeType String,
product_whoCanOpenCases String,
pricing_LeaseContractLength String,
pricing_OfferingClass String,
pricing_PurchaseOption String,
pricing_publicOnDemandCost String,
pricing_publicOnDemandRate String,
pricing_term String,
pricing_unit String,
reservation_AvailabilityZone String,
reservation_NormalizedUnitsPerReservation String,
reservation_NumberOfReservations String,
reservation_ReservationARN String,
reservation_TotalReservedNormalizedUnits String,
reservation_TotalReservedUnits String,
reservation_UnitsPerReservation String,
resourceTags_userName String,
resourceTags_usercostcategory String  


)
    ROW FORMAT DELIMITED
      FIELDS TERMINATED BY ','
      ESCAPED BY '\\'
      LINES TERMINATED BY '\n'

STORED AS TEXTFILE
    LOCATION 's3://<<your bucket name>>';

Once you’ve successfully executed the command, you should see a new table named “cost_and_usage” with the below properties. Now we’re ready to start executing queries and running analysis!

Start with Looker and connect to Athena

Setting up Looker is a quick process, and you can try it out for free here (or download from Amazon Marketplace). It takes just a few seconds to connect Looker to your Athena database, and Looker comes with a host of pre-built data models and dashboards to make analysis of your cost and usage data simple and intuitive. After you’re connected, you can use the Looker UI to run whatever analysis you’d like. Looker translates this UI to optimized SQL, so any user can execute and visualize queries for true self-service analytics.

Major cost saving levers

Now that the data pipeline is configured, you can dive into the most popular use cases for cost savings. In this post, I focus on:

  • Purchasing Reserved Instances vs. On-Demand Instances
  • Data transfer costs
  • Allocating costs over users or other Attributes (denoted with resource tags)

On-Demand, Spot, and Reserved Instances

Purchasing Reserved Instances vs On-Demand Instances is arguably going to be the biggest cost lever for heavy AWS users (Reserved Instances run up to 75% cheaper!). AWS offers three options for purchasing instances:

  • On-Demand—Pay as you use.
  • Spot (variable cost)—Bid on spare Amazon EC2 computing capacity.
  • Reserved Instances—Pay for an instance for a specific, allotted period of time.

When purchasing a Reserved Instance, you can also choose to pay all-upfront, partial-upfront, or monthly. The more you pay upfront, the greater the discount.

If your company has been using AWS for some time now, you should have a good sense of your overall instance usage on a per-month or per-day basis. Rather than paying for these instances On-Demand, you should try to forecast the number of instances you’ll need, and reserve them with upfront payments.

The total amount of usage with Reserved Instances versus overall usage with all instances is called your coverage ratio. It’s important not to confuse your coverage ratio with your Reserved Instance utilization. Utilization represents the amount of reserved hours that were actually used. Don’t worry about exceeding capacity, you can still set up Auto Scaling preferences so that more instances get added whenever your coverage or utilization crosses a certain threshold (we often see a target of 80% for both coverage and utilization among savvy customers).

Calculating the reserved costs and coverage can be a bit tricky with the level of granularity provided by the cost and usage report. The following query shows your total cost over the last 6 months, broken out by Reserved Instance vs other instance usage. You can substitute the cost field for usage if you’d prefer. Please note that you should only have data for the time period after the cost and usage report has been enabled (though you can opt for up to 3 months of historical data by contacting your AWS Account Executive). If you’re just getting started, this query will only show a few days.

 

SELECT 
	DATE_FORMAT(from_iso8601_timestamp(cost_and_usage.lineitem_usagestartdate),'%Y-%m') AS "cost_and_usage.usage_start_month",
	COALESCE(SUM(cost_and_usage.lineitem_unblendedcost ), 0) AS "cost_and_usage.total_unblended_cost",
	COALESCE(SUM(CASE WHEN (CASE
         WHEN cost_and_usage.lineitem_lineitemtype = 'DiscountedUsage' THEN 'RI Line Item'
         WHEN cost_and_usage.lineitem_lineitemtype = 'RIFee' THEN 'RI Line Item'
         WHEN cost_and_usage.lineitem_lineitemtype = 'Fee' THEN 'RI Line Item'
         ELSE 'Non RI Line Item'
        END = 'RI Line Item') THEN cost_and_usage.lineitem_unblendedcost  ELSE NULL END), 0) AS "cost_and_usage.total_reserved_unblended_cost",
	1.0 * (COALESCE(SUM(CASE WHEN (CASE
         WHEN cost_and_usage.lineitem_lineitemtype = 'DiscountedUsage' THEN 'RI Line Item'
         WHEN cost_and_usage.lineitem_lineitemtype = 'RIFee' THEN 'RI Line Item'
         WHEN cost_and_usage.lineitem_lineitemtype = 'Fee' THEN 'RI Line Item'
         ELSE 'Non RI Line Item'
        END = 'RI Line Item') THEN cost_and_usage.lineitem_unblendedcost  ELSE NULL END), 0)) / NULLIF((COALESCE(SUM(cost_and_usage.lineitem_unblendedcost ), 0)),0)  AS "cost_and_usage.percent_spend_on_ris",
	COALESCE(SUM(CASE WHEN (CASE
         WHEN cost_and_usage.lineitem_lineitemtype = 'DiscountedUsage' THEN 'RI Line Item'
         WHEN cost_and_usage.lineitem_lineitemtype = 'RIFee' THEN 'RI Line Item'
         WHEN cost_and_usage.lineitem_lineitemtype = 'Fee' THEN 'RI Line Item'
         ELSE 'Non RI Line Item'
        END = 'Non RI Line Item') THEN cost_and_usage.lineitem_unblendedcost  ELSE NULL END), 0) AS "cost_and_usage.total_non_reserved_unblended_cost",
	1.0 * (COALESCE(SUM(CASE WHEN (CASE
         WHEN cost_and_usage.lineitem_lineitemtype = 'DiscountedUsage' THEN 'RI Line Item'
         WHEN cost_and_usage.lineitem_lineitemtype = 'RIFee' THEN 'RI Line Item'
         WHEN cost_and_usage.lineitem_lineitemtype = 'Fee' THEN 'RI Line Item'
         ELSE 'Non RI Line Item'
        END = 'Non RI Line Item') THEN cost_and_usage.lineitem_unblendedcost  ELSE NULL END), 0)) / NULLIF((COALESCE(SUM(cost_and_usage.lineitem_unblendedcost ), 0)),0)  AS "cost_and_usage.percent_spend_on_non_ris"
FROM aws_optimizer.cost_and_usage  AS cost_and_usage

WHERE 
	(((from_iso8601_timestamp(cost_and_usage.lineitem_usagestartdate)) >= ((DATE_ADD('month', -5, DATE_TRUNC('MONTH', CAST(NOW() AS DATE))))) AND (from_iso8601_timestamp(cost_and_usage.lineitem_usagestartdate)) < ((DATE_ADD('month', 6, DATE_ADD('month', -5, DATE_TRUNC('MONTH', CAST(NOW() AS DATE))))))))
GROUP BY 1
ORDER BY 2 DESC
LIMIT 500

The resulting table should look something like the image below (I’m surfacing tables through Looker, though the same table would result from querying via command line or any other interface).

With a BI tool, you can create dashboards for easy reference and monitoring. New data is dumped into S3 every few hours, so your dashboards can update several times per day.

It’s an iterative process to understand the appropriate number of Reserved Instances needed to meet your business needs. After you’ve properly integrated Reserved Instances into your purchasing patterns, the savings can be significant. If your coverage is consistently below 70%, you should seriously consider adjusting your purchase types and opting for more Reserved instances.

Data transfer costs

One of the great things about AWS data storage is that it’s incredibly cheap. Most charges often come from moving and processing that data. There are several different prices for transferring data, broken out largely by transfers between regions and availability zones. Transfers between regions are the most costly, followed by transfers between Availability Zones. Transfers within the same region and same availability zone are free unless using elastic or public IP addresses, in which case there is a cost. You can find more detailed information in the AWS Pricing Docs. With this in mind, there are several simple strategies for helping reduce costs.

First, since costs increase when transferring data between regions, it’s wise to ensure that as many services as possible reside within the same region. The more you can localize services to one specific region, the lower your costs will be.

Second, you should maximize the data you’re routing directly within AWS services and IP addresses. Transfers out to the open internet are the most costly and least performant mechanisms of data transfers, so it’s best to keep transfers within AWS services.

Lastly, data transfers between private IP addresses are cheaper than between elastic or public IP addresses, so utilizing private IP addresses as much as possible is the most cost-effective strategy.

The following query provides a table depicting the total costs for each AWS product, broken out transfer cost type. Substitute the “lineitem_productcode” field in the query to segment the costs by any other attribute. If you notice any unusually high spikes in cost, you’ll need to dig deeper to understand what’s driving that spike: location, volume, and so on. Drill down into specific costs by including “product_usagetype” and “product_transfertype” in your query to identify the types of transfer costs that are driving up your bill.

SELECT 
	cost_and_usage.lineitem_productcode  AS "cost_and_usage.product_code",
	COALESCE(SUM(cost_and_usage.lineitem_unblendedcost), 0) AS "cost_and_usage.total_unblended_cost",
	COALESCE(SUM(CASE WHEN REGEXP_LIKE(cost_and_usage.product_usagetype, 'DataTransfer')    THEN cost_and_usage.lineitem_unblendedcost  ELSE NULL END), 0) AS "cost_and_usage.total_data_transfer_cost",
	COALESCE(SUM(CASE WHEN REGEXP_LIKE(cost_and_usage.product_usagetype, 'DataTransfer-In')    THEN cost_and_usage.lineitem_unblendedcost  ELSE NULL END), 0) AS "cost_and_usage.total_inbound_data_transfer_cost",
	COALESCE(SUM(CASE WHEN REGEXP_LIKE(cost_and_usage.product_usagetype, 'DataTransfer-Out')    THEN cost_and_usage.lineitem_unblendedcost  ELSE NULL END), 0) AS "cost_and_usage.total_outbound_data_transfer_cost"
FROM aws_optimizer.cost_and_usage  AS cost_and_usage

WHERE 
	(((from_iso8601_timestamp(cost_and_usage.lineitem_usagestartdate)) >= ((DATE_ADD('month', -5, DATE_TRUNC('MONTH', CAST(NOW() AS DATE))))) AND (from_iso8601_timestamp(cost_and_usage.lineitem_usagestartdate)) < ((DATE_ADD('month', 6, DATE_ADD('month', -5, DATE_TRUNC('MONTH', CAST(NOW() AS DATE))))))))
GROUP BY 1
ORDER BY 2 DESC
LIMIT 500

When moving between regions or over the open web, many data transfer costs also include the origin and destination location of the data movement. Using a BI tool with mapping capabilities, you can get a nice visual of data flows. The point at the center of the map is used to represent external data flows over the open internet.

Analysis by tags

AWS provides the option to apply custom tags to individual resources, so you can allocate costs over whatever customized segment makes the most sense for your business. For a SaaS company that hosts software for customers on AWS, maybe you’d want to tag the size of each customer. The following query uses custom tags to display the reserved, data transfer, and total cost for each AWS service, broken out by tag categories, over the last 6 months. You’ll want to substitute the cost_and_usage.resourcetags_customersegment and cost_and_usage.customer_segment with the name of your customer field.

 

SELECT * FROM (
SELECT *, DENSE_RANK() OVER (ORDER BY z___min_rank) as z___pivot_row_rank, RANK() OVER (PARTITION BY z__pivot_col_rank ORDER BY z___min_rank) as z__pivot_col_ordering FROM (
SELECT *, MIN(z___rank) OVER (PARTITION BY "cost_and_usage.product_code") as z___min_rank FROM (
SELECT *, RANK() OVER (ORDER BY CASE WHEN z__pivot_col_rank=1 THEN (CASE WHEN "cost_and_usage.total_unblended_cost" IS NOT NULL THEN 0 ELSE 1 END) ELSE 2 END, CASE WHEN z__pivot_col_rank=1 THEN "cost_and_usage.total_unblended_cost" ELSE NULL END DESC, "cost_and_usage.total_unblended_cost" DESC, z__pivot_col_rank, "cost_and_usage.product_code") AS z___rank FROM (
SELECT *, DENSE_RANK() OVER (ORDER BY CASE WHEN "cost_and_usage.customer_segment" IS NULL THEN 1 ELSE 0 END, "cost_and_usage.customer_segment") AS z__pivot_col_rank FROM (
SELECT 
	cost_and_usage.lineitem_productcode  AS "cost_and_usage.product_code",
	cost_and_usage.resourcetags_customersegment  AS "cost_and_usage.customer_segment",
	COALESCE(SUM(cost_and_usage.lineitem_unblendedcost ), 0) AS "cost_and_usage.total_unblended_cost",
	1.0 * (COALESCE(SUM(CASE WHEN REGEXP_LIKE(cost_and_usage.product_usagetype, 'DataTransfer')    THEN cost_and_usage.lineitem_unblendedcost  ELSE NULL END), 0)) / NULLIF((COALESCE(SUM(cost_and_usage.lineitem_unblendedcost ), 0)),0)  AS "cost_and_usage.percent_spend_data_transfers_unblended",
	1.0 * (COALESCE(SUM(CASE WHEN (CASE
         WHEN cost_and_usage.lineitem_lineitemtype = 'DiscountedUsage' THEN 'RI Line Item'
         WHEN cost_and_usage.lineitem_lineitemtype = 'RIFee' THEN 'RI Line Item'
         WHEN cost_and_usage.lineitem_lineitemtype = 'Fee' THEN 'RI Line Item'
         ELSE 'Non RI Line Item'
        END = 'Non RI Line Item') THEN cost_and_usage.lineitem_unblendedcost  ELSE NULL END), 0)) / NULLIF((COALESCE(SUM(cost_and_usage.lineitem_unblendedcost ), 0)),0)  AS "cost_and_usage.unblended_percent_spend_on_ris"
FROM aws_optimizer.cost_and_usage_raw  AS cost_and_usage

WHERE 
	(((from_iso8601_timestamp(cost_and_usage.lineitem_usagestartdate)) >= ((DATE_ADD('month', -5, DATE_TRUNC('MONTH', CAST(NOW() AS DATE))))) AND (from_iso8601_timestamp(cost_and_usage.lineitem_usagestartdate)) < ((DATE_ADD('month', 6, DATE_ADD('month', -5, DATE_TRUNC('MONTH', CAST(NOW() AS DATE))))))))
GROUP BY 1,2) ww
) bb WHERE z__pivot_col_rank <= 16384
) aa
) xx
) zz
 WHERE z___pivot_row_rank <= 500 OR z__pivot_col_ordering = 1 ORDER BY z___pivot_row_rank

The resulting table in this example looks like the results below. In this example, you can tell that we’re making poor use of Reserved Instances because they represent such a small portion of our overall costs.

Again, using a BI tool to visualize these costs and trends over time makes the analysis much easier to consume and take action on.

Summary

Saving costs on your AWS spend is always an iterative, ongoing process. Hopefully with these queries alone, you can start to understand your spending patterns and identify opportunities for savings. However, this is just a peek into the many opportunities available through analysis of the Cost and Usage report. Each company is different, with unique needs and usage patterns. To achieve maximum cost savings, we encourage you to set up an analytics environment that enables your team to explore all potential cuts and slices of your usage data, whenever it’s necessary. Exploring different trends and spikes across regions, services, user types, etc. helps you gain comprehensive understanding of your major cost levers and consistently implement new cost reduction strategies.

Note that all of the queries and analysis provided in this post were generated using the Looker data platform. If you’re already a Looker customer, you can get all of this analysis, additional pre-configured dashboards, and much more using Looker Blocks for AWS.


About the Author

Dillon Morrison leads the Platform Ecosystem at Looker. He enjoys exploring new technologies and architecting the most efficient data solutions for the business needs of his company and their customers. In his spare time, you’ll find Dillon rock climbing in the Bay Area or nose deep in the docs of the latest AWS product release at his favorite cafe (“Arlequin in SF is unbeatable!”).

 

 

 

Spinrilla Refuses to Share Its Source Code With the RIAA

Post Syndicated from Ernesto original https://torrentfreak.com/spinrilla-refuses-to-share-its-source-code-with-the-riaa-170815/

Earlier this year, a group of well-known labels targeted Spinrilla, a popular hip-hop mixtape site and accompanying app with millions of users.

The coalition of record labels including Sony Music, Warner Bros. Records, and Universal Music Group, filed a lawsuit accusing the service of alleged copyright infringements.

Both sides have started the discovery process and recently asked the court to rule on several unresolved matters. The parties begin with their statements of facts, clearly from opposite angles.

The RIAA remains confident that the mixtape site is ripping off music creators and wants its operators to be held accountable.

“Since Spinrilla launched, Defendants have facilitated millions of unauthorized downloads and streams of thousands of Plaintiffs’ sound recordings without Plaintiffs’ permission,” RIAA writes, complaining about “rampant” infringement on the site.

However, Spinrilla itself believes that the claims are overblown. The company points out that the RIAA’s complaint only lists a tiny fraction of all the songs uploaded by its users. These somehow slipped through its Audible Magic anti-piracy filter.

Where the RIAA paints a picture of rampant copyright infringement, the mixtape site stresses that the record labels are complaining about less than 0.001% of all the tracks they ever published.

“From 2013 to the present, Spinrilla users have uploaded about 1 million songs to Spinrilla’s servers and Spinrilla published about 850,000 of those. Plaintiffs are complaining that 210 of those songs are owned by them and published on Spinrilla without permission,” Spinrilla’s lawyers write.

“That means that Plaintiffs make no claim to 99.9998% of the songs on Spinrilla. Plaintiffs’ shouting of ‘rampant infringement on Spinrilla’, an accusation that Spinrilla was designed to allow easy and open access to infringing material, and assertion that ‘Defendants have facilitated millions of unauthorized downloads’ of those 210 songs is untrue – it is nothing more than a wish and a dream.”

The company reiterates that it’s a platform for independent musicians and that it doesn’t want to feature the Eminem’s and Bieber’s of this world, especially not without permission.

As for the discovery process, there are still several outstanding issues they need the Court’s advice on. Spinrilla has thus far produced 12,000 pages of documents and answered all RIAA interrogatories, but refuses to hand over certain information, including its source code.

According to Spinrilla, there is no reason for the RIAA to have access to its “crown jewel.”

“The source code is the crown jewel of any software based business, including Spinrilla. Even worse, Plaintiffs want an ‘executable’ version of Spinrilla’s source code, which would literally enable them to replicate Spinrilla’s entire website. Any Plaintiff could, in hours, delete all references to ‘Spinrilla,’ add its own brand and launch Spinrilla’s exact website.

“If we sued YouTube for hosting 210 infringing videos, would I be entitled to the source code for YouTube? There is simply no justification for Spinrilla sharing its source code with Plaintiffs,” Spinrilla adds.

The RIAA, on the other hand, argues that the source code will provide insight into several critical issues, including Spinrilla’s knowledge about infringing activity and its ability to terminate repeat copyright infringers.

In addition to the source code, the RIAA has also requested detailed information about the site’s users, including their download and streaming history. This request is too broad, the mixtape site argues, and has offered to provide information on the uploaders of the 210 infringing tracks instead.

It’s clear that the RIAA and Spinrilla disagree on various fronts and it will be up to the court to decide what information must be handed over. So far, however, the language used clearly shows that both parties are far from reaching some kind of compromise.

The first joint discovery statement is available in full here (pdf).

Source: TF, for the latest info on copyright, file-sharing, torrent sites and ANONYMOUS VPN services.

AWS CloudHSM Update – Cost Effective Hardware Key Management at Cloud Scale for Sensitive & Regulated Workloads

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/aws-cloudhsm-update-cost-effective-hardware-key-management/

Our customers run an incredible variety of mission-critical workloads on AWS, many of which process and store sensitive data. As detailed in our Overview of Security Processes document, AWS customers have access to an ever-growing set of options for encrypting and protecting this data. For example, Amazon Relational Database Service (RDS) supports encryption of data at rest and in transit, with options tailored for each supported database engine (MySQL, SQL Server, Oracle, MariaDB, PostgreSQL, and Aurora).

Many customers use AWS Key Management Service (KMS) to centralize their key management, with others taking advantage of the hardware-based key management, encryption, and decryption provided by AWS CloudHSM to meet stringent security and compliance requirements for their most sensitive data and regulated workloads (you can read my post, AWS CloudHSM – Secure Key Storage and Cryptographic Operations, to learn more about Hardware Security Modules, also known as HSMs).

Major CloudHSM Update
Today, building on what we have learned from our first-generation product, we are making a major update to CloudHSM, with a set of improvements designed to make the benefits of hardware-based key management available to a much wider audience while reducing the need for specialized operating expertise. Here’s a summary of the improvements:

Pay As You Go – CloudHSM is now offered under a pay-as-you-go model that is simpler and more cost-effective, with no up-front fees.

Fully Managed – CloudHSM is now a scalable managed service; provisioning, patching, high availability, and backups are all built-in and taken care of for you. Scheduled backups extract an encrypted image of your HSM from the hardware (using keys that only the HSM hardware itself knows) that can be restored only to identical HSM hardware owned by AWS. For durability, those backups are stored in Amazon Simple Storage Service (S3), and for an additional layer of security, encrypted again with server-side S3 encryption using an AWS KMS master key.

Open & Compatible  – CloudHSM is open and standards-compliant, with support for multiple APIs, programming languages, and cryptography extensions such as PKCS #11, Java Cryptography Extension (JCE), and Microsoft CryptoNG (CNG). The open nature of CloudHSM gives you more control and simplifies the process of moving keys (in encrypted form) from one CloudHSM to another, and also allows migration to and from other commercially available HSMs.

More Secure – CloudHSM Classic (the original model) supports the generation and use of keys that comply with FIPS 140-2 Level 2. We’re stepping that up a notch today with support for FIPS 140-2 Level 3, with security mechanisms that are designed to detect and respond to physical attempts to access or modify the HSM. Your keys are protected with exclusive, single-tenant access to tamper-resistant HSMs that appear within your Virtual Private Clouds (VPCs). CloudHSM supports quorum authentication for critical administrative and key management functions. This feature allows you to define a list of N possible identities that can access the functions, and then require at least M of them to authorize the action. It also supports multi-factor authentication using tokens that you provide.

AWS-Native – The updated CloudHSM is an integral part of AWS and plays well with other tools and services. You can create and manage a cluster of HSMs using the AWS Management Console, AWS Command Line Interface (CLI), or API calls.

Diving In
You can create CloudHSM clusters that contain 1 to 32 HSMs, each in a separate Availability Zone in a particular AWS Region. Spreading HSMs across AZs gives you high availability (including built-in load balancing); adding more HSMs gives you additional throughput. The HSMs within a cluster are kept in sync: performing a task or operation on one HSM in a cluster automatically updates the others. Each HSM in a cluster has its own Elastic Network Interface (ENI).

All interaction with an HSM takes place via the AWS CloudHSM client. It runs on an EC2 instance and uses certificate-based mutual authentication to create secure (TLS) connections to the HSMs.

At the hardware level, each HSM includes hardware-enforced isolation of crypto operations and key storage. Each customer HSM runs on dedicated processor cores.

Setting Up a Cluster
Let’s set up a cluster using the CloudHSM Console:

I click on Create cluster to get started, select my desired VPC and the subnets within it (I can also create a new VPC and/or subnets if needed):

Then I review my settings and click on Create:

After a few minutes, my cluster exists, but is uninitialized:

Initialization simply means retrieving a certificate signing request (the Cluster CSR):

And then creating a private key and using it to sign the request (these commands were copied from the Initialize Cluster docs and I have omitted the output. Note that ID identifies the cluster):

$ openssl genrsa -out CustomerRoot.key 2048
$ openssl req -new -x509 -days 365 -key CustomerRoot.key -out CustomerRoot.crt
$ openssl x509 -req -days 365 -in ID_ClusterCsr.csr   \
                              -CA CustomerRoot.crt    \
                              -CAkey CustomerRoot.key \
                              -CAcreateserial         \
                              -out ID_CustomerHsmCertificate.crt

The next step is to apply the signed certificate to the cluster using the console or the CLI. After this has been done, the cluster can be activated by changing the password for the HSM’s administrative user, otherwise known as the Crypto Officer (CO).

Once the cluster has been created, initialized and activated, it can be used to protect data. Applications can use the APIs in AWS CloudHSM SDKs to manage keys, encrypt & decrypt objects, and more. The SDKs provide access to the CloudHSM client (running on the same instance as the application). The client, in turn, connects to the cluster across an encrypted connection.

Available Today
The new HSM is available today in the US East (Northern Virginia), US West (Oregon), US East (Ohio), and EU (Ireland) Regions, with more in the works. Pricing starts at $1.45 per HSM per hour.

Jeff;

Controlling Millions of Potential Internet Pirates Won’t Be Easy

Post Syndicated from Andy original https://torrentfreak.com/controlling-millions-of-potential-internet-pirates-wont-be-easy-170813/

For several decades the basic shape of the piracy market hasn’t changed much. At the top of the chain there has always been a relatively small number of suppliers. At the bottom, the sprawling masses keen to consume whatever content these suppliers make available, while sharing it with everyone else.

This model held in the days of tapes and CDs and transferred nicely to the P2P file-sharing era. For nearly two decades people have been waiting for those with the latest content to dump it onto file-sharing networks. After grabbing it for themselves, people share that content with others.

For many years, the majority of the latest music, movies, and TV shows appeared online having been obtained by, and then leaked from, ‘The Scene’. However, with the rise of BitTorrent and an increase in computer skills demonstrated by the public, so-called ‘P2P release groups’ began flexing their muscles, in some cases slicing the top of the piracy pyramid.

With lower barriers to entry, P2P releasers can be almost anyone who happens to stumble across some new content. That being said, people still need the skill to package up that content and make it visible online, on torrent sites for example, without getting caught.

For most people that’s prohibitively complex, so it’s no surprise that Average Joe, perhaps comforted by the air of legitimacy, has taken to uploading music and movies to sites like YouTube instead. These days that’s nothing out of the ordinary and perhaps a little boring by piracy standards, but people still have the capacity to surprise.

This week a man from the United States, without a care in the world, obtained a login for a STARZ press portal, accessed the final three episodes of ‘Power’, and then streamed them on Facebook using nothing but a phone and an Internet connection.

From the beginning, the whole thing was ridiculous, comical even. The man in question, whose name and personal details TF obtained in a matter of minutes, revealed how he got the logins and even recorded his own face during one of the uploaded videos.

He really, really couldn’t have cared any less but he definitely should have. After news broke of the leaks, STARZ went public confirming the breach and promising to do something about it.

“The final three episodes of Power’s fourth season were leaked online due to a breach of the press screening room,” Starz said in a statement. “Starz has begun forensic investigations and will take legal action against the responsible parties.”

At this point, we should consider the magnitude of what this guy did. While we all laugh at his useless camera skills, the fact remains that he unlawfully distributed copyright works online, in advance of their commercial release. In the United States, that is a criminal offense, one that can result in a prison sentence of several years.

It would be really sad if the guy in question was made an example of since his videos suggest he hadn’t considered the consequences. After all, this wasn’t some hi-tech piracy group, just a regular guy with a login and a phone, and intent always counts for something. Nevertheless, the situation this week nicely highlights how new technology affects piracy.

In the past, the process of putting an unreleased movie or TV show online could only be tackled by people with expertise in several areas. These days a similar effect is possible with almost no skill and no effort. Joe Public, pre-release TV/movie/sports pirate, using nothing but a phone, a Facebook account, and an urge?

That’s the reality today and we won’t have to wait too long for a large scale demonstration of what can happen when millions of people with access to these ubiquitous tools have an urge to share.

In a little over two weeks’ time, boxing legend Floyd Mayweather Jr fights UFC lightweight champion, Conor McGregor. It’s set to be the richest combat sports event in history, not to mention one of the most expensive for PPV buyers. That means it’s going to be pirated to hell and back, in every way possible. It’s going to be massive.

Of course, there will be high-quality paid IPTV productions available, more grainy ‘Kodi’ streams, hundreds of web portals, and even some streaming torrents, for those that way inclined. But there will also be Average Joes in their hundreds, who will point their phones at Showtime’s PPV with the intent of live streaming the biggest show on earth to their friends, family, and the Internet. For free.

Quite how this will be combatted remains to be seen but it’s fair to say that this is a problem that’s only going to get bigger. In ten years time – in five years time – many millions of people will have the ability to become pirate releasers on a whim, despite knowing nothing about the occupation.

Like ‘Power’ guy, the majority won’t be very good at it. Equally, some will turn it into an art form. But whatever happens, tackling millions of potential pirates definitely won’t be easy for copyright holders. Twenty years in, it seems the battle for control has only just begun.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and ANONYMOUS VPN services.

New – AWS SAM Local (Beta) – Build and Test Serverless Applications Locally

Post Syndicated from Randall Hunt original https://aws.amazon.com/blogs/aws/new-aws-sam-local-beta-build-and-test-serverless-applications-locally/

Today we’re releasing a beta of a new tool, SAM Local, that makes it easy to build and test your serverless applications locally. In this post we’ll use SAM local to build, debug, and deploy a quick application that allows us to vote on tabs or spaces by curling an endpoint. AWS introduced Serverless Application Model (SAM) last year to make it easier for developers to deploy serverless applications. If you’re not already familiar with SAM my colleague Orr wrote a great post on how to use SAM that you can read in about 5 minutes. At it’s core, SAM is a powerful open source specification built on AWS CloudFormation that makes it easy to keep your serverless infrastructure as code – and they have the cutest mascot.

SAM Local takes all the good parts of SAM and brings them to your local machine.

There are a couple of ways to install SAM Local but the easiest is through NPM. A quick npm install -g aws-sam-local should get us going but if you want the latest version you can always install straight from the source: go get github.com/awslabs/aws-sam-local (this will create a binary named aws-sam-local, not sam).

I like to vote on things so let’s write a quick SAM application to vote on Spaces versus Tabs. We’ll use a very simple, but powerful, architecture of API Gateway fronting a Lambda function and we’ll store our results in DynamoDB. In the end a user should be able to curl our API curl https://SOMEURL/ -d '{"vote": "spaces"}' and get back the number of votes.

Let’s start by writing a simple SAM template.yaml:

AWSTemplateFormatVersion : '2010-09-09'
Transform: AWS::Serverless-2016-10-31
Resources:
  VotesTable:
    Type: "AWS::Serverless::SimpleTable"
  VoteSpacesTabs:
    Type: "AWS::Serverless::Function"
    Properties:
      Runtime: python3.6
      Handler: lambda_function.lambda_handler
      Policies: AmazonDynamoDBFullAccess
      Environment:
        Variables:
          TABLE_NAME: !Ref VotesTable
      Events:
        Vote:
          Type: Api
          Properties:
            Path: /
            Method: post

So we create a [dynamo_i] table that we expose to our Lambda function through an environment variable called TABLE_NAME.

To test that this template is valid I’ll go ahead and call sam validate to make sure I haven’t fat-fingered anything. It returns Valid! so let’s go ahead and get to work on our Lambda function.

import os
import os
import json
import boto3
votes_table = boto3.resource('dynamodb').Table(os.getenv('TABLE_NAME'))

def lambda_handler(event, context):
    print(event)
    if event['httpMethod'] == 'GET':
        resp = votes_table.scan()
        return {'body': json.dumps({item['id']: int(item['votes']) for item in resp['Items']})}
    elif event['httpMethod'] == 'POST':
        try:
            body = json.loads(event['body'])
        except:
            return {'statusCode': 400, 'body': 'malformed json input'}
        if 'vote' not in body:
            return {'statusCode': 400, 'body': 'missing vote in request body'}
        if body['vote'] not in ['spaces', 'tabs']:
            return {'statusCode': 400, 'body': 'vote value must be "spaces" or "tabs"'}

        resp = votes_table.update_item(
            Key={'id': body['vote']},
            UpdateExpression='ADD votes :incr',
            ExpressionAttributeValues={':incr': 1},
            ReturnValues='ALL_NEW'
        )
        return {'body': "{} now has {} votes".format(body['vote'], resp['Attributes']['votes'])}

So let’s test this locally. I’ll need to create a real DynamoDB database to talk to and I’ll need to provide the name of that database through the enviornment variable TABLE_NAME. I could do that with an env.json file or I can just pass it on the command line. First, I can call:
$ echo '{"httpMethod": "POST", "body": "{\"vote\": \"spaces\"}"}' |\
TABLE_NAME="vote-spaces-tabs" sam local invoke "VoteSpacesTabs"

to test the Lambda – it returns the number of votes for spaces so theoritically everything is working. Typing all of that out is a pain so I could generate a sample event with sam local generate-event api and pass that in to the local invocation. Far easier than all of that is just running our API locally. Let’s do that: sam local start-api. Now I can curl my local endpoints to test everything out.
I’ll run the command: $ curl -d '{"vote": "tabs"}' http://127.0.0.1:3000/ and it returns: “tabs now has 12 votes”. Now, of course I did not write this function perfectly on my first try. I edited and saved several times. One of the benefits of hot-reloading is that as I change the function I don’t have to do any additional work to test the new function. This makes iterative development vastly easier.

Let’s say we don’t want to deal with accessing a real DynamoDB database over the network though. What are our options? Well we can download DynamoDB Local and launch it with java -Djava.library.path=./DynamoDBLocal_lib -jar DynamoDBLocal.jar -sharedDb. Then we can have our Lambda function use the AWS_SAM_LOCAL environment variable to make some decisions about how to behave. Let’s modify our function a bit:

import os
import json
import boto3
if os.getenv("AWS_SAM_LOCAL"):
    votes_table = boto3.resource(
        'dynamodb',
        endpoint_url="http://docker.for.mac.localhost:8000/"
    ).Table("spaces-tabs-votes")
else:
    votes_table = boto3.resource('dynamodb').Table(os.getenv('TABLE_NAME'))

Now we’re using a local endpoint to connect to our local database which makes working without wifi a little easier.

SAM local even supports interactive debugging! In Java and Node.js I can just pass the -d flag and a port to immediately enable the debugger. For Python I could use a library like import epdb; epdb.serve() and connect that way. Then we can call sam local invoke -d 8080 "VoteSpacesTabs" and our function will pause execution waiting for you to step through with the debugger.

Alright, I think we’ve got everything working so let’s deploy this!

First I’ll call the sam package command which is just an alias for aws cloudformation package and then I’ll use the result of that command to sam deploy.

$ sam package --template-file template.yaml --s3-bucket MYAWESOMEBUCKET --output-template-file package.yaml
Uploading to 144e47a4a08f8338faae894afe7563c3  90570 / 90570.0  (100.00%)
Successfully packaged artifacts and wrote output template to file package.yaml.
Execute the following command to deploy the packaged template
aws cloudformation deploy --template-file package.yaml --stack-name 
$ sam deploy --template-file package.yaml --stack-name VoteForSpaces --capabilities CAPABILITY_IAM
Waiting for changeset to be created..
Waiting for stack create/update to complete
Successfully created/updated stack - VoteForSpaces

Which brings us to our API:
.

I’m going to hop over into the production stage and add some rate limiting in case you guys start voting a lot – but otherwise we’ve taken our local work and deployed it to the cloud without much effort at all. I always enjoy it when things work on the first deploy!

You can vote now and watch the results live! http://spaces-or-tabs.s3-website-us-east-1.amazonaws.com/

We hope that SAM Local makes it easier for you to test, debug, and deploy your serverless apps. We have a CONTRIBUTING.md guide and we welcome pull requests. Please tweet at us to let us know what cool things you build. You can see our What’s New post here and the documentation is live here.

Randall

Automating Blue/Green Deployments of Infrastructure and Application Code using AMIs, AWS Developer Tools, & Amazon EC2 Systems Manager

Post Syndicated from Ramesh Adabala original https://aws.amazon.com/blogs/devops/bluegreen-infrastructure-application-deployment-blog/

Previous DevOps blog posts have covered the following use cases for infrastructure and application deployment automation:

An AMI provides the information required to launch an instance, which is a virtual server in the cloud. You can use one AMI to launch as many instances as you need. It is security best practice to customize and harden your base AMI with required operating system updates and, if you are using AWS native services for continuous security monitoring and operations, you are strongly encouraged to bake into the base AMI agents such as those for Amazon EC2 Systems Manager (SSM), Amazon Inspector, CodeDeploy, and CloudWatch Logs. A customized and hardened AMI is often referred to as a “golden AMI.” The use of golden AMIs to create EC2 instances in your AWS environment allows for fast and stable application deployment and scaling, secure application stack upgrades, and versioning.

In this post, using the DevOps automation capabilities of Systems Manager, AWS developer tools (CodePipeLine, CodeDeploy, CodeCommit, CodeBuild), I will show you how to use AWS CodePipeline to orchestrate the end-to-end blue/green deployments of a golden AMI and application code. Systems Manager Automation is a powerful security feature for enterprises that want to mature their DevSecOps practices.

Here are the high-level phases and primary services covered in this use case:

 

You can access the source code for the sample used in this post here: https://github.com/awslabs/automating-governance-sample/tree/master/Bluegreen-AMI-Application-Deployment-blog.

This sample will create a pipeline in AWS CodePipeline with the building blocks to support the blue/green deployments of infrastructure and application. The sample includes a custom Lambda step in the pipeline to execute Systems Manager Automation to build a golden AMI and update the Auto Scaling group with the golden AMI ID for every rollout of new application code. This guarantees that every new application deployment is on a fully patched and customized AMI in a continuous integration and deployment model. This enables the automation of hardened AMI deployment with every new version of application deployment.

 

 

We will build and run this sample in three parts.

Part 1: Setting up the AWS developer tools and deploying a base web application

Part 1 of the AWS CloudFormation template creates the initial Java-based web application environment in a VPC. It also creates all the required components of Systems Manager Automation, CodeCommit, CodeBuild, and CodeDeploy to support the blue/green deployments of the infrastructure and application resulting from ongoing code releases.

Part 1 of the AWS CloudFormation stack creates these resources:

After Part 1 of the AWS CloudFormation stack creation is complete, go to the Outputs tab and click the Elastic Load Balancing link. You will see the following home page for the base web application:

Make sure you have all the outputs from the Part 1 stack handy. You need to supply them as parameters in Part 3 of the stack.

Part 2: Setting up your CodeCommit repository

In this part, you will commit and push your sample application code into the CodeCommit repository created in Part 1. To access the initial git commands to clone the empty repository to your local machine, click Connect to go to the AWS CodeCommit console. Make sure you have the IAM permissions required to access AWS CodeCommit from command line interface (CLI).

After you’ve cloned the repository locally, download the sample application files from the part2 folder of the Git repository and place the files directly into your local repository. Do not include the aws-codedeploy-sample-tomcat folder. Go to the local directory and type the following commands to commit and push the files to the CodeCommit repository:

git add .
git commit -a -m "add all files from the AWS Java Tomcat CodeDeploy application"
git push

After all the files are pushed successfully, the repository should look like this:

 

Part 3: Setting up CodePipeline to enable blue/green deployments     

Part 3 of the AWS CloudFormation template creates the pipeline in AWS CodePipeline and all the required components.

a) Source: The pipeline is triggered by any change to the CodeCommit repository.

b) BuildGoldenAMI: This Lambda step executes the Systems Manager Automation document to build the golden AMI. After the golden AMI is successfully created, a new launch configuration with the new AMI details will be updated into the Auto Scaling group of the application deployment group. You can watch the progress of the automation in the EC2 console from the Systems Manager –> Automations menu.

c) Build: This step uses the application build spec file to build the application build artifact. Here are the CodeBuild execution steps and their status:

d) Deploy: This step clones the Auto Scaling group, launches the new instances with the new AMI, deploys the application changes, reroutes the traffic from the elastic load balancer to the new instances and terminates the old Auto Scaling group. You can see the execution steps and their status in the CodeDeploy console.

After the CodePipeline execution is complete, you can access the application by clicking the Elastic Load Balancing link. You can find it in the output of Part 1 of the AWS CloudFormation template. Any consecutive commits to the application code in the CodeCommit repository trigger the pipelines and deploy the infrastructure and code with an updated AMI and code.

 

If you have feedback about this post, add it to the Comments section below. If you have questions about implementing the example used in this post, open a thread on the Developer Tools forum.


About the author

 

Ramesh Adabala is a Solutions Architect in Southeast Enterprise Solution Architecture team at Amazon Web Services.

Internet Archive Blocked in 2,650 Site Anti-Piracy Sweep

Post Syndicated from Andy original https://torrentfreak.com/internet-archive-blocked-in-2650-site-anti-piracy-sweep-170810/

Reports of sites becoming mysteriously inaccessible in India have been a regular occurance over the past several years. In many cases, sites simply stop functioning, leaving users wondering whether sites are actually down or whether there’s a technical issue.

Due to their increasing prevalence, fingers are often pointed at so-called ‘John Doe’ orders, which are handed down by the court to prevent Internet piracy. Often sweeping in nature (and in some cases pre-emptive rather than preventative), these injunctions have been known to block access to both file-sharing platforms and innocent bystanders.

Earlier this week (and again for no apparent reason), the world renowned Internet Archive was rendered inaccessible to millions of users in India. The platform, which is considered by many to be one of the Internet’s most valued resources, hosts more than 15 petabytes of data, a figure which grows on a daily basis. Yet despite numerous requests for information, none was forthcoming from authorities.

The ‘blocked’ message seen by users accessing Archive.org

Quoted by local news outlet Medianama, Chris Butler, Office Manager at the Internet Archive, said that their attempts to contact the Indian Department of Telecom (DoT) and the Ministry of Electronics and Information Technology (Meity) had proven fruitless.

Noting that site had previously been blocked in India, Butler said they were no clearer on the reasons why the same kind of action had seemingly been taken this week.

“We have no information about why a block would have been implemented,” he said. “Obviously, we are disappointed and concerned by this situation and are very eager to understand why it’s happening and see full access restored to archive.org.”

Now, however, the mystery has been solved. The BBC says a local government agency provided a copy of a court order obtained by two Bollywood production companies who are attempting to slow down piracy of their films in India.

Issued by a local judge, the sweeping order compels local ISPs to block access to 2,650 mainly file-sharing websites, including The Pirate Bay, RARBG, the revived KickassTorrents, and hundreds of other ‘usual suspects’. However, it also includes the URL for the Internet Archive, hence the problems with accessibility this week.

The injunction, which appears to be another John Doe order as previously suspected, was granted by the High Court of the Judicature at Madras on August 2, 2017. Two film productions companies – Prakash Jah Productions and Red Chillies Entertainment – obtained the order to protect their films Lipstick Under My Burkha and Jab Harry Met Sejal.

While India-based visitors to blocked resources are often greeted with a message saying that domains have been blocked at the orders of the Department of Telecommunications, these pages never give a reason why.

This always leads to confusion, with news outlets having to pressure local government agencies to discover the reason behind the blockades. In the interests of transparency, providing a link to a copy of a relevant court order would probably benefit all involved.

A few hours ago, the Internet Archive published a statement questioning the process undertaken before the court order was handed down.

“Is the Court aware of and did it consider the fact that the Internet Archive has a well-established and standard procedure for rights holders to submit take down requests and processes them expeditiously?” the platform said.

“We find several instances of take down requests submitted for one of the plaintiffs, Red Chillies Entertainments, throughout the past year, each of which were processed and responded to promptly.

“After a preliminary review, we find no instance of our having been contacted by anyone at all about these films. Is there a specific claim that someone posted these films to archive.org? If so, we’d be eager to address it directly with the claimant.”

But while the Internet Archive appears to be the highest profile collateral damage following the ISP blocks, it isn’t the only victim. Now that the court orders have become available (1,2), it’s clear that other non-pirate entities have also been affected including news site WN.com, website hosting service Weebly, and French ISP Free.fr.

Also, in a sign that sites aren’t being checked to see if they host the movies in question, one of the orders demands that former torrent index BitSnoop is blocked. The site shut down earlier this year. The same is true for Shaanig.org.

This is not the first time that the Internet Archive has been blocked in India. In 2014/2015, Archive.org was rendered inaccessible after it was accused of hosting extremist material. In common with Google, the site copies and stores huge amounts of data, much of it in automated processes. This can leave it exposed to these kinds of accusations.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and ANONYMOUS VPN services.

Growing up alongside tech

Post Syndicated from Eevee original https://eev.ee/blog/2017/08/09/growing-up-alongside-tech/

IndustrialRobot asks… or, uh, asked last month:

industrialrobot: How has your views on tech changed as you’ve got older?

This is so open-ended that it’s actually stumped me for a solid month. I’ve had a surprisingly hard time figuring out where to even start.


It’s not that my views of tech have changed too much — it’s that they’ve changed very gradually. Teasing out and explaining any one particular change is tricky when it happened invisibly over the course of 10+ years.

I think a better framework for this is to consider how my relationship to tech has changed. It’s gone through three pretty distinct phases, each of which has strongly colored how I feel and talk about technology.

Act I

In which I start from nothing.

Nothing is an interesting starting point. You only really get to start there once.

Learning something on my own as a kid was something of a magical experience, in a way that I don’t think I could replicate as an adult. I liked computers; I liked toying with computers; so I did that.

I don’t know how universal this is, but when I was a kid, I couldn’t even conceive of how incredible things were made. Buildings? Cars? Paintings? Operating systems? Where does any of that come from? Obviously someone made them, but it’s not the sort of philosophical point I lingered on when I was 10, so in the back of my head they basically just appeared fully-formed from the æther.

That meant that when I started trying out programming, I had no aspirations. I couldn’t imagine how far I would go, because all the examples of how far I would go were completely disconnected from any idea of human achievement. I started out with BASIC on a toy computer; how could I possibly envision a connection between that and something like a mainstream video game? Every new thing felt like a new form of magic, so I couldn’t conceive that I was even in the same ballpark as whatever process produced real software. (Even seeing the source code for GORILLAS.BAS, it didn’t quite click. I didn’t think to try reading any of it until years after I’d first encountered the game.)

This isn’t to say I didn’t have goals. I invented goals constantly, as I’ve always done; as soon as I learned about a new thing, I’d imagine some ways to use it, then try to build them. I produced a lot of little weird goofy toys, some of which entertained my tiny friend group for a couple days, some of which never saw the light of day. But none of it felt like steps along the way to some mountain peak of mastery, because I didn’t realize the mountain peak was even a place that could be gone to. It was pure, unadulterated (!) playing.

I contrast this to my art career, which started only a couple years ago. I was already in my late 20s, so I’d already spend decades seeing a very broad spectrum of art: everything from quick sketches up to painted masterpieces. And I’d seen the people who create that art, sometimes seen them create it in real-time. I’m even in a relationship with one of them! And of course I’d already had the experience of advancing through tech stuff and discovering first-hand that even the most amazing software is still just code someone wrote.

So from the very beginning, from the moment I touched pencil to paper, I knew the possibilities. I knew that the goddamn Sistine Chapel was something I could learn to do, if I were willing to put enough time in — and I knew that I’m not, so I’d have to settle somewhere a ways before that. I knew that I’d have to put an awful lot of work in before I’d be producing anything very impressive.

I did it anyway (though perhaps waited longer than necessary to start), but those aren’t things I can un-know, and so I can never truly explore art from a place of pure ignorance. On the other hand, I’ve probably learned to draw much more quickly and efficiently than if I’d done it as a kid, precisely because I know those things. Now I can decide I want to do something far beyond my current abilities, then go figure out how to do it. When I was just playing, that kind of ambition was impossible.


So, I played.

How did this affect my views on tech? Well, I didn’t… have any. Learning by playing tends to teach you things in an outward sprawl without many abrupt jumps to new areas, so you don’t tend to run up against conflicting information. The whole point of opinions is that they’re your own resolution to a conflict; without conflict, I can’t meaningfully say I had any opinions. I just accepted whatever I encountered at face value, because I didn’t even know enough to suspect there could be alternatives yet.

Act II

That started to seriously change around, I suppose, the end of high school and beginning of college. I was becoming aware of this whole “open source” concept. I took classes that used languages I wouldn’t otherwise have given a second thought. (One of them was Python!) I started to contribute to other people’s projects. Eventually I even got a job, where I had to work with other people. It probably also helped that I’d had to maintain my own old code a few times.

Now I was faced with conflicting subjective ideas, and I had to form opinions about them! And so I did. With gusto. Over time, I developed an idea of what was Right based on experience I’d accrued. And then I set out to always do things Right.

That’s served me decently well with some individual problems, but it also led me to inflict a lot of unnecessary pain on myself. Several endeavors languished for no other reason than my dissatisfaction with the architecture, long before the basic functionality was done. I started a number of “pure” projects around this time, generic tools like imaging libraries that I had no direct need for. I built them for the sake of them, I guess because I felt like I was improving some niche… but of course I never finished any. It was always in areas I didn’t know that well in the first place, which is a fine way to learn if you have a specific concrete goal in mind — but it turns out that building a generic library for editing images means you have to know everything about images. Perhaps that ambition went a little haywire.

I’ve said before that this sort of (self-inflicted!) work was unfulfilling, in part because the best outcome would be that a few distant programmers’ lives are slightly easier. I do still think that, but I think there’s a deeper point here too.

In forgetting how to play, I’d stopped putting any of myself in most of the work I was doing. Yes, building an imaging library is kind of a slog that someone has to do, but… I assume the people who work on software like PIL and ImageMagick are actually interested in it. The few domains I tried to enter and revolutionize weren’t passions of mine; I just happened to walk through the neighborhood one day and decided I could obviously do it better.

Not coincidentally, this was the same era of my life that led me to write stuff like that PHP post, which you may notice I am conspicuously not even linking to. I don’t think I would write anything like it nowadays. I could see myself approaching the same subject, but purely from the point of view of language design, with more contrasts and tradeoffs and less going for volume. I certainly wouldn’t lead off with inflammatory puffery like “PHP is a community of amateurs”.

Act III

I think I’ve mellowed out a good bit in the last few years.

It turns out that being Right is much less important than being Not Wrong — i.e., rather than trying to make something perfect that can be adapted to any future case, just avoid as many pitfalls as possible. Code that does something useful has much more practical value than unfinished code with some pristine architecture.

Nowhere is this more apparent than in game development, where all code is doomed to be crap and the best you can hope for is to stem the tide. But there’s also a fixed goal that’s completely unrelated to how the code looks: does the game work, and is it fun to play? Yes? Ship the damn thing and forget about it.

Games are also nice because it’s very easy to pour my own feelings into them and evoke feelings in the people who play them. They’re mine, something with my fingerprints on them — even the games I’ve built with glip have plenty of my own hallmarks, little touches I added on a whim or attention to specific details that I care about.

Maybe a better example is the Doom map parser I started writing. It sounds like a “pure” problem again, except that I actually know an awful lot about the subject already! I also cleverly (accidentally) released some useful results of the work I’ve done thusfar — like statistics about Doom II maps and a few screenshots of flipped stock maps — even though I don’t think the parser itself is far enough along to release yet. The tool has served a purpose, one with my fingerprints on it, even without being released publicly. That keeps it fresh in my mind as something interesting I’d like to keep working on, eventually. (When I run into an architecture question, I step back for a while, or I do other work in the hopes that the solution will reveal itself.)

I also made two simple Pokémon ROM hacks this year, despite knowing nothing about Game Boy internals or assembly when I started. I just decided I wanted to do an open-ended thing beyond my reach, and I went to do it, not worrying about cleanliness and willing to accept a bumpy ride to get there. I played, but in a more experienced way, invoking the stuff I know (and the people I’ve met!) to help me get a running start in completely unfamiliar territory.


This feels like a really fine distinction that I’m not sure I’m doing justice. I don’t know if I could’ve appreciated it three or four years ago. But I missed making toys, and I’m glad I’m doing it again.

In short, I forgot how to have fun with programming for a little while, and I’ve finally started to figure it out again. And that’s far more important than whether you use PHP or not.

Weekly roundup: Taking a breather

Post Syndicated from Eevee original https://eev.ee/dev/2017/08/09/weekly-roundup-taking-a-breather/

Nothing too special about this week; it went a little slow, but that’s been nice after the mad panic I was in at the end of July.

  • cc: I’m getting the hang of Unity and forming an uneasy truce with C#. Mostly did refactoring of some existing actor code, trying to move all the reading of controls to a single place so the rest of it can be reused for non-players.

  • fox flux: I put some work into a new forest background, which is already just… hilariously better than the one from the original game. Complex textures like leaves are one of my serious weak points, but this is forcing me to do it anyway and I’m slowly learning.

  • blog: I finished that post on Pokémon datamining, which ended up extraordinarily long and slightly late.

  • veekun: Dug into some missing stuff regarding items.

  • art: Spent a day or two doodling.

Still behind by one blog post (oops), and slacked on veekun a bit, but I’ve still got momentum.

RIAA’s Piracy Claims are Misleading and Inaccurate, ISP Says

Post Syndicated from Ernesto original https://torrentfreak.com/riaas-piracy-claims-are-misleading-and-inaccurate-isp-says-170807/

For more than a decade, copyright holders have been sending ISPs takedown notices to alert them that their subscribers are sharing copyrighted material.

Under US law, providers have to terminate the accounts of repeat infringers “in appropriate circumstances” and increasingly they are being held to this standard.

Earlier this year several major record labels, represented by the RIAA, filed a lawsuit in a Texas District Court, accusing ISP Grande Communications of failing to take action against its pirating subscribers.

The ISP is not happy with the claims and was quick to submit a motion to dismiss the lawsuit. One of the arguments is that the RIAA’s evidence is insufficient.

In its original motion, Grande doesn’t deny receiving millions of takedown notices from piracy tracking company Rightscorp. However, it believes that these notices are flawed as Rightscorp is incapable of monitoring actual copyright infringements.

The RIAA disagreed and pointed out that their evidence is sufficient. They stressed that Rightcorp is able to monitor actual downloads, as opposed to simply checking if a subscriber is offering certain infringing content.

In a response from Grande, late last week, the ISP argues that this isn’t good enough to build a case. While Rightcorp may be able to track the actual infringing downloads to which the RIAA labels hold the copyrights, there is no such evidence provided in the present case, the ISP notes.

“Importantly, Plaintiffs do not allege that Rightscorp has ever recorded an instance of a Grande subscriber actually distributing even one of Plaintiffs’ copyrighted works. Plaintiffs certainly have not alleged any concrete facts regarding such an act,” Grande’s legal team writes (pdf).

According to the ISP, the RIAA’s evidence merely shows that Rightscorp sent notices of alleged infringements on behalf of other copyright holders, who are not involved in the lawsuit.

“Instead, Plaintiffs generally allege that Rightscorp has sent notices regarding ‘various copyrighted works,’ encompassing all of the notices sent by Rightscorp on behalf of entities other than Plaintiffs.”

While the RIAA argues that this circumstantial evidence is sufficient, the ISP believes that there are grounds to have the entire case dismissed.

The record labels can’t hold Grande liable for secondary copyright infringement, without providing concrete evidence that their works were actively distributed by Grande subscribers, the company claims.

“Plaintiffs cannot allege direct infringement without alleging concrete facts which show that a Grande subscriber actually infringed one of Plaintiffs’ copyrights,” Grande’s lawyers note.

“For this reason, it is incredibly misleading for Plaintiffs to repeatedly refer to Grande having received ‘millions’ of notices of alleged infringement, as if those notices all pertained to Plaintiffs’ asserted copyrights.”

The “misleading” copyright infringement evidence argument is only one part of the ISPs defense. The company also notes that it has no control over what its subscribers do, nor do they control the BitTorrent clients that were allegedly used to download content.

If the court ruled otherwise, Grande and other ISPs would essentially be forced to become an “unpaid enforcement agent of the recording industry,” the company’s lawyers note.

The RIAA, however, sees things quite differently.

The music industry group believes that Grande failed to take proper action in response to repeat infringers and should pay damages to compensate the labels. This claim is very similar to the one BMG brought against Cox, where the latter was eventually ordered to pay $25 million.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and ANONYMOUS VPN services.

Lawyer Says He Was Deceived Into BitTorrent Copyright Trolling Scheme

Post Syndicated from Andy original https://torrentfreak.com/lawyer-says-he-was-deceived-into-bittorrent-copyright-trolling-scheme-170807/

For more than a decade, companies around the world have been trying to turn piracy into profit. For many this has meant the development of “copyright trolling” schemes, in which alleged pirates are monitored online and then pressured into cash settlements.

The shadowy nature of this global business means that its true scale will never be known but due to the controversial activities of some of the larger players, it’s occasionally possible to take a peek inside their operations. One such opportunity has just raised its head.

According to a lawsuit filed in California, James Davis is an attorney licensed in Oregon and California. Until two years ago, he was largely focused on immigration law. However, during March 2015, Davis says he was approached by an old classmate with an opportunity to get involved in a new line of business.

That classmate was Oregon lawyer Carl Crowell, who over the past several years has been deeply involved in copyright-trolling cases, including a deluge of Dallas Buyers Club and London Has Fallen litigation. He envisioned a place for Davis in the business.

Davis seemed to find the proposals attractive and became seriously involved in the operation, filing 58 cases on behalf of the companies involved. In common with similar cases, the lawsuits were brought in the name of the entities behind each copyrighted work, such as Dallas Buyers Club, LLC and LHF Productions, Inc.

In time, however, things started to go wrong. Davis claims that he discovered that Crowell, in connection with and on behalf of the other named defendants, “misrepresented the true nature of the Copyright Litigation Campaign, including the ownership of the works at issue and the role of the various third-parties involved in the litigation.”

Davis says that Crowell and the other defendants (which include the infamous Germany-based troll outfit Guardaley) made false representations to secure his participation, while holding back other information that might have made him think twice about becoming involved.

“Crowell and other Defendants withheld numerous material facts that were known to Crowell and the knowledge of which would have cast doubt on the value and ethical propriety of the Copyright Litigation Campaign for Mr. Davis,” the lawsuit reads.

Davis goes on to allege serious misconduct, including that representations regarding ownership of various entities were false and used to deceive him into participating in the scheme.

As time went on, Davis said he had increasing doubts about the operation. Then, in August 2016 as a result of a case underway in California, he began asking questions which resulted in him uncovering additional facts. These undermined both the representations of the people he was working for and his own belief in the “value and ethical propriety of the Copyright Litigation Campaign,” the lawsuit claims.

Davis said this spurred him on to “aggressively seek further information” from Crowell and other people involved in the scheme, including details of its structure and underlying support. He says all he received were “limited responses, excuses, and delays.”

The case was later dismissed by mutual agreement of the parties involved but of course, Davis’ concerns about the underlying case didn’t come to the forefront until the filing of his suit against Crowell and the others.

Davis says that following a meeting in Santa Monica with several of the main players behind the litigation campaign, he decided its legal and factual basis were unsound. He later told Crowell and Guardaley that he was withdrawing from their project.

As the result of the misrepresentations made to him, Davis is now suing the defendants on a number of counts, detailed below.

“Defendants’ business practices are unfair, unlawful, and fraudulent. Davis has suffered monetary damage as a direct result of the unfair, unlawful, and fraudulent business practices set forth herein,” the lawsuit reads.

Requesting a trial by jury, Davis is seeking actual damages, statutory damages, punitive or treble damages “in the amount of no less than $300,000.”

While a payment of that not insignificant amount would clearly satisfy Davis, the prospect of a trial in which the Guardaley operation is laid bare would be preferable when the interests of its thousands of previous targets are considered.

Only time will tell how things will pan out but like the vast majority of troll cases, this one too seems destined to be settled in private, to ensure the settlement machine keeps going.

Note: The case was originally filed in June, only to be voluntarily dismissed. It has now been refiled in state court.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and ANONYMOUS VPN services.

Torrentz Shut Down A Year Ago, But The Name Lives On

Post Syndicated from Ernesto original https://torrentfreak.com/torrentz-shut-down-a-year-ago-but-the-name-lives-on-170805/

Last summer, the torrent ecosystem lost two of its biggest stars. First, KickassTorrents was taken down following a criminal investigation by the FBI, resulting in indictments against the site’s operators.

Not long after KAT went offline, Torrentz.eu decided to close its doors as well, albeit voluntarily. Without prior warning, all torrent listings were removed from the meta-search engine, which was the third largest torrent site at the time.

The site’s operator confirmed the shutdown to TorrentFreak. The website itself was still on air but instead of the usual torrents, its users were left with the following message: “Torrentz will always love you. Farewell.”

Torrentz.eu says farewell

torrentz-farewell

A year has passed since and Torrentz.eu is still online, but it remains torrent-less. An official explanation for the drastic action was never given, but it’s likely that legal pressure or the trouble at KAT weighed into the decision.

As we’ve seen with KAT, however, the Torrentz brand is still alive and kicking today. Soon after the original site ceased its regular operation, several ‘copies’ popped up, eager to take its place.

The most successful alternative, in terms of traffic, is the elegantly named Torrentz2.eu. Unlike many others, Torrentz2 has always been upfront with its users and never claimed to be an official resurrection. They just want to do what Torrentz did, or even better.

“We always wanted to operate a site as beautiful as the original torrentz site so recreating it was the only way to do it,” the site’s operator tells TorrentFreak.

Torrentz2 copied the look of Torrentz, but runs its own meta-search engine, indexing even more sites than its famous predecessor. At the time of writing the site covers 61,106,364 torrents from 241,559,021 pages on 80 domains.

“We want to add more sites to our index. There are 80 domains now. There is a really huge list of new torrent sites that we discover and will be added soon.
We are looking for hamsters to power up our servers, we believe that we are very close to finding them,” the operator says.

Torrentz2.eu, alive and kicking

The site hasn’t had any legal pressure yet, the operator says. In the future, they will continue down the same path, which doesn’t deviate much from the original site.

“We are trying to keep the feeling and the features of the original torrentz site. Features that are missing are the user comments and accounts but we are working
on it and will be added very soon.”

The public seems to appreciate the Torrentz alternative as well. The site has millions of active users today, which is pretty close to the original site. So for most people, not that much has changed actually.

In fact, it would not a surprise if many of the current Torrentz2 visitors have no clue that they’re not dealing with the “real” thing.

All in all, we can say that recent history has shown how flexible the torrent ecosystem can be when it comes to sudden site closures. Whether it’s KAT, Torrentz, isoHunt, EZTV, YTS or ExtraTorrents, users are quick to find an alternative and continue torrenting there, or move onto something new entirely.

While that may be a positive note for many torrent fanatics, for the sentimentalists it might be strange that those who worked hard to build certain brands for years are seemingly replaced so easily.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and ANONYMOUS VPN services.