Tag Archives: fines

Monitoring your Amazon SNS message filtering activity with Amazon CloudWatch

Post Syndicated from Rachel Richardson original https://aws.amazon.com/blogs/compute/monitoring-your-amazon-sns-message-filtering-activity-with-amazon-cloudwatch/

This post is courtesy of Otavio Ferreira, Manager, Amazon SNS, AWS Messaging.

Amazon SNS message filtering provides a set of string and numeric matching operators that allow each subscription to receive only the messages of interest. Hence, SNS message filtering can simplify your pub/sub messaging architecture by offloading the message filtering logic from your subscriber systems, as well as the message routing logic from your publisher systems.

After you set the subscription attribute that defines a filter policy, the subscribing endpoint receives only the messages that carry attributes matching this filter policy. Other messages published to the topic are filtered out for this subscription. In this way, the native integration between SNS and Amazon CloudWatch provides visibility into the number of messages delivered, as well as the number of messages filtered out.

CloudWatch metrics are captured automatically for you. To get started with SNS message filtering, see Filtering Messages with Amazon SNS.

Message Filtering Metrics

The following six CloudWatch metrics are relevant to understanding your SNS message filtering activity:

  • NumberOfMessagesPublished – Inbound traffic to SNS. This metric tracks all the messages that have been published to the topic.
  • NumberOfNotificationsDelivered – Outbound traffic from SNS. This metric tracks all the messages that have been successfully delivered to endpoints subscribed to the topic. A delivery takes place either when the incoming message attributes match a subscription filter policy, or when the subscription has no filter policy at all, which results in a catch-all behavior.
  • NumberOfNotificationsFilteredOut – This metric tracks all the messages that were filtered out because they carried attributes that didn’t match the subscription filter policy.
  • NumberOfNotificationsFilteredOut-NoMessageAttributes – This metric tracks all the messages that were filtered out because they didn’t carry any attributes at all and, consequently, didn’t match the subscription filter policy.
  • NumberOfNotificationsFilteredOut-InvalidAttributes – This metric keeps track of messages that were filtered out because they carried invalid or malformed attributes and, thus, didn’t match the subscription filter policy.
  • NumberOfNotificationsFailed – This last metric tracks all the messages that failed to be delivered to subscribing endpoints, regardless of whether a filter policy had been set for the endpoint. This metric is emitted after the message delivery retry policy is exhausted, and SNS stops attempting to deliver the message. At that moment, the subscribing endpoint is likely no longer reachable. For example, the subscribing SQS queue or Lambda function has been deleted by its owner. You may want to closely monitor this metric to address message delivery issues quickly.

Message filtering graphs

Through the AWS Management Console, you can compose graphs to display your SNS message filtering activity. The graph shows the number of messages published, delivered, and filtered out within the timeframe you specify (1h, 3h, 12h, 1d, 3d, 1w, or custom).

SNS message filtering for CloudWatch Metrics

To compose an SNS message filtering graph with CloudWatch:

  1. Open the CloudWatch console.
  2. Choose Metrics, SNS, All Metrics, and Topic Metrics.
  3. Select all metrics to add to the graph, such as:
    • NumberOfMessagesPublished
    • NumberOfNotificationsDelivered
    • NumberOfNotificationsFilteredOut
  4. Choose Graphed metrics.
  5. In the Statistic column, switch from Average to Sum.
  6. Title your graph with a descriptive name, such as “SNS Message Filtering”

After you have your graph set up, you may want to copy the graph link for bookmarking, emailing, or sharing with co-workers. You may also want to add your graph to a CloudWatch dashboard for easy access in the future. Both actions are available to you on the Actions menu, which is found above the graph.

Summary

SNS message filtering defines how SNS topics behave in terms of message delivery. By using CloudWatch metrics, you gain visibility into the number of messages published, delivered, and filtered out. This enables you to validate the operation of filter policies and more easily troubleshoot during development phases.

SNS message filtering can be implemented easily with existing AWS SDKs by applying message and subscription attributes across all SNS supported protocols (Amazon SQS, AWS Lambda, HTTP, SMS, email, and mobile push). CloudWatch metrics for SNS message filtering is available now, in all AWS Regions.

For information about pricing, see the CloudWatch pricing page.

For more information, see:

Hong Kong Customs Arrest Pirate Streaming Device Vendors

Post Syndicated from Andy original https://torrentfreak.com/hong-kong-customs-arrest-pirate-streaming-device-vendors-180529/

As Internet-capable set-top boxes pour into homes across all populated continents, authorities seem almost powerless to come up with a significant response to the growing threat.

In standard form these devices, which are often Android-based, are entirely legal. However, when configured with specialist software they become piracy powerhouses providing access to all content imaginable, often at copyright holders’ expense.

A large proportion of these devices come from Asia, China in particular, but it’s relatively rare to hear of enforcement action in that part of the world. That changed this week with an announcement from Hong Kong customs detailing a series of raids in the areas of Sham Shui Po and Wan Chai.

After conducting an in-depth investigation with the assistance of copyright holders, on May 25 and 26 Customs and Excise officers launched Operation Trojan Horse, carrying out a series of raids on four premises selling suspected piracy-configured set-top boxes.

During the operation, officers arrested seven men and one woman aged between 18 and 45. Four of them were shop owners and the other four were salespeople. Around 354 suspected ‘pirate’ boxes were seized with an estimated market value of HK$320,000 (US$40,700).

“In the past few months, the department has stepped up inspections of hotspots for TV set-top boxes,” a statement from authorities reads.

“We have discovered that some shops have sold suspected illegal set-top boxes that bypass the copyright protection measures imposed by copyright holders of pay television programs allowing people to watch pay television programs for free.”

Some of the devices seized by Hong Kong Customs

During a press conference yesterday, a representative from the Customs Copyright and Trademark Investigations (Action) Division said that in the run up to the World Cup in 2018, measures against copyright infringement will be strengthened both on and online.

The announcement was welcomed by the Cable and Satellite Broadcasting Association of Asia’s (CASBAA) Coalition Against Piracy, which is back by industry heavyweights including Disney, Fox, HBO Asia, NBCUniversal, Premier League, Turner Asia-Pacific, A&E Networks, Astro, BBC Worldwide, National Basketball Association, TV5MONDE, Viacom International, and others.

“We commend the great work of Hong Kong Customs in clamping down on syndicates who profit from the sale of Illicit Streaming Devices,” said General Manager Neil Gane.

“The prevalence of ISDs in Hong Kong and across South East Asia is staggering. The criminals who sell ISDs, as well as those who operate the ISD networks and pirate websites, are profiting from the hard work of talented creators, seriously damaging the legitimate content ecosystem as well as exposing consumers to dangerous malware.”

Malware warnings are very prevalent these days but it’s not something the majority of set-top box owners have a problem with. Indeed, a study carried by Sycamore Research found that pirates aren’t easily deterred by such warnings.

Nevertheless, there are definite risks for individuals selling devices when they’re configured for piracy.

Recent cases, particularly in the UK, have shown that hefty jail sentences can hit offenders while over in the United States (1,2,3), lawsuits filed by the Alliance for Creativity and Entertainment (ACE) have the potential to end in unfavorable rulings for multiple defendants.

Although rarely reported, offenders in Hong Kong also face stiff sentences for this kind of infringement including large fines and custodial sentences of up to four years.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and more. We also have VPN reviews, discounts, offers and coupons.

Project Floofball and more: Pi pet stuff

Post Syndicated from Janina Ander original https://www.raspberrypi.org/blog/project-floofball-pi-pet-stuff/

It’s a public holiday here today (yes, again). So, while we indulge in the traditional pastime of barbecuing stuff (ourselves, mainly), here’s a little trove of Pi projects that cater for our various furry friends.

Project Floofball

Nicole Horward created Project Floofball for her hamster, Harold. It’s an IoT hamster wheel that uses a Raspberry Pi and a magnetic door sensor to log how far Harold runs.

Project Floofball: an IoT hamster wheel

An IoT Hamsterwheel using a Raspberry Pi and a magnetic door sensor, to see how far my hamster runs.

You can follow Harold’s runs in real time on his ThingSpeak channel, and you’ll find photos of the build on imgur. Nicole’s Python code, as well as her template for the laser-cut enclosure that houses the wiring and LCD display, are available on the hamster wheel’s GitHub repo.

A live-streaming pet feeder

JaganK3 used to work long hours that meant he couldn’t be there to feed his dog on time. He found that he couldn’t buy an automated feeder in India without paying a lot to import one, so he made one himself. It uses a Raspberry Pi to control a motor that turns a dispensing valve in a hopper full of dry food, giving his dog a portion of food at set times.

A transparent cylindrical hopper of dry dog food, with a motor that can turn a dispensing valve at the lower end. The motor is connected to a Raspberry Pi in a plastic case. Hopper, motor, Pi, and wiring are all mounted on a board on the wall.

He also added a web cam for live video streaming, because he could. Find out more in JaganK3’s Instructable for his pet feeder.

Shark laser cat toy

Sam Storino, meanwhile, is using a Raspberry Pi to control a laser-pointer cat toy with a goshdarned SHARK (which is kind of what I’d expect from the guy who made the steampunk-looking cat feeder a few weeks ago). The idea is to keep his cats interested and active within the confines of a compact city apartment.

Raspberry Pi Automatic Cat Laser Pointer Toy

Post with 52 votes and 7004 views. Tagged with cat, shark, lasers, austin powers, raspberry pi; Shared by JeorgeLeatherly. Raspberry Pi Automatic Cat Laser Pointer Toy

If I were a cat, I would definitely be entirely happy with this. Find out more on Sam’s website.

And there’s more

Michel Parreno has written a series of articles to help you monitor and feed your pet with Raspberry Pi.

All of these makers are generous in acknowledging the tutorials and build logs that helped them with their projects. It’s lovely to see the Raspberry Pi and maker community working like this, and I bet their projects will inspire others too.

Now, if you’ll excuse me. I’m late for a barbecue.

The post Project Floofball and more: Pi pet stuff appeared first on Raspberry Pi.

Maliciously Changing Someone’s Address

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2018/05/maliciously_cha.html

Someone changed the address of UPS corporate headquarters to his own apartment in Chicago. The company discovered it three months later.

The problem, of course, is that there isn’t any authentication of change-of-address submissions:

According to the Postal Service, nearly 37 million change-of-address requests ­ known as PS Form 3575 ­ were submitted in 2017. The form, which can be filled out in person or online, includes a warning below the signature line that “anyone submitting false or inaccurate information” could be subject to fines and imprisonment.

To cut down on possible fraud, post offices send a validation letter to both an old and new address when a change is filed. The letter includes a toll-free number to call to report anything suspicious.

Each year, only a tiny fraction of the requests are ever referred to postal inspectors for investigation. A spokeswoman for the U.S. Postal Inspection Service could not provide a specific number to the Tribune, but officials have previously said that the number of change-of-address investigations in a given year totals 1,000 or fewer typically.

While fraud involving change-of-address forms has long been linked to identity thieves, the targets are usually unsuspecting individuals, not massive corporations.

LC4: Another Pen-and-Paper Cipher

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2018/05/lc4_another_pen.html

Interesting symmetric cipher: LC4:

Abstract: ElsieFour (LC4) is a low-tech cipher that can be computed by hand; but unlike many historical ciphers, LC4 is designed to be hard to break. LC4 is intended for encrypted communication between humans only, and therefore it encrypts and decrypts plaintexts and ciphertexts consisting only of the English letters A through Z plus a few other characters. LC4 uses a nonce in addition to the secret key, and requires that different messages use unique nonces. LC4 performs authenticated encryption, and optional header data can be included in the authentication. This paper defines the LC4 encryption and decryption algorithms, analyzes LC4’s security, and describes a simple appliance for computing LC4 by hand.

Almost two decades ago I designed Solitaire, a pen-and-paper cipher that uses a deck of playing cards to store the cipher’s state. This algorithm uses specialized tiles. This gives the cipher designer more options, but it can be incriminating in a way that regular playing cards are not.

Still, I like seeing more designs like this.

Hacker News thread.

NIST Issues Call for "Lightweight Cryptography" Algorithms

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2018/05/nist_issues_cal.html

This is interesting:

Creating these defenses is the goal of NIST’s lightweight cryptography initiative, which aims to develop cryptographic algorithm standards that can work within the confines of a simple electronic device. Many of the sensors, actuators and other micromachines that will function as eyes, ears and hands in IoT networks will work on scant electrical power and use circuitry far more limited than the chips found in even the simplest cell phone. Similar small electronics exist in the keyless entry fobs to newer-model cars and the Radio Frequency Identification (RFID) tags used to locate boxes in vast warehouses.

All of these gadgets are inexpensive to make and will fit nearly anywhere, but common encryption methods may demand more electronic resources than they possess.

The NSA’s SIMON and SPECK would certainly qualify.

Implementing safe AWS Lambda deployments with AWS CodeDeploy

Post Syndicated from Chris Munns original https://aws.amazon.com/blogs/compute/implementing-safe-aws-lambda-deployments-with-aws-codedeploy/

This post courtesy of George Mao, AWS Senior Serverless Specialist – Solutions Architect

AWS Lambda and AWS CodeDeploy recently made it possible to automatically shift incoming traffic between two function versions based on a preconfigured rollout strategy. This new feature allows you to gradually shift traffic to the new function. If there are any issues with the new code, you can quickly rollback and control the impact to your application.

Previously, you had to manually move 100% of traffic from the old version to the new version. Now, you can have CodeDeploy automatically execute pre- or post-deployment tests and automate a gradual rollout strategy. Traffic shifting is built right into the AWS Serverless Application Model (SAM), making it easy to define and deploy your traffic shifting capabilities. SAM is an extension of AWS CloudFormation that provides a simplified way of defining serverless applications.

In this post, I show you how to use SAM, CloudFormation, and CodeDeploy to accomplish an automated rollout strategy for safe Lambda deployments.

Scenario

For this walkthrough, you write a Lambda application that returns a count of the S3 buckets that you own. You deploy it and use it in production. Later on, you receive requirements that tell you that you need to change your Lambda application to count only buckets that begin with the letter “a”.

Before you make the change, you need to be sure that your new Lambda application works as expected. If it does have issues, you want to minimize the number of impacted users and roll back easily. To accomplish this, you create a deployment process that publishes the new Lambda function, but does not send any traffic to it. You use CodeDeploy to execute a PreTraffic test to ensure that your new function works as expected. After the test succeeds, CodeDeploy automatically shifts traffic gradually to the new version of the Lambda function.

Your Lambda function is exposed as a REST service via an Amazon API Gateway deployment. This makes it easy to test and integrate.

Prerequisites

To execute the SAM and CloudFormation deployment, you must have the following IAM permissions:

  • cloudformation:*
  • lambda:*
  • codedeploy:*
  • iam:create*

You may use the AWS SAM Local CLI or the AWS CLI to package and deploy your Lambda application. If you choose to use SAM Local, be sure to install it onto your system. For more information, see AWS SAM Local Installation.

All of the code used in this post can be found in this GitHub repository: https://github.com/aws-samples/aws-safe-lambda-deployments.

Walkthrough

For this post, use SAM to define your resources because it comes with built-in CodeDeploy support for safe Lambda deployments.  The deployment is handled and automated by CloudFormation.

SAM allows you to define your Serverless applications in a simple and concise fashion, because it automatically creates all necessary resources behind the scenes. For example, if you do not define an execution role for a Lambda function, SAM automatically creates one. SAM also creates the CodeDeploy application necessary to drive the traffic shifting, as well as the IAM service role that CodeDeploy uses to execute all actions.

Create a SAM template

To get started, write your SAM template and call it template.yaml.

AWSTemplateFormatVersion : '2010-09-09'
Transform: AWS::Serverless-2016-10-31
Description: An example SAM template for Lambda Safe Deployments.

Resources:

  returnS3Buckets:
    Type: AWS::Serverless::Function
    Properties:
      Handler: returnS3Buckets.handler
      Runtime: nodejs6.10
      AutoPublishAlias: live
      Policies:
        - Version: "2012-10-17"
          Statement: 
          - Effect: "Allow"
            Action: 
              - "s3:ListAllMyBuckets"
            Resource: '*'
      DeploymentPreference:
          Type: Linear10PercentEvery1Minute
          Hooks:
            PreTraffic: !Ref preTrafficHook
      Events:
        Api:
          Type: Api
          Properties:
            Path: /test
            Method: get

  preTrafficHook:
    Type: AWS::Serverless::Function
    Properties:
      Handler: preTrafficHook.handler
      Policies:
        - Version: "2012-10-17"
          Statement: 
          - Effect: "Allow"
            Action: 
              - "codedeploy:PutLifecycleEventHookExecutionStatus"
            Resource:
              !Sub 'arn:aws:codedeploy:${AWS::Region}:${AWS::AccountId}:deploymentgroup:${ServerlessDeploymentApplication}/*'
        - Version: "2012-10-17"
          Statement: 
          - Effect: "Allow"
            Action: 
              - "lambda:InvokeFunction"
            Resource: !Ref returnS3Buckets.Version
      Runtime: nodejs6.10
      FunctionName: 'CodeDeployHook_preTrafficHook'
      DeploymentPreference:
        Enabled: false
      Timeout: 5
      Environment:
        Variables:
          NewVersion: !Ref returnS3Buckets.Version

This template creates two functions:

  • returnS3Buckets
  • preTrafficHook

The returnS3Buckets function is where your application logic lives. It’s a simple piece of code that uses the AWS SDK for JavaScript in Node.JS to call the Amazon S3 listBuckets API action and return the number of buckets.

'use strict';

var AWS = require('aws-sdk');
var s3 = new AWS.S3();

exports.handler = (event, context, callback) => {
	console.log("I am here! " + context.functionName  +  ":"  +  context.functionVersion);

	s3.listBuckets(function (err, data){
		if(err){
			console.log(err, err.stack);
			callback(null, {
				statusCode: 500,
				body: "Failed!"
			});
		}
		else{
			var allBuckets = data.Buckets;

			console.log("Total buckets: " + allBuckets.length);
			callback(null, {
				statusCode: 200,
				body: allBuckets.length
			});
		}
	});	
}

Review the key parts of the SAM template that defines returnS3Buckets:

  • The AutoPublishAlias attribute instructs SAM to automatically publish a new version of the Lambda function for each new deployment and link it to the live alias.
  • The Policies attribute specifies additional policy statements that SAM adds onto the automatically generated IAM role for this function. The first statement provides the function with permission to call listBuckets.
  • The DeploymentPreference attribute configures the type of rollout pattern to use. In this case, you are shifting traffic in a linear fashion, moving 10% of traffic every minute to the new version. For more information about supported patterns, see Serverless Application Model: Traffic Shifting Configurations.
  • The Hooks attribute specifies that you want to execute the preTrafficHook Lambda function before CodeDeploy automatically begins shifting traffic. This function should perform validation testing on the newly deployed Lambda version. This function invokes the new Lambda function and checks the results. If you’re satisfied with the tests, instruct CodeDeploy to proceed with the rollout via an API call to: codedeploy.putLifecycleEventHookExecutionStatus.
  • The Events attribute defines an API-based event source that can trigger this function. It accepts requests on the /test path using an HTTP GET method.
'use strict';

const AWS = require('aws-sdk');
const codedeploy = new AWS.CodeDeploy({apiVersion: '2014-10-06'});
var lambda = new AWS.Lambda();

exports.handler = (event, context, callback) => {

	console.log("Entering PreTraffic Hook!");
	
	// Read the DeploymentId & LifecycleEventHookExecutionId from the event payload
    var deploymentId = event.DeploymentId;
	var lifecycleEventHookExecutionId = event.LifecycleEventHookExecutionId;

	var functionToTest = process.env.NewVersion;
	console.log("Testing new function version: " + functionToTest);

	// Perform validation of the newly deployed Lambda version
	var lambdaParams = {
		FunctionName: functionToTest,
		InvocationType: "RequestResponse"
	};

	var lambdaResult = "Failed";
	lambda.invoke(lambdaParams, function(err, data) {
		if (err){	// an error occurred
			console.log(err, err.stack);
			lambdaResult = "Failed";
		}
		else{	// successful response
			var result = JSON.parse(data.Payload);
			console.log("Result: " +  JSON.stringify(result));

			// Check the response for valid results
			// The response will be a JSON payload with statusCode and body properties. ie:
			// {
			//		"statusCode": 200,
			//		"body": 51
			// }
			if(result.body == 9){	
				lambdaResult = "Succeeded";
				console.log ("Validation testing succeeded!");
			}
			else{
				lambdaResult = "Failed";
				console.log ("Validation testing failed!");
			}

			// Complete the PreTraffic Hook by sending CodeDeploy the validation status
			var params = {
				deploymentId: deploymentId,
				lifecycleEventHookExecutionId: lifecycleEventHookExecutionId,
				status: lambdaResult // status can be 'Succeeded' or 'Failed'
			};
			
			// Pass AWS CodeDeploy the prepared validation test results.
			codedeploy.putLifecycleEventHookExecutionStatus(params, function(err, data) {
				if (err) {
					// Validation failed.
					console.log('CodeDeploy Status update failed');
					console.log(err, err.stack);
					callback("CodeDeploy Status update failed");
				} else {
					// Validation succeeded.
					console.log('Codedeploy status updated successfully');
					callback(null, 'Codedeploy status updated successfully');
				}
			});
		}  
	});
}

The hook is hardcoded to check that the number of S3 buckets returned is 9.

Review the key parts of the SAM template that defines preTrafficHook:

  • The Policies attribute specifies additional policy statements that SAM adds onto the automatically generated IAM role for this function. The first statement provides permissions to call the CodeDeploy PutLifecycleEventHookExecutionStatus API action. The second statement provides permissions to invoke the specific version of the returnS3Buckets function to test
  • This function has traffic shifting features disabled by setting the DeploymentPreference option to false.
  • The FunctionName attribute explicitly tells CloudFormation what to name the function. Otherwise, CloudFormation creates the function with the default naming convention: [stackName]-[FunctionName]-[uniqueID].  Name the function with the “CodeDeployHook_” prefix because the CodeDeployServiceRole role only allows InvokeFunction on functions named with that prefix.
  • Set the Timeout attribute to allow enough time to complete your validation tests.
  • Use an environment variable to inject the ARN of the newest deployed version of the returnS3Buckets function. The ARN allows the function to know the specific version to invoke and perform validation testing on.

Deploy the function

Your SAM template is all set and the code is written—you’re ready to deploy the function for the first time. Here’s how to do it via the SAM CLI. Replace “sam” with “cloudformation” to use CloudFormation instead.

First, package the function. This command returns a CloudFormation importable file, packaged.yaml.

sam package –template-file template.yaml –s3-bucket mybucket –output-template-file packaged.yaml

Now deploy everything:

sam deploy –template-file packaged.yaml –stack-name mySafeDeployStack –capabilities CAPABILITY_IAM

At this point, both Lambda functions have been deployed within the CloudFormation stack mySafeDeployStack. The returnS3Buckets has been deployed as Version 1:

SAM automatically created a few things, including the CodeDeploy application, with the deployment pattern that you specified (Linear10PercentEvery1Minute). There is currently one deployment group, with no action, because no deployments have occurred. SAM also created the IAM service role that this CodeDeploy application uses:

There is a single managed policy attached to this role, which allows CodeDeploy to invoke any Lambda function that begins with “CodeDeployHook_”.

An API has been set up called safeDeployStack. It targets your Lambda function with the /test resource using the GET method. When you test the endpoint, API Gateway executes the returnS3Buckets function and it returns the number of S3 buckets that you own. In this case, it’s 51.

Publish a new Lambda function version

Now implement the requirements change, which is to make returnS3Buckets count only buckets that begin with the letter “a”. The code now looks like the following (see returnS3BucketsNew.js in GitHub):

'use strict';

var AWS = require('aws-sdk');
var s3 = new AWS.S3();

exports.handler = (event, context, callback) => {
	console.log("I am here! " + context.functionName  +  ":"  +  context.functionVersion);

	s3.listBuckets(function (err, data){
		if(err){
			console.log(err, err.stack);
			callback(null, {
				statusCode: 500,
				body: "Failed!"
			});
		}
		else{
			var allBuckets = data.Buckets;

			console.log("Total buckets: " + allBuckets.length);
			//callback(null, allBuckets.length);

			//  New Code begins here
			var counter=0;
			for(var i  in allBuckets){
				if(allBuckets[i].Name[0] === "a")
					counter++;
			}
			console.log("Total buckets starting with a: " + counter);

			callback(null, {
				statusCode: 200,
				body: counter
			});
			
		}
	});	
}

Repackage and redeploy with the same two commands as earlier:

sam package –template-file template.yaml –s3-bucket mybucket –output-template-file packaged.yaml
	
sam deploy –template-file packaged.yaml –stack-name mySafeDeployStack –capabilities CAPABILITY_IAM

CloudFormation understands that this is a stack update instead of an entirely new stack. You can see that reflected in the CloudFormation console:

During the update, CloudFormation deploys the new Lambda function as version 2 and adds it to the “live” alias. There is no traffic routing there yet. CodeDeploy now takes over to begin the safe deployment process.

The first thing CodeDeploy does is invoke the preTrafficHook function. Verify that this happened by reviewing the Lambda logs and metrics:

The function should progress successfully, invoke Version 2 of returnS3Buckets, and finally invoke the CodeDeploy API with a success code. After this occurs, CodeDeploy begins the predefined rollout strategy. Open the CodeDeploy console to review the deployment progress (Linear10PercentEvery1Minute):

Verify the traffic shift

During the deployment, verify that the traffic shift has started to occur by running the test periodically. As the deployment shifts towards the new version, a larger percentage of the responses return 9 instead of 51. These numbers match the S3 buckets.

A minute later, you see 10% more traffic shifting to the new version. The whole process takes 10 minutes to complete. After completion, open the Lambda console and verify that the “live” alias now points to version 2:

After 10 minutes, the deployment is complete and CodeDeploy signals success to CloudFormation and completes the stack update.

Check the results

If you invoke the function alias manually, you see the results of the new implementation.

aws lambda invoke –function [lambda arn to live alias] out.txt

You can also execute the prod stage of your API and verify the results by issuing an HTTP GET to the invoke URL:

Summary

This post has shown you how you can safely automate your Lambda deployments using the Lambda traffic shifting feature. You used the Serverless Application Model (SAM) to define your Lambda functions and configured CodeDeploy to manage your deployment patterns. Finally, you used CloudFormation to automate the deployment and updates to your function and PreTraffic hook.

Now that you know all about this new feature, you’re ready to begin automating Lambda deployments with confidence that things will work as designed. I look forward to hearing about what you’ve built with the AWS Serverless Platform.

AWS AppSync – Production-Ready with Six New Features

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/aws-appsync-production-ready-with-six-new-features/

If you build (or want to build) data-driven web and mobile apps and need real-time updates and the ability to work offline, you should take a look at AWS AppSync. Announced in preview form at AWS re:Invent 2017 and described in depth here, AWS AppSync is designed for use in iOS, Android, JavaScript, and React Native apps. AWS AppSync is built around GraphQL, an open, standardized query language that makes it easy for your applications to request the precise data that they need from the cloud.

I’m happy to announce that the preview period is over and that AWS AppSync is now generally available and production-ready, with six new features that will simplify and streamline your application development process:

Console Log Access – You can now see the CloudWatch Logs entries that are created when you test your GraphQL queries, mutations, and subscriptions from within the AWS AppSync Console.

Console Testing with Mock Data – You can now create and use mock context objects in the console for testing purposes.

Subscription Resolvers – You can now create resolvers for AWS AppSync subscription requests, just as you can already do for query and mutate requests.

Batch GraphQL Operations for DynamoDB – You can now make use of DynamoDB’s batch operations (BatchGetItem and BatchWriteItem) across one or more tables. in your resolver functions.

CloudWatch Support – You can now use Amazon CloudWatch Metrics and CloudWatch Logs to monitor calls to the AWS AppSync APIs.

CloudFormation Support – You can now define your schemas, data sources, and resolvers using AWS CloudFormation templates.

A Brief AppSync Review
Before diving in to the new features, let’s review the process of creating an AWS AppSync API, starting from the console. I click Create API to begin:

I enter a name for my API and (for demo purposes) choose to use the Sample schema:

The schema defines a collection of GraphQL object types. Each object type has a set of fields, with optional arguments:

If I was creating an API of my own I would enter my schema at this point. Since I am using the sample, I don’t need to do this. Either way, I click on Create to proceed:

The GraphQL schema type defines the entry points for the operations on the data. All of the data stored on behalf of a particular schema must be accessible using a path that begins at one of these entry points. The console provides me with an endpoint and key for my API:

It also provides me with guidance and a set of fully functional sample apps that I can clone:

When I clicked Create, AWS AppSync created a pair of Amazon DynamoDB tables for me. I can click Data Sources to see them:

I can also see and modify my schema, issue queries, and modify an assortment of settings for my API.

Let’s take a quick look at each new feature…

Console Log Access
The AWS AppSync Console already allows me to issue queries and to see the results, and now provides access to relevant log entries.In order to see the entries, I must enable logs (as detailed below), open up the LOGS, and check the checkbox. Here’s a simple mutation query that adds a new event. I enter the query and click the arrow to test it:

I can click VIEW IN CLOUDWATCH for a more detailed view:

To learn more, read Test and Debug Resolvers.

Console Testing with Mock Data
You can now create a context object in the console where it will be passed to one of your resolvers for testing purposes. I’ll add a testResolver item to my schema:

Then I locate it on the right-hand side of the Schema page and click Attach:

I choose a data source (this is for testing and the actual source will not be accessed), and use the Put item mapping template:

Then I click Select test context, choose Create New Context, assign a name to my test content, and click Save (as you can see, the test context contains the arguments from the query along with values to be returned for each field of the result):

After I save the new Resolver, I click Test to see the request and the response:

Subscription Resolvers
Your AWS AppSync application can monitor changes to any data source using the @aws_subscribe GraphQL schema directive and defining a Subscription type. The AWS AppSync client SDK connects to AWS AppSync using MQTT over Websockets and the application is notified after each mutation. You can now attach resolvers (which convert GraphQL payloads into the protocol needed by the underlying storage system) to your subscription fields and perform authorization checks when clients attempt to connect. This allows you to perform the same fine grained authorization routines across queries, mutations, and subscriptions.

To learn more about this feature, read Real-Time Data.

Batch GraphQL Operations
Your resolvers can now make use of DynamoDB batch operations that span one or more tables in a region. This allows you to use a list of keys in a single query, read records multiple tables, write records in bulk to multiple tables, and conditionally write or delete related records across multiple tables.

In order to use this feature the IAM role that you use to access your tables must grant access to DynamoDB’s BatchGetItem and BatchPutItem functions.

To learn more, read the DynamoDB Batch Resolvers tutorial.

CloudWatch Logs Support
You can now tell AWS AppSync to log API requests to CloudWatch Logs. Click on Settings and Enable logs, then choose the IAM role and the log level:

CloudFormation Support
You can use the following CloudFormation resource types in your templates to define AWS AppSync resources:

AWS::AppSync::GraphQLApi – Defines an AppSync API in terms of a data source (an Amazon Elasticsearch Service domain or a DynamoDB table).

AWS::AppSync::ApiKey – Defines the access key needed to access the data source.

AWS::AppSync::GraphQLSchema – Defines a GraphQL schema.

AWS::AppSync::DataSource – Defines a data source.

AWS::AppSync::Resolver – Defines a resolver by referencing a schema and a data source, and includes a mapping template for requests.

Here’s a simple schema definition in YAML form:

  AppSyncSchema:
    Type: "AWS::AppSync::GraphQLSchema"
    DependsOn:
      - AppSyncGraphQLApi
    Properties:
      ApiId: !GetAtt AppSyncGraphQLApi.ApiId
      Definition: |
        schema {
          query: Query
          mutation: Mutation
        }
        type Query {
          singlePost(id: ID!): Post
          allPosts: [Post]
        }
        type Mutation {
          putPost(id: ID!, title: String!): Post
        }
        type Post {
          id: ID!
          title: String!
        }

Available Now
These new features are available now and you can start using them today! Here are a couple of blog posts and other resources that you might find to be of interest:

Jeff;

 

 

[$] Kernel lockdown locked out — for now

Post Syndicated from corbet original https://lwn.net/Articles/751061/rss

As the 4.17 merge window opened, it seemed
possible
that the kernel lockdown patch set could be merged at last.
That was before the linux-kernel mailing list got its hands on the issue.
What resulted was not one of the kernel community’s finest moments. But it
did result in a couple of evident conclusions: kernel lockdown will almost
certainly not be
merged for 4.17, but something that looks very much like it is highly
likely to be accepted in a subsequent merge window.

Getting product security engineering right

Post Syndicated from Michal Zalewski original http://lcamtuf.blogspot.com/2018/02/getting-product-security-engineering.html

Product security is an interesting animal: it is a uniquely cross-disciplinary endeavor that spans policy, consulting,
process automation, in-depth software engineering, and cutting-edge vulnerability research. And in contrast to many
other specializations in our field of expertise – say, incident response or network security – we have virtually no
time-tested and coherent frameworks for setting it up within a company of any size.

In my previous post, I shared some thoughts
on nurturing technical organizations and cultivating the right kind of leadership within. Today, I figured it would
be fitting to follow up with several notes on what I learned about structuring product security work – and about actually
making the effort count.

The “comfort zone” trap

For security engineers, knowing your limits is a sought-after quality: there is nothing more dangerous than a security
expert who goes off script and starts dispensing authoritatively-sounding but bogus advice on a topic they know very
little about. But that same quality can be destructive when it prevents us from growing beyond our most familiar role: that of
a critic who pokes holes in other people’s designs.

The role of a resident security critic lends itself all too easily to a sense of supremacy: the mistaken
belief that our cognitive skills exceed the capabilities of the engineers and product managers who come to us for help
– and that the cool bugs we file are the ultimate proof of our special gift. We start taking pride in the mere act
of breaking somebody else’s software – and then write scathing but ineffectual critiques addressed to executives,
demanding that they either put a stop to a project or sign off on a risk. And hey, in the latter case, they better
brace for our triumphant “I told you so” at some later date.

Of course, escalations of this type have their place, but they need to be a very rare sight; when practiced routinely, they are a telltale
sign of a dysfunctional team. We might be failing to think up viable alternatives that are in tune with business or engineering needs; we might
be very unpersuasive, failing to communicate with other rational people in a language they understand; or it might be that our tolerance for risk
is badly out of whack with the rest of the company. Whatever the cause, I’ve seen high-level escalations where the security team
spoke of valiant efforts to resist inexplicably awful design decisions or data sharing setups; and where product leads in turn talked about
pressing business needs randomly blocked by obstinate security folks. Sometimes, simply having them compare their notes would be enough to arrive
at a technical solution – such as sharing a less sensitive subset of the data at hand.

To be effective, any product security program must be rooted in a partnership with the rest of the company, focused on helping them get stuff done
while eliminating or reducing security risks. To combat the toxic us-versus-them mentality, I found it helpful to have some team members with
software engineering backgrounds, even if it’s the ownership of a small open-source project or so. This can broaden our horizons, helping us see
that we all make the same mistakes – and that not every solution that sounds good on paper is usable once we code it up.

Getting off the treadmill

All security programs involve a good chunk of operational work. For product security, this can be a combination of product launch reviews, design consulting requests, incoming bug reports, or compliance-driven assessments of some sort. And curiously, such reactive work also has the property of gradually expanding to consume all the available resources on a team: next year is bound to bring even more review requests, even more regulatory hurdles, and even more incoming bugs to triage and fix.

Being more tractable, such routine tasks are also more readily enshrined in SDLs, SLAs, and all kinds of other official documents that are often mistaken for a mission statement that justifies the existence of our teams. Soon, instead of explaining to a developer why they should fix a particular problem right away, we end up pointing them to page 17 in our severity classification guideline, which defines that “severity 2” vulnerabilities need to be resolved within a month. Meanwhile, another policy may be telling them that they need to run a fuzzer or a web application scanner for a particular number of CPU-hours – no matter whether it makes sense or whether the job is set up right.

To run a product security program that scales sublinearly, stays abreast of future threats, and doesn’t erect bureaucratic speed bumps just for the sake of it, we need to recognize this inherent tendency for operational work to take over – and we need to reign it in. No matter what the last year’s policy says, we usually don’t need to be doing security reviews with a particular cadence or to a particular depth; if we need to scale them back 10% to staff a two-quarter project that fixes an important API and squashes an entire class of bugs, it’s a short-term risk we should feel empowered to take.

As noted in my earlier post, I find contingency planning to be a valuable tool in this regard: why not ask ourselves how the team would cope if the workload went up another 30%, but bad financial results precluded any team growth? It’s actually fun to think about such hypotheticals ahead of the time – and hey, if the ideas sound good, why not try them out today?

Living for a cause

It can be difficult to understand if our security efforts are structured and prioritized right; when faced with such uncertainty, it is natural to stick to the safe fundamentals – investing most of our resources into the very same things that everybody else in our industry appears to be focusing on today.

I think it’s important to combat this mindset – and if so, we might as well tackle it head on. Rather than focusing on tactical objectives and policy documents, try to write down a concise mission statement explaining why you are a team in the first place, what specific business outcomes you are aiming for, how do you prioritize it, and how you want it all to change in a year or two. It should be a fluid narrative that reads right and that everybody on your team can take pride in; my favorite way of starting the conversation is telling folks that we could always have a new VP tomorrow – and that the VP’s first order of business could be asking, “why do you have so many people here and how do I know they are doing the right thing?”. It’s a playful but realistic framing device that motivates people to get it done.

In general, a comprehensive product security program should probably start with the assumption that no matter how many resources we have at our disposal, we will never be able to stay in the loop on everything that’s happening across the company – and even if we did, we’re not going to be able to catch every single bug. It follows that one of our top priorities for the team should be making sure that bugs don’t happen very often; a scalable way of getting there is equipping engineers with intuitive and usable tools that make it easy to perform common tasks without having to worry about security at all. Examples include standardized, managed containers for production jobs; safe-by-default APIs, such as strict contextual autoescaping for XSS or type safety for SQL; security-conscious style guidelines; or plug-and-play libraries that take care of common crypto or ACL enforcement tasks.

Of course, not all problems can be addressed on framework level, and not every engineer will always reach for the right tools. Because of this, the next principle that I found to be worth focusing on is containment and mitigation: making sure that bugs are difficult to exploit when they happen, or that the damage is kept in check. The solutions in this space can range from low-level enhancements (say, hardened allocators or seccomp-bpf sandboxes) to client-facing features such as browser origin isolation or Content Security Policy.

The usual consulting, review, and outreach tasks are an important facet of a product security program, but probably shouldn’t be the sole focus of your team. It’s also best to avoid undue emphasis on vulnerability showmanship: while valuable in some contexts, it creates a hypercompetitive environment that may be hostile to less experienced team members – not to mention, squashing individual bugs offers very limited value if the same issue is likely to be reintroduced into the codebase the next day. I like to think of security reviews as a teaching opportunity instead: it’s a way to raise awareness, form partnerships with engineers, and help them develop lasting habits that reduce the incidence of bugs. Metrics to understand the impact of your work are important, too; if your engagements are seen mostly as a yet another layer of red tape, product teams will stop reaching out to you for advice.

The other tenet of a healthy product security effort requires us to recognize at a scale and given enough time, every defense mechanism is bound to fail – and so, we need ways to prevent bugs from turning into incidents. The efforts in this space may range from developing product-specific signals for the incident response and monitoring teams; to offering meaningful vulnerability reward programs and nourishing a healthy and respectful relationship with the research community; to organizing regular offensive exercises in hopes of spotting bugs before anybody else does.

Oh, one final note: an important feature of a healthy security program is the existence of multiple feedback loops that help you spot problems without the need to micromanage the organization and without being deathly afraid of taking chances. For example, the data coming from bug bounty programs, if analyzed correctly, offers a wonderful way to alert you to systemic problems in your codebase – and later on, to measure the impact of any remediation and hardening work.

How to Patch Linux Workloads on AWS

Post Syndicated from Koen van Blijderveen original https://aws.amazon.com/blogs/security/how-to-patch-linux-workloads-on-aws/

Most malware tries to compromise your systems by using a known vulnerability that the operating system maker has already patched. As best practices to help prevent malware from affecting your systems, you should apply all operating system patches and actively monitor your systems for missing patches.

In this blog post, I show you how to patch Linux workloads using AWS Systems Manager. To accomplish this, I will show you how to use the AWS Command Line Interface (AWS CLI) to:

  1. Launch an Amazon EC2 instance for use with Systems Manager.
  2. Configure Systems Manager to patch your Amazon EC2 Linux instances.

In two previous blog posts (Part 1 and Part 2), I showed how to use the AWS Management Console to perform the necessary steps to patch, inspect, and protect Microsoft Windows workloads. You can implement those same processes for your Linux instances running in AWS by changing the instance tags and types shown in the previous blog posts.

Because most Linux system administrators are more familiar with using a command line, I show how to patch Linux workloads by using the AWS CLI in this blog post. The steps to use the Amazon EBS Snapshot Scheduler and Amazon Inspector are identical for both Microsoft Windows and Linux.

What you should know first

To follow along with the solution in this post, you need one or more Amazon EC2 instances. You may use existing instances or create new instances. For this post, I assume this is an Amazon EC2 for Amazon Linux instance installed from Amazon Machine Images (AMIs).

Systems Manager is a collection of capabilities that helps you automate management tasks for AWS-hosted instances on Amazon EC2 and your on-premises servers. In this post, I use Systems Manager for two purposes: to run remote commands and apply operating system patches. To learn about the full capabilities of Systems Manager, see What Is AWS Systems Manager?

As of Amazon Linux 2017.09, the AMI comes preinstalled with the Systems Manager agent. Systems Manager Patch Manager also supports Red Hat and Ubuntu. To install the agent on these Linux distributions or an older version of Amazon Linux, see Installing and Configuring SSM Agent on Linux Instances.

If you are not familiar with how to launch an Amazon EC2 instance, see Launching an Instance. I also assume you launched or will launch your instance in a private subnet. You must make sure that the Amazon EC2 instance can connect to the internet using a network address translation (NAT) instance or NAT gateway to communicate with Systems Manager. The following diagram shows how you should structure your VPC.

Diagram showing how to structure your VPC

Later in this post, you will assign tasks to a maintenance window to patch your instances with Systems Manager. To do this, the IAM user you are using for this post must have the iam:PassRole permission. This permission allows the IAM user assigning tasks to pass his own IAM permissions to the AWS service. In this example, when you assign a task to a maintenance window, IAM passes your credentials to Systems Manager. You also should authorize your IAM user to use Amazon EC2 and Systems Manager. As mentioned before, you will be using the AWS CLI for most of the steps in this blog post. Our documentation shows you how to get started with the AWS CLI. Make sure you have the AWS CLI installed and configured with an AWS access key and secret access key that belong to an IAM user that have the following AWS managed policies attached to the IAM user you are using for this example: AmazonEC2FullAccess and AmazonSSMFullAccess.

Step 1: Launch an Amazon EC2 Linux instance

In this section, I show you how to launch an Amazon EC2 instance so that you can use Systems Manager with the instance. This step requires you to do three things:

  1. Create an IAM role for Systems Manager before launching your Amazon EC2 instance.
  2. Launch your Amazon EC2 instance with Amazon EBS and the IAM role for Systems Manager.
  3. Add tags to the instances so that you can add your instances to a Systems Manager maintenance window based on tags.

A. Create an IAM role for Systems Manager

Before launching an Amazon EC2 instance, I recommend that you first create an IAM role for Systems Manager, which you will use to update the Amazon EC2 instance. AWS already provides a preconfigured policy that you can use for the new role and it is called AmazonEC2RoleforSSM.

  1. Create a JSON file named trustpolicy-ec2ssm.json that contains the following trust policy. This policy describes which principal (an entity that can take action on an AWS resource) is allowed to assume the role we are going to create. In this example, the principal is the Amazon EC2 service.
    {
      "Version": "2012-10-17",
      "Statement": {
        "Effect": "Allow",
        "Principal": {"Service": "ec2.amazonaws.com"},
        "Action": "sts:AssumeRole"
      }
    }

  1. Use the following command to create a role named EC2SSM that has the AWS managed policy AmazonEC2RoleforSSM attached to it. This generates JSON-based output that describes the role and its parameters, if the command is successful.
    $ aws iam create-role --role-name EC2SSM --assume-role-policy-document file://trustpolicy-ec2ssm.json

  1. Use the following command to attach the AWS managed IAM policy (AmazonEC2RoleforSSM) to your newly created role.
    $ aws iam attach-role-policy --role-name EC2SSM --policy-arn arn:aws:iam::aws:policy/service-role/AmazonEC2RoleforSSM

  1. Use the following commands to create the IAM instance profile and add the role to the instance profile. The instance profile is needed to attach the role we created earlier to your Amazon EC2 instance.
    $ aws iam create-instance-profile --instance-profile-name EC2SSM-IP
    $ aws iam add-role-to-instance-profile --instance-profile-name EC2SSM-IP --role-name EC2SSM

B. Launch your Amazon EC2 instance

To follow along, you need an Amazon EC2 instance that is running Amazon Linux. You can use any existing instance you may have or create a new instance.

When launching a new Amazon EC2 instance, be sure that:

  1. Use the following command to launch a new Amazon EC2 instance using an Amazon Linux AMI available in the US East (N. Virginia) Region (also known as us-east-1). Replace YourKeyPair and YourSubnetId with your information. For more information about creating a key pair, see the create-key-pair documentation. Write down the InstanceId that is in the output because you will need it later in this post.
    $ aws ec2 run-instances --image-id ami-cb9ec1b1 --instance-type t2.micro --key-name YourKeyPair --subnet-id YourSubnetId --iam-instance-profile Name=EC2SSM-IP

  1. If you are using an existing Amazon EC2 instance, you can use the following command to attach the instance profile you created earlier to your instance.
    $ aws ec2 associate-iam-instance-profile --instance-id YourInstanceId --iam-instance-profile Name=EC2SSM-IP

C. Add tags

The final step of configuring your Amazon EC2 instances is to add tags. You will use these tags to configure Systems Manager in Step 2 of this post. For this example, I add a tag named Patch Group and set the value to Linux Servers. I could have other groups of Amazon EC2 instances that I treat differently by having the same tag name but a different tag value. For example, I might have a collection of other servers with the tag name Patch Group with a value of Web Servers.

  • Use the following command to add the Patch Group tag to your Amazon EC2 instance.
    $ aws ec2 create-tags --resources YourInstanceId --tags --tags Key="Patch Group",Value="Linux Servers"

Note: You must wait a few minutes until the Amazon EC2 instance is available before you can proceed to the next section. To make sure your Amazon EC2 instance is online and ready, you can use the following AWS CLI command:

$ aws ec2 describe-instance-status --instance-ids YourInstanceId

At this point, you now have at least one Amazon EC2 instance you can use to configure Systems Manager.

Step 2: Configure Systems Manager

In this section, I show you how to configure and use Systems Manager to apply operating system patches to your Amazon EC2 instances, and how to manage patch compliance.

To start, I provide some background information about Systems Manager. Then, I cover how to:

  1. Create the Systems Manager IAM role so that Systems Manager is able to perform patch operations.
  2. Create a Systems Manager patch baseline and associate it with your instance to define which patches Systems Manager should apply.
  3. Define a maintenance window to make sure Systems Manager patches your instance when you tell it to.
  4. Monitor patch compliance to verify the patch state of your instances.

You must meet two prerequisites to use Systems Manager to apply operating system patches. First, you must attach the IAM role you created in the previous section, EC2SSM, to your Amazon EC2 instance. Second, you must install the Systems Manager agent on your Amazon EC2 instance. If you have used a recent Amazon Linux AMI, Amazon has already installed the Systems Manager agent on your Amazon EC2 instance. You can confirm this by logging in to an Amazon EC2 instance and checking the Systems Manager agent log files that are located at /var/log/amazon/ssm/.

To install the Systems Manager agent on an instance that does not have the agent preinstalled or if you want to use the Systems Manager agent on your on-premises servers, see Installing and Configuring the Systems Manager Agent on Linux Instances. If you forgot to attach the newly created role when launching your Amazon EC2 instance or if you want to attach the role to already running Amazon EC2 instances, see Attach an AWS IAM Role to an Existing Amazon EC2 Instance by Using the AWS CLI or use the AWS Management Console.

A. Create the Systems Manager IAM role

For a maintenance window to be able to run any tasks, you must create a new role for Systems Manager. This role is a different kind of role than the one you created earlier: this role will be used by Systems Manager instead of Amazon EC2. Earlier, you created the role, EC2SSM, with the policy, AmazonEC2RoleforSSM, which allowed the Systems Manager agent on your instance to communicate with Systems Manager. In this section, you need a new role with the policy, AmazonSSMMaintenanceWindowRole, so that the Systems Manager service can execute commands on your instance.

To create the new IAM role for Systems Manager:

  1. Create a JSON file named trustpolicy-maintenancewindowrole.json that contains the following trust policy. This policy describes which principal is allowed to assume the role you are going to create. This trust policy allows not only Amazon EC2 to assume this role, but also Systems Manager.
    {
       "Version":"2012-10-17",
       "Statement":[
          {
             "Sid":"",
             "Effect":"Allow",
             "Principal":{
                "Service":[
                   "ec2.amazonaws.com",
                   "ssm.amazonaws.com"
               ]
             },
             "Action":"sts:AssumeRole"
          }
       ]
    }

  1. Use the following command to create a role named MaintenanceWindowRole that has the AWS managed policy, AmazonSSMMaintenanceWindowRole, attached to it. This command generates JSON-based output that describes the role and its parameters, if the command is successful.
    $ aws iam create-role --role-name MaintenanceWindowRole --assume-role-policy-document file://trustpolicy-maintenancewindowrole.json

  1. Use the following command to attach the AWS managed IAM policy (AmazonEC2RoleforSSM) to your newly created role.
    $ aws iam attach-role-policy --role-name MaintenanceWindowRole --policy-arn arn:aws:iam::aws:policy/service-role/AmazonSSMMaintenanceWindowRole

B. Create a Systems Manager patch baseline and associate it with your instance

Next, you will create a Systems Manager patch baseline and associate it with your Amazon EC2 instance. A patch baseline defines which patches Systems Manager should apply to your instance. Before you can associate the patch baseline with your instance, though, you must determine if Systems Manager recognizes your Amazon EC2 instance. Use the following command to list all instances managed by Systems Manager. The --filters option ensures you look only for your newly created Amazon EC2 instance.

$ aws ssm describe-instance-information --filters Key=InstanceIds,Values= YourInstanceId

{
    "InstanceInformationList": [
        {
            "IsLatestVersion": true,
            "ComputerName": "ip-10-50-2-245",
            "PingStatus": "Online",
            "InstanceId": "YourInstanceId",
            "IPAddress": "10.50.2.245",
            "ResourceType": "EC2Instance",
            "AgentVersion": "2.2.120.0",
            "PlatformVersion": "2017.09",
            "PlatformName": "Amazon Linux AMI",
            "PlatformType": "Linux",
            "LastPingDateTime": 1515759143.826
        }
    ]
}

If your instance is missing from the list, verify that:

  1. Your instance is running.
  2. You attached the Systems Manager IAM role, EC2SSM.
  3. You deployed a NAT gateway in your public subnet to ensure your VPC reflects the diagram shown earlier in this post so that the Systems Manager agent can connect to the Systems Manager internet endpoint.
  4. The Systems Manager agent logs don’t include any unaddressed errors.

Now that you have checked that Systems Manager can manage your Amazon EC2 instance, it is time to create a patch baseline. With a patch baseline, you define which patches are approved to be installed on all Amazon EC2 instances associated with the patch baseline. The Patch Group resource tag you defined earlier will determine to which patch group an instance belongs. If you do not specifically define a patch baseline, the default AWS-managed patch baseline is used.

To create a patch baseline:

  1. Use the following command to create a patch baseline named AmazonLinuxServers. With approval rules, you can determine the approved patches that will be included in your patch baseline. In this example, you add all Critical severity patches to the patch baseline as soon as they are released, by setting the Auto approval delay to 0 days. By setting the Auto approval delay to 2 days, you add to this patch baseline the Important, Medium, and Low severity patches two days after they are released.
    $ aws ssm create-patch-baseline --name "AmazonLinuxServers" --description "Baseline containing all updates for Amazon Linux" --operating-system AMAZON_LINUX --approval-rules "PatchRules=[{PatchFilterGroup={PatchFilters=[{Values=[Critical],Key=SEVERITY}]},ApproveAfterDays=0,ComplianceLevel=CRITICAL},{PatchFilterGroup={PatchFilters=[{Values=[Important,Medium,Low],Key=SEVERITY}]},ApproveAfterDays=2,ComplianceLevel=HIGH}]"
    
    {
        "BaselineId": "YourBaselineId"
    }

  1. Use the following command to register the patch baseline you created with your instance. To do so, you use the Patch Group tag that you added to your Amazon EC2 instance.
    $ aws ssm register-patch-baseline-for-patch-group --baseline-id YourPatchBaselineId --patch-group "Linux Servers"
    
    {
        "PatchGroup": "Linux Servers",
        "BaselineId": "YourBaselineId"
    }

C.  Define a maintenance window

Now that you have successfully set up a role, created a patch baseline, and registered your Amazon EC2 instance with your patch baseline, you will define a maintenance window so that you can control when your Amazon EC2 instances will receive patches. By creating multiple maintenance windows and assigning them to different patch groups, you can make sure your Amazon EC2 instances do not all reboot at the same time.

To define a maintenance window:

  1. Use the following command to define a maintenance window. In this example command, the maintenance window will start every Saturday at 10:00 P.M. UTC. It will have a duration of 4 hours and will not start any new tasks 1 hour before the end of the maintenance window.
    $ aws ssm create-maintenance-window --name SaturdayNight --schedule "cron(0 0 22 ? * SAT *)" --duration 4 --cutoff 1 --allow-unassociated-targets
    
    {
        "WindowId": "YourMaintenanceWindowId"
    }

For more information about defining a cron-based schedule for maintenance windows, see Cron and Rate Expressions for Maintenance Windows.

  1. After defining the maintenance window, you must register the Amazon EC2 instance with the maintenance window so that Systems Manager knows which Amazon EC2 instance it should patch in this maintenance window. You can register the instance by using the same Patch Group tag you used to associate the Amazon EC2 instance with the AWS-provided patch baseline, as shown in the following command.
    $ aws ssm register-target-with-maintenance-window --window-id YourMaintenanceWindowId --resource-type INSTANCE --targets "Key=tag:Patch Group,Values=Linux Servers"
    
    {
        "WindowTargetId": "YourWindowTargetId"
    }

  1. Assign a task to the maintenance window that will install the operating system patches on your Amazon EC2 instance. The following command includes the following options.
    1. name is the name of your task and is optional. I named mine Patching.
    2. task-arn is the name of the task document you want to run.
    3. max-concurrency allows you to specify how many of your Amazon EC2 instances Systems Manager should patch at the same time. max-errors determines when Systems Manager should abort the task. For patching, this number should not be too low, because you do not want your entire patch task to stop on all instances if one instance fails. You can set this, for example, to 20%.
    4. service-role-arn is the Amazon Resource Name (ARN) of the AmazonSSMMaintenanceWindowRole role you created earlier in this blog post.
    5. task-invocation-parameters defines the parameters that are specific to the AWS-RunPatchBaseline task document and tells Systems Manager that you want to install patches with a timeout of 600 seconds (10 minutes).
      $ aws ssm register-task-with-maintenance-window --name "Patching" --window-id "YourMaintenanceWindowId" --targets "Key=WindowTargetIds,Values=YourWindowTargetId" --task-arn AWS-RunPatchBaseline --service-role-arn "arn:aws:iam::123456789012:role/MaintenanceWindowRole" --task-type "RUN_COMMAND" --task-invocation-parameters "RunCommand={Comment=,TimeoutSeconds=600,Parameters={SnapshotId=[''],Operation=[Install]}}" --max-concurrency "500" --max-errors "20%"
      
      {
          "WindowTaskId": "YourWindowTaskId"
      }

Now, you must wait for the maintenance window to run at least once according to the schedule you defined earlier. If your maintenance window has expired, you can check the status of any maintenance tasks Systems Manager has performed by using the following command.

$ aws ssm describe-maintenance-window-executions --window-id "YourMaintenanceWindowId"

{
    "WindowExecutions": [
        {
            "Status": "SUCCESS",
            "WindowId": "YourMaintenanceWindowId",
            "WindowExecutionId": "b594984b-430e-4ffa-a44c-a2e171de9dd3",
            "EndTime": 1515766467.487,
            "StartTime": 1515766457.691
        }
    ]
}

D.  Monitor patch compliance

You also can see the overall patch compliance of all Amazon EC2 instances using the following command in the AWS CLI.

$ aws ssm list-compliance-summaries

This command shows you the number of instances that are compliant with each category and the number of instances that are not in JSON format.

You also can see overall patch compliance by choosing Compliance under Insights in the navigation pane of the Systems Manager console. You will see a visual representation of how many Amazon EC2 instances are up to date, how many Amazon EC2 instances are noncompliant, and how many Amazon EC2 instances are compliant in relation to the earlier defined patch baseline.

Screenshot of the Compliance page of the Systems Manager console

In this section, you have set everything up for patch management on your instance. Now you know how to patch your Amazon EC2 instance in a controlled manner and how to check if your Amazon EC2 instance is compliant with the patch baseline you have defined. Of course, I recommend that you apply these steps to all Amazon EC2 instances you manage.

Summary

In this blog post, I showed how to use Systems Manager to create a patch baseline and maintenance window to keep your Amazon EC2 Linux instances up to date with the latest security patches. Remember that by creating multiple maintenance windows and assigning them to different patch groups, you can make sure your Amazon EC2 instances do not all reboot at the same time.

If you have comments about this post, submit them in the “Comments” section below. If you have questions about or issues implementing any part of this solution, start a new thread on the Amazon EC2 forum or contact AWS Support.

– Koen

Backblaze and GDPR

Post Syndicated from Andy Klein original https://www.backblaze.com/blog/gdpr-compliance/

GDPR General Data Protection Regulation

Over the next few months the noise over GDPR will finally reach a crescendo. For the uninitiated, “GDPR” stands for “General Data Protection Regulation” and it goes into effect on May 25th of this year. GDPR is designed to protect how personal information of EU (European Union) citizens is collected, stored, and shared. The regulation should also improve transparency as to how personal information is managed by a business or organization.

Backblaze fully expects to be GDPR compliant when May 25th rolls around and we thought we’d share our experience along the way. We’ll start with this post as an introduction to GDPR. In future posts, we’ll dive into some of the details of the process we went through in meeting the GDPR objectives.

GDPR: A Two Way Street

To ensure we are GDPR compliant, Backblaze has assembled a dedicated internal team, engaged outside counsel in the United Kingdom, and consulted with other tech companies on best practices. While it is a sizable effort on our part, we view this as a waypoint in our ongoing effort to secure and protect our customers’ data and to be transparent in how we work as a company.

In addition to the effort we are putting into complying with the regulation, we think it is important to underscore and promote the idea that data privacy and security is a two-way street. We can spend millions of dollars on protecting the security of our systems, but we can’t stop a bad actor from finding and using your account credentials left on a note stuck to your monitor. We can give our customers tools like two factor authentication and private encryption keys, but it is the partnership with our customers that is the most powerful protection. The same thing goes for your digital privacy — we’ll do our best to protect your information, but we will need your help to do so.

Why GDPR is Important

At the center of GDPR is the protection of Personally Identifiable Information or “PII.” The definition for PII is information that can be used stand-alone or in concert with other information to identify a specific person. This includes obvious data like: name, address, and phone number, less obvious data like email address and IP address, and other data such as a credit card number, and unique identifiers that can be decoded back to the person.

How Will GDPR Affect You as an Individual

If you are a citizen in the EU, GDPR is designed to protect your private information from being used or shared without your permission. Technically, this only applies when your data is collected, processed, stored or shared outside of the EU, but it’s a good practice to hold all of your service providers to the same standard. For example, when you are deciding to sign up with a service, you should be able to quickly access and understand what personal information is being collected, why it is being collected, and what the business can do with that information. These terms are typically found in “Terms and Conditions” and “Privacy Policy” documents, or perhaps in a written contract you signed before starting to use a given service or product.

Even if you are not a citizen of the EU, GDPR will still affect you. Why? Because nearly every company you deal with, especially online, will have customers that live in the EU. It makes little sense for Backblaze, or any other service provider or vendor, to create a separate set of rules for just EU citizens. In practice, protection of private information should be more accountable and transparent with GDPR.

How Will GDPR Affect You as a Backblaze Customer

Over the coming months Backblaze customers will see changes to our current “Terms and Conditions,” “Privacy Policy,” and to our Backblaze services. While the changes to the Backblaze services are expected to be minimal, the “terms and privacy” documents will change significantly. The changes will include among other things the addition of a group of model clauses and related materials. These clauses will be generally consistent across all GDPR compliant vendors and are meant to be easily understood so that a customer can easily determine how their PII is being collected and used.

Common GDPR Questions:

Here are a few of the more common questions we have heard regarding GDPR.

  1. GDPR will only affect citizens in the EU.
    Answer: The changes that are being made by companies such as Backblaze to comply with GDPR will almost certainly apply to customers from all countries. And that’s a good thing. The protections afforded to EU citizens by GDPR are something all users of our service should benefit from.
  2. After May 25, 2018, a citizen of the EU will not be allowed to use any applications or services that store data outside of the EU.
    Answer: False, no one will stop you as an EU citizen from using the internet-based service you choose. But, you should make sure you know where your data is being collected, processed, and stored. If any of those activities occur outside the EU, make sure the company is following the GDPR guidelines.
  3. My business only has a few EU citizens as customers, so I don’t need to care about GDPR?
    Answer: False, even if you have just one EU citizen as a customer, and you capture, process or store data their PII outside of the EU, you need to comply with GDPR.
  4. Companies can be fined millions of dollars for not complying with GDPR.
    Answer:
    True, but: the regulation allows for companies to be fined up to $4 Million dollars or 20% of global revenue (whichever is greater) if they don’t comply with GDPR. In practice, the feeling is that such fines will be reserved (at least initially) for egregious violators that ignore or merely give “lip-service” to GDPR.
  5. You’ll be able to tell a company is GDPR compliant because they have a “GDPR Certified” badge on their website.
    Answer: There is no official GDPR certification or an official GDPR certification program. Companies that comply with GDPR are expected to follow the articles in the regulation and it should be clear from the outside looking in that they have followed the regulations. For example, their “Terms and Conditions,” and “Privacy Policy” should clearly spell out how and why they collect, use, and share your information. At some point a real GDPR certification program may be adopted, but not yet.

For all the hoopla about GDPR, the regulation is reasonably well thought out and addresses a very important issue — people’s privacy online. Creating a best practices document, or in this case a regulation, that companies such as Backblaze can follow is a good idea. The document isn’t perfect, and over the coming years we expect there to be changes. One thing we hope for is that the countries within the EU continue to stand behind one regulation and not fragment the document into multiple versions, each applying to themselves. We believe that having multiple different GDPR versions for different EU countries would lead to less protection overall of EU citizens.

In summary, GDPR changes are coming over the next few months. Backblaze has our internal staff and our EU-based legal council working diligently to ensure that we will be GDPR compliant by May 25th. We believe that GDPR will have a positive effect in enhancing the protection of personally identifiable information for not only EU citizens, but all of our Backblaze customers.

The post Backblaze and GDPR appeared first on Backblaze Blog | Cloud Storage & Cloud Backup.

Sharing Secrets with AWS Lambda Using AWS Systems Manager Parameter Store

Post Syndicated from Chris Munns original https://aws.amazon.com/blogs/compute/sharing-secrets-with-aws-lambda-using-aws-systems-manager-parameter-store/

This post courtesy of Roberto Iturralde, Sr. Application Developer- AWS Professional Services

Application architects are faced with key decisions throughout the process of designing and implementing their systems. One decision common to nearly all solutions is how to manage the storage and access rights of application configuration. Shared configuration should be stored centrally and securely with each system component having access only to the properties that it needs for functioning.

With AWS Systems Manager Parameter Store, developers have access to central, secure, durable, and highly available storage for application configuration and secrets. Parameter Store also integrates with AWS Identity and Access Management (IAM), allowing fine-grained access control to individual parameters or branches of a hierarchical tree.

This post demonstrates how to create and access shared configurations in Parameter Store from AWS Lambda. Both encrypted and plaintext parameter values are stored with only the Lambda function having permissions to decrypt the secrets. You also use AWS X-Ray to profile the function.

Solution overview

This example is made up of the following components:

  • An AWS SAM template that defines:
    • A Lambda function and its permissions
    • An unencrypted Parameter Store parameter that the Lambda function loads
    • A KMS key that only the Lambda function can access. You use this key to create an encrypted parameter later.
  • Lambda function code in Python 3.6 that demonstrates how to load values from Parameter Store at function initialization for reuse across invocations.

Launch the AWS SAM template

To create the resources shown in this post, you can download the SAM template or choose the button to launch the stack. The template requires one parameter, an IAM user name, which is the name of the IAM user to be the admin of the KMS key that you create. In order to perform the steps listed in this post, this IAM user will need permissions to execute Lambda functions, create Parameter Store parameters, administer keys in KMS, and view the X-Ray console. If you have these privileges in your IAM user account you can use your own account to complete the walkthrough. You can not use the root user to administer the KMS keys.

SAM template resources

The following sections show the code for the resources defined in the template.
Lambda function

ParameterStoreBlogFunctionDev:
    Type: 'AWS::Serverless::Function'
    Properties:
      FunctionName: 'ParameterStoreBlogFunctionDev'
      Description: 'Integrating lambda with Parameter Store'
      Handler: 'lambda_function.lambda_handler'
      Role: !GetAtt ParameterStoreBlogFunctionRoleDev.Arn
      CodeUri: './code'
      Environment:
        Variables:
          ENV: 'dev'
          APP_CONFIG_PATH: 'parameterStoreBlog'
          AWS_XRAY_TRACING_NAME: 'ParameterStoreBlogFunctionDev'
      Runtime: 'python3.6'
      Timeout: 5
      Tracing: 'Active'

  ParameterStoreBlogFunctionRoleDev:
    Type: AWS::IAM::Role
    Properties:
      AssumeRolePolicyDocument:
        Version: '2012-10-17'
        Statement:
          -
            Effect: Allow
            Principal:
              Service:
                - 'lambda.amazonaws.com'
            Action:
              - 'sts:AssumeRole'
      ManagedPolicyArns:
        - 'arn:aws:iam::aws:policy/service-role/AWSLambdaBasicExecutionRole'
      Policies:
        -
          PolicyName: 'ParameterStoreBlogDevParameterAccess'
          PolicyDocument:
            Version: '2012-10-17'
            Statement:
              -
                Effect: Allow
                Action:
                  - 'ssm:GetParameter*'
                Resource: !Sub 'arn:aws:ssm:${AWS::Region}:${AWS::AccountId}:parameter/dev/parameterStoreBlog*'
        -
          PolicyName: 'ParameterStoreBlogDevXRayAccess'
          PolicyDocument:
            Version: '2012-10-17'
            Statement:
              -
                Effect: Allow
                Action:
                  - 'xray:PutTraceSegments'
                  - 'xray:PutTelemetryRecords'
                Resource: '*'

In this YAML code, you define a Lambda function named ParameterStoreBlogFunctionDev using the SAM AWS::Serverless::Function type. The environment variables for this function include the ENV (dev) and the APP_CONFIG_PATH where you find the configuration for this app in Parameter Store. X-Ray tracing is also enabled for profiling later.

The IAM role for this function extends the AWSLambdaBasicExecutionRole by adding IAM policies that grant the function permissions to write to X-Ray and get parameters from Parameter Store, limited to paths under /dev/parameterStoreBlog*.
Parameter Store parameter

SimpleParameter:
    Type: AWS::SSM::Parameter
    Properties:
      Name: '/dev/parameterStoreBlog/appConfig'
      Description: 'Sample dev config values for my app'
      Type: String
      Value: '{"key1": "value1","key2": "value2","key3": "value3"}'

This YAML code creates a plaintext string parameter in Parameter Store in a path that your Lambda function can access.
KMS encryption key

ParameterStoreBlogDevEncryptionKeyAlias:
    Type: AWS::KMS::Alias
    Properties:
      AliasName: 'alias/ParameterStoreBlogKeyDev'
      TargetKeyId: !Ref ParameterStoreBlogDevEncryptionKey

  ParameterStoreBlogDevEncryptionKey:
    Type: AWS::KMS::Key
    Properties:
      Description: 'Encryption key for secret config values for the Parameter Store blog post'
      Enabled: True
      EnableKeyRotation: False
      KeyPolicy:
        Version: '2012-10-17'
        Id: 'key-default-1'
        Statement:
          -
            Sid: 'Allow administration of the key & encryption of new values'
            Effect: Allow
            Principal:
              AWS:
                - !Sub 'arn:aws:iam::${AWS::AccountId}:user/${IAMUsername}'
            Action:
              - 'kms:Create*'
              - 'kms:Encrypt'
              - 'kms:Describe*'
              - 'kms:Enable*'
              - 'kms:List*'
              - 'kms:Put*'
              - 'kms:Update*'
              - 'kms:Revoke*'
              - 'kms:Disable*'
              - 'kms:Get*'
              - 'kms:Delete*'
              - 'kms:ScheduleKeyDeletion'
              - 'kms:CancelKeyDeletion'
            Resource: '*'
          -
            Sid: 'Allow use of the key'
            Effect: Allow
            Principal:
              AWS: !GetAtt ParameterStoreBlogFunctionRoleDev.Arn
            Action:
              - 'kms:Encrypt'
              - 'kms:Decrypt'
              - 'kms:ReEncrypt*'
              - 'kms:GenerateDataKey*'
              - 'kms:DescribeKey'
            Resource: '*'

This YAML code creates an encryption key with a key policy with two statements.

The first statement allows a given user (${IAMUsername}) to administer the key. Importantly, this includes the ability to encrypt values using this key and disable or delete this key, but does not allow the administrator to decrypt values that were encrypted with this key.

The second statement grants your Lambda function permission to encrypt and decrypt values using this key. The alias for this key in KMS is ParameterStoreBlogKeyDev, which is how you reference it later.

Lambda function

Here I walk you through the Lambda function code.

import os, traceback, json, configparser, boto3
from aws_xray_sdk.core import patch_all
patch_all()

# Initialize boto3 client at global scope for connection reuse
client = boto3.client('ssm')
env = os.environ['ENV']
app_config_path = os.environ['APP_CONFIG_PATH']
full_config_path = '/' + env + '/' + app_config_path
# Initialize app at global scope for reuse across invocations
app = None

class MyApp:
    def __init__(self, config):
        """
        Construct new MyApp with configuration
        :param config: application configuration
        """
        self.config = config

    def get_config(self):
        return self.config

def load_config(ssm_parameter_path):
    """
    Load configparser from config stored in SSM Parameter Store
    :param ssm_parameter_path: Path to app config in SSM Parameter Store
    :return: ConfigParser holding loaded config
    """
    configuration = configparser.ConfigParser()
    try:
        # Get all parameters for this app
        param_details = client.get_parameters_by_path(
            Path=ssm_parameter_path,
            Recursive=False,
            WithDecryption=True
        )

        # Loop through the returned parameters and populate the ConfigParser
        if 'Parameters' in param_details and len(param_details.get('Parameters')) > 0:
            for param in param_details.get('Parameters'):
                param_path_array = param.get('Name').split("/")
                section_position = len(param_path_array) - 1
                section_name = param_path_array[section_position]
                config_values = json.loads(param.get('Value'))
                config_dict = {section_name: config_values}
                print("Found configuration: " + str(config_dict))
                configuration.read_dict(config_dict)

    except:
        print("Encountered an error loading config from SSM.")
        traceback.print_exc()
    finally:
        return configuration

def lambda_handler(event, context):
    global app
    # Initialize app if it doesn't yet exist
    if app is None:
        print("Loading config and creating new MyApp...")
        config = load_config(full_config_path)
        app = MyApp(config)

    return "MyApp config is " + str(app.get_config()._sections)

Beneath the import statements, you import the patch_all function from the AWS X-Ray library, which you use to patch boto3 to create X-Ray segments for all your boto3 operations.

Next, you create a boto3 SSM client at the global scope for reuse across function invocations, following Lambda best practices. Using the function environment variables, you assemble the path where you expect to find your configuration in Parameter Store. The class MyApp is meant to serve as an example of an application that would need its configuration injected at construction. In this example, you create an instance of ConfigParser, a class in Python’s standard library for handling basic configurations, to give to MyApp.

The load_config function loads the all the parameters from Parameter Store at the level immediately beneath the path provided in the Lambda function environment variables. Each parameter found is put into a new section in ConfigParser. The name of the section is the name of the parameter, less the base path. In this example, the full parameter name is /dev/parameterStoreBlog/appConfig, which is put in a section named appConfig.

Finally, the lambda_handler function initializes an instance of MyApp if it doesn’t already exist, constructing it with the loaded configuration from Parameter Store. Then it simply returns the currently loaded configuration in MyApp. The impact of this design is that the configuration is only loaded from Parameter Store the first time that the Lambda function execution environment is initialized. Subsequent invocations reuse the existing instance of MyApp, resulting in improved performance. You see this in the X-Ray traces later in this post. For more advanced use cases where configuration changes need to be received immediately, you could implement an expiry policy for your configuration entries or push notifications to your function.

To confirm that everything was created successfully, test the function in the Lambda console.

  1. Open the Lambda console.
  2. In the navigation pane, choose Functions.
  3. In the Functions pane, filter to ParameterStoreBlogFunctionDev to find the function created by the SAM template earlier. Open the function name to view its details.
  4. On the top right of the function detail page, choose Test. You may need to create a new test event. The input JSON doesn’t matter as this function ignores the input.

After running the test, you should see output similar to the following. This demonstrates that the function successfully fetched the unencrypted configuration from Parameter Store.

Create an encrypted parameter

You currently have a simple, unencrypted parameter and a Lambda function that can access it.

Next, you create an encrypted parameter that only your Lambda function has permission to use for decryption. This limits read access for this parameter to only this Lambda function.

To follow along with this section, deploy the SAM template for this post in your account and make your IAM user name the KMS key admin mentioned earlier.

  1. In the Systems Manager console, under Shared Resources, choose Parameter Store.
  2. Choose Create Parameter.
    • For Name, enter /dev/parameterStoreBlog/appSecrets.
    • For Type, select Secure String.
    • For KMS Key ID, choose alias/ParameterStoreBlogKeyDev, which is the key that your SAM template created.
    • For Value, enter {"secretKey": "secretValue"}.
    • Choose Create Parameter.
  3. If you now try to view the value of this parameter by choosing the name of the parameter in the parameters list and then choosing Show next to the Value field, you won’t see the value appear. This is because, even though you have permission to encrypt values using this KMS key, you do not have permissions to decrypt values.
  4. In the Lambda console, run another test of your function. You now also see the secret parameter that you created and its decrypted value.

If you do not see the new parameter in the Lambda output, this may be because the Lambda execution environment is still warm from the previous test. Because the parameters are loaded at Lambda startup, you need a fresh execution environment to refresh the values.

Adjust the function timeout to a different value in the Advanced Settings at the bottom of the Lambda Configuration tab. Choose Save and test to trigger the creation of a new Lambda execution environment.

Profiling the impact of querying Parameter Store using AWS X-Ray

By using the AWS X-Ray SDK to patch boto3 in your Lambda function code, each invocation of the function creates traces in X-Ray. In this example, you can use these traces to validate the performance impact of your design decision to only load configuration from Parameter Store on the first invocation of the function in a new execution environment.

From the Lambda function details page where you tested the function earlier, under the function name, choose Monitoring. Choose View traces in X-Ray.

This opens the X-Ray console in a new window filtered to your function. Be aware of the time range field next to the search bar if you don’t see any search results.
In this screenshot, I’ve invoked the Lambda function twice, one time 10.3 minutes ago with a response time of 1.1 seconds and again 9.8 minutes ago with a response time of 8 milliseconds.

Looking at the details of the longer running trace by clicking the trace ID, you can see that the Lambda function spent the first ~350 ms of the full 1.1 sec routing the request through Lambda and creating a new execution environment for this function, as this was the first invocation with this code. This is the portion of time before the initialization subsegment.

Next, it took 725 ms to initialize the function, which includes executing the code at the global scope (including creating the boto3 client). This is also a one-time cost for a fresh execution environment.

Finally, the function executed for 65 ms, of which 63.5 ms was the GetParametersByPath call to Parameter Store.

Looking at the trace for the second, much faster function invocation, you see that the majority of the 8 ms execution time was Lambda routing the request to the function and returning the response. Only 1 ms of the overall execution time was attributed to the execution of the function, which makes sense given that after the first invocation you’re simply returning the config stored in MyApp.

While the Traces screen allows you to view the details of individual traces, the X-Ray Service Map screen allows you to view aggregate performance data for all traced services over a period of time.

In the X-Ray console navigation pane, choose Service map. Selecting a service node shows the metrics for node-specific requests. Selecting an edge between two nodes shows the metrics for requests that traveled that connection. Again, be aware of the time range field next to the search bar if you don’t see any search results.

After invoking your Lambda function several more times by testing it from the Lambda console, you can view some aggregate performance metrics. Look at the following:

  • From the client perspective, requests to the Lambda service for the function are taking an average of 50 ms to respond. The function is generating ~1 trace per minute.
  • The function itself is responding in an average of 3 ms. In the following screenshot, I’ve clicked on this node, which reveals a latency histogram of the traced requests showing that over 95% of requests return in under 5 ms.
  • Parameter Store is responding to requests in an average of 64 ms, but note the much lower trace rate in the node. This is because you only fetch data from Parameter Store on the initialization of the Lambda execution environment.

Conclusion

Deduplication, encryption, and restricted access to shared configuration and secrets is a key component to any mature architecture. Serverless architectures designed using event-driven, on-demand, compute services like Lambda are no different.

In this post, I walked you through a sample application accessing unencrypted and encrypted values in Parameter Store. These values were created in a hierarchy by application environment and component name, with the permissions to decrypt secret values restricted to only the function needing access. The techniques used here can become the foundation of secure, robust configuration management in your enterprise serverless applications.

Task Networking in AWS Fargate

Post Syndicated from Nathan Peck original https://aws.amazon.com/blogs/compute/task-networking-in-aws-fargate/

AWS Fargate is a technology that allows you to focus on running your application without needing to provision, monitor, or manage the underlying compute infrastructure. You package your application into a Docker container that you can then launch using your container orchestration tool of choice.

Fargate allows you to use containers without being responsible for Amazon EC2 instances, similar to how EC2 allows you to run VMs without managing physical infrastructure. Currently, Fargate provides support for Amazon Elastic Container Service (Amazon ECS). Support for Amazon Elastic Container Service for Kubernetes (Amazon EKS) will be made available in the near future.

Despite offloading the responsibility for the underlying instances, Fargate still gives you deep control over configuration of network placement and policies. This includes the ability to use many networking fundamentals such as Amazon VPC and security groups.

This post covers how to take advantage of the different ways of networking your containers in Fargate when using ECS as your orchestration platform, with a focus on how to do networking securely.

The first step to running any application in Fargate is defining an ECS task for Fargate to launch. A task is a logical group of one or more Docker containers that are deployed with specified settings. When running a task in Fargate, there are two different forms of networking to consider:

  • Container (local) networking
  • External networking

Container Networking

Container networking is often used for tightly coupled application components. Perhaps your application has a web tier that is responsible for serving static content as well as generating some dynamic HTML pages. To generate these dynamic pages, it has to fetch information from another application component that has an HTTP API.

One potential architecture for such an application is to deploy the web tier and the API tier together as a pair and use local networking so the web tier can fetch information from the API tier.

If you are running these two components as two processes on a single EC2 instance, the web tier application process could communicate with the API process on the same machine by using the local loopback interface. The local loopback interface has a special IP address of 127.0.0.1 and hostname of localhost.

By making a networking request to this local interface, it bypasses the network interface hardware and instead the operating system just routes network calls from one process to the other directly. This gives the web tier a fast and efficient way to fetch information from the API tier with almost no networking latency.

In Fargate, when you launch multiple containers as part of a single task, they can also communicate with each other over the local loopback interface. Fargate uses a special container networking mode called awsvpc, which gives all the containers in a task a shared elastic network interface to use for communication.

If you specify a port mapping for each container in the task, then the containers can communicate with each other on that port. For example the following task definition could be used to deploy the web tier and the API tier:

{
  "family": "myapp"
  "containerDefinitions": [
    {
      "name": "web",
      "image": "my web image url",
      "portMappings": [
        {
          "containerPort": 80
        }
      ],
      "memory": 500,
      "cpu": 10,
      "esssential": true
    },
    {
      "name": "api",
      "image": "my api image url",
      "portMappings": [
        {
          "containerPort": 8080
        }
      ],
      "cpu": 10,
      "memory": 500,
      "essential": true
    }
  ]
}

ECS, with Fargate, is able to take this definition and launch two containers, each of which is bound to a specific static port on the elastic network interface for the task.

Because each Fargate task has its own isolated networking stack, there is no need for dynamic ports to avoid port conflicts between different tasks as in other networking modes. The static ports make it easy for containers to communicate with each other. For example, the web container makes a request to the API container using its well-known static port:

curl 127.0.0.1:8080/my-endpoint

This sends a local network request, which goes directly from one container to the other over the local loopback interface without traversing the network. This deployment strategy allows for fast and efficient communication between two tightly coupled containers. But most application architectures require more than just internal local networking.

External Networking

External networking is used for network communications that go outside the task to other servers that are not part of the task, or network communications that originate from other hosts on the internet and are directed to the task.

Configuring external networking for a task is done by modifying the settings of the VPC in which you launch your tasks. A VPC is a fundamental tool in AWS for controlling the networking capabilities of resources that you launch on your account.

When setting up a VPC, you create one or more subnets, which are logical groups that your resources can be placed into. Each subnet has an Availability Zone and its own route table, which defines rules about how network traffic operates for that subnet. There are two main types of subnets: public and private.

Public subnets

A public subnet is a subnet that has an associated internet gateway. Fargate tasks in that subnet are assigned both private and public IP addresses:


A browser or other client on the internet can send network traffic to the task via the internet gateway using its public IP address. The tasks can also send network traffic to other servers on the internet because the route table can route traffic out via the internet gateway.

If tasks want to communicate directly with each other, they can use each other’s private IP address to send traffic directly from one to the other so that it stays inside the subnet without going out to the internet gateway and back in.

Private subnets

A private subnet does not have direct internet access. The Fargate tasks inside the subnet don’t have public IP addresses, only private IP addresses. Instead of an internet gateway, a network address translation (NAT) gateway is attached to the subnet:

 

There is no way for another server or client on the internet to reach your tasks directly, because they don’t even have an address or a direct route to reach them. This is a great way to add another layer of protection for internal tasks that handle sensitive data. Those tasks are protected and can’t receive any inbound traffic at all.

In this configuration, the tasks can still communicate to other servers on the internet via the NAT gateway. They would appear to have the IP address of the NAT gateway to the recipient of the communication. If you run a Fargate task in a private subnet, you must add this NAT gateway. Otherwise, Fargate can’t make a network request to Amazon ECR to download the container image, or communicate with Amazon CloudWatch to store container metrics.

Load balancers

If you are running a container that is hosting internet content in a private subnet, you need a way for traffic from the public to reach the container. This is generally accomplished by using a load balancer such as an Application Load Balancer or a Network Load Balancer.

ECS integrates tightly with AWS load balancers by automatically configuring a service-linked load balancer to send network traffic to containers that are part of the service. When each task starts, the IP address of its elastic network interface is added to the load balancer’s configuration. When the task is being shut down, network traffic is safely drained from the task before removal from the load balancer.

To get internet traffic to containers using a load balancer, the load balancer is placed into a public subnet. ECS configures the load balancer to forward traffic to the container tasks in the private subnet:

This configuration allows your tasks in Fargate to be safely isolated from the rest of the internet. They can still initiate network communication with external resources via the NAT gateway, and still receive traffic from the public via the Application Load Balancer that is in the public subnet.

Another potential use case for a load balancer is for internal communication from one service to another service within the private subnet. This is typically used for a microservice deployment, in which one service such as an internet user account service needs to communicate with an internal service such as a password service. Obviously, it is undesirable for the password service to be directly accessible on the internet, so using an internet load balancer would be a major security vulnerability. Instead, this can be accomplished by hosting an internal load balancer within the private subnet:

With this approach, one container can distribute requests across an Auto Scaling group of other private containers via the internal load balancer, ensuring that the network traffic stays safely protected within the private subnet.

Best Practices for Fargate Networking

Determine whether you should use local task networking

Local task networking is ideal for communicating between containers that are tightly coupled and require maximum networking performance between them. However, when you deploy one or more containers as part of the same task they are always deployed together so it removes the ability to independently scale different types of workload up and down.

In the example of the application with a web tier and an API tier, it may be the case that powering the application requires only two web tier containers but 10 API tier containers. If local container networking is used between these two container types, then an extra eight unnecessary web tier containers would end up being run instead of allowing the two different services to scale independently.

A better approach would be to deploy the two containers as two different services, each with its own load balancer. This allows clients to communicate with the two web containers via the web service’s load balancer. The web service could distribute requests across the eight backend API containers via the API service’s load balancer.

Run internet tasks that require internet access in a public subnet

If you have tasks that require internet access and a lot of bandwidth for communication with other services, it is best to run them in a public subnet. Give them public IP addresses so that each task can communicate with other services directly.

If you run these tasks in a private subnet, then all their outbound traffic has to go through an NAT gateway. AWS NAT gateways support up to 10 Gbps of burst bandwidth. If your bandwidth requirements go over this, then all task networking starts to get throttled. To avoid this, you could distribute the tasks across multiple private subnets, each with their own NAT gateway. It can be easier to just place the tasks into a public subnet, if possible.

Avoid using a public subnet or public IP addresses for private, internal tasks

If you are running a service that handles private, internal information, you should not put it into a public subnet or use a public IP address. For example, imagine that you have one task, which is an API gateway for authentication and access control. You have another background worker task that handles sensitive information.

The intended access pattern is that requests from the public go to the API gateway, which then proxies request to the background task only if the request is from an authenticated user. If the background task is in a public subnet and has a public IP address, then it could be possible for an attacker to bypass the API gateway entirely. They could communicate directly to the background task using its public IP address, without being authenticated.

Conclusion

Fargate gives you a way to run containerized tasks directly without managing any EC2 instances, but you still have full control over how you want networking to work. You can set up containers to talk to each other over the local network interface for maximum speed and efficiency. For running workloads that require privacy and security, use a private subnet with public internet access locked down. Or, for simplicity with an internet workload, you can just use a public subnet and give your containers a public IP address.

To deploy one of these Fargate task networking approaches, check out some sample CloudFormation templates showing how to configure the VPC, subnets, and load balancers.

If you have questions or suggestions, please comment below.