Tag Archives: fire

Catching Up on Some Recent AWS Launches and Publications

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/catching-up-on-some-recent-aws-launches-and-publications/

As I have noted in the past, the AWS Blog Team is working hard to make sure that you know about as many AWS launches and publications as possible, without totally burying you in content! As part of our balancing act, we will occasionally publish catch-up posts to clear our queues and to bring more information to your attention. Here’s what I have in store for you today:

  • Monitoring for Cross-Region Replication of S3 Objects
  • Tags for Spot Fleet Instances
  • PCI DSS Compliance for 12 More Services
  • HIPAA Eligibility for WorkDocs
  • VPC Resizing
  • AppStream 2.0 Graphics Design Instances
  • AMS Connector App for ServiceNow
  • Regtech in the Cloud
  • New & Revised Quick Starts

Let’s jump right in!

Monitoring for Cross-Region Replication of S3 Objects
I told you about cross-region replication for S3 a couple of years ago. As I showed you at the time, you simply enable versioning for the source bucket and then choose a destination region and bucket. You can check the replication status manually, or you can create an inventory (daily or weekly) of the source and destination buckets.

The Cross-Region Replication Monitor (CRR Monitor for short) solution checks the replication status of objects across regions and gives you metrics and failure notifications in near real-time.

To learn more, read the CRR Monitor Implementation Guide and then use the AWS CloudFormation template to Deploy the CRR Monitor.

Tags for Spot Instances
Spot Instances and Spot Fleets (collections of Spot Instances) give you access to spare compute capacity. We recently gave you the ability to enter tags (key/value pairs) as part of your spot requests and to have those tags applied to the EC2 instances launched to fulfill the request:

To learn more, read Tag Your Spot Fleet EC2 Instances.

PCI DSS Compliance for 12 More Services
As first announced on the AWS Security Blog, we recently added 12 more services to our PCI DSS compliance program, raising the total number of in-scope services to 42. To learn more, check out our Compliance Resources.

HIPAA Eligibility for WorkDocs
In other compliance news, we announced that Amazon WorkDocs has achieved HIPAA eligibility and PCI DSS compliance in all AWS Regions where WorkDocs is available.

VPC Resizing
This feature allows you to extend an existing Virtual Private Cloud (VPC) by adding additional blocks of addresses. This gives you more flexibility and should help you to deal with growth. You can add up to four secondary /16 CIDRs per VPC. You can also edit the secondary CIDRs by deleting them and adding new ones. Simply select the VPC and choose Edit CIDRs from the menu:

Then add or remove CIDR blocks as desired:

To learn more, read about VPCs and Subnets.

AppStream 2.0 Graphics Design Instances
Powered by AMD FirePro S7150x2 Server GPUs and equipped with AMD Multiuser GPU technology, the new Graphics Design instances for Amazon AppStream 2.0 will let you run and stream graphics applications more cost-effectively than ever. The instances are available in four sizes, with 2-16 vCPUs and 7.5 GB to 61 GB of memory.

To learn more, read Introducing Amazon AppStream 2.0 Graphics Design, a New Lower Costs Instance Type for Streaming Graphics Applications.

AMS Connector App for ServiceNow
AWS Managed Services (AMS) provides Infrastructure Operations Management for the Enterprise. Designed to accelerate cloud adoption, it automates common operations such as change requests, patch management, security and backup.

The new AMS integration App for ServiceNow lets you interact with AMS from within ServiceNow, with no need for any custom development or API integration.

To learn more, read Cloud Management Made Easier: AWS Managed Services Now Integrates with ServiceNow.

Regtech in the Cloud
Regtech (as I learned while writing this), is short for regulatory technology, and is all about using innovative technology such as cloud computing, analytics, and machine learning to address regulatory challenges.

Working together with APN Consulting Partner Cognizant, TABB Group recently published a thought leadership paper that explains why regulations and compliance pose huge challenges for our customers in the financial services, and shows how AWS can help!

New & Revised Quick Starts
Our Quick Starts team has been cranking out new solutions and making significant updates to the existing ones. Here’s a roster:

Alfresco Content Services (v2) Atlassian Confluence Confluent Platform Data Lake
Datastax Enterprise GitHub Enterprise Hashicorp Nomad HIPAA
Hybrid Data Lake with Wandisco Fusion IBM MQ IBM Spectrum Scale Informatica EIC
Magento (v2) Linux Bastion (v2) Modern Data Warehouse with Tableau MongoDB (v2)
NetApp ONTAP NGINX (v2) RD Gateway Red Hat Openshift
SAS Grid SIOS Datakeeper StorReduce SQL Server (v2)

And that’s all I have for today!

Jeff;

Another Chinese Developer Arrested For Selling VPN Access

Post Syndicated from Andy original https://torrentfreak.com/another-chinese-developer-arrested-for-selling-vpn-access-170920/

Early 2017, China’s Ministry of Industry and Information Technology said that due to Internet technologies and services expanding in a “disorderly” fashion, regulation would be needed to restore order.

Announcing measures to strengthen network information security management, the government said it would begin a “nationwide Internet network access services clean-up.”

Months later, it became evident that authorities were taking an even more aggressive stance towards Virtual Private Networks, since these allow citizens to evade the so-called Great Firewall of China. The government said that in future, operating such a service without a corresponding telecommunications license would constitute an offense.

Now, according to local news reports, a citizen who apparently failed to heed the government’s warnings has fallen foul of the new rules.

The Nanjinger reports that a software developer, named as Mr. Zhao from Nanjing, was arrested August 21 for contravening the new laws on VPN licensing.

Zhao reportedly told authorities he’d initially set up the VPN for his own use in order to access content hosted abroad, which presumably involved circumventing China’s firewall. However, once he recognized there was a demand, the developer decided to let others use the service for a small fee.

The prices he asked were indeed small – just $1.50 per month or around $18 for two years’ service. Based on reported total revenues of just $164 for the entire business, it’s possible he had around 100 customers, or indeed far fewer.

What will happen to the man isn’t clear but he’ll be keen to avoid the fate of Deng Jiewei, who previously ran a small website through which he’d sold around $2,100 worth of VPN software.

Early September it was reported that the 26-year-old had been sentenced to nine months in prison for offering tools that enable people to “visit foreign websites that cannot be accessed via a domestic (mainland) IP address.”

These cases are part of an emerging pattern in China centered around the supply and sale of VPN products and services. Back in July, Apple began banning VPN applications from its iOS store in China. The company reported that the apps contained content that is illegal locally, thereby violating the company’s policies.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and ANONYMOUS VPN services.

Using AWS CodePipeline, AWS CodeBuild, and AWS Lambda for Serverless Automated UI Testing

Post Syndicated from Prakash Palanisamy original https://aws.amazon.com/blogs/devops/using-aws-codepipeline-aws-codebuild-and-aws-lambda-for-serverless-automated-ui-testing/

Testing the user interface of a web application is an important part of the development lifecycle. In this post, I’ll explain how to automate UI testing using serverless technologies, including AWS CodePipeline, AWS CodeBuild, and AWS Lambda.

I built a website for UI testing that is hosted in S3. I used Selenium to perform cross-browser UI testing on Chrome, Firefox, and PhantomJS, a headless WebKit browser with Ghost Driver, an implementation of the WebDriver Wire Protocol. I used Python to create test cases for ChromeDriver, FirefoxDriver, or PhatomJSDriver based the browser against which the test is being executed.

Resources referred to in this post, including the AWS CloudFormation template, test and status websites hosted in S3, AWS CodeBuild build specification files, AWS Lambda function, and the Python script that performs the test are available in the serverless-automated-ui-testing GitHub repository.

S3 Hosted Test Website:

AWS CodeBuild supports custom containers so we can use the Selenium/standalone-Firefox and Selenium/standalone-Chrome containers, which include prebuild Firefox and Chrome browsers, respectively. Xvfb performs the graphical operation in virtual memory without any display hardware. It will be installed in the CodeBuild containers during the install phase.

Build Spec for Chrome and Firefox

The build specification for Chrome and Firefox testing includes multiple phases:

  • The environment variables section contains a set of default variables that are overridden while creating the build project or triggering the build.
  • As part of install phase, required packages like Xvfb and Selenium are installed using yum.
  • During the pre_build phase, the test bed is prepared for test execution.
  • During the build phase, the appropriate DISPLAY is set and the tests are executed.
version: 0.2

env:
  variables:
    BROWSER: "chrome"
    WebURL: "https://sampletestweb.s3-eu-west-1.amazonaws.com/website/index.html"
    ArtifactBucket: "codebuild-demo-artifact-repository"
    MODULES: "mod1"
    ModuleTable: "test-modules"
    StatusTable: "blog-test-status"

phases:
  install:
    commands:
      - apt-get update
      - apt-get -y upgrade
      - apt-get install xvfb python python-pip build-essential -y
      - pip install --upgrade pip
      - pip install selenium
      - pip install awscli
      - pip install requests
      - pip install boto3
      - cp xvfb.init /etc/init.d/xvfb
      - chmod +x /etc/init.d/xvfb
      - update-rc.d xvfb defaults
      - service xvfb start
      - export PATH="$PATH:`pwd`/webdrivers"
  pre_build:
    commands:
      - python prepare_test.py
  build:
    commands:
      - export DISPLAY=:5
      - cd tests
      - echo "Executing simple test..."
      - python testsuite.py

Because Ghost Driver runs headless, it can be executed on AWS Lambda. In keeping with a fire-and-forget model, I used CodeBuild to create the PhantomJS Lambda function and trigger the test invocations on Lambda in parallel. This is powerful because many tests can be executed in parallel on Lambda.

Build Spec for PhantomJS

The build specification for PhantomJS testing also includes multiple phases. It is a little different from the preceding example because we are using AWS Lambda for the test execution.

  • The environment variables section contains a set of default variables that are overridden while creating the build project or triggering the build.
  • As part of install phase, the required packages like Selenium and the AWS CLI are installed using yum.
  • During the pre_build phase, the test bed is prepared for test execution.
  • During the build phase, a zip file that will be used to create the PhantomJS Lambda function is created and tests are executed on the Lambda function.
version: 0.2

env:
  variables:
    BROWSER: "phantomjs"
    WebURL: "https://sampletestweb.s3-eu-west-1.amazonaws.com/website/index.html"
    ArtifactBucket: "codebuild-demo-artifact-repository"
    MODULES: "mod1"
    ModuleTable: "test-modules"
    StatusTable: "blog-test-status"
    LambdaRole: "arn:aws:iam::account-id:role/role-name"

phases:
  install:
    commands:
      - apt-get update
      - apt-get -y upgrade
      - apt-get install python python-pip build-essential -y
      - apt-get install zip unzip -y
      - pip install --upgrade pip
      - pip install selenium
      - pip install awscli
      - pip install requests
      - pip install boto3
  pre_build:
    commands:
      - python prepare_test.py
  build:
    commands:
      - cd lambda_function
      - echo "Packaging Lambda Function..."
      - zip -r /tmp/lambda_function.zip ./*
      - func_name=`echo $CODEBUILD_BUILD_ID | awk -F ':' '{print $1}'`-phantomjs
      - echo "Creating Lambda Function..."
      - chmod 777 phantomjs
      - |
         func_list=`aws lambda list-functions | grep FunctionName | awk -F':' '{print $2}' | tr -d ', "'`
         if echo "$func_list" | grep -qw $func_name
         then
             echo "Lambda function already exists."
         else
             aws lambda create-function --function-name $func_name --runtime "python2.7" --role $LambdaRole --handler "testsuite.lambda_handler" --zip-file fileb:///tmp/lambda_function.zip --timeout 150 --memory-size 1024 --environment Variables="{WebURL=$WebURL, StatusTable=$StatusTable}" --tags Name=$func_name
         fi
      - export PhantomJSFunction=$func_name
      - cd ../tests/
      - python testsuite.py

The list of test cases and the test modules that belong to each case are stored in an Amazon DynamoDB table. Based on the list of modules passed as an argument to the CodeBuild project, CodeBuild gets the test cases from that table and executes them. The test execution status and results are stored in another Amazon DynamoDB table. It will read the test status from the status table in DynamoDB and display it.

AWS CodeBuild and AWS Lambda perform the test execution as individual tasks. AWS CodePipeline plays an important role here by enabling continuous delivery and parallel execution of tests for optimized testing.

Here’s how to do it:

In AWS CodePipeline, create a pipeline with four stages:

  • Source (AWS CodeCommit)
  • UI testing (AWS Lambda and AWS CodeBuild)
  • Approval (manual approval)
  • Production (AWS Lambda)

Pipeline stages, the actions in each stage, and transitions between stages are shown in the following diagram.

This design implemented in AWS CodePipeline looks like this:

CodePipeline automatically detects a change in the source repository and triggers the execution of the pipeline.

In the UITest stage, there are two parallel actions:

  • DeployTestWebsite invokes a Lambda function to deploy the test website in S3 as an S3 website.
  • DeployStatusPage invokes another Lambda function to deploy in parallel the status website in S3 as an S3 website.

Next, there are three parallel actions that trigger the CodeBuild project:

  • TestOnChrome launches a container to perform the Selenium tests on Chrome.
  • TestOnFirefox launches another container to perform the Selenium tests on Firefox.
  • TestOnPhantomJS creates a Lambda function and invokes individual Lambda functions per test case to execute the test cases in parallel.

You can monitor the status of the test execution on the status website, as shown here:

When the UI testing is completed successfully, the pipeline continues to an Approval stage in which a notification is sent to the configured SNS topic. The designated team member reviews the test status and approves or rejects the deployment. Upon approval, the pipeline continues to the Production stage, where it invokes a Lambda function and deploys the website to a production S3 bucket.

I used a CloudFormation template to set up my continuous delivery pipeline. The automated-ui-testing.yaml template, available from GitHub, sets up a full-featured pipeline.

When I use the template to create my pipeline, I specify the following:

  • AWS CodeCommit repository.
  • SNS topic to send approval notification.
  • S3 bucket name where the artifacts will be stored.

The stack name should follow the rules for S3 bucket naming because it will be part of the S3 bucket name.

When the stack is created successfully, the URLs for the test website and status website appear in the Outputs section, as shown here:

Conclusion

In this post, I showed how you can use AWS CodePipeline, AWS CodeBuild, AWS Lambda, and a manual approval process to create a continuous delivery pipeline for serverless automated UI testing. Websites running on Amazon EC2 instances or AWS Elastic Beanstalk can also be tested using similar approach.


About the author

Prakash Palanisamy is a Solutions Architect for Amazon Web Services. When he is not working on Serverless, DevOps or Alexa, he will be solving problems in Project Euler. He also enjoys watching educational documentaries.

TVAddons: A Law Firm is Not Spying on Our Kodi Users

Post Syndicated from Andy original https://torrentfreak.com/tvaddons-a-law-firm-is-not-spying-on-our-kodi-users-170918/

A few months ago, TVAddons was without doubt the leading repository for third-party Kodi addons.

During March, the platform had 40 million unique users connected to the site’s servers, together transferring a petabyte of addons and updates.

In June, however, things started to fall apart. After news broke that the site was being sued in a federal court in Texas, TVAddons disappeared. It was assumed these events were connected but it later transpired the platform was being used in Canada as well, and that was the true reason for the downtime.

While it’s easy to be wise after the event, in hindsight it might’ve been better for the platform to go public about the Canadian matter quite a bit sooner than it did. Of course, there are always legal considerations that prevent early disclosure, but when popular sites disappear into a black hole, two plus two can quickly equal five when fed through the web’s rumor machine.

Things weren’t helped in July when it was discovered that the site’s former domains had been handed over to a Canada-based law firm. Again, no official explanation was forthcoming and again, people became concerned.

If this had been a plaintiff’s law firm, people would’ve had good reason to worry, since it would have been technically possible to spy on TVAddons’ users. However, as the truth began to filter out and court papers became available, it soon became crystal clear that simply wasn’t the case.

The bottom line, which is backed up by publicly available court papers, is that the law firm holding the old TVAddons domains is not the law firm suing TVAddons. Instead, it was appointed by the court to hold TVAddons’ property until the Canadian lawsuit is brought to a conclusion, whenever that might be.

“They have a legal obligation to protect our property at all cost, and prevent anyone (especially the law firm who is suing is) from gaining access to them,” says TVAddons.

“The law firm who is holding them is doing nothing more than protecting our property until the time that it will finally be returned after the appeal takes place.”

Unfortunately, assurances provided by TVAddons and information published by the court itself hasn’t been enough to stop some people fearing the worst. While the facts have plenty of support on Twitter and Facebook, there also appears to be an element who would like to see TVAddons fail in its efforts to re-establish itself.

Only time will tell who will win that battle but in the meantime, TVAddons has tried to cover all the bases in an update post on its blog.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and ANONYMOUS VPN services.

Prime Day 2017 – Powered by AWS

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/prime-day-2017-powered-by-aws/

The third annual Prime Day set another round of records for global orders, topping Black Friday and Cyber Monday, making it the biggest day in Amazon retail history. Over the course of the 30 hour event, tens of millions of Prime members purchased things like Echo Dots, Fire tablets, programmable pressure cookers, espresso machines, rechargeable batteries, and much more! July 11th also set a record for the number of new Prime memberships, as people signed up in order to take advantage of hundreds of thousands of deals. Amazon customers shopped online and made heavy use of the Amazon App, with mobile orders more than doubling from last Prime Day.

Powered by AWS
Last year I told you about How AWS Powered Amazon’s Biggest Day Ever, and shared what the team had learned with regard to preparation, automation, monitoring, and thinking big. All of those lessons still apply and you can read that post to learn more. Preparation for this year’s Prime Day (which started just days after Prime Day 2016 wrapped up) started by collecting and sharing best practices and identifying areas for improvement, proceeding to implementation and stress testing as the big day approached. Two of the best practices involve auditing and GameDay:

Auditing – This is a formal way for us to track preparations, identify risks, and to track progress against our objectives. Each team must respond to a series of detailed technical and operational questions that are designed to help them determine their readiness. On the technical side, questions could revolve around time to recovery after a database failure, including the all-important check of the TTL (time to live) for the CNAME. Operational questions address schedules for on-call personnel, points of contact, and ownership of services & instances.

GameDay – This practice (which I believe originated with former Amazonian Jesse Robbins), is intended to validate all of the capacity planning & preparation and to verify that all of the necessary operational practices are in place and work as expected. It introduces simulated failures and helps to train the team to identify and quickly resolve issues, building muscle memory in the process. It also tests failover and recovery capabilities, and can expose latent defects that are lurking under the covers. GameDays help teams to understand scaling drivers (page views, orders, and so forth) and gives them an opportunity to test their scaling practices. To learn more, read Resilience Engineering: Learning to Embrace Failure or watch the video: GameDay: Creating Resiliency Through Destruction.

Prime Day 2017 Metrics
So, how did we do this year?

The AWS teams checked their dashboards and log files, and were happy to share their metrics with me. Here are a few of the most interesting ones:

Block Storage – Use of Amazon Elastic Block Store (EBS) grew by 40% year-over-year, with aggregate data transfer jumping to 52 petabytes (a 50% increase) for the day and total I/O requests rising to 835 million (a 30% increase). The team told me that they loved the elasticity of EBS, and that they were able to ramp down on capacity after Prime Day concluded instead of being stuck with it.

NoSQL Database – Amazon DynamoDB requests from Alexa, the Amazon.com sites, and the Amazon fulfillment centers totaled 3.34 trillion, peaking at 12.9 million per second. According to the team, the extreme scale, consistent performance, and high availability of DynamoDB let them meet needs of Prime Day without breaking a sweat.

Stack Creation – Nearly 31,000 AWS CloudFormation stacks were created for Prime Day in order to bring additional AWS resources on line.

API Usage – AWS CloudTrail processed over 50 billion events and tracked more than 419 billion calls to various AWS APIs, all in support of Prime Day.

Configuration TrackingAWS Config generated over 14 million Configuration items for AWS resources.

You Can Do It
Running an event that is as large, complex, and mission-critical as Prime Day takes a lot of planning. If you have an event of this type in mind, please take a look at our new Infrastructure Event Readiness white paper. Inside, you will learn how to design and provision your applications to smoothly handle planned scaling events such as product launches or seasonal traffic spikes, with sections on automation, resiliency, cost optimization, event management, and more.

Jeff;

 

Verified cryptography for Firefox 57

Post Syndicated from corbet original https://lwn.net/Articles/733675/rss

The Mozilla Security Blog announces
that Firefox 57 will benefit from the addition of a formally verified
crypto package.
The first result of this collaboration, an implementation of the
Curve25519 key establishment algorithm (RFC7748), has just landed in
Firefox Nightly. Curve25519 is widely used for key-exchange in TLS, and was
recently standardized by the IETF. As an additional bonus, besides being
formally verified, the HACL* Curve25519 implementation is also almost 20%
faster on 64 bit platforms than the existing NSS implementation (19500
scalar multiplications per second instead of 15100) which represents an
improvement in both security and performance to our users.

GNOME 3.26 released

Post Syndicated from ris original https://lwn.net/Articles/733587/rss

The GNOME Project has announced the release of GNOME 3.26 “Manchester”.
This release brings refinements to the system search, animations for
maximizing and unmaximizing windows and support for color Emoji.

Improvements to core GNOME applications include a redesigned Settings
application, a new display settings panel, Firefox sync in the Web browser,
and many more.” There are openSUSE nightly live images that include
GNOME 3.26.

Delivering Graphics Apps with Amazon AppStream 2.0

Post Syndicated from Deepak Suryanarayanan original https://aws.amazon.com/blogs/compute/delivering-graphics-apps-with-amazon-appstream-2-0/

Sahil Bahri, Sr. Product Manager, Amazon AppStream 2.0

Do you need to provide a workstation class experience for users who run graphics apps? With Amazon AppStream 2.0, you can stream graphics apps from AWS to a web browser running on any supported device. AppStream 2.0 offers a choice of GPU instance types. The range includes the newly launched Graphics Design instance, which allows you to offer a fast, fluid user experience at a fraction of the cost of using a graphics workstation, without upfront investments or long-term commitments.

In this post, I discuss the Graphics Design instance type in detail, and how you can use it to deliver a graphics application such as Siemens NX―a popular CAD/CAM application that we have been testing on AppStream 2.0 with engineers from Siemens PLM.

Graphics Instance Types on AppStream 2.0

First, a quick recap on the GPU instance types available with AppStream 2.0. In July, 2017, we launched graphics support for AppStream 2.0 with two new instance types that Jeff Barr discussed on the AWS Blog:

  • Graphics Desktop
  • Graphics Pro

Many customers in industries such as engineering, media, entertainment, and oil and gas are using these instances to deliver high-performance graphics applications to their users. These instance types are based on dedicated NVIDIA GPUs and can run the most demanding graphics applications, including those that rely on CUDA graphics API libraries.

Last week, we added a new lower-cost instance type: Graphics Design. This instance type is a great fit for engineers, 3D modelers, and designers who use graphics applications that rely on the hardware acceleration of DirectX, OpenGL, or OpenCL APIs, such as Siemens NX, Autodesk AutoCAD, or Adobe Photoshop. The Graphics Design instance is based on AMD’s FirePro S7150x2 Server GPUs and equipped with AMD Multiuser GPU technology. The instance type uses virtualized GPUs to achieve lower costs, and is available in four instance sizes to scale and match the requirements of your applications.

Instance vCPUs Instance RAM (GiB) GPU Memory (GiB)
stream.graphics-design.large 2 7.5 GiB 1
stream.graphics-design.xlarge 4 15.3 GiB 2
stream.graphics-design.2xlarge 8 30.5 GiB 4
stream.graphics-design.4xlarge 16 61 GiB 8

The following table compares all three graphics instance types on AppStream 2.0, along with example applications you could use with each.

  Graphics Design Graphics Desktop Graphics Pro
Number of instance sizes 4 1 3
GPU memory range
1–8 GiB 4 GiB 8–32 GiB
vCPU range 2–16 8 16–32
Memory range 7.5–61 GiB 15 GiB 122–488 GiB
Graphics libraries supported AMD FirePro S7150x2 NVIDIA GRID K520 NVIDIA Tesla M60
Price range (N. Virginia AWS Region) $0.25 – $2.00/hour $0.5/hour $2.05 – $8.20/hour
Example applications Adobe Premiere Pro, AutoDesk Revit, Siemens NX AVEVA E3D, SOLIDWORKS AutoDesk Maya, Landmark DecisionSpace, Schlumberger Petrel

Example graphics instance set up with Siemens NX

In the section, I walk through setting up Siemens NX with Graphics Design instances on AppStream 2.0. After set up is complete, users can able to access NX from within their browser and also access their design files from a file share. You can also use these steps to set up and test your own graphics applications on AppStream 2.0. Here’s the workflow:

  1. Create a file share to load and save design files.
  2. Create an AppStream 2.0 image with Siemens NX installed.
  3. Create an AppStream 2.0 fleet and stack.
  4. Invite users to access Siemens NX through a browser.
  5. Validate the setup.

To learn more about AppStream 2.0 concepts and set up, see the previous post Scaling Your Desktop Application Streams with Amazon AppStream 2.0. For a deeper review of all the setup and maintenance steps, see Amazon AppStream 2.0 Developer Guide.

Step 1: Create a file share to load and save design files

To launch and configure the file server

  1. Open the EC2 console and choose Launch Instance.
  2. Scroll to the Microsoft Windows Server 2016 Base Image and choose Select.
  3. Choose an instance type and size for your file server (I chose the general purpose m4.large instance). Choose Next: Configure Instance Details.
  4. Select a VPC and subnet. You launch AppStream 2.0 resources in the same VPC. Choose Next: Add Storage.
  5. If necessary, adjust the size of your EBS volume. Choose Review and Launch, Launch.
  6. On the Instances page, give your file server a name, such as My File Server.
  7. Ensure that the security group associated with the file server instance allows for incoming traffic from the security group that you select for your AppStream 2.0 fleets or image builders. You can use the default security group and select the same group while creating the image builder and fleet in later steps.

Log in to the file server using a remote access client such as Microsoft Remote Desktop. For more information about connecting to an EC2 Windows instance, see Connect to Your Windows Instance.

To enable file sharing

  1. Create a new folder (such as C:\My Graphics Files) and upload the shared files to make available to your users.
  2. From the Windows control panel, enable network discovery.
  3. Choose Server Manager, File and Storage Services, Volumes.
  4. Scroll to Shares and choose Start the Add Roles and Features Wizard. Go through the wizard to install the File Server and Share role.
  5. From the left navigation menu, choose Shares.
  6. Choose Start the New Share Wizard to set up your folder as a file share.
  7. Open the context (right-click) menu on the share and choose Properties, Permissions, Customize Permissions.
  8. Choose Permissions, Add. Add Read and Execute permissions for everyone on the network.

Step 2:  Create an AppStream 2.0 image with Siemens NX installed

To connect to the image builder and install applications

  1. Open the AppStream 2.0 management console and choose Images, Image Builder, Launch Image Builder.
  2. Create a graphics design image builder in the same VPC as your file server.
  3. From the Image builder tab, select your image builder and choose Connect. This opens a new browser tab and display a desktop to log in to.
  4. Log in to your image builder as ImageBuilderAdmin.
  5. Launch the Image Assistant.
  6. Download and install Siemens NX and other applications on the image builder. I added Blender and Firefox, but you could replace these with your own applications.
  7. To verify the user experience, you can test the application performance on the instance.

Before you finish creating the image, you must mount the file share by enabling a few Microsoft Windows services.

To mount the file share

  1. Open services.msc and check the following services:
  • DNS Client
  • Function Discovery Resource Publication
  • SSDP Discovery
  • UPnP Device H
  1. If any of the preceding services have Startup Type set to Manual, open the context (right-click) menu on the service and choose Start. Otherwise, open the context (right-click) menu on the service and choose Properties. For Startup Type, choose Manual, Apply. To start the service, choose Start.
  2. From the Windows control panel, enable network discovery.
  3. Create a batch script that mounts a file share from the storage server set up earlier. The file share is mounted automatically when a user connects to the AppStream 2.0 environment.

Logon Script Location: C:\Users\Public\logon.bat

Script Contents:

:loop

net use H: \\path\to\network\share 

PING localhost -n 30 >NUL

IF NOT EXIST H:\ GOTO loop

  1. Open gpedit.msc and choose User Configuration, Windows Settings, Scripts. Set logon.bat as the user logon script.
  2. Next, create a batch script that makes the mounted drive visible to the user.

Logon Script Location: C:\Users\Public\startup.bat

Script Contents:
REG DELETE “HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Policies\Explorer” /v “NoDrives” /f

  1. Open Task Scheduler and choose Create Task.
  2. Choose General, provide a task name, and then choose Change User or Group.
  3. For Enter the object name to select, enter SYSTEM and choose Check Names, OK.
  4. Choose Triggers, New. For Begin the task, choose At startup. Under Advanced Settings, change Delay task for to 5 minutes. Choose OK.
  5. Choose Actions, New. Under Settings, for Program/script, enter C:\Users\Public\startup.bat. Choose OK.
  6. Choose Conditions. Under Power, clear the Start the task only if the computer is on AC power Choose OK.
  7. To view your scheduled task, choose Task Scheduler Library. Close Task Scheduler when you are done.

Step 3:  Create an AppStream 2.0 fleet and stack

To create a fleet and stack

  1. In the AppStream 2.0 management console, choose Fleets, Create Fleet.
  2. Give the fleet a name, such as Graphics-Demo-Fleet, that uses the newly created image and the same VPC as your file server.
  3. Choose Stacks, Create Stack. Give the stack a name, such as Graphics-Demo-Stack.
  4. After the stack is created, select it and choose Actions, Associate Fleet. Associate the stack with the fleet you created in step 1.

Step 4:  Invite users to access Siemens NX through a browser

To invite users

  1. Choose User Pools, Create User to create users.
  2. Enter a name and email address for each user.
  3. Select the users just created, and choose Actions, Assign Stack to provide access to the stack created in step 2. You can also provide access using SAML 2.0 and connect to your Active Directory if necessary. For more information, see the Enabling Identity Federation with AD FS 3.0 and Amazon AppStream 2.0 post.

Your user receives an email invitation to set up an account and use a web portal to access the applications that you have included in your stack.

Step 5:  Validate the setup

Time for a test drive with Siemens NX on AppStream 2.0!

  1. Open the link for the AppStream 2.0 web portal shared through the email invitation. The web portal opens in your default browser. You must sign in with the temporary password and set a new password. After that, you get taken to your app catalog.
  2. Launch Siemens NX and interact with it using the demo files available in the shared storage folder – My Graphics Files. 

After I launched NX, I captured the screenshot below. The Siemens PLM team also recorded a video with NX running on AppStream 2.0.

Summary

In this post, I discussed the GPU instances available for delivering rich graphics applications to users in a web browser. While I demonstrated a simple setup, you can scale this out to launch a production environment with users signing in using Active Directory credentials,  accessing persistent storage with Amazon S3, and using other commonly requested features reviewed in the Amazon AppStream 2.0 Launch Recap – Domain Join, Simple Network Setup, and Lots More post.

To learn more about AppStream 2.0 and capabilities added this year, see Amazon AppStream 2.0 Resources.

Parallel Processing in Python with AWS Lambda

Post Syndicated from Oz Akan original https://aws.amazon.com/blogs/compute/parallel-processing-in-python-with-aws-lambda/

If you develop an AWS Lambda function with Node.js, you can call multiple web services without waiting for a response due to its asynchronous nature.  All requests are initiated almost in parallel, so you can get results much faster than a series of sequential calls to each web service. Considering the maximum execution duration for Lambda, it is beneficial for I/O bound tasks to run in parallel.

If you develop a Lambda function with Python, parallelism doesn’t come by default. Lambda supports Python 2.7 and Python 3.6, both of which have multiprocessing and threading modules. The multiprocessing module supports multiple cores so it is a better choice, especially for CPU intensive workloads. With the threading module, all threads are going to run on a single core though performance difference is negligible for network-bound tasks.

In this post, I demonstrate how the Python multiprocessing module can be used within a Lambda function to run multiple I/O bound tasks in parallel.

Example use case

In this example, you call Amazon EC2 and Amazon EBS API operations to find the total EBS volume size for all your EC2 instances in a region.

This is a two-step process:

  • The Lambda function calls EC2 to list all EC2 instances
  • The function calls EBS for each instance to find attached EBS volumes

Sequential Execution

If you make these calls sequentially, during the second step, your code has to loop over all the instances and wait for each response before moving to the next request.

The class named VolumesSequential has the following methods:

  • __init__ creates an EC2 resource.
  • total_size returns all EC2 instances and passes these to the instance_volumes method.
  • instance_volumes finds the total size of EBS volumes for the instance.
  • total_size adds all sizes from all instances to find total size for the EBS volumes.

Source Code for Sequential Execution

import time
import boto3

class VolumesSequential(object):
    """Finds total volume size for all EC2 instances"""
    def __init__(self):
        self.ec2 = boto3.resource('ec2')

    def instance_volumes(self, instance):
        """
        Finds total size of the EBS volumes attached
        to an EC2 instance
        """
        instance_total = 0
        for volume in instance.volumes.all():
            instance_total += volume.size
        return instance_total

    def total_size(self):
        """
        Lists all EC2 instances in the default region
        and sums result of instance_volumes
        """
        print "Running sequentially"
        instances = self.ec2.instances.all()
        instances_total = 0
        for instance in instances:
            instances_total += self.instance_volumes(instance)
        return instances_total

def lambda_handler(event, context):
    volumes = VolumesSequential()
    _start = time.time()
    total = volumes.total_size()
    print "Total volume size: %s GB" % total
    print "Sequential execution time: %s seconds" % (time.time() - _start)

Parallel Execution

The multiprocessing module that comes with Python 2.7 lets you run multiple processes in parallel. Due to the Lambda execution environment not having /dev/shm (shared memory for processes) support, you can’t use multiprocessing.Queue or multiprocessing.Pool.

If you try to use multiprocessing.Queue, you get an error similar to the following:

[Errno 38] Function not implemented: OSError
…
    sl = self._semlock = _multiprocessing.SemLock(kind, value, maxvalue)
OSError: [Errno 38] Function not implemented

On the other hand, you can use multiprocessing.Pipe instead of multiprocessing.Queue to accomplish what you need without getting any errors during the execution of the Lambda function.

The class named VolumeParallel has the following methods:

  • __init__ creates an EC2 resource
  • instance_volumes finds the total size of EBS volumes attached to an instance
  • total_size finds all instances and runs instance_volumes for each to find the total size of all EBS volumes attached to all EC2 instances.

Source Code for Parallel Execution

import time
from multiprocessing import Process, Pipe
import boto3

class VolumesParallel(object):
    """Finds total volume size for all EC2 instances"""
    def __init__(self):
        self.ec2 = boto3.resource('ec2')

    def instance_volumes(self, instance, conn):
        """
        Finds total size of the EBS volumes attached
        to an EC2 instance
        """
        instance_total = 0
        for volume in instance.volumes.all():
            instance_total += volume.size
        conn.send([instance_total])
        conn.close()

    def total_size(self):
        """
        Lists all EC2 instances in the default region
        and sums result of instance_volumes
        """
        print "Running in parallel"

        # get all EC2 instances
        instances = self.ec2.instances.all()
        
        # create a list to keep all processes
        processes = []

        # create a list to keep connections
        parent_connections = []
        
        # create a process per instance
        for instance in instances:            
            # create a pipe for communication
            parent_conn, child_conn = Pipe()
            parent_connections.append(parent_conn)

            # create the process, pass instance and connection
            process = Process(target=self.instance_volumes, args=(instance, child_conn,))
            processes.append(process)

        # start all processes
        for process in processes:
            process.start()

        # make sure that all processes have finished
        for process in processes:
            process.join()

        instances_total = 0
        for parent_connection in parent_connections:
            instances_total += parent_connection.recv()[0]

        return instances_total


def lambda_handler(event, context):
    volumes = VolumesParallel()
    _start = time.time()
    total = volumes.total_size()
    print "Total volume size: %s GB" % total
    print "Sequential execution time: %s seconds" % (time.time() - _start)

Performance

There are a few differences between two Lambda functions when it comes to the execution environment. The parallel function requires more memory than the sequential one. You may run the parallel Lambda function with a relatively large memory setting to see how much memory it uses. The amount of memory required by the Lambda function depends on what the function does and how many processes it runs in parallel. To restrict maximum memory usage, you may want to limit the number of parallel executions.

In this case, when you give 1024 MB for both Lambda functions, the parallel function runs about two times faster than the sequential function. I have a handful of EC2 instances and EBS volumes in my account so the test ran way under the maximum execution limit for Lambda. Remember that parallel execution doesn’t guarantee that the runtime for the Lambda function will be under the maximum allowed duration but does speed up the overall execution time.

Sequential Run Time Output

START RequestId: 4c370b12-f9d3-11e6-b46b-b5d41afd648e Version: $LATEST
Running sequentially
Total volume size: 589 GB
Sequential execution time: 3.80066084862 seconds
END RequestId: 4c370b12-f9d3-11e6-b46b-b5d41afd648e
REPORT RequestId: 4c370b12-f9d3-11e6-b46b-b5d41afd648e Duration: 4091.59 ms Billed Duration: 4100 ms  Memory Size: 1024 MB Max Memory Used: 46 MB

Parallel Run Time Output

START RequestId: 4f1328ed-f9d3-11e6-8cd1-c7381c5c078d Version: $LATEST
Running in parallel
Total volume size: 589 GB
Sequential execution time: 1.89170885086 seconds
END RequestId: 4f1328ed-f9d3-11e6-8cd1-c7381c5c078d
REPORT RequestId: 4f1328ed-f9d3-11e6-8cd1-c7381c5c078d Duration: 2069.33 ms Billed Duration: 2100 ms  Memory Size: 1024 MB Max Memory Used: 181 MB 

Summary

In this post, I demonstrated how to run multiple I/O bound tasks in parallel by developing a Lambda function with the Python multiprocessing module. With the help of this module, you freed the CPU from waiting for I/O and fired up several tasks to fit more I/O bound operations into a given time frame. This might be the trick to reduce the overall runtime of a Lambda function especially when you have to run so many and don’t want to split the work into smaller chunks.

New Network Load Balancer – Effortless Scaling to Millions of Requests per Second

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/new-network-load-balancer-effortless-scaling-to-millions-of-requests-per-second/

Elastic Load Balancing (ELB)) has been an important part of AWS since 2009, when it was launched as part of a three-pack that also included Auto Scaling and Amazon CloudWatch. Since that time we have added many features, and also introduced the Application Load Balancer. Designed to support application-level, content-based routing to applications that run in containers, Application Load Balancers pair well with microservices, streaming, and real-time workloads.

Over the years, our customers have used ELB to support web sites and applications that run at almost any scale — from simple sites running on a T2 instance or two, all the way up to complex applications that run on large fleets of higher-end instances and handle massive amounts of traffic. Behind the scenes, ELB monitors traffic and automatically scales to meet demand. This process, which includes a generous buffer of headroom, has become quicker and more responsive over the years and works well even for our customers who use ELB to support live broadcasts, “flash” sales, and holidays. However, in some situations such as instantaneous fail-over between regions, or extremely spiky workloads, we have worked with our customers to pre-provision ELBs in anticipation of a traffic surge.

New Network Load Balancer
Today we are introducing the new Network Load Balancer (NLB). It is designed to handle tens of millions of requests per second while maintaining high throughput at ultra low latency, with no effort on your part. The Network Load Balancer is API-compatible with the Application Load Balancer, including full programmatic control of Target Groups and Targets. Here are some of the most important features:

Static IP Addresses – Each Network Load Balancer provides a single IP address for each VPC subnet in its purview. If you have targets in a subnet in us-west-2a and other targets in a subnet in us-west-2c, NLB will create and manage two IP addresses (one per subnet); connections to that IP address will spread traffic across the instances in the subnet. You can also specify an existing Elastic IP for each subnet for even greater control. With full control over your IP addresses, Network Load Balancer can be used in situations where IP addresses need to be hard-coded into DNS records, customer firewall rules, and so forth.

Zonality – The IP-per-subnet feature reduces latency with improved performance, improves availability through isolation and fault tolerance and makes the use of Network Load Balancers transparent to your client applications. Network Load Balancers also attempt to route a series of requests from a particular source to targets in a single subnet while still allowing automatic failover.

Source Address Preservation – With Network Load Balancer, the original source IP address and source ports for the incoming connections remain unmodified, so application software need not support X-Forwarded-For, proxy protocol, or other workarounds. This also means that normal firewall rules, including VPC Security Groups, can be used on targets.

Long-running Connections – NLB handles connections with built-in fault tolerance, and can handle connections that are open for months or years, making them a great fit for IoT, gaming, and messaging applications.

Failover – Powered by Route 53 health checks, NLB supports failover between IP addresses within and across regions.

Creating a Network Load Balancer
I can create a Network Load Balancer opening up the EC2 Console, selecting Load Balancers, and clicking on Create Load Balancer:

I choose Network Load Balancer and click on Create, then enter the details. I can choose an Elastic IP address for each subnet in the target VPC and I can tag the Network Load Balancer:

Then I click on Configure Routing and create a new target group. I enter a name, and then choose the protocol and port. I can also set up health checks that go to the traffic port or to the alternate of my choice:

Then I click on Register Targets and the EC2 instances that will receive traffic, and click on Add to registered:

I make sure that everything looks good and then click on Create:

The state of my new Load Balancer is provisioning, switching to active within a minute or so:

For testing purposes, I simply grab the DNS name of the Load Balancer from the console (in practice I would use Amazon Route 53 and a more friendly name):

Then I sent it a ton of traffic (I intended to let it run for just a second or two but got distracted and it created a huge number of processes, so this was a happy accident):

$ while true;
> do
>   wget http://nlb-1-6386cc6bf24701af.elb.us-west-2.amazonaws.com/phpinfo2.php &
> done

A more disciplined test would use a tool like Bees with Machine Guns, of course!

I took a quick break to let some traffic flow and then checked the CloudWatch metrics for my Load Balancer, finding that it was able to handle the sudden onslaught of traffic with ease:

I also looked at my EC2 instances to see how they were faring under the load (really well, it turns out):

It turns out that my colleagues did run a more disciplined test than I did. They set up a Network Load Balancer and backed it with an Auto Scaled fleet of EC2 instances. They set up a second fleet composed of hundreds of EC2 instances, each running Bees with Machine Guns and configured to generate traffic with highly variable request and response sizes. Beginning at 1.5 million requests per second, they quickly turned the dial all the way up, reaching over 3 million requests per second and 30 Gbps of aggregate bandwidth before maxing out their test resources.

Choosing a Load Balancer
As always, you should consider the needs of your application when you choose a load balancer. Here are some guidelines:

Network Load Balancer (NLB) – Ideal for load balancing of TCP traffic, NLB is capable of handling millions of requests per second while maintaining ultra-low latencies. NLB is optimized to handle sudden and volatile traffic patterns while using a single static IP address per Availability Zone.

Application Load Balancer (ALB) – Ideal for advanced load balancing of HTTP and HTTPS traffic, ALB provides advanced request routing that supports modern application architectures, including microservices and container-based applications.

Classic Load Balancer (CLB) – Ideal for applications that were built within the EC2-Classic network.

For a side-by-side feature comparison, see the Elastic Load Balancer Details table.

If you are currently using a Classic Load Balancer and would like to migrate to a Network Load Balancer, take a look at our new Load Balancer Copy Utility. This Python tool will help you to create a Network Load Balancer with the same configuration as an existing Classic Load Balancer. It can also register your existing EC2 instances with the new load balancer.

Pricing & Availability
Like the Application Load Balancer, pricing is based on Load Balancer Capacity Units, or LCUs. Billing is $0.006 per LCU, based on the highest value seen across the following dimensions:

  • Bandwidth – 1 GB per LCU.
  • New Connections – 800 per LCU.
  • Active Connections – 100,000 per LCU.

Most applications are bandwidth-bound and should see a cost reduction (for load balancing) of about 25% when compared to Application or Classic Load Balancers.

Network Load Balancers are available today in all AWS commercial regions except China (Beijing), supported by AWS CloudFormation, Auto Scaling, and Amazon ECS.

Jeff;

 

[$] The challenges of supporting geolocation in WordPress

Post Syndicated from jake original https://lwn.net/Articles/733083/rss

As much as we get addicted to mobile phones and online services, nobody
(outside of cyberpunk fiction) actually lives online. That’s why maps,
geolocation services, and geographic information systems (GISes) have come to
play a bigger role online. They reflect they way we live,
work, travel, socialize, and (in the case of natural or human-made
disasters, which come more and more frequently) suffer. Thus there is
value in integrating geolocation into existing web sites, but systems like
WordPress do not make supporting that easy.

The software development firm LuminFire
has contributed to the spread of geolocation services by creating a library for
WordPress
that helps web sites insert geolocation information into web
pages. This
article describes how LuminFire surmounted the challenges posed by
WordPress and shows a few
uses for the library.

Chinese Man Jailed For Nine Months For Selling VPN Software

Post Syndicated from Andy original https://torrentfreak.com/chinese-man-jailed-for-nine-months-for-selling-vpn-software-170904/

Back in January, China’s Ministry of Industry and Information Technology announced that due to Internet technologies and services expanding in a “disorderly” fashion, regulation would be needed to restore order.

The government said that it would take measures to “strengthen network information security management” and would embark on a “nationwide Internet network access services clean-up.”

One of the initial targets was reported as censorship-busting VPNs, which allow citizens to evade the so-called Great Firewall of China. Operating such a service without a corresponding telecommunications business license would constitute an offense, the government said.

The news was met with hostility, with media and citizens alike bemoaning Chinese censorship. Then early July, a further report suggested that the government would go a step further by ordering ISPs to block VPNs altogether. This elicited an immediate response from local authorities, who quickly denied the reports, blaming “foreign media” for false reporting.

But it was clear something was amiss in China. Later that month, it was revealed that Apple had banned VPN software and services from its app store.

“We are writing to notify you that your application will be removed from the China App Store because it includes content that is illegal in China, which is not in compliance with the App Store Review Guidelines,” Apple informed developers.

With an effort clearly underway to target VPNs, news today from China suggests that the government is indeed determined to tackle the anti-censorship threat presented by such tools. According to local media, Chinese man Deng Mouwei who ran a small website through which he sold VPN software, has been sentenced to prison.

The 26-year-old, from the city of Dongguan in the Guangdong province, was first arrested in October 2016 after setting up a website to sell VPNs. Just two products were on offer but this was enough to spring authorities into action.

A prosecution notice, published by Chinese publication Whatsonweibo, reveals the university educated man was arrested “on suspicion of providing tools for illegal control of a computer information system.”

It’s alleged that the man used several phrases to market the VPNs including “VPN over the wall” and “Shadow shuttle cloud”. The business wasn’t particularly profitable though, generating just 13957 yuan ($2,133) since October 2015.

“The court held that the defendant Deng Mouwei disregarded state law, by providing tools specifically for the invasion and illegal control of computer information systems procedures,” the Guandong Province’s First People’s Court said in its ruling, handed down earlier this year but only just made public.

“The circumstances are serious and the behavior violated the ‘Criminal Law of the People’s Republic of China Article 285.”

Article 285 – don’t interfere with the state

“The facts of the crime are clear, the evidence is true and sufficient. In accordance with the provisions of Article 172 of the Criminal Procedure Law of the People’s Republic of China, the defendant shall be sentenced according to law.”

Under Chinese law, Article 172 references stolen goods, noting that people who “conceal or act as distributors” shall be sentenced to not more than three years of fixed-term imprisonment, or fined, depending on circumstances. Where VPNs fit into that isn’t clear, but things didn’t end well for the defendant.

For offering tools that enable people to “visit foreign websites that can not be accessed via a domestic (mainland) IP address,” Deng Mouwei received a nine-month prison sentence.

News of the sentencing appeared on Chinese social media over the weekend, prompting fear and confusion among local users. While many struggled to see the sense of the prosecution, some expressed fear that people who even use VPN software to evade China’s Great Firewall could be subjected to prosecution in the future.

Whatever the outcome, it’s now abundantly clear that China is the midst of a VPN crackdown across the board and is serious about stamping out efforts to bypass its censorship. With the Internet’s ability to treat censorship as damage and route round it, it’s a battle that won’t be easily won.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and ANONYMOUS VPN services.

Pirate Sites and the Dying Art of Customer Service

Post Syndicated from Andy original https://torrentfreak.com/pirate-sites-and-the-dying-art-of-customer-service-170803/

Consumers of products and services in the West are now more educated than ever before. They often research before making a purchase and view follow-up assistance as part of the package. Indeed, many companies live and die on the levels of customer support they’re able to offer.

In this ultra-competitive world, we send faulty technology items straight back to the store, cancel our unreliable phone providers, and switch to new suppliers for the sake of a few dollars, pounds or euros per month. But does this demanding environment translate to the ‘pirate’ world?

It’s important to remember that when the first waves of unauthorized platforms appeared after the turn of the century, content on the Internet was firmly established as being ‘free’. When people first fired up KaZaA, LimeWire, or the few fledgling BitTorrent portals, few could believe their luck. Nevertheless, the fact that there was no charge for content was quickly accepted as the standard.

That’s a position that continues today but for reasons that are not entirely clear, some users of pirate sites treat the availability of such platforms as some kind of right, holding them to the same standards of service that they would their ISP, for example.

One only has to trawl the comments section on The Pirate Bay to see hundreds of examples of people criticizing the quality of uploaded movies, the fact that a software crack doesn’t work, or that some anonymous uploader failed to deliver the latest album quickly enough. That’s aside from the continual complaints screamed on various external platforms which bemoan the site’s downtime record.

For people who recall the sheer joy of finding a working Suprnova mirror for a few minutes almost 15 years ago, this attitude is somewhat baffling. Back then, people didn’t go ballistic when a site went down, they savored the moment when enthusiastic volunteers brought it back up. There was a level of gratefulness that appears somewhat absent today, in a new world where free torrent and streaming sites are suddenly held to the same standards as Comcast or McDonalds.

But while a cultural change among users has definitely taken place over the years, the way sites communicate with their users has taken a hit too. Despite the advent of platforms including Twitter and Facebook, the majority of pirate site operators today have a tendency to leave their users completely in the dark when things go wrong, leading to speculation and concern among grateful and entitled users alike.

So why does The Pirate Bay’s blog stay completely unattended these days? Why do countless sites let dust gather on Twitter accounts that last made an announcement in 2012? And why don’t site operators announce scheduled downtime in advance or let people know what’s going on when the unexpected happens?

“Honestly? I don’t have the time anymore. I also care less than I did,” one site operator told TF.

“11 years of doing this shit is enough to grind anybody down. It’s something I need to do but not doing it makes no difference either. People complain in any case. Then if you start [informing people] again they’ll want it always. Not happening.”

Rather less complimentary was the operator of a large public site. He told us that two decades ago relationships between operators and users were good but have been getting worse ever since.

“Users of pirate content 20 years ago were highly technical. 10 years ago they were somewhat technical. Right now they are fucking watermelon head puppets. They are plain stupid,” he said.

“Pirate sites don’t have customers. They have users. The definition of a customer, when related to the web, is a person that actually buys a service. Since pirates sites don’t sell services (I’m talking about public ones) they have no customers.”

Another site operator told us that his motivations for not interacting with users are based on the changing legal environment, which has become steadily and markedly worse, year upon year.

“I’m not enjoying being open like before. I used to chat keenly with the users, on the site and IRC [Internet Relay Chat] but i’m keeping my distance since a long time ago,” he told us.

“There have always been risks but now I lock everything down. I’m not using Facebook in any way personally or for the site and I don’t need the dramas of Twitter. Everytime you engage on there, problems arise with people wanting a piece of you. Some of the staff use it but I advise the contrary where possible.”

Interested in where the boundaries lie, we asked a couple of sites whether they should be doing more to keep users informed and if that should be considered a ‘customer service’ obligation these days.

“This is not Netflix and i’m not the ‘have a nice day’ guy from McDonalds,” one explained.

“If people want Netflix help then go to Netflix. There’s two of us here doing everything and I mean everything. We’re already in a pinch so spending time to answer every retarded question from kids is right out.”

Our large public site operator agreed, noting that users complain about the most crazy things, including why they don’t have enough space on a drive to download, why a movie that’s out in 2020 hasn’t been uploaded yet, and why can’t they login – when they haven’t even opened an account yet.

While the responses aren’t really a surprise given the ‘free’ nature of the sites and the volume of visitors, things don’t get any better when moving up (we use the term loosely) to paid ‘pirate’ services.

Last week, one streaming platform in particular had an absolute nightmare with what appeared to be technical issues. Nevertheless, some of its users, despite only paying a few pounds per month, demanded their pound of flesh from the struggling service.

One, who raised the topic on Reddit, was advised to ask for his money back for the trouble caused. It raised a couple of eyebrows.

“Put in a ticket and ask [for a refund], morally they should,” the user said.

The use of the word “morally” didn’t sit well with some observers, one of which couldn’t understand how the word could possibly be mentioned in the context of a pirate paying another pirate money, for a pirate service that had broken down.

“Wait let me get this straight,” the critic said. “You want a refund for a gray market service. It’s like buying drugs off the corner only to find out it’s parsley. Do you go back to the dealer and demand a refund? You live and you learn bud. [Shaking my head] at people in here talking about it being morally responsible…too funny.”

It’s not clear when pirate sites started being held to the same standards as regular commercial entities but from anecdotal evidence at least, the problem appears to be getting worse. That being said and from what we’ve heard, users can stop holding their breath waiting for deluxe customer service – it’s not coming anytime soon.

“There’s no way to monetize support,” one admin concludes.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and ANONYMOUS VPN services.

How Much Does ‘Free’ Premier League Piracy Cost These Days?

Post Syndicated from Andy original https://torrentfreak.com/how-much-does-free-premier-league-piracy-cost-these-days-170902/

Right now, the English Premier League is engaged in perhaps the most aggressively innovative anti-piracy operation the Internet has ever seen. After obtaining a new High Court order, it now has the ability to block ‘pirate’ streams of matches, in real-time, with no immediate legal oversight.

If the Premier League believes a server is streaming one of its matches, it can ask ISPs in the UK to block it, immediately. That’s unprecedented anywhere on the planet.

As previously reported, this campaign caused a lot of problems for people trying to access free and premium streams at the start of the season. Many IPTV services were blocked in the UK within minutes of matches starting, with free streams also dropping like flies. According to information obtained by TF, more than 600 illicit streams were blocked during that weekend.

While some IPTV providers and free streams continued without problems, it seems likely that it’s only a matter of time before the EPL begins to pick off more and more suppliers. To be clear, the EPL isn’t taking services or streams down, it’s only blocking them, which means that people using circumvention technologies like VPNs can get around the problem.

However, this raises the big issue again – that of continuously increasing costs. While piracy is often painted as free, it is not, and as setups get fancier, costs increase too.

Below, we take a very general view of a handful of the many ‘pirate’ configurations currently available, to work out how much ‘free’ piracy costs these days. The list is not comprehensive by any means (and excludes more obscure methods such as streaming torrents, which are always free and rarely blocked), but it gives an idea of costs and how the balance of power might eventually tip.

Basic beginner setup

On a base level, people who pirate online need at least some equipment. That could be an Android smartphone and easily installed free software such as Mobdro or Kodi. An Internet connection is a necessity and if the EPL blocks those all important streams, a VPN provider is required to circumvent the bans.

Assuming people already have a phone and the Internet, a VPN can be bought for less than £5 per month. This basic setup is certainly cheap but overall it’s an entry level experience that provides quality equal to the effort and money expended.

Equipment: Phone, tablet, PC
Comms: Fast Internet connection, decent VPN provider
Overal performance: Low quality, unpredictable, often unreliable
Cost: £5pm approx for VPN, plus Internet costs

Big screen, basic

For those who like their matches on the big screen, stepping up the chain costs more money. People need a TV with an HDMI input and a fast Internet connection as a minimum, alongside some kind of set-top device to run the necessary software.

Android devices are the most popular and are roughly split into two groups – the small standalone box type and the plug-in ‘stick’ variant such as Amazon’s Firestick.

A cheap Android set-top box

These cost upwards of £30 to £40 but the software to install on them is free. Like the phone, Mobdro is an option, but most people look to a Kodi setup with third-party addons. That said, all streams received on these setups are now vulnerable to EPL blocking so in the long-term, users will need to run a paid VPN.

The problem here is that some devices (including the 1st gen Firestick) aren’t ideal for running a VPN on top of a stream, so people will need to dump their old device and buy something more capable. That could cost another £30 to £40 and more, depending on requirements.

Importantly, none of this investment guarantees a decent stream – that’s down to what’s available on the day – but invariably the quality is low and/or intermittent, at best.

Equipment: TV, decent Android set-top box or equivalent
Comms: Fast Internet connection, decent VPN provider
Overall performance: Low to acceptable quality, unpredictable, often unreliable
Cost: £30 to £50 for set-top box, £5pm approx for VPN, plus Internet

Premium IPTV – PC or Android based

At this point, premium IPTV services come into play. People have a choice of spending varying amounts of money, depending on the quality of experience they require.

First of all, a monthly IPTV subscription with an established provider that isn’t going to disappear overnight is required, which can be a challenge to find in itself. We’re not here to review or recommend services but needless to say, like official TV packages they come in different flavors to suit varying wallet sizes. Some stick around, many don’t.

A decent one with a Sky-like EPG costs between £7 and £15 per month, depending on the quality and depth of streams, and how far in front users are prepared to commit.

Fairly typical IPTV with EPG (VOD shown)

Paying for a year in advance tends to yield better prices but with providers regularly disappearing and faltering in their service levels, people are often reluctant to do so. That said, some providers experience few problems so it’s a bit like gambling – research can improve the odds but there’s never a guarantee.

However, even when a provider, price, and payment period is decided upon, the process of paying for an IPTV service can be less than straightforward.

While some providers are happy to accept PayPal, many will only deal in credit cards, bitcoin, or other obscure payment methods. That sets up more barriers to entry that might deter the less determined customer. And, if time is indeed money, fussing around with new payment processors can be pricey, at least to begin with.

Once subscribed though, watching these streams is pretty straightforward. On a base level, people can use a phone, tablet, or set-top device to receive them, using software such as Perfect Player IPTV, for example. Currently available in free (ad supported) and premium (£2) variants, this software can be setup in a few clicks and will provide a decent user experience, complete with EPG.

Perfect Player IPTV

Those wanting to go down the PC route have more options but by far the most popular is receiving IPTV via a Kodi setup. For the complete novice, it’s not always easy to setup but some IPTV providers supply their own free addons, which streamline the process massively. These can also be used on Android-based Kodi setups, of course.

Nevertheless, if the EPL blocks the provider, a VPN is still going to be needed to access the IPTV service.

An Android tablet running Kodi

So, even if we ignore the cost of the PC and Internet connection, users could still find themselves paying between £10 and £20 per month for an IPTV service and a decent VPN. While more channels than simply football will be available from most providers, this is getting dangerously close to the £18 Sky are asking for its latest football package.

Equipment: TV, PC, or decent Android set-top box or equivalent
Comms: Fast Internet connection, IPTV subscription, decent VPN provider
Overal performance: High quality, mostly reliable, user-friendly (once setup)
Cost: PC or £30/£50 for set-top box, IPTV subscription £7 to £15pm, £5pm approx for VPN, plus Internet, plus time and patience for obscure payment methods.
Note: There are zero refunds when IPTV providers disappoint or disappear

Premium IPTV – Deluxe setup

Moving up to the top of the range, things get even more costly. Those looking to give themselves the full home entertainment-like experience will often move away from the PC and into the living room in front of the TV, armed with a dedicated set-top box. Weapon of choice: the Mag254.

Like Amazon’s FireStick, PC or Android tablet, the Mag254 is an entirely legal, content agnostic device. However, enter the credentials provided by many illicit IPTV suppliers and users are presented with a slick Sky-like experience, far removed from anything available elsewhere. The device is operated by remote control and integrates seamlessly with any HDMI-capable TV.

Mag254 IPTV box

Something like this costs around £70 in the UK, plus the cost of a WiFi adaptor on top, if needed. The cost of the IPTV provider needs to be figured in too, plus a VPN subscription if the provider gets blocked by EPL, which is likely. However, in this respect the Mag254 has a problem – it can’t run a VPN natively. This means that if streams get blocked and people need to use a VPN, they’ll need to find an external solution.

Needless to say, this costs more money. People can either do all the necessary research and buy a VPN-capable router/modem that’s also compatible with their provider (this can stretch to a couple of hundred pounds) or they’ll need to invest in a small ‘travel’ router with VPN client features built in.

‘Travel’ router (with tablet running Mobdro for scale)

These devices are available on Amazon for around £25 and sit in between the Mag254 (or indeed any other wireless device) and the user’s own regular router. Once the details of the VPN subscription are entered into the router, all traffic passing through is encrypted and will tunnel through web blocking measures. They usually solve the problem (ymmv) but of course, this is another cost.

Equipment: Mag254 or similar, with WiFi
Comms: Fast Internet connection, IPTV subscription, decent VPN provider
Overall performance: High quality, mostly reliable, very user-friendly
Cost: Mag254 around £75 with WiFi, IPTV subscription £7 to £15pm, £5pm for VPN (plus £25 for mini router), plus Internet, plus patience for obscure payment methods.
Note: There are zero refunds when IPTV providers disappoint or disappear

Conclusion

On the whole, people who want a reliable and high-quality Premier League streaming experience cannot get one for free, no matter where they source the content. There are many costs involved, some of which cannot be avoided.

If people aren’t screwing around with annoying and unreliable Kodi streams, they’ll be paying for an IPTV provider, VPN and other equipment. Or, if they want an easy life, they’ll be paying Sky, BT or Virgin Media. That might sound harsh to many pirates but it’s the only truly reliable solution.

However, for those looking for something that’s merely adequate, costs drop significantly. Indeed, if people don’t mind the hassle of wondering whether a sub-VHS quality stream will appear before the big match and stay on throughout, it can all be done on a shoestring.

But perhaps the most important thing to note in respect of costs is the recent changes to the pricing of Premier League content in the UK. As mentioned earlier, Sky now delivers a sports package for £18pm, which sounds like the best deal offered to football fans in recent years. It will be tempting for sure and has all the hallmarks of a price point carefully calculated by Sky.

The big question is whether it will be low enough to tip significant numbers of people away from piracy. The reality is that if another couple of thousand streams get hit hard again this weekend – and the next – and the next – many pirating fans will be watching the season drift away for yet another month, unviewed. That’s got to be frustrating.

The bottom line is that high-quality streaming piracy is becoming a little bit pricey just for football so if it becomes unreliable too – and that’s the Premier League’s goal – the balance of power could tip. At this point, the EPL will need to treat its new customers with respect, in order to keep them feeling both entertained and unexploited.

Fail on those counts – especially the latter – and the cycle will start again.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and ANONYMOUS VPN services.

Russian Hacking Tools Codenamed WhiteBear Exposed

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2017/09/russian_hacking.html

Kaspersky Labs exposed a highly sophisticated set of hacking tools from Russia called WhiteBear.

From February to September 2016, WhiteBear activity was narrowly focused on embassies and consular operations around the world. All of these early WhiteBear targets were related to embassies and diplomatic/foreign affair organizations. Continued WhiteBear activity later shifted to include defense-related organizations into June 2017. When compared to WhiteAtlas infections, WhiteBear deployments are relatively rare and represent a departure from the broader Skipper Turla target set. Additionally, a comparison of the WhiteAtlas framework to WhiteBear components indicates that the malware is the product of separate development efforts. WhiteBear infections appear to be preceded by a condensed spearphishing dropper, lack Firefox extension installer payloads, and contain several new components signed with a new code signing digital certificate, unlike WhiteAtlas incidents and modules.

The exact delivery vector for WhiteBear components is unknown to us, although we have very strong suspicion the group spearphished targets with malicious pdf files. The decoy pdf document above was likely stolen from a target or partner. And, although WhiteBear components have been consistently identified on a subset of systems previously targeted with the WhiteAtlas framework, and maintain components within the same filepaths and can maintain identical filenames, we were unable to firmly tie delivery to any specific WhiteAtlas component. WhiteBear focused on various embassies and diplomatic entities around the world in early 2016 — tellingly, attempts were made to drop and display decoy pdf’s with full diplomatic headers and content alongside executable droppers on target systems.

One of the clever things the tool does is use hijacked satellite connections for command and control, helping it evade detection by broad surveillance capabilities like what what NSA uses. We’ve seen Russian attack tools that do this before. More details are in the Kaspersky blog post.

Given all the trouble Kaspersky is having because of its association with Russia, it’s interesting to speculate on this disclosure. Either they are independent, and have burned a valuable Russian hacking toolset. Or the Russians decided that the toolset was already burned — maybe the NSA knows all about it and has neutered it somehow — and allowed Kaspersky to publish. Or maybe it’s something in between. That’s the problem with this kind of speculation: without any facts, your theories just amplify whatever opinion you had previously.

Oddly, there hasn’t been much press about this. I have only found one story.

EDITED TO ADD: A colleague pointed out to me that Kaspersky announcements like this often get ignored by the press. There was very little written about ProjectSauron, for example.

EDITED TO ADD: The text I originally wrote said that Kaspersky released the attacks tools, like what Shadow Brokers is doing. They did not. They just exposed the existence of them. Apologies for that error — it was sloppy wording.

Security updates for Thursday

Post Syndicated from jake original https://lwn.net/Articles/732530/rss

Security updates have been issued by Debian (connman, faad2, gnupg, imagemagick, libdbd-mysql-perl, mercurial, and php5), openSUSE (postgresql93 and samba and resource-agents), Oracle (poppler), Scientific Linux (poppler), SUSE (firefox and php7), and Ubuntu (pyjwt).

VMware Cloud on AWS – Now Available

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/vmware-cloud-on-aws-now-available/

Last year I told you about the work that we are doing with our friends at VMware to build the VMware Cloud on AWS. As I shared at the time, this is a native, fully-managed offering that runs the VMware SDDC stack directly on bare-metal AWS infrastructure that maintains the elasticity and security customers have come to expect. This allows you to benefit from the scalability and resiliency of AWS, along with the networking and system-level hardware features that are fundamental parts of our security-first architecture.

VMware Cloud on AWS allows you take advantage of what you already know and own. Your existing skills, your investment in training, your operational practices, and your investment in software licenses remain relevant and applicable when you move to the public cloud. As part of that move you can forget about building & running data centers, modernizing hardware, and scaling to meet transient or short-term demand. You can also take advantage of a long list of AWS compute, database, analytics, IoT, AI, security, mobile, deployment and application services.

Initial Availability
After incorporating feedback from many customers and partners in our Early Access beta program, today at VMworld, VMware and Amazon announced the initial availability of VMware Cloud on AWS. This service is initially available in the US West (Oregon) region through VMware and members of the VMware Partner Network. It is designed to support popular use cases such as data center extension, application development & testing, and application migration.

This offering is sold, delivered, supported, and billed by VMware. It supports custom-sized VMs, runs any OS that is supported by VMware, and makes use of single-tenant bare-metal AWS infrastructure so that you can bring your Windows Server licenses to the cloud. Each SDDC (Software-Defined Data Center) consists of 4 to 16 instances, each with 36 cores, 512 GB of memory, and 15.2 TB of NVMe storage. Clusters currently run in a single AWS Availability Zone (AZ) with support in the works for clusters that span AZs. You can spin up an entire VMware SDDC in a couple of hours, and scale host capacity up and down in minutes.

The NSX networking platform (powered by the AWS Elastic Networking Adapter running at up to 25 Gbps) supports multicast traffic, separate networks for management and compute, and IPSec VPN tunnels to on-premises firewalls, routers, and so forth.

Here’s an overview to show you how all of the parts fit together:

The VMware and third-party management tools (vCenter Server, PowerCLI, the vRealize Suite, and code that calls the vSphere API) that you use today will work just fine when you build a hybrid VMware environment that combines your existing on-premises resources and those that you launch in AWS. This hybrid environment will use a new VMware Hybrid Linked Mode to create a single, unified view of your on-premises and cloud resources. You can use familiar VMware tools to manage your applications, without having to purchase any new or custom hardware, rewrite applications, or modify your operating model.

Your applications and your code can access the full range of AWS services (the database, analytical, and AI services are a good place to start). Use for these services is billed separately and you’ll need to create an AWS account.

Learn More at VMworld
If you are attending VMworld in Las Vegas, please be sure to check out some of the 90+ AWS sessions:

Also, be sure to stop by booth #300 and say hello to my colleagues from the AWS team.

In the Works
Our teams have come a long way since last year, but things are just getting revved up!

VMware and AWS are continuing to invest to enable support for new capabilities and use cases, such as application migration, data center expansion, and application test and development. Work is under way to add additional AWS regions, support more use cases such as disaster recovery and data center consolidation, add certifications, and enable even deeper integration with AWS services.

Jeff;