Tag Archives: forums

Flight Sim Company Threatens Reddit Mods Over “Libelous” DRM Posts

Post Syndicated from Andy original https://torrentfreak.com/flight-sim-company-threatens-reddit-mods-over-libellous-drm-posts-180604/

Earlier this year, in an effort to deal with piracy of their products, flight simulator company FlightSimLabs took drastic action by installing malware on customers’ machines.

The story began when a Reddit user reported something unusual in his download of FlightSimLabs’ A320X module. A file – test.exe – was being flagged up as a ‘Chrome Password Dump’ tool, something which rang alarm bells among flight sim fans.

As additional information was made available, the story became even more sensational. After first dodging the issue with carefully worded statements, FlightSimLabs admitted that it had installed a password dumper onto ALL users’ machines – whether they were pirates or not – in an effort to catch a particular software cracker and launch legal action.

It was an incredible story that no doubt did damage to FlightSimLabs’ reputation. But the now the company is at the center of a new storm, again centered around anti-piracy measures and again focused on Reddit.

Just before the weekend, Reddit user /u/walkday reported finding something unusual in his A320X module, the same module that caused the earlier controversy.

“The latest installer of FSLabs’ A320X puts two cmdhost.exe files under ‘system32\’ and ‘SysWOW64\’ of my Windows directory. Despite the name, they don’t open a command-line window,” he reported.

“They’re a part of the authentication because, if you remove them, the A320X won’t get loaded. Does someone here know more about cmdhost.exe? Why does FSLabs give them such a deceptive name and put them in the system folders? I hate them for polluting my system folder unless, of course, it is a dll used by different applications.”

Needless to say, the news that FSLabs were putting files into system folders named to make them look like system files was not well received.

“Hiding something named to resemble Window’s “Console Window Host” process in system folders is a huge red flag,” one user wrote.

“It’s a malware tactic used to deceive users into thinking the executable is a part of the OS, thus being trusted and not deleted. Really dodgy tactic, don’t trust it and don’t trust them,” opined another.

With a disenchanted Reddit userbase simmering away in the background, FSLabs took to Facebook with a statement to quieten down the masses.

“Over the past few hours we have become aware of rumors circulating on social media about the cmdhost file installed by the A320-X and wanted to clear up any confusion or misunderstanding,” the company wrote.

“cmdhost is part of our eSellerate infrastructure – which communicates between the eSellerate server and our product activation interface. It was designed to reduce the number of product activation issues people were having after the FSX release – which have since been resolved.”

The company noted that the file had been checked by all major anti-virus companies and everything had come back clean, which does indeed appear to be the case. Nevertheless, the critical Reddit thread remained, bemoaning the actions of a company which probably should have known better than to irritate fans after February’s debacle. In response, however, FSLabs did just that once again.

In private messages to the moderators of the /r/flightsim sub-Reddit, FSLabs’ Marketing and PR Manager Simon Kelsey suggested that the mods should do something about the thread in question or face possible legal action.

“Just a gentle reminder of Reddit’s obligations as a publisher in order to ensure that any libelous content is taken down as soon as you become aware of it,” Kelsey wrote.

Noting that FSLabs welcomes “robust fair comment and opinion”, Kelsey gave the following advice.

“The ‘cmdhost.exe’ file in question is an entirely above board part of our anti-piracy protection and has been submitted to numerous anti-virus providers in order to verify that it poses no threat. Therefore, ANY suggestion that current or future products pose any threat to users is absolutely false and libelous,” he wrote, adding:

“As we have already outlined in the past, ANY suggestion that any user’s data was compromised during the events of February is entirely false and therefore libelous.”

Noting that FSLabs would “hate for lawyers to have to get involved in this”, Kelsey advised the /r/flightsim mods to ensure that no such claims were allowed to remain on the sub-Reddit.

But after not receiving the response he would’ve liked, Kelsey wrote once again to the mods. He noted that “a number of unsubstantiated and highly defamatory comments” remained online and warned that if something wasn’t done to clean them up, he would have “no option” than to pass the matter to FSLabs’ legal team.

Like the first message, this second effort also failed to have the desired effect. In fact, the moderators’ response was to post an open letter to Kelsey and FSLabs instead.

“We sincerely disagree that you ‘welcome robust fair comment and opinion’, demonstrated by the censorship on your forums and the attempted censorship on our subreddit,” the mods wrote.

“While what you do on your forum is certainly your prerogative, your rules do not extend to Reddit nor the r/flightsim subreddit. Removing content you disagree with is simply not within our purview.”

The letter, which is worth reading in full, refutes Kelsey’s claims and also suggests that critics of FSLabs may have been subjected to Reddit vote manipulation and coordinated efforts to discredit them.

What will happen next is unclear but the matter has now been placed in the hands of Reddit’s administrators who have agreed to deal with Kelsey and FSLabs’ personally.

It’s a little early to say for sure but it seems unlikely that this will end in a net positive for FSLabs, no matter what decision Reddit’s admins take.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and more. We also have VPN reviews, discounts, offers and coupons.

YouTube Won’t Put Up With Blatant Piracy Tutorials Forever

Post Syndicated from Andy original https://torrentfreak.com/youtube-wont-put-up-with-blatant-piracy-tutorials-forever-180506/

Once upon a time, Internet users’ voices would be heard in limited circles, on platforms such as Usenet or other niche platforms.

Then, with the rise of forum platforms such as phpBB in 2000 and Invision Power Board in 2002, thriving communities could gather in public to discuss endless specialist topics, including file-sharing of course.

When dedicated piracy forums began to gain traction, it was pretty much a free-for-all. People discussed obtaining free content absolutely openly. Nothing was taboo and no one considered that there would be any repercussions. As such, moderation was limited to keeping troublemakers in check.

As the years progressed and lawsuits against both sites and services became more commonplace, most sites that weren’t actually serving illegal content began to consider their positions. Run by hobbyists, most didn’t want the hassle of a multi-million dollar lawsuit, so links to pirate content began to diminish and the more overt piracy tutorials began to disappear underground.

Those that remained in plain sight became much more considered. Tutorials on how to pirate specific Hollywood blockbusters were no longer needed, a plain general tutorial would suffice. And, as communities matured and took time to understand the implications of their actions, those without political motivations realized that drawing attention to potential criminality was neither required nor necessary.

Then YouTube and social media happened and almost overnight, no one was in charge and anyone could say whatever they liked.

In this new reality, there were no irritating moderator-type figures removing links to this and that, and nobody warning people against breaking rules that suddenly didn’t exist anymore. In essence, previously tight-knit and street-wise file-sharing and piracy communities not only became fragmented, but also chaotic.

This meant that anyone could become a leader and in some cases, this was the utopia that many had hoped for. Not only couldn’t the record labels or Hollywood tell people what to do anymore, discussion site operators couldn’t either. For those who didn’t abuse the power and for those who knew no better, this was a much-needed breath of fresh air. But, like all good things, it was unlikely to last forever.

Where most file-sharing of yesterday was carried out by hobbyist enthusiasts, many of today’s pirates are far more casual. They’re just as thirsty for content, but they don’t want to spend hours hunting for it. They want it all on a plate, at the flick of a switch, delivered to their TV with a minimum of hassle.

With online discussions increasingly seen as laborious and old-fashioned, many mainstream pirates have turned to easy-to-consume videos. In support of their Kodi media player habits, YouTube has become the educational platform of choice for millions.

As a result, there is now a long line of self-declared Kodi piracy specialists scooping up millions of views on YouTube. Their videos – which in many cases are thinly veiled advertisements for third party addons, Kodi ‘builds’, illegal IPTV services, and obscure Android APKs – are now the main way for a new generation to obtain direct advice on pirating.

Many of the videos are incredibly blatant, like the past 15 years of litigation never happened. All the lessons learned by the phpBB board operators of yesteryear, of how to achieve their goals of sharing information without getting shut down, have been long forgotten. In their place, a barrage of daily videos designed to generate clicks and affiliate revenue, no matter what the cost, no matter what the risk.

It’s pretty clear that these videos are at least partly responsible for the phenomenal uptick in Kodi and Android-based piracy over the past few years. In that respect, many lovers of free content will be eternally grateful for the service they’ve provided. But like many piracy movements over the years, people shouldn’t get too attached to them, at least in their current form.

Thanks to the devil-may-care approach of many influential YouTubers, it won’t be long before a whole new set of moderators begin flexing their muscles. While your average phpBB moderator could be reasoned with in order to get a second chance, a determined and largely faceless YouTube will eject offenders without so much as a clear explanation.

When this happens (and it’s only a question of time given the growing blatancy of many tutorials) YouTubers will not only lose their voices but their revenue streams too. While YouTube’s partner programs bring in some welcome cash, the profitable affiliate schemes touted on these channels for external products will also be under threat.

Perhaps the most surprising thing in this drama-waiting-to-happen is that many of the most popular YouTubers can hardly be considered young and naive. While some are of more tender years, most – with their undoubted skill, knowledge and work ethic – should know better for their 30 or 40 years on this planet. Yet not only do they make their names public, they feature their faces heavily in their videos too.

Still, it’s likely that it will take some big YouTube accounts to fall before YouTubers respond by shaving the sharp edges off their blatant promotion of illegal activity. And there’s little doubt that those advertising products (which is most of them) will have to do so sooner rather than later.

Just this week, YouTube made it clear that it won’t tolerate people making money from the promotion of illegal activities.

“YouTube creators may include paid endorsements as part of their content only if the product or service they are endorsing complies with our advertising policies,” YouTube told the BBC.

“We will be working with creators going forward so they better understand that in video promotions [they] must not promote dishonest activity.”

That being said, like many other players in the piracy and file-sharing space over the past 18 years, YouTubers will eventually begin to learn that not only can the smart survive, they can flourish too.

Sure, there will be people out there who’ll protest that free speech allows citizens to express themselves in a manner of their choosing. But try PM’ing that to YouTube in response to a strike, and see how that fares.

When they say you’re done, the road back is a long one.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and more. We also have VPN reviews, discounts, offers and coupons.

The End of Google Cloud Messaging, and What it Means for Your Apps

Post Syndicated from Zach Barbitta original https://aws.amazon.com/blogs/messaging-and-targeting/the-end-of-google-cloud-messaging-and-what-it-means-for-your-apps/

On April 10, 2018, Google announced the deprecation of its Google Cloud Messaging (GCM) platform. Specifically, the GCM server and client APIs are deprecated and will be removed as soon as April 11, 2019.  What does this mean for you and your applications that use Amazon Simple Notification Service (Amazon SNS) or Amazon Pinpoint?

First, nothing will break now or after April 11, 2019. GCM device tokens are completely interchangeable with the newer Firebase Cloud Messaging (FCM) device tokens. If you have existing GCM tokens, you’ll still be able to use them to send notifications. This statement is also true for GCM tokens that you generate in the future.

On the back end, we’ve already migrated Amazon SNS and Amazon Pinpoint to the server endpoint for FCM (https://fcm.googleapis.com/fcm/send). As a developer, you don’t need to make any changes as a result of this deprecation.

We created the following mini-FAQ to address some of the questions you may have as a developer who uses Amazon SNS or Amazon Pinpoint.

If I migrate to FCM from GCM, can I still use Amazon Pinpoint and Amazon SNS?

Yes. Your ability to connect to your applications and send messages through both Amazon SNS and Amazon Pinpoint doesn’t change. We’ll update the documentation for Amazon SNS and Amazon Pinpoint soon to reflect these changes.

If I don’t migrate to FCM from GCM, can I still use Amazon Pinpoint and Amazon SNS?

Yes. If you do nothing, your existing credentials and GCM tokens will still be valid. All applications that you previously set up to use Amazon Pinpoint or Amazon SNS will continue to work normally. When you call the API for Amazon Pinpoint or Amazon SNS, we initiate a request to the FCM server endpoint directly.

What are the differences between Amazon SNS and Amazon Pinpoint?

Amazon SNS makes it easy for developers to set up, operate, and send notifications at scale, affordably and with a high degree of flexibility. Amazon Pinpoint has many of the same messaging capabilities as Amazon SNS, with the same levels of scalability and flexibility.

The main difference between the two services is that Amazon Pinpoint provides both transactional and targeted messaging capabilities. By using Amazon Pinpoint, marketers and developers can not only send transactional messages to their customers, but can also segment their audiences, create campaigns, and analyze both application and message metrics.

How do I migrate from GCM to FCM?

For more information about migrating from GCM to FCM, see Migrate a GCM Client App for Android to Firebase Cloud Messaging on the Google Developers site.

If you have any questions, please post them in the comments section, or in the Amazon Pinpoint or Amazon SNS forums.

Raspbian update: supporting different screen sizes

Post Syndicated from Simon Long original https://www.raspberrypi.org/blog/raspbian-update-screen-sizes/

You may have noticed that we released a updated Raspbian software image yesterday. While the main reason for the new image was to provide support for the new Raspberry Pi 3 Model B+, the image also includes, alongside the usual set of bug fixes and minor tweaks, one significant chunk of new functionality that is worth pointing out.

Updating Raspbian on your Raspberry Pi

How to update to the latest version of Raspbian on your Raspberry Pi.

Compatibility

As a software developer, one of the most awkward things to deal with is what is known as platform fragmentation: having to write code that works on all the different devices and configurations people use. In my spare time, I write applications for iOS, and this has become increasingly painful over the last few years. When I wrote my first iPhone application, it only had to work on the original iPhone, but nowadays any iOS application has to work across several models of iPhone and iPad (which all have different processors and screens), and also across the various releases of iOS. And that’s before you start to consider making your code run on Android as well…

Screenshot of clean Raspbian desktop

The good thing about developing for Raspberry Pi is that there is only a relatively small number of different models of Pi hardware. We try our best to make sure that, wherever possible, the Raspberry Pi Desktop software works on every model of Pi ever sold, and we’ve managed to do this for most of the software in the image. The only exceptions are some of the more recent applications like Chromium, which won’t run on the older ARM6 processors in the Pi 1 and the Pi Zero, and some applications that run very slowly due to needing more memory than the older platforms have.

Raspbian with different screen resolutions

But there is one area where we have no control over the hardware, and that is screen resolution. The HDMI port on the Pi supports a wide range of resolutions, and when you include the composite port and display connector as well, people can be using the desktop  on a huge number of different screen sizes.

Supporting a range of screen sizes is harder than you might think. One problem is that the Linux desktop environment is made up of a large selection of bits of software from various different developers, and not all of these support resizing. And the bits of software that do support resizing don’t all do it in the same way, so making everything resize at once can be awkward.

This is why one of the first things I did when I first started working on the desktop was to create the Appearance Settings application in order to bring a lot of the settings for things like font and icon sizes into one place. This avoids users having to tweak several configuration files whenever they wanted to change something.

Screenshot of appearance settings application in Raspbian

The Appearance Settings application was a good place to start regarding support of different screen sizes. One of the features I originally included was a button to set everything to a default value. This was really a default setting for screens of an average size, and the resulting defaults would not have worked that well on much smaller or much larger screens. Now, there is no longer a single defaults button, but a new Defaults tab with multiple options:

Screenshot of appearance settings application in Raspbian

These three options adjust font size, icon size, and various other settings to values which ought to work well on screens with a high or low resolution. (The For medium screens option has the same effect as the previous defaults button.) The results will not be perfect in all circumstances and for all applications — as mentioned above, there are many different components used to create the desktop, and some of them don’t provide any way of resizing what they draw. But using these options should set the most important parts of the desktop and installed applications, such as icons, fonts, and toolbars, to a suitable size.

Pixel doubling

We’ve added one other option for supporting high resolution screens. At the bottom of the System tab in the Raspberry Pi Configuration application, there is now an option for pixel doubling:

Screenshot of configuration application in Raspbian

We included this option to facilitate the use of the x86 version of Raspbian with ultra-high-resolution screens that have very small pixels, such as Apple’s Retina displays. When running our desktop on one of these, the tininess of the pixels made everything too small for comfortable use.

Enabling pixel doubling simply draws every pixel in the desktop as a 2×2 block of pixels on the screen, making everything exactly twice the size and resulting in a usable desktop on, for example, a MacBook Pro’s Retina display. We’ve included the option on the version of the desktop for the Pi as well, because we know that some people use their Pi with large-screen HDMI TVs.

As pixel doubling magnifies everything on the screen by a factor of two, it’s also a useful option for people with visual impairments.

How to update

As mentioned above, neither of these new functionalities is a perfect solution to dealing with different screen sizes, but we hope they will make life slightly easier for you if you’re trying to run the desktop on a small or large screen. The features are included in the new image we have just released to support the Pi 3B+. If you want to add them to your existing image, the standard upgrade from apt will do so. As shown in the video above, you can just open a terminal window and enter the following to update Raspbian:

sudo apt-get update
sudo apt-get dist-upgrade

As always, your feedback, either in comments here or on the forums, is very welcome.

The post Raspbian update: supporting different screen sizes appeared first on Raspberry Pi.

The Raspberry Pi PiServer tool

Post Syndicated from Gordon Hollingworth original https://www.raspberrypi.org/blog/piserver/

As Simon mentioned in his recent blog post about Raspbian Stretch, we have developed a new piece of software called PiServer. Use this tool to easily set up a network of client Raspberry Pis connected to a single x86-based server via Ethernet. With PiServer, you don’t need SD cards, you can control all clients via the server, and you can add and configure user accounts — it’s ideal for the classroom, your home, or an industrial setting.

PiServer diagram

Client? Server?

Before I go into more detail, let me quickly explain some terms.

  • Server — the server is the computer that provides the file system, boot files, and password authentication to the client(s)
  • Client — a client is a computer that retrieves boot files from the server over the network, and then uses a file system the server has shared. More than one client can connect to a server, but all clients use the same file system.
  • User – a user is a user name/password combination that allows someone to log into a client to access the file system on the server. Any user can log into any client with their credentials, and will always see the same server and share the same file system. Users do not have sudo capability on a client, meaning they cannot make significant changes to the file system and software.

I see no SD cards

Last year we described how the Raspberry Pi 3 Model B can be booted without an SD card over an Ethernet network from another computer (the server). This is called network booting or PXE (pronounced ‘pixie’) booting.

Why would you want to do this?

  • A client computer (the Raspberry Pi) doesn’t need any permanent storage (an SD card) to boot.
  • You can network a large number of clients to one server, and all clients are exactly the same. If you log into one of the clients, you will see the same file system as if you logged into any other client.
  • The server can be run on an x86 system, which means you get to take advantage of the performance, network, and disk speed on the server.

Sounds great, right? Of course, for the less technical, creating such a network is very difficult. For example, there’s setting up all the required DHCP and TFTP servers, and making sure they behave nicely with the rest of the network. If you get this wrong, you can break your entire network.

PiServer to the rescue

To make network booting easy, I thought it would be nice to develop an application which did everything for you. Let me introduce: PiServer!

PiServer has the following functionalities:

  • It automatically detects Raspberry Pis trying to network boot, so you don’t have to work out their Ethernet addresses.
  • It sets up a DHCP server — the thing inside the router that gives all network devices an IP address — either in proxy mode or in full IP mode. No matter the mode, the DHCP server will only reply to the Raspberry Pis you have specified, which is important for network safety.
  • It creates user names and passwords for the server. This is great for a classroom full of Pis: just set up all the users beforehand, and everyone gets to log in with their passwords and keep all their work in a central place. Moreover, users cannot change the software, so educators have control over which programs their learners can use.
  • It uses a slightly altered Raspbian build which allows separation of temporary spaces, doesn’t have the default ‘pi’ user, and has LDAP enabled for log-in.

What can I do with PiServer?

Serve a whole classroom of Pis

In a classroom, PiServer allows all files for lessons or projects to be stored on a central x86-based computer. Each user can have their own account, and any files they create are also stored on the server. Moreover, the networked Pis doesn’t need to be connected to the internet. The teacher has centralised control over all Pis, and all Pis are user-agnostic, meaning there’s no need to match a person with a computer or an SD card.

Build a home server

PiServer could be used in the home to serve file systems for all Raspberry Pis around the house — either a single common Raspbian file system for all Pis or a different operating system for each. Hopefully, our extensive OS suppliers will provide suitable build files in future.

Use it as a controller for networked Pis

In an industrial scenario, it is possible to use PiServer to develop a network of Raspberry Pis (maybe even using Power over Ethernet (PoE)) such that the control software for each Pi is stored remotely on a server. This enables easy remote control and provisioning of the Pis from a central repository.

How to use PiServer

The client machines

So that you can use a Pi as a client, you need to enable network booting on it. Power it up using an SD card with a Raspbian Lite image, and open a terminal window. Type in

echo program_usb_boot_mode=1 | sudo tee -a /boot/config.txt

and press Return. This adds the line program_usb_boot_mode=1 to the end of the config.txt file in /boot. Now power the Pi down and remove the SD card. The next time you connect the Pi to a power source, you will be able to network boot it.

The server machine

As a server, you will need an x86 computer on which you can install x86 Debian Stretch. Refer to Simon’s blog post for additional information on this. It is possible to use a Raspberry Pi to serve to the client Pis, but the file system will be slower, especially at boot time.

Make sure your server has a good amount of disk space available for the file system — in general, we recommend at least 16Gb SD cards for Raspberry Pis. The whole client file system is stored locally on the server, so the disk space requirement is fairly significant.

Next, start PiServer by clicking on the start icon and then clicking Preferences > PiServer. This will open a graphical user interface — the wizard — that will walk you through setting up your network. Skip the introduction screen, and you should see a screen looking like this:

PiServer GUI screenshot

If you’ve enabled network booting on the client Pis and they are connected to a power source, their MAC addresses will automatically appear in the table shown above. When you have added all your Pis, click Next.

PiServer GUI screenshot

On the Add users screen, you can set up users on your server. These are pairs of user names and passwords that will be valid for logging into the client Raspberry Pis. Don’t worry, you can add more users at any point. Click Next again when you’re done.

PiServer GUI screenshot

The Add software screen allows you to select the operating system you want to run on the attached Pis. (You’ll have the option to assign an operating system to each client individually in the setting after the wizard has finished its job.) There are some automatically populated operating systems, such as Raspbian and Raspbian Lite. Hopefully, we’ll add more in due course. You can also provide your own operating system from a local file, or install it from a URL. For further information about how these operating system images are created, have a look at the scripts in /var/lib/piserver/scripts.

Once you’re done, click Next again. The wizard will then install the necessary components and the operating systems you’ve chosen. This will take a little time, so grab a coffee (or decaffeinated drink of your choice).

When the installation process is finished, PiServer is up and running — all you need to do is reboot the Pis to get them to run from the server.

Shooting troubles

If you have trouble getting clients connected to your network, there are a fewthings you can do to debug:

  1. If some clients are connecting but others are not, check whether you’ve enabled the network booting mode on the Pis that give you issues. To do that, plug an Ethernet cable into the Pi (with the SD card removed) — the LEDs on the Pi and connector should turn on. If that doesn’t happen, you’ll need to follow the instructions above to boot the Pi and edit its /boot/config.txt file.
  2. If you can’t connect to any clients, check whether your network is suitable: format an SD card, and copy bootcode.bin from /boot on a standard Raspbian image onto it. Plug the card into a client Pi, and check whether it appears as a new MAC address in the PiServer GUI. If it does, then the problem is a known issue, and you can head to our forums to ask for advice about it (the network booting code has a couple of problems which we’re already aware of). For a temporary fix, you can clone the SD card on which bootcode.bin is stored for all your clients.

If neither of these things fix your problem, our forums are the place to find help — there’s a host of people there who’ve got PiServer working. If you’re sure you have identified a problem that hasn’t been addressed on the forums, or if you have a request for a functionality, then please add it to the GitHub issues.

The post The Raspberry Pi PiServer tool appeared first on Raspberry Pi.

Thank you for my new Raspberry Pi, Santa! What next?

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/thank-you-for-my-new-raspberry-pi-santa-what-next/

Note: the Pi Towers team have peeled away from their desks to spend time with their families over the festive season, and this blog will be quiet for a while as a result. We’ll be back in the New Year with a bushel of amazing projects, awesome resources, and much merriment and fun times. Happy holidays to all!

Now back to the matter at hand. Your brand new Christmas Raspberry Pi.

Your new Raspberry Pi

Did you wake up this morning to find a new Raspberry Pi under the tree? Congratulations, and welcome to the Raspberry Pi community! You’re one of us now, and we’re happy to have you on board.

But what if you’ve never seen a Raspberry Pi before? What are you supposed to do with it? What’s all the fuss about, and why does your new computer look so naked?

Setting up your Raspberry Pi

Are you comfy? Good. Then let us begin.

Download our free operating system

First of all, you need to make sure you have an operating system on your micro SD card: we suggest Raspbian, the Raspberry Pi Foundation’s official supported operating system. If your Pi is part of a starter kit, you might find that it comes with a micro SD card that already has Raspbian preinstalled. If not, you can download Raspbian for free from our website.

An easy way to get Raspbian onto your SD card is to use a free tool called Etcher. Watch The MagPi’s Lucy Hattersley show you what you need to do. You can also use NOOBS to install Raspbian on your SD card, and our Getting Started guide explains how to do that.

Plug it in and turn it on

Your new Raspberry Pi 3 comes with four USB ports and an HDMI port. These allow you to plug in a keyboard, a mouse, and a television or monitor. If you have a Raspberry Pi Zero, you may need adapters to connect your devices to its micro USB and micro HDMI ports. Both the Raspberry Pi 3 and the Raspberry Pi Zero W have onboard wireless LAN, so you can connect to your home network, and you can also plug an Ethernet cable into the Pi 3.

Make sure to plug the power cable in last. There’s no ‘on’ switch, so your Pi will turn on as soon as you connect the power. Raspberry Pi uses a micro USB power supply, so you can use a phone charger if you didn’t receive one as part of a kit.

Learn with our free projects

If you’ve never used a Raspberry Pi before, or you’re new to the world of coding, the best place to start is our projects site. It’s packed with free projects that will guide you through the basics of coding and digital making. You can create projects right on your screen using Scratch and Python, connect a speaker to make music with Sonic Pi, and upgrade your skills to physical making using items from around your house.

Here’s James to show you how to build a whoopee cushion using a Raspberry Pi, paper plates, tin foil and a sponge:

Whoopee cushion PRANK with a Raspberry Pi: HOW-TO

Explore the world of Raspberry Pi physical computing with our free FutureLearn courses: http://rpf.io/futurelearn Free make your own Whoopi Cushion resource: http://rpf.io/whoopi For more information on Raspberry Pi and the charitable work of the Raspberry Pi Foundation, including Code Club and CoderDojo, visit http://rpf.io Our resources are free to use in schools, clubs, at home and at events.

Diving deeper

You’ve plundered our projects, you’ve successfully rigged every chair in the house to make rude noises, and now you want to dive deeper into digital making. Good! While you’re digesting your Christmas dinner, take a moment to skim through the Raspberry Pi blog for inspiration. You’ll find projects from across our worldwide community, with everything from home automation projects and retrofit upgrades, to robots, gaming systems, and cameras.

You’ll also find bucketloads of ideas in The MagPi magazine, the official monthly Raspberry Pi publication, available in both print and digital format. You can download every issue for free. If you subscribe, you’ll get a Raspberry Pi Zero W to add to your new collection. HackSpace magazine is another fantastic place to turn for Raspberry Pi projects, along with other maker projects and tutorials.

And, of course, simply typing “Raspberry Pi projects” into your preferred search engine will find thousands of ideas. Sites like Hackster, Hackaday, Instructables, Pimoroni, and Adafruit all have plenty of fab Raspberry Pi tutorials that they’ve devised themselves and that community members like you have created.

And finally

If you make something marvellous with your new Raspberry Pi – and we know you will – don’t forget to share it with us! Our Twitter, Facebook, Instagram and Google+ accounts are brimming with chatter, projects, and events. And our forums are a great place to visit if you have questions about your Raspberry Pi or if you need some help.

It’s good to get together with like-minded folks, so check out the growing Raspberry Jam movement. Raspberry Jams are community-run events where makers and enthusiasts can meet other makers, show off their projects, and join in with workshops and discussions. Find your nearest Jam here.

Have a great festive holiday and welcome to the community. We’ll see you in 2018!

The post Thank you for my new Raspberry Pi, Santa! What next? appeared first on Raspberry Pi.

Longer Resource IDs in 2018 for Amazon EC2, Amazon EBS, and Amazon VPC

Post Syndicated from Nathan Taber original https://aws.amazon.com/blogs/compute/longer-resource-ids-in-2018-for-amazon-ec2-amazon-ebs-and-amazon-vpc/

This post contributed by Laura Thomson, Senior Product Manager for Amazon EC2.

As you start planning for the new year, I want to give you a heads up that Amazon EC2 is migrating to longer format, 17-character resource IDs. Instances and volumes currently already receive this ID format. Beginning in July 2018, all newly created EC2 resources receive longer IDs as well.

The switch-over will not impact most customers. However, I wanted to make you aware so that you can schedule time at the beginning of 2018 to test your systems with the longer format. If you have a system that parses or stores resource IDs, you may be affected.

From January 2018 through the end of June 2018, there will be a transition period, during which you can opt in to receive longer IDs. To make this easy, AWS will provide an option to opt in with one click for all regions, resources, and users. AWS will also provide more granular controls via API operations and console support. More information on the opt-in process will be sent out in January.

We need to do this given how fast AWS is continuing to grow. We will start to run low on IDs for certain resources within a year or so. In order to enable the long-term, uninterrupted creation of new resources, we need to move to the longer ID format.

The current format is a resource identifier followed by an eight-character string. The new format is the same resource identifier followed by a 17-character string. For example, your current VPCs have resource identifiers such as “vpc-1234abc0”. Starting July 2018, new VPCs will be assigned an identifier such as “vpc-1234567890abcdef0”. You can continue using the existing eight-character IDs for your existing resources, which won’t change and will continue to be supported. Only new resources will receive the 17-character IDs and only after you opt in to the new format.

For more information, see Longer EC2, EBS, and Storage Gateway Resource IDs.  If you have any questions, contact AWS Support on the community forums and via AWS Support.

Stretch for PCs and Macs, and a Raspbian update

Post Syndicated from Simon Long original https://www.raspberrypi.org/blog/stretch-pcs-macs-raspbian-update/

Today, we are launching the first Debian Stretch release of the Raspberry Pi Desktop for PCs and Macs, and we’re also releasing the latest version of Raspbian Stretch for your Pi.

Raspberry Pi Desktop Stretch splash screen

For PCs and Macs

When we released our custom desktop environment on Debian for PCs and Macs last year, we were slightly taken aback by how popular it turned out to be. We really only created it as a result of one of those “Wouldn’t it be cool if…” conversations we sometimes have in the office, so we were delighted by the Pi community’s reaction.

Seeing how keen people were on the x86 version, we decided that we were going to try to keep releasing it alongside Raspbian, with the ultimate aim being to make simultaneous releases of both. This proved to be tricky, particularly with the move from the Jessie version of Debian to the Stretch version this year. However, we have now finished the job of porting all the custom code in Raspbian Stretch to Debian, and so the first Debian Stretch release of the Raspberry Pi Desktop for your PC or Mac is available from today.

The new Stretch releases

As with the Jessie release, you can either run this as a live image from a DVD, USB stick, or SD card or install it as the native operating system on the hard drive of an old laptop or desktop computer. Please note that installing this software will erase anything else on the hard drive — do not install this over a machine running Windows or macOS that you still need to use for its original purpose! It is, however, safe to boot a live image on such a machine, since your hard drive will not be touched by this.

We’re also pleased to announce that we are releasing the latest version of Raspbian Stretch for your Pi today. The Pi and PC versions are largely identical: as before, there are a few applications (such as Mathematica) which are exclusive to the Pi, but the user interface, desktop, and most applications will be exactly the same.

For Raspbian, this new release is mostly bug fixes and tweaks over the previous Stretch release, but there are one or two changes you might notice.

File manager

The file manager included as part of the LXDE desktop (on which our desktop is based) is a program called PCManFM, and it’s very feature-rich; there’s not much you can’t do in it. However, having used it for a few years, we felt that it was perhaps more complex than it needed to be — the sheer number of menu options and choices made some common operations more awkward than they needed to be. So to try to make file management easier, we have implemented a cut-down mode for the file manager.

Raspberry Pi Desktop Stretch - file manager

Most of the changes are to do with the menus. We’ve removed a lot of options that most people are unlikely to change, and moved some other options into the Preferences screen rather than the menus. The two most common settings people tend to change — how icons are displayed and sorted — are now options on the toolbar and in a top-level menu rather than hidden away in submenus.

The sidebar now only shows a single hierarchical view of the file system, and we’ve tidied the toolbar and updated the icons to make them match our house style. We’ve removed the option for a tabbed interface, and we’ve stomped a few bugs as well.

One final change was to make it possible to rename a file just by clicking on its icon to highlight it, and then clicking on its name. This is the way renaming works on both Windows and macOS, and it’s always seemed slightly awkward that Unix desktop environments tend not to support it.

As with most of the other changes we’ve made to the desktop over the last few years, the intention is to make it simpler to use, and to ease the transition from non-Unix environments. But if you really don’t like what we’ve done and long for the old file manager, just untick the box for Display simplified user interface and menus in the Layout page of Preferences, and everything will be back the way it was!

Raspberry Pi Desktop Stretch - preferences GUI

Battery indicator for laptops

One important feature missing from the previous release was an indication of the amount of battery life. Eben runs our desktop on his Mac, and he was becoming slightly irritated by having to keep rebooting into macOS just to check whether his battery was about to die — so fixing this was a priority!

We’ve added a battery status icon to the taskbar; this shows current percentage charge, along with whether the battery is charging, discharging, or connected to the mains. When you hover over the icon with the mouse pointer, a tooltip with more details appears, including the time remaining if the battery can provide this information.

Raspberry Pi Desktop Stretch - battery indicator

While this battery monitor is mainly intended for the PC version, it also supports the first-generation pi-top — to see it, you’ll only need to make sure that I2C is enabled in Configuration. A future release will support the new second-generation pi-top.

New PC applications

We have included a couple of new applications in the PC version. One is called PiServer — this allows you to set up an operating system, such as Raspbian, on the PC which can then be shared by a number of Pi clients networked to it. It is intended to make it easy for classrooms to have multiple Pis all running exactly the same software, and for the teacher to have control over how the software is installed and used. PiServer is quite a clever piece of software, and it’ll be covered in more detail in another blog post in December.

We’ve also added an application which allows you to easily use the GPIO pins of a Pi Zero connected via USB to a PC in applications using Scratch or Python. This makes it possible to run the same physical computing projects on the PC as you do on a Pi! Again, we’ll tell you more in a separate blog post this month.

Both of these applications are included as standard on the PC image, but not on the Raspbian image. You can run them on a Pi if you want — both can be installed from apt.

How to get the new versions

New images for both Raspbian and Debian versions are available from the Downloads page.

It is possible to update existing installations of both Raspbian and Debian versions. For Raspbian, this is easy: just open a terminal window and enter

sudo apt-get update
sudo apt-get dist-upgrade

Updating Raspbian on your Raspberry Pi

How to update to the latest version of Raspbian on your Raspberry Pi. Download Raspbian here: More information on the latest version of Raspbian: Buy a Raspberry Pi:

It is slightly more complex for the PC version, as the previous release was based around Debian Jessie. You will need to edit the files /etc/apt/sources.list and /etc/apt/sources.list.d/raspi.list, using sudo to do so. In both files, change every occurrence of the word “jessie” to “stretch”. When that’s done, do the following:

sudo apt-get update 
sudo dpkg --force-depends -r libwebkitgtk-3.0-common
sudo apt-get -f install
sudo apt-get dist-upgrade
sudo apt-get install python3-thonny
sudo apt-get install sonic-pi=2.10.0~repack-rpt1+2
sudo apt-get install piserver
sudo apt-get install usbbootgui

At several points during the upgrade process, you will be asked if you want to keep the current version of a configuration file or to install the package maintainer’s version. In every case, keep the existing version, which is the default option. The update may take an hour or so, depending on your network connection.

As with all software updates, there is the possibility that something may go wrong during the process, which could lead to your operating system becoming corrupted. Therefore, we always recommend making a backup first.

Enjoy the new versions, and do let us know any feedback you have in the comments or on the forums!

The post Stretch for PCs and Macs, and a Raspbian update appeared first on Raspberry Pi.

Application Load Balancers Now Support Multiple TLS Certificates With Smart Selection Using SNI

Post Syndicated from Randall Hunt original https://aws.amazon.com/blogs/aws/new-application-load-balancer-sni/

Today we’re launching support for multiple TLS/SSL certificates on Application Load Balancers (ALB) using Server Name Indication (SNI). You can now host multiple TLS secured applications, each with its own TLS certificate, behind a single load balancer. In order to use SNI, all you need to do is bind multiple certificates to the same secure listener on your load balancer. ALB will automatically choose the optimal TLS certificate for each client. These new features are provided at no additional charge.

If you’re looking for a TL;DR on how to use this new feature just click here. If you’re like me and you’re a little rusty on the specifics of Transport Layer Security (TLS) then keep reading.

TLS? SSL? SNI?

People tend to use the terms SSL and TLS interchangeably even though the two are technically different. SSL technically refers to a predecessor of the TLS protocol. To keep things simple I’ll be using the term TLS for the rest of this post.

TLS is a protocol for securely transmitting data like passwords, cookies, and credit card numbers. It enables privacy, authentication, and integrity of the data being transmitted. TLS uses certificate based authentication where certificates are like ID cards for your websites. You trust the person that signed and issued the certificate, the certificate authority (CA), so you trust that the data in the certificate is correct. When a browser connects to your TLS-enabled ALB, ALB presents a certificate that contains your site’s public key, which has been cryptographically signed by a CA. This way the client can be sure it’s getting the ‘real you’ and that it’s safe to use your site’s public key to establish a secure connection.

With SNI support we’re making it easy to use more than one certificate with the same ALB. The most common reason you might want to use multiple certificates is to handle different domains with the same load balancer. It’s always been possible to use wildcard and subject-alternate-name (SAN) certificates with ALB, but these come with limitations. Wildcard certificates only work for related subdomains that match a simple pattern and while SAN certificates can support many different domains, the same certificate authority has to authenticate each one. That means you have reauthenticate and reprovision your certificate everytime you add a new domain.

One of our most frequent requests on forums, reddit, and in my e-mail inbox has been to use the Server Name Indication (SNI) extension of TLS to choose a certificate for a client. Since TLS operates at the transport layer, below HTTP, it doesn’t see the hostname requested by a client. SNI works by having the client tell the server “This is the domain I expect to get a certificate for” when it first connects. The server can then choose the correct certificate to respond to the client. All modern web browsers and a large majority of other clients support SNI. In fact, today we see SNI supported by over 99.5% of clients connecting to CloudFront.

Smart Certificate Selection on ALB

ALB’s smart certificate selection goes beyond SNI. In addition to containing a list of valid domain names, certificates also describe the type of key exchange and cryptography that the server supports, as well as the signature algorithm (SHA2, SHA1, MD5) used to sign the certificate. To establish a TLS connection, a client starts a TLS handshake by sending a “ClientHello” message that outlines the capabilities of the client: the protocol versions, extensions, cipher suites, and compression methods. Based on what an individual client supports, ALB’s smart selection algorithm chooses a certificate for the connection and sends it to the client. ALB supports both the classic RSA algorithm and the newer, hipper, and faster Elliptic-curve based ECDSA algorithm. ECDSA support among clients isn’t as prevalent as SNI, but it is supported by all modern web browsers. Since it’s faster and requires less CPU, it can be particularly useful for ultra-low latency applications and for conserving the amount of battery used by mobile applications. Since ALB can see what each client supports from the TLS handshake, you can upload both RSA and ECDSA certificates for the same domains and ALB will automatically choose the best one for each client.

Using SNI with ALB

I’ll use a few example websites like VimIsBetterThanEmacs.com and VimIsTheBest.com. I’ve purchased and hosted these domains on Amazon Route 53, and provisioned two separate certificates for them in AWS Certificate Manager (ACM). If I want to securely serve both of these sites through a single ALB, I can quickly add both certificates in the console.

First, I’ll select my load balancer in the console, go to the listeners tab, and select “view/edit certificates”.

Next, I’ll use the “+” button in the top left corner to select some certificates then I’ll click the “Add” button.

There are no more steps. If you’re not really a GUI kind of person you’ll be pleased to know that it’s also simple to add new certificates via the AWS Command Line Interface (CLI) (or SDKs).

aws elbv2 add-listener-certificates --listener-arn <listener-arn> --certificates CertificateArn=<cert-arn>

Things to know

  • ALB Access Logs now include the client’s requested hostname and the certificate ARN used. If the “hostname” field is empty (represented by a “-“) the client did not use the SNI extension in their request.
  • You can use any of your certificates in ACM or IAM.
  • You can bind multiple certificates for the same domain(s) to a secure listener. Your ALB will choose the optimal certificate based on multiple factors including the capabilities of the client.
  • If the client does not support SNI your ALB will use the default certificate (the one you specified when you created the listener).
  • There are three new ELB API calls: AddListenerCertificates, RemoveListenerCertificates, and DescribeListenerCertificates.
  • You can bind up to 25 certificates per load balancer (not counting the default certificate).
  • These new features are supported by AWS CloudFormation at launch.

You can see an example of these new features in action with a set of websites created by my colleague Jon Zobrist: https://www.exampleloadbalancer.com/.

Overall, I will personally use this feature and I’m sure a ton of AWS users will benefit from it as well. I want to thank the Elastic Load Balancing team for all their hard work in getting this into the hands of our users.

Randall

The CoderDojo Girls Initiative

Post Syndicated from Nuala McHale original https://www.raspberrypi.org/blog/coderdojo-girls-initiative/

In March, the CoderDojo Foundation launched their Girls Initiative, which aims to increase the average proportion of girls attending CoderDojo clubs from 29% to at least 40% over the next three years.

The CoderDojo Girls Initiative

Six months on, we wanted to highlight what we’ve done so far and what’s next for our initiative.

What we’ve done so far

To date, we have focussed our efforts on four key areas:

  • Developing and improving content
  • Conducting and learning from research
  • Highlighting role models
  • Developing a guide of tried and tested best practices for encouraging and sustaining girls in a Dojo setting (Empowering the Future)

Content

We’ve taken measures to ensure our resources are as friendly to girls as well as boys, and we are improving them based on feedback from girls. For example, we have developed beginner-level content (Sushi Cards) for working with wearables and for building apps using App Inventor. In response to girls’ feedback, we are exploring more creative goal-orientated content.

The CoderDojo Girls Initiative

Moreover, as part of our Empowering the Future guide, we have developed three short ‘Mini-Sushi’ projects which provide a taster of different programming languages, such as Scratch, HTML, and App Inventor.

What’s next?

We are currently finalising our intermediate-level wearables Sushi Cards. These are resources for learners to further explore wearables and integrate them with other coding skills they are developing. The Cards will enable young people to program LEDs which can be sewn into clothing with conductive thread. We are also planning another series of Sushi Cards focused on using coding skills to solve problems Ninjas have reported as important to them.

Research

In June 2017 we conducted the first Ninja survey. It was sent to all young people registered on the CoderDojo community platform, Zen. Hundreds of young people involved in Dojos around the world responded and shared their experiences.

The CoderDojo Girls Initiative

We are currently examining these results to identify areas in which girls feel most or least confident, as well as the motivations and influencing factors that cause them to continue with coding.

What’s next?

Over the coming months we will delve deeper into the findings of this research, and decide how we can improve our content and Dojo support to adapt accordingly. Additionally, as part of sending out our Empowering the Future guide, we’re asking Dojos to provide insights into their current proportions of girls and female Mentors.

The CoderDojo Girls Initiative

We will follow up with recipients of the guide to document the impact of the recommended approaches they try at their Dojo. Thus, we will find out which approaches are most effective in different regional contexts, which will help us improve our support for Dojos wanting to increase their proportion of attending girls.

Role models

Many Dojos, Champions, and Mentors are doing amazing work to support and encourage girls at their Dojos. Female Mentors not only help by supporting attending girls, but they also act as vital role models in an environment which is often male-dominated. Blogs by female Mentors and Ninjas which have already featured on our website include:

What’s next?

We recognise the importance of female role models, and over the coming months we will continue to encourage community members to share their stories so that we bring them to the wider CoderDojo community. Do you know a female Mentor or Ninja you would like to shine a spotline on? Get in touch with us at [email protected] You can also use #CoderDojoGirls on social media.

The CoderDojo Girls Initiative

Empowering the Future guide

Ahead of Ada Lovelace Day and International Day of the Girl Child, the CoderDojo Foundation has released Empowering the Future, a comprehensive guide of practical approaches which Dojos have tested to engage and sustain girls.

Some topics covered in the guide are:

  • Approaches to improve the Dojo environment and layout
  • Language and images used to describe and promote Dojos
  • Content considerations, and suggested resources
  • The importance of female Mentors, and ways to increase access to role models

For the next month, Dojos that want to improve their proportion of girls can still sign up to have the guide book sent to them for free! From today, Dojos and anyone else can also download a PDF file of the guide.

The CoderDojo Girls Initiative

We would like to say a massive thank you to all community members who have shared their insights with us to make our Empowering the Future guide as comprehensive and beneficial as possible for other Dojos.

Tell us what you think

Have you found an approach, or used content, which girls find particularly engaging? Do you have questions about our Girls Initiative? We would love to hear your ideas, insights, and experiences in relation to supporting CoderDojo girls! Feel free to use our forums to share with the global CoderDojo community, and email us at [email protected]

The post The CoderDojo Girls Initiative appeared first on Raspberry Pi.

New Techniques in Fake Reviews

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2017/09/new_techniques_.html

Research paper: “Automated Crowdturfing Attacks and Defenses in Online Review Systems.”

Abstract: Malicious crowdsourcing forums are gaining traction as sources of spreading misinformation online, but are limited by the costs of hiring and managing human workers. In this paper, we identify a new class of attacks that leverage deep learning language models (Recurrent Neural Networks or RNNs) to automate the generation of fake online reviews for products and services. Not only are these attacks cheap and therefore more scalable, but they can control rate of content output to eliminate the signature burstiness that makes crowdsourced campaigns easy to detect.

Using Yelp reviews as an example platform, we show how a two phased review generation and customization attack can produce reviews that are indistinguishable by state-of-the-art statistical detectors. We conduct a survey-based user study to show these reviews not only evade human detection, but also score high on “usefulness” metrics by users. Finally, we develop novel automated defenses against these attacks, by leveraging the lossy transformation introduced by the RNN training and generation cycle. We consider countermeasures against our mechanisms, show that they produce unattractive cost-benefit tradeoffs for attackers, and that they can be further curtailed by simple constraints imposed by online service providers.

Uber Drivers Hacking the System to Cause Surge Pricing

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2017/08/uber_drivers_ha.html

Interesting story about Uber drivers who have figured out how to game the company’s algorithms to cause surge pricing:

According to the study. drivers manipulate Uber’s algorithm by logging out of the app at the same time, making it think that there is a shortage of cars.

[…]

The study said drivers have been coordinating forced surge pricing, after interviews with drivers in London and New York, and research on online forums such as Uberpeople.net. In a post on the website for drivers, seen by the researchers, one person said: “Guys, stay logged off until surge. Less supply high demand = surge.”

.

Passengers, of course, have long had tricks to avoid surge pricing.

I expect to see more of this sort of thing as algorithms become more prominent in our lives.

Top 10 Most Obvious Hacks of All Time (v0.9)

Post Syndicated from Robert Graham original http://blog.erratasec.com/2017/07/top-10-most-obvious-hacks-of-all-time.html

For teaching hacking/cybersecurity, I thought I’d create of the most obvious hacks of all time. Not the best hacks, the most sophisticated hacks, or the hacks with the biggest impact, but the most obvious hacks — ones that even the least knowledgeable among us should be able to understand. Below I propose some hacks that fit this bill, though in no particular order.

The reason I’m writing this is that my niece wants me to teach her some hacking. I thought I’d start with the obvious stuff first.

Shared Passwords

If you use the same password for every website, and one of those websites gets hacked, then the hacker has your password for all your websites. The reason your Facebook account got hacked wasn’t because of anything Facebook did, but because you used the same email-address and password when creating an account on “beagleforums.com”, which got hacked last year.

I’ve heard people say “I’m sure, because I choose a complex password and use it everywhere”. No, this is the very worst thing you can do. Sure, you can the use the same password on all sites you don’t care much about, but for Facebook, your email account, and your bank, you should have a unique password, so that when other sites get hacked, your important sites are secure.

And yes, it’s okay to write down your passwords on paper.

Tools: HaveIBeenPwned.com

PIN encrypted PDFs

My accountant emails PDF statements encrypted with the last 4 digits of my Social Security Number. This is not encryption — a 4 digit number has only 10,000 combinations, and a hacker can guess all of them in seconds.
PIN numbers for ATM cards work because ATM machines are online, and the machine can reject your card after four guesses. PIN numbers don’t work for documents, because they are offline — the hacker has a copy of the document on their own machine, disconnected from the Internet, and can continue making bad guesses with no restrictions.
Passwords protecting documents must be long enough that even trillion upon trillion guesses are insufficient to guess.

Tools: Hashcat, John the Ripper

SQL and other injection

The lazy way of combining websites with databases is to combine user input with an SQL statement. This combines code with data, so the obvious consequence is that hackers can craft data to mess with the code.
No, this isn’t obvious to the general public, but it should be obvious to programmers. The moment you write code that adds unfiltered user-input to an SQL statement, the consequence should be obvious. Yet, “SQL injection” has remained one of the most effective hacks for the last 15 years because somehow programmers don’t understand the consequence.
CGI shell injection is a similar issue. Back in early days, when “CGI scripts” were a thing, it was really important, but these days, not so much, so I just included it with SQL. The consequence of executing shell code should’ve been obvious, but weirdly, it wasn’t. The IT guy at the company I worked for back in the late 1990s came to me and asked “this guy says we have a vulnerability, is he full of shit?”, and I had to answer “no, he’s right — obviously so”.

XSS (“Cross Site Scripting”) [*] is another injection issue, but this time at somebody’s web browser rather than a server. It works because websites will echo back what is sent to them. For example, if you search for Cross Site Scripting with the URL https://www.google.com/search?q=cross+site+scripting, then you’ll get a page back from the server that contains that string. If the string is JavaScript code rather than text, then some servers (thought not Google) send back the code in the page in a way that it’ll be executed. This is most often used to hack somebody’s account: you send them an email or tweet a link, and when they click on it, the JavaScript gives control of the account to the hacker.

Cross site injection issues like this should probably be their own category, but I’m including it here for now.

More: Wikipedia on SQL injection, Wikipedia on cross site scripting.
Tools: Burpsuite, SQLmap

Buffer overflows

In the C programming language, programmers first create a buffer, then read input into it. If input is long than the buffer, then it overflows. The extra bytes overwrite other parts of the program, letting the hacker run code.
Again, it’s not a thing the general public is expected to know about, but is instead something C programmers should be expected to understand. They should know that it’s up to them to check the length and stop reading input before it overflows the buffer, that there’s no language feature that takes care of this for them.
We are three decades after the first major buffer overflow exploits, so there is no excuse for C programmers not to understand this issue.

What makes particular obvious is the way they are wrapped in exploits, like in Metasploit. While the bug itself is obvious that it’s a bug, actually exploiting it can take some very non-obvious skill. However, once that exploit is written, any trained monkey can press a button and run the exploit. That’s where we get the insult “script kiddie” from — referring to wannabe-hackers who never learn enough to write their own exploits, but who spend a lot of time running the exploit scripts written by better hackers than they.

More: Wikipedia on buffer overflow, Wikipedia on script kiddie,  “Smashing The Stack For Fun And Profit” — Phrack (1996)
Tools: bash, Metasploit

SendMail DEBUG command (historical)

The first popular email server in the 1980s was called “SendMail”. It had a feature whereby if you send a “DEBUG” command to it, it would execute any code following the command. The consequence of this was obvious — hackers could (and did) upload code to take control of the server. This was used in the Morris Worm of 1988. Most Internet machines of the day ran SendMail, so the worm spread fast infecting most machines.
This bug was mostly ignored at the time. It was thought of as a theoretical problem, that might only rarely be used to hack a system. Part of the motivation of the Morris Worm was to demonstrate that such problems was to demonstrate the consequences — consequences that should’ve been obvious but somehow were rejected by everyone.

More: Wikipedia on Morris Worm

Email Attachments/Links

I’m conflicted whether I should add this or not, because here’s the deal: you are supposed to click on attachments and links within emails. That’s what they are there for. The difference between good and bad attachments/links is not obvious. Indeed, easy-to-use email systems makes detecting the difference harder.
On the other hand, the consequences of bad attachments/links is obvious. That worms like ILOVEYOU spread so easily is because people trusted attachments coming from their friends, and ran them.
We have no solution to the problem of bad email attachments and links. Viruses and phishing are pervasive problems. Yet, we know why they exist.

Default and backdoor passwords

The Mirai botnet was caused by surveillance-cameras having default and backdoor passwords, and being exposed to the Internet without a firewall. The consequence should be obvious: people will discover the passwords and use them to take control of the bots.
Surveillance-cameras have the problem that they are usually exposed to the public, and can’t be reached without a ladder — often a really tall ladder. Therefore, you don’t want a button consumers can press to reset to factory defaults. You want a remote way to reset them. Therefore, they put backdoor passwords to do the reset. Such passwords are easy for hackers to reverse-engineer, and hence, take control of millions of cameras across the Internet.
The same reasoning applies to “default” passwords. Many users will not change the defaults, leaving a ton of devices hackers can hack.

Masscan and background radiation of the Internet

I’ve written a tool that can easily scan the entire Internet in a short period of time. It surprises people that this possible, but it obvious from the numbers. Internet addresses are only 32-bits long, or roughly 4 billion combinations. A fast Internet link can easily handle 1 million packets-per-second, so the entire Internet can be scanned in 4000 seconds, little more than an hour. It’s basic math.
Because it’s so easy, many people do it. If you monitor your Internet link, you’ll see a steady trickle of packets coming in from all over the Internet, especially Russia and China, from hackers scanning the Internet for things they can hack.
People’s reaction to this scanning is weirdly emotional, taking is personally, such as:
  1. Why are they hacking me? What did I do to them?
  2. Great! They are hacking me! That must mean I’m important!
  3. Grrr! How dare they?! How can I hack them back for some retribution!?

I find this odd, because obviously such scanning isn’t personal, the hackers have no idea who you are.

Tools: masscan, firewalls

Packet-sniffing, sidejacking

If you connect to the Starbucks WiFi, a hacker nearby can easily eavesdrop on your network traffic, because it’s not encrypted. Windows even warns you about this, in case you weren’t sure.

At DefCon, they have a “Wall of Sheep”, where they show passwords from people who logged onto stuff using the insecure “DefCon-Open” network. Calling them “sheep” for not grasping this basic fact that unencrypted traffic is unencrypted.

To be fair, it’s actually non-obvious to many people. Even if the WiFi itself is not encrypted, SSL traffic is. They expect their services to be encrypted, without them having to worry about it. And in fact, most are, especially Google, Facebook, Twitter, Apple, and other major services that won’t allow you to log in anymore without encryption.

But many services (especially old ones) may not be encrypted. Unless users check and verify them carefully, they’ll happily expose passwords.

What’s interesting about this was 10 years ago, when most services which only used SSL to encrypt the passwords, but then used unencrypted connections after that, using “cookies”. This allowed the cookies to be sniffed and stolen, allowing other people to share the login session. I used this on stage at BlackHat to connect to somebody’s GMail session. Google, and other major websites, fixed this soon after. But it should never have been a problem — because the sidejacking of cookies should have been obvious.

Tools: Wireshark, dsniff

Stuxnet LNK vulnerability

Again, this issue isn’t obvious to the public, but it should’ve been obvious to anybody who knew how Windows works.
When Windows loads a .dll, it first calls the function DllMain(). A Windows link file (.lnk) can load icons/graphics from the resources in a .dll file. It does this by loading the .dll file, thus calling DllMain. Thus, a hacker could put on a USB drive a .lnk file pointing to a .dll file, and thus, cause arbitrary code execution as soon as a user inserted a drive.
I say this is obvious because I did this, created .lnks that pointed to .dlls, but without hostile DllMain code. The consequence should’ve been obvious to me, but I totally missed the connection. We all missed the connection, for decades.

Social Engineering and Tech Support [* * *]

After posting this, many people have pointed out “social engineering”, especially of “tech support”. This probably should be up near #1 in terms of obviousness.

The classic example of social engineering is when you call tech support and tell them you’ve lost your password, and they reset it for you with minimum of questions proving who you are. For example, you set the volume on your computer really loud and play the sound of a crying baby in the background and appear to be a bit frazzled and incoherent, which explains why you aren’t answering the questions they are asking. They, understanding your predicament as a new parent, will go the extra mile in helping you, resetting “your” password.

One of the interesting consequences is how it affects domain names (DNS). It’s quite easy in many cases to call up the registrar and convince them to transfer a domain name. This has been used in lots of hacks. It’s really hard to defend against. If a registrar charges only $9/year for a domain name, then it really can’t afford to provide very good tech support — or very secure tech support — to prevent this sort of hack.

Social engineering is such a huge problem, and obvious problem, that it’s outside the scope of this document. Just google it to find example after example.

A related issue that perhaps deserves it’s own section is OSINT [*], or “open-source intelligence”, where you gather public information about a target. For example, on the day the bank manager is out on vacation (which you got from their Facebook post) you show up and claim to be a bank auditor, and are shown into their office where you grab their backup tapes. (We’ve actually done this).

More: Wikipedia on Social Engineering, Wikipedia on OSINT, “How I Won the Defcon Social Engineering CTF” — blogpost (2011), “Questioning 42: Where’s the Engineering in Social Engineering of Namespace Compromises” — BSidesLV talk (2016)

Blue-boxes (historical) [*]

Telephones historically used what we call “in-band signaling”. That’s why when you dial on an old phone, it makes sounds — those sounds are sent no differently than the way your voice is sent. Thus, it was possible to make tone generators to do things other than simply dial calls. Early hackers (in the 1970s) would make tone-generators called “blue-boxes” and “black-boxes” to make free long distance calls, for example.

These days, “signaling” and “voice” are digitized, then sent as separate channels or “bands”. This is call “out-of-band signaling”. You can’t trick the phone system by generating tones. When your iPhone makes sounds when you dial, it’s entirely for you benefit and has nothing to do with how it signals the cell tower to make a call.

Early hackers, like the founders of Apple, are famous for having started their careers making such “boxes” for tricking the phone system. The problem was obvious back in the day, which is why as the phone system moves from analog to digital, the problem was fixed.

More: Wikipedia on blue box, Wikipedia article on Steve Wozniak.

Thumb drives in parking lots [*]

A simple trick is to put a virus on a USB flash drive, and drop it in a parking lot. Somebody is bound to notice it, stick it in their computer, and open the file.

This can be extended with tricks. For example, you can put a file labeled “third-quarter-salaries.xlsx” on the drive that required macros to be run in order to open. It’s irresistible to other employees who want to know what their peers are being paid, so they’ll bypass any warning prompts in order to see the data.

Another example is to go online and get custom USB sticks made printed with the logo of the target company, making them seem more trustworthy.

We also did a trick of taking an Adobe Flash game “Punch the Monkey” and replaced the monkey with a logo of a competitor of our target. They now only played the game (infecting themselves with our virus), but gave to others inside the company to play, infecting others, including the CEO.

Thumb drives like this have been used in many incidents, such as Russians hacking military headquarters in Afghanistan. It’s really hard to defend against.

More: “Computer Virus Hits U.S. Military Base in Afghanistan” — USNews (2008), “The Return of the Worm That Ate The Pentagon” — Wired (2011), DoD Bans Flash Drives — Stripes (2008)

Googling [*]

Search engines like Google will index your website — your entire website. Frequently companies put things on their website without much protection because they are nearly impossible for users to find. But Google finds them, then indexes them, causing them to pop up with innocent searches.
There are books written on “Google hacking” explaining what search terms to look for, like “not for public release”, in order to find such documents.

More: Wikipedia entry on Google Hacking, “Google Hacking” book.

URL editing [*]

At the top of every browser is what’s called the “URL”. You can change it. Thus, if you see a URL that looks like this:

http://www.example.com/documents?id=138493

Then you can edit it to see the next document on the server:

http://www.example.com/documents?id=138494

The owner of the website may think they are secure, because nothing points to this document, so the Google search won’t find it. But that doesn’t stop a user from manually editing the URL.
An example of this is a big Fortune 500 company that posts the quarterly results to the website an hour before the official announcement. Simply editing the URL from previous financial announcements allows hackers to find the document, then buy/sell the stock as appropriate in order to make a lot of money.
Another example is the classic case of Andrew “Weev” Auernheimer who did this trick in order to download the account email addresses of early owners of the iPad, including movie stars and members of the Obama administration. It’s an interesting legal case because on one hand, techies consider this so obvious as to not be “hacking”. On the other hand, non-techies, especially judges and prosecutors, believe this to be obviously “hacking”.

DDoS, spoofing, and amplification [*]

For decades now, online gamers have figured out an easy way to win: just flood the opponent with Internet traffic, slowing their network connection. This is called a DoS, which stands for “Denial of Service”. DoSing game competitors is often a teenager’s first foray into hacking.
A variant of this is when you hack a bunch of other machines on the Internet, then command them to flood your target. (The hacked machines are often called a “botnet”, a network of robot computers). This is called DDoS, or “Distributed DoS”. At this point, it gets quite serious, as instead of competitive gamers hackers can take down entire businesses. Extortion scams, DDoSing websites then demanding payment to stop, is a common way hackers earn money.
Another form of DDoS is “amplification”. Sometimes when you send a packet to a machine on the Internet it’ll respond with a much larger response, either a very large packet or many packets. The hacker can then send a packet to many of these sites, “spoofing” or forging the IP address of the victim. This causes all those sites to then flood the victim with traffic. Thus, with a small amount of outbound traffic, the hacker can flood the inbound traffic of the victim.
This is one of those things that has worked for 20 years, because it’s so obvious teenagers can do it, yet there is no obvious solution. President Trump’s executive order of cyberspace specifically demanded that his government come up with a report on how to address this, but it’s unlikely that they’ll come up with any useful strategy.

More: Wikipedia on DDoS, Wikipedia on Spoofing

Conclusion

Tweet me (@ErrataRob) your obvious hacks, so I can add them to the list.

MagPi 60: the ultimate troubleshooting guide

Post Syndicated from Rob Zwetsloot original https://www.raspberrypi.org/blog/magpi-60/

Hey folks, Rob from The MagPi here! It’s the last Thursday of the month, and that can only mean one thing: a brand-new The MagPi issue is out! In The MagPi 60, we’re bringing you the top troubleshooting tips for your Raspberry Pi, sourced directly from our amazing community.

The MagPi 60 cover with DVD slip case shown

The MagPi #60 comes with a huge troubleshooting guide

The MagPi 60

Our feature-length guide covers snags you might encounter while using a Raspberry Pi, and it is written for newcomers and veterans alike! Do you hit a roadblock while booting up your Pi? Are you having trouble connecting it to a network? Don’t worry – in this issue you’ll find troubleshooting advice you can use to solve your problem. And, as always, if you’re still stuck, you can head over to the Raspberry Pi forums for help.

More than troubleshooting

That’s not all though – Issue 60 also includes a disc with Raspbian-x86! This version of Raspbian for PCs contains all the recent updates and additions, such as offline Scratch 2.0 and the new Thonny IDE. And – *drumroll* – the disc version can be installed to your PC or Mac. The last time we had a Raspbian disc on the cover, many of you requested an installable version, so here you are! There is an installation guide inside the mag, so you’ll be all set to get going.

On top of that, you’ll find our usual array of amazing tutorials, projects, and reviews. There’s a giant guitar, Siri voice control, Pi Zeros turned into wireless-connected USB drives, and even a review of a new robot kit. You won’t want to miss it!

A spread from The MagPi 60 showing a giant Raspberry Pi-powered guitar

I wasn’t kidding about the giant guitar

How to get a copy

Grab your copy today in the UK from WHSmith, Sainsbury’s, Asda, and Tesco. Copies will be arriving very soon in US stores, including Barnes & Noble and Micro Center. You can also get the new issue online from our store, or digitally via our Android or iOS app. And don’t forget, there’s always the free PDF as well.

Subscribe for free goodies

Some of you have asked me about the goodies that we give out to subscribers. This is how it works: if you take out a twelve-month print subscription of The MagPi, you’ll get a Pi Zero W, Pi Zero case, and adapter cables absolutely free! This offer does not currently have an end date.

Alright, I think I’ve covered everything! So that’s it. I’ll see you next month.

Jean-Luc Picard sitting at a desk playing with a pen and sighing

The post MagPi 60: the ultimate troubleshooting guide appeared first on Raspberry Pi.

Perform Near Real-time Analytics on Streaming Data with Amazon Kinesis and Amazon Elasticsearch Service

Post Syndicated from Tristan Li original https://aws.amazon.com/blogs/big-data/perform-near-real-time-analytics-on-streaming-data-with-amazon-kinesis-and-amazon-elasticsearch-service/

Nowadays, streaming data is seen and used everywhere—from social networks, to mobile and web applications, IoT devices, instrumentation in data centers, and many other sources. As the speed and volume of this type of data increases, the need to perform data analysis in real time with machine learning algorithms and extract a deeper understanding from the data becomes ever more important. For example, you might want a continuous monitoring system to detect sentiment changes in a social media feed so that you can react to the sentiment in near real time.

In this post, we use Amazon Kinesis Streams to collect and store streaming data. We then use Amazon Kinesis Analytics to process and analyze the streaming data continuously. Specifically, we use the Kinesis Analytics built-in RANDOM_CUT_FOREST function, a machine learning algorithm, to detect anomalies in the streaming data. Finally, we use Amazon Kinesis Firehose to export the anomalies data to Amazon Elasticsearch Service (Amazon ES). We then build a simple dashboard in the open source tool Kibana to visualize the result.

Solution overview

The following diagram depicts a high-level overview of this solution.

Amazon Kinesis Streams

You can use Amazon Kinesis Streams to build your own streaming application. This application can process and analyze streaming data by continuously capturing and storing terabytes of data per hour from hundreds of thousands of sources.

Amazon Kinesis Analytics

Kinesis Analytics provides an easy and familiar standard SQL language to analyze streaming data in real time. One of its most powerful features is that there are no new languages, processing frameworks, or complex machine learning algorithms that you need to learn.

Amazon Kinesis Firehose

Kinesis Firehose is the easiest way to load streaming data into AWS. It can capture, transform, and load streaming data into Amazon S3, Amazon Redshift, and Amazon Elasticsearch Service.

Amazon Elasticsearch Service

Amazon ES is a fully managed service that makes it easy to deploy, operate, and scale Elasticsearch for log analytics, full text search, application monitoring, and more.

Solution summary

The following is a quick walkthrough of the solution that’s presented in the diagram:

  1. IoT sensors send streaming data into Kinesis Streams. In this post, you use a Python script to simulate an IoT temperature sensor device that sends the streaming data.
  2. By using the built-in RANDOM_CUT_FOREST function in Kinesis Analytics, you can detect anomalies in real time with the sensor data that is stored in Kinesis Streams. RANDOM_CUT_FOREST is also an appropriate algorithm for many other kinds of anomaly-detection use cases—for example, the media sentiment example mentioned earlier in this post.
  3. The processed anomaly data is then loaded into the Kinesis Firehose delivery stream.
  4. By using the built-in integration that Kinesis Firehose has with Amazon ES, you can easily export the processed anomaly data into the service and visualize it with Kibana.

Implementation steps

The following sections walk through the implementation steps in detail.

Creating the delivery stream

  1. Open the Amazon Kinesis Streams console.
  2. Create a new Kinesis stream. Give it a name that indicates it’s for raw incoming stream data—for example, RawStreamData. For Number of shards, type 1.
  3. The Python code provided below simulates a streaming application, such as an IoT device, and generates random data and anomalies into a Kinesis stream. The code generates two temperature ranges, where the first range is the hypothetical sensor’s normal operating temperature range (10–20), and the second is the anomaly temperature range (100–120).Make sure to change the stream name on line 16 and 20 and the Region on line 6 to match your configuration. Alternatively, you can download the Amazon Kinesis Data Generator from this repository and use it to generate the data.
    import json
    import datetime
    import random
    import testdata
    from boto import kinesis
    
    kinesis = kinesis.connect_to_region("us-east-1")
    
    def getData(iotName, lowVal, highVal):
       data = {}
       data["iotName"] = iotName
       data["iotValue"] = random.randint(lowVal, highVal) 
       return data
    
    while 1:
       rnd = random.random()
       if (rnd < 0.01):
          data = json.dumps(getData("DemoSensor", 100, 120))  
          kinesis.put_record("RawStreamData", data, "DemoSensor")
          print '***************************** anomaly ************************* ' + data
       else:
          data = json.dumps(getData("DemoSensor", 10, 20))  
          kinesis.put_record("RawStreamData", data, "DemoSensor")
          print data

  4. Open the Amazon Elasticsearch Service console and create a new domain.
    1. Give the domain a unique name. In the Configure cluster screen, use the default settings.
    2. In the Set up access policy screen, in the Set the domain access policy list, choose Allow access to the domain from specific IP(s).
    3. Enter the public IP address of your computer.
      Note: If you’re working behind a proxy or firewall, see the “Use a proxy to simplify request signing” section in this AWS Database blog post to learn how to work with a proxy. For additional information about securing access to your Amazon ES domain, see How to Control Access to Your Amazon Elasticsearch Domain in the AWS Security Blog.
  5. After the Amazon ES domain is up and running, you can set up and configure Kinesis Firehose to export results to Amazon ES:
    1. Open the Amazon Kinesis Firehose console and choose Create Delivery Stream.
    2. In the Destination dropdown list, choose Amazon Elasticsearch Service.
    3. Type a stream name, and choose the Amazon ES domain that you created in Step 4.
    4. Provide an index name and ES type. In the S3 bucket dropdown list, choose Create New S3 bucket. Choose Next.
    5. In the configuration, change the Elasticsearch Buffer size to 1 MB and the Buffer interval to 60s. Use the default settings for all other fields. This shortens the time for the data to reach the ES cluster.
    6. Under IAM Role, choose Create/Update existing IAM role.
      The best practice is to create a new role every time. Otherwise, the console keeps adding policy documents to the same role. Eventually the size of the attached policies causes IAM to reject the role, but it does it in a non-obvious way, where the console basically quits functioning.
    7. Choose Next to move to the Review page.
  6. Review the configuration, and then choose Create Delivery Stream.
  7. Run the Python file for 1–2 minutes, and then press Ctrl+C to stop the execution. This loads some data into the stream for you to visualize in the next step.

Analyzing the data

Now it’s time to analyze the IoT streaming data using Amazon Kinesis Analytics.

  1. Open the Amazon Kinesis Analytics console and create a new application. Give the application a name, and then choose Create Application.
  2. On the next screen, choose Connect to a source. Choose the raw incoming data stream that you created earlier. (Note the stream name Source_SQL_STREAM_001 because you will need it later.)
  3. Use the default settings for everything else. When the schema discovery process is complete, it displays a success message with the formatted stream sample in a table as shown in the following screenshot. Review the data, and then choose Save and continue.
  4. Next, choose Go to SQL editor. When prompted, choose Yes, start application.
  5. Copy the following SQL code and paste it into the SQL editor window.
    CREATE OR REPLACE STREAM "TEMP_STREAM" (
       "iotName"        varchar (40),
       "iotValue"   integer,
       "ANOMALY_SCORE"  DOUBLE);
    -- Creates an output stream and defines a schema
    CREATE OR REPLACE STREAM "DESTINATION_SQL_STREAM" (
       "iotName"       varchar(40),
       "iotValue"       integer,
       "ANOMALY_SCORE"  DOUBLE,
       "created" TimeStamp);
     
    -- Compute an anomaly score for each record in the source stream
    -- using Random Cut Forest
    CREATE OR REPLACE PUMP "STREAM_PUMP_1" AS INSERT INTO "TEMP_STREAM"
    SELECT STREAM "iotName", "iotValue", ANOMALY_SCORE FROM
      TABLE(RANDOM_CUT_FOREST(
        CURSOR(SELECT STREAM * FROM "SOURCE_SQL_STREAM_001")
      )
    );
    
    -- Sort records by descending anomaly score, insert into output stream
    CREATE OR REPLACE PUMP "OUTPUT_PUMP" AS INSERT INTO "DESTINATION_SQL_STREAM"
    SELECT STREAM "iotName", "iotValue", ANOMALY_SCORE, ROWTIME FROM "TEMP_STREAM"
    ORDER BY FLOOR("TEMP_STREAM".ROWTIME TO SECOND), ANOMALY_SCORE DESC;

 

  1. Choose Save and run SQL.
    As the application is running, it displays the results as stream data arrives. If you don’t see any data coming in, run the Python script again to generate some fresh data. When there is data, it appears in a grid as shown in the following screenshot.Note that you are selecting data from the source stream name Source_SQL_STREAM_001 that you created previously. Also note the ANOMALY_SCORE column. This is the value that the Random_Cut_Forest function calculates based on the temperature ranges provided by the Python script. Higher (anomaly) temperature ranges have a higher score.Looking at the SQL code, note that the first two blocks of code create two new streams to store temporary data and the final result. The third block of code analyzes the raw source data (Stream_Pump_1) using the Random_Cut_Forest function. It calculates an anomaly score (ANOMALY_SCORE) and inserts it into the TEMP_STREAM stream. The final code block loads the result stored in the TEMP_STREAM into DESTINATION_SQL_STREAM.
  2. Choose Exit (done editing) next to the Save and run SQL button to return to the application configuration page.

Load processed data into the Kinesis Firehose delivery stream

Now, you can export the result from DESTINATION_SQL_STREAM into the Amazon Kinesis Firehose stream that you created previously.

  1. On the application configuration page, choose Connect to a destination.
  2. Choose the stream name that you created earlier, and use the default settings for everything else. Then choose Save and Continue.
  3. On the application configuration page, choose Exit to Kinesis Analytics applications to return to the Amazon Kinesis Analytics console.
  4. Run the Python script again for 4–5 minutes to generate enough data to flow through Amazon Kinesis Streams, Kinesis Analytics, Kinesis Firehose, and finally into the Amazon ES domain.
  5. Open the Kinesis Firehose console, choose the stream, and then choose the Monitoring
  6. As the processed data flows into Kinesis Firehose and Amazon ES, the metrics appear on the Delivery Stream metrics page. Keep in mind that the metrics page takes a few minutes to refresh with the latest data.
  7. Open the Amazon Elasticsearch Service dashboard in the AWS Management Console. The count in the Searchable documents column increases as shown in the following screenshot. In addition, the domain shows a cluster health of Yellow. This is because, by default, it needs two instances to deploy redundant copies of the index. To fix this, you can deploy two instances instead of one.

Visualize the data using Kibana

Now it’s time to launch Kibana and visualize the data.

  1. Use the ES domain link to go to the cluster detail page, and then choose the Kibana link as shown in the following screenshot.

    If you’re working behind a proxy or firewall, see the “Use a proxy to simplify request signing” section in this blog post to learn how to work with a proxy.
  2. In the Kibana dashboard, choose the Discover tab to perform a query.
  3. You can also visualize the data using the different types of charts offered by Kibana. For example, by going to the Visualize tab, you can quickly create a split bar chart that aggregates by ANOMALY_SCORE per minute.


Conclusion

In this post, you learned how to use Amazon Kinesis to collect, process, and analyze real-time streaming data, and then export the results to Amazon ES for analysis and visualization with Kibana. If you have comments about this post, add them to the “Comments” section below. If you have questions or issues with implementing this solution, please open a new thread on the Amazon Kinesis or Amazon ES discussion forums.


Next Steps

Take your skills to the next level. Learn real-time clickstream anomaly detection with Amazon Kinesis Analytics.

 


About the Author

Tristan Li is a Solutions Architect with Amazon Web Services. He works with enterprise customers in the US, helping them adopt cloud technology to build scalable and secure solutions on AWS.

 

 

 

 

Wildcard Certificates Coming January 2018

Post Syndicated from Let's Encrypt - Free SSL/TLS Certificates original https://letsencrypt.org//2017/07/06/wildcard-certificates-coming-jan-2018.html

Let’s Encrypt will begin issuing wildcard certificates in January of 2018. Wildcard certificates are a commonly requested feature and we understand that there are some use cases where they make HTTPS deployment easier. Our hope is that offering wildcards will help to accelerate the Web’s progress towards 100% HTTPS.

Let’s Encrypt is currently securing 47 million domains via our fully automated DV certificate issuance and management API. This has contributed heavily to the Web going from 40% to 58% encrypted page loads since Let’s Encrypt’s service became available in December 2015. If you’re excited about wildcard availability and our mission to get to a 100% encrypted Web, we ask that you contribute to our summer fundraising campaign.

A wildcard certificate can secure any number of subdomains of a base domain (e.g. *.example.com). This allows administrators to use a single certificate and key pair for a domain and all of its subdomains, which can make HTTPS deployment significantly easier.

Wildcard certificates will be offered free of charge via our upcoming ACME v2 API endpoint. We will initially only support base domain validation via DNS for wildcard certificates, but may explore additional validation options over time. We encourage people to ask any questions they might have about wildcard certificate support on our community forums.

We decided to announce this exciting development during our summer fundraising campaign because we are a nonprofit that exists thanks to the generous support of the community that uses our services. If you’d like to support a more secure and privacy-respecting Web, donate today!

We’d like to thank our community and our sponsors for making everything we’ve done possible. If your company or organization is able to sponsor Let’s Encrypt please email us at [email protected].

Wildcard Certificates Coming January 2018

Post Syndicated from Let's Encrypt - Free SSL/TLS Certificates original https://letsencrypt.org/2017/07/06/wildcard-certificates-coming-jan-2018.html

<blockquote>
<p><strong>Update, January 4, 2018</strong></p>

<p>We introduced a public test API endpoint for the ACME v2 protocol and wildcard support on January 4, 2018. ACME v2 and wildcard support will be fully available on February 27, 2018.</p>
</blockquote>

<p>Let’s Encrypt will begin issuing wildcard certificates in January of 2018. Wildcard certificates are a commonly requested feature and we understand that there are some use cases where they make HTTPS deployment easier. Our hope is that offering wildcards will help to accelerate the Web’s progress towards 100% HTTPS.</p>

<p>Let’s Encrypt is currently securing 47 million domains via our fully automated DV certificate issuance and management API. This has contributed heavily to the Web going from 40% to 58% encrypted page loads since Let’s Encrypt’s service became available in December 2015. If you’re excited about wildcard availability and our mission to get to a 100% encrypted Web, we ask that you contribute to our <a href="https://letsencrypt.org/donate/">summer fundraising campaign</a>.</p>

<p>A wildcard certificate can secure any number of subdomains of a base domain (e.g. *.example.com). This allows administrators to use a single certificate and key pair for a domain and all of its subdomains, which can make HTTPS deployment significantly easier.</p>

<p>Wildcard certificates will be offered free of charge via our <a href="https://letsencrypt.org/2017/06/14/acme-v2-api.html">upcoming ACME v2 API endpoint</a>. We will initially only support base domain validation via DNS for wildcard certificates, but may explore additional validation options over time. We encourage people to ask any questions they might have about wildcard certificate support on our <a href="https://community.letsencrypt.org/">community forums</a>.</p>

<p>We decided to announce this exciting development during our summer fundraising campaign because we are a nonprofit that exists thanks to the generous support of the community that uses our services. If you’d like to support a more secure and privacy-respecting Web, <a href="https://letsencrypt.org/donate/">donate today</a>!</p>

<p>We’d like to thank our <a href="https://letsencrypt.org/getinvolved/">community</a> and our <a href="https://letsencrypt.org/sponsors/">sponsors</a> for making everything we’ve done possible. If your company or organization is able to sponsor Let’s Encrypt please email us at <a href="mailto:[email protected]">[email protected]</a>.</p>

The Quick vs. the Strong: Commentary on Cory Doctorow’s Walkaway

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2017/05/the_quick_vs_th.html

Technological advances change the world. That’s partly because of what they are, but even more because of the social changes they enable. New technologies upend power balances. They give groups new capabilities, increased effectiveness, and new defenses. The Internet decades have been a never-ending series of these upendings. We’ve seen existing industries fall and new industries rise. We’ve seen governments become more powerful in some areas and less in others. We’ve seen the rise of a new form of governance: a multi-stakeholder model where skilled individuals can have more power than multinational corporations or major governments.

Among the many power struggles, there is one type I want to particularly highlight: the battles between the nimble individuals who start using a new technology first, and the slower organizations that come along later.

In general, the unempowered are the first to benefit from new technologies: hackers, dissidents, marginalized groups, criminals, and so on. When they first encountered the Internet, it was transformative. Suddenly, they had access to technologies for dissemination, coordination, organization, and action — things that were impossibly hard before. This can be incredibly empowering. In the early decades of the Internet, we saw it in the rise of Usenet discussion forums and special-interest mailing lists, in how the Internet routed around censorship, and how Internet governance bypassed traditional government and corporate models. More recently, we saw it in the SOPA/PIPA debate of 2011-12, the Gezi protests in Turkey and the various “color” revolutions, and the rising use of crowdfunding. These technologies can invert power dynamics, even in the presence of government surveillance and censorship.

But that’s just half the story. Technology magnifies power in general, but the rates of adoption are different. Criminals, dissidents, the unorganized — all outliers — are more agile. They can make use of new technologies faster, and can magnify their collective power because of it. But when the already-powerful big institutions finally figured out how to use the Internet, they had more raw power to magnify.

This is true for both governments and corporations. We now know that governments all over the world are militarizing the Internet, using it for surveillance, censorship, and propaganda. Large corporations are using it to control what we can do and see, and the rise of winner-take-all distribution systems only exacerbates this.

This is the fundamental tension at the heart of the Internet, and information-based technology in general. The unempowered are more efficient at leveraging new technology, while the powerful have more raw power to leverage. These two trends lead to a battle between the quick and the strong: the quick who can make use of new power faster, and the strong who can make use of that same power more effectively.

This battle is playing out today in many different areas of information technology. You can see it in the security vs. surveillance battles between criminals and the FBI, or dissidents and the Chinese government. You can see it in the battles between content pirates and various media organizations. You can see it where social-media giants and Internet-commerce giants battle against new upstarts. You can see it in politics, where the newer Internet-aware organizations fight with the older, more established, political organizations. You can even see it in warfare, where a small cadre of military can keep a country under perpetual bombardment — using drones — with no risk to the attackers.

This battle is fundamental to Cory Doctorow’s new novel Walkaway. Our heroes represent the quick: those who have checked out of traditional society, and thrive because easy access to 3D printers enables them to eschew traditional notions of property. Their enemy is the strong: the traditional government institutions that exert their power mostly because they can. This battle rages through most of the book, as the quick embrace ever-new technologies and the strong struggle to catch up.

It’s easy to root for the quick, both in Doctorow’s book and in the real world. And while I’m not going to give away Doctorow’s ending — and I don’t know enough to predict how it will play out in the real world — right now, trends favor the strong.

Centralized infrastructure favors traditional power, and the Internet is becoming more centralized. This is true both at the endpoints, where companies like Facebook, Apple, Google, and Amazon control much of how we interact with information. It’s also true in the middle, where companies like Comcast increasingly control how information gets to us. It’s true in countries like Russia and China that increasingly legislate their own national agenda onto their pieces of the Internet. And it’s even true in countries like the US and the UK, that increasingly legislate more government surveillance capabilities.

At the 1996 World Economic Forum, cyber-libertarian John Perry Barlow issued his “Declaration of the Independence of Cyberspace,” telling the assembled world leaders and titans of Industry: “You have no moral right to rule us, nor do you possess any methods of enforcement that we have true reason to fear.” Many of us believed him a scant 20 years ago, but today those words ring hollow.

But if history is any guide, these things are cyclic. In another 20 years, even newer technologies — both the ones Doctorow focuses on and the ones no one can predict — could easily tip the balance back in favor of the quick. Whether that will result in more of a utopia or a dystopia depends partly on these technologies, but even more on the social changes resulting from these technologies. I’m short-term pessimistic but long-term optimistic.

This essay previously appeared on Crooked Timber.