Tag Archives: fox

Security updates for Tuesday

Post Syndicated from ris original https://lwn.net/Articles/741257/rss

Security updates have been issued by Debian (chromium-browser, evince, pdns-recursor, and simplesamlphp), Fedora (ceph, dhcp, erlang, exim, fedora-arm-installer, firefox, libvirt, openssh, pdns-recursor, rubygem-yard, thunderbird, wordpress, and xen), Red Hat (rh-mysql57-mysql), SUSE (kernel), and Ubuntu (openssl).

Weekly roundup: Truth or Dare

Post Syndicated from Eevee original https://eev.ee/dev/2017/12/11/weekly-roundup-truth-or-dare/

Oops, I seem to have missed a week. I was doing Ludum Dare 40, but then I stopped, because— well hang on lemme just bullet this.

  • anise!!: I intended to enter Ludum Dare with glip; we were working on a game about Anise that we’d conceived about a month ago but never gotten around to. We made pretty decent progress, but realized we couldn’t fit anywhere near what we wanted into only three days, so we’re just… running with it. It’s going on a little longer than we wanted, but it’s getting pretty fun to play now, and I guess that’s pretty good progress given that we had absolutely nothing ten days ago. I’m even figuring out AI for once.

  • fox flux: Worked on some portraits and big text and underground tiles. Made some sound effects. Did a whole pretty cool footstep thing that combines particles with footstep noises and is very great.

  • other games: I discovered bitsy, the teeniest game engine I’ve ever seen, and wanted to make something with it — so I made Roguelike Simulator (and also wrote a release post).

  • cc: I got so frustrated with trying to find something in Unity Collab history that I cobbled together a thing for exporting Collab history to git. No, you can’t have it, I’m still not convinced it won’t delete my entire hard drive or something. Also I probably fixed a bug in the actual game somewhere in there.

  • blog: Finally finished that post about object models, only a month late! Hooray! Also wrote a game night post, which may or may not become a series?

Also some other stuff that I’m not ready to share yet.

I have a lot going on and can’t believe the month is a third over yet, but I’m charging forwards!

16-Year-Old Boy Arrested for Running Pirate TV Service

Post Syndicated from Andy original https://torrentfreak.com/16-year-old-boy-arrested-for-running-pirate-tv-service-171211/

After more than a decade and a half in existence, public pirate sites, services, and apps remain a thorn in the side of entertainment industry groups who are determined to close them down.

That trend continued last week when French anti-piracy group ALPA teamed up with police in the Bordeaux region to raid and arrest the founder and administrator of piracy service ARTV.

According to the anti-piracy group, the ARTV.watch website first appeared during April 2017 but quickly grew to become a significant source of streaming TV piracy. Every month the site had around 150,000 visitors and in less than eight months amassed 800,000 registered users.

“Artv.watch was a public site offering live access to 176 free and paid French TV channels that are members of ALPA: Canal + Group, M6 Group, TF1 Group, France Télévision Group, Paramount, Disney, and FOX. Other thematic and sports channels were broadcast,” an ALPA statement reads.

This significant offering was reportedly lucrative for the site’s operator. While probably best taken with a grain of salt, ALPA estimates the site generated around 3,000 euros per month from advertising revenue. That’s a decent amount for anyone but even more so when one learns that ARTV’s former operator is just 16 years old.

“ARTV.WATCH it’s over. ARTV is now closed for legal reasons. Thank you for your understanding! The site was indeed illegal,” a notice on the site now reads.

“Thank you all for this experience that I have acquired in this project. And thanks to you who have believed in me.”

Closure formalities aside, ARTV’s founder also has a message for anyone else considering launching a similar platform.

“Notice to anyone wanting to do a site of the same kind, I strongly advise against it. On the criminal side, the punishment can go up to three years of imprisonment and a 300,000 euro fine. If [individual] complaints of channels (or productions) are filed against you, it will be more complicated to determine,” ARTV’s owner warns.

ALPA says that in addition to closing down the site, ARTV’s owner also deactivated the site’s Android app, which had been available for download on Google Play. The anti-piracy group adds that this action against IPTV and live streaming was a first in France.

For anyone who speaks French, the 16-year-old has published a video on YouTube talking about his predicament.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and more. We also have VPN discounts, offers and coupons

Security updates for Monday

Post Syndicated from ris original https://lwn.net/Articles/741158/rss

Security updates have been issued by CentOS (postgresql), Debian (firefox-esr, kernel, libxcursor, optipng, thunderbird, wireshark, and xrdp), Fedora (borgbackup, ca-certificates, collectd, couchdb, curl, docker, erlang-jiffy, fedora-arm-installer, firefox, git, linux-firmware, mupdf, openssh, thunderbird, transfig, wildmidi, wireshark, xen, and xrdp), Mageia (firefox and optipng), openSUSE (erlang, libXfont, and OBS toolchain), Oracle (kernel), Slackware (openssl), and SUSE (kernel and OBS toolchain).

Security updates for Friday

Post Syndicated from jake original https://lwn.net/Articles/740997/rss

Security updates have been issued by Arch Linux (chromium and vlc), Debian (erlang), Mageia (ffmpeg, tor, and wireshark), openSUSE (chromium, opensaml, openssh, openvswitch, and php7), Oracle (postgresql), Red Hat (chromium-browser, postgresql, rh-postgresql94-postgresql, rh-postgresql95-postgresql, and rh-postgresql96-postgresql), SUSE (firefox, java-1_6_0-ibm, opensaml, and xen), and Ubuntu (kernel, linux, linux-aws, linux-kvm, linux-raspi2, linux-snapdragon, linux, linux-raspi2, linux-azure, linux-gcp, linux-hwe, linux-lts-trusty, linux-lts-xenial, linux-aws, and rsync).

Security updates for Thursday

Post Syndicated from jake original https://lwn.net/Articles/740883/rss

Security updates have been issued by CentOS (firefox, java-1.7.0-openjdk, kernel, liblouis, qemu-kvm, sssd, and thunderbird), Debian (heimdal and nova), openSUSE (shibboleth-sp), Oracle (java-1.7.0-openjdk), Red Hat (Red Hat OpenShift Enterprise), Scientific Linux (openafs), SUSE (kernel), and Ubuntu (rsync).

Movie & TV Companies Tackle Pirate IPTV in Australia Federal Court

Post Syndicated from Andy original https://torrentfreak.com/movie-tv-companies-tackle-pirate-iptv-in-australia-federal-court-171207/

As movie and TV show piracy has migrated from the desktop towards mobile and living room-based devices, copyright holders have found the need to adapt to a new enemy.

Dealing with streaming services is now high on the agenda, with third-party Kodi addons and various Android apps posing the biggest challenge. Alongside is the much less prevalent but rapidly growing pay IPTV market, in which thousands of premium channels are delivered to homes for a relatively small fee.

In Australia, copyright holders are treating these services in much the same way as torrent sites. They feel that if they can force ISPs to block them, the problem can be mitigated. Most recently, movie and TV show giants Village Roadshow, Disney, Universal, Warner Bros, Twentieth Century Fox, and Paramount filed an application targeting HDSubs+, a pirate IPTV operation servicing thousands of Australians.

Filed in October, the application for the injunction targets Australia’s largest ISPs including Telstra, Optus, TPG, and Vocus, plus their subsidiaries. The movie and TV show companies want them to quickly block HDSubs+, to prevent it from reaching its audience.

HDSubs+ IPTV package
However, blocking isn’t particularly straightforward. Due to the way IPTV services are setup a number of domains need to be blocked, including their sales platforms, EPG (electronic program guide), software (such as an Android app), updates, and sundry other services. In HDSubs+ case around ten domains need to be restricted but in court today, Village Roadshow revealed that probably won’t deal with the problem.

HDSubs+ appears to be undergoing some kind of transformation, possibly to mitigate efforts to block it in Australia. ComputerWorld reports that it is now directing subscribers to update to a new version that works in a more evasive manner.

If they agree, HDSubs+ customers are being migrated over to a service called PressPlayPlus. It works in the same way as the old system but no longer uses the domain names cited in Village Roadshow’s injunction application. This means that DNS blocks, the usual weapon of choice for local ISPs, will prove futile.

Village Roadshow says that with this in mind it may be forced to seek enhanced IP address blocking, unless it is granted a speedy hearing for its application. This, in turn, may result in the normally cooperative ISPs returning to court to argue their case.

“If that’s what you want to do, then you’ll have to amend the orders and let the parties know,” Judge John Nicholas said.

“It’s only the former [DNS blocking] that carriage service providers have agreed to in the past.”

As things stand, Village Roadshow will return to court on December 15 for a case management hearing but in the meantime, the Federal Court must deal with another IPTV-related blocking request.

In common with its Australian and US-based counterparts, Hong Kong-based broadcaster Television Broadcasts Limited (TVB) has launched a similar case asking local ISPs to block another IPTV service.

“Television Broadcasts Limited can confirm that we have commenced legal action in Australia to protect our copyright,” a TVB spokesperson told Computerworld.

TVB wants ISPs including Telstra, Optus, Vocus, and TPG plus their subsidiaries to block access to seven Android-based services named as A1, BlueTV, EVPAD, FunTV, MoonBox, Unblock, and hTV5.

Court documents list 21 URLs maintaining the services. They will all need to be blocked by DNS or other means, if the former proves futile. Online reports suggest that there are similarities among the IPTV products listed above. A demo for the FunTV IPTV service is shown below.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and more. We also have VPN discounts, offers and coupons

Looking Forward to 2018

Post Syndicated from Let's Encrypt - Free SSL/TLS Certificates original https://letsencrypt.org//2017/12/07/looking-forward-to-2018.html

Let’s Encrypt had a great year in 2017. We more than doubled the number of active (unexpired) certificates we service to 46 million, we just about tripled the number of unique domains we service to 61 million, and we did it all while maintaining a stellar security and compliance track record. Most importantly though, the Web went from 46% encrypted page loads to 67% according to statistics from Mozilla – a gain of 21% in a single year – incredible. We’re proud to have contributed to that, and we’d like to thank all of the other people and organizations who also worked hard to create a more secure and privacy-respecting Web.

While we’re proud of what we accomplished in 2017, we are spending most of the final quarter of the year looking forward rather than back. As we wrap up our own planning process for 2018, I’d like to share some of our plans with you, including both the things we’re excited about and the challenges we’ll face. We’ll cover service growth, new features, infrastructure, and finances.

Service Growth

We are planning to double the number of active certificates and unique domains we service in 2018, to 90 million and 120 million, respectively. This anticipated growth is due to continuing high expectations for HTTPS growth in general in 2018.

Let’s Encrypt helps to drive HTTPS adoption by offering a free, easy to use, and globally available option for obtaining the certificates required to enable HTTPS. HTTPS adoption on the Web took off at an unprecedented rate from the day Let’s Encrypt launched to the public.

One of the reasons Let’s Encrypt is so easy to use is that our community has done great work making client software that works well for a wide variety of platforms. We’d like to thank everyone involved in the development of over 60 client software options for Let’s Encrypt. We’re particularly excited that support for the ACME protocol and Let’s Encrypt is being added to the Apache httpd server.

Other organizations and communities are also doing great work to promote HTTPS adoption, and thus stimulate demand for our services. For example, browsers are starting to make their users more aware of the risks associated with unencrypted HTTP (e.g. Firefox, Chrome). Many hosting providers and CDNs are making it easier than ever for all of their customers to use HTTPS. Government agencies are waking up to the need for stronger security to protect constituents. The media community is working to Secure the News.

New Features

We’ve got some exciting features planned for 2018.

First, we’re planning to introduce an ACME v2 protocol API endpoint and support for wildcard certificates along with it. Wildcard certificates will be free and available globally just like our other certificates. We are planning to have a public test API endpoint up by January 4, and we’ve set a date for the full launch: Tuesday, February 27.

Later in 2018 we plan to introduce ECDSA root and intermediate certificates. ECDSA is generally considered to be the future of digital signature algorithms on the Web due to the fact that it is more efficient than RSA. Let’s Encrypt will currently sign ECDSA keys from subscribers, but we sign with the RSA key from one of our intermediate certificates. Once we have an ECDSA root and intermediates, our subscribers will be able to deploy certificate chains which are entirely ECDSA.

Infrastructure

Our CA infrastructure is capable of issuing millions of certificates per day with multiple redundancy for stability and a wide variety of security safeguards, both physical and logical. Our infrastructure also generates and signs nearly 20 million OCSP responses daily, and serves those responses nearly 2 billion times per day. We expect issuance and OCSP numbers to double in 2018.

Our physical CA infrastructure currently occupies approximately 70 units of rack space, split between two datacenters, consisting primarily of compute servers, storage, HSMs, switches, and firewalls.

When we issue more certificates it puts the most stress on storage for our databases. We regularly invest in more and faster storage for our database servers, and that will continue in 2018.

We’ll need to add a few additional compute servers in 2018, and we’ll also start aging out hardware in 2018 for the first time since we launched. We’ll age out about ten 2u compute servers and replace them with new 1u servers, which will save space and be more energy efficient while providing better reliability and performance.

We’ll also add another infrastructure operations staff member, bringing that team to a total of six people. This is necessary in order to make sure we can keep up with demand while maintaining a high standard for security and compliance. Infrastructure operations staff are systems administrators responsible for building and maintaining all physical and logical CA infrastructure. The team also manages a 24/7/365 on-call schedule and they are primary participants in both security and compliance audits.

Finances

We pride ourselves on being an efficient organization. In 2018 Let’s Encrypt will secure a large portion of the Web with a budget of only $3.0M. For an overall increase in our budget of only 13%, we will be able to issue and service twice as many certificates as we did in 2017. We believe this represents an incredible value and that contributing to Let’s Encrypt is one of the most effective ways to help create a more secure and privacy-respecting Web.

Our 2018 fundraising efforts are off to a strong start with Platinum sponsorships from Mozilla, Akamai, OVH, Cisco, Google Chrome and the Electronic Frontier Foundation. The Ford Foundation has renewed their grant to Let’s Encrypt as well. We are seeking additional sponsorship and grant assistance to meet our full needs for 2018.

We had originally budgeted $2.91M for 2017 but we’ll likely come in under budget for the year at around $2.65M. The difference between our 2017 expenses of $2.65M and the 2018 budget of $3.0M consists primarily of the additional infrastructure operations costs previously mentioned.

Support Let’s Encrypt

We depend on contributions from our community of users and supporters in order to provide our services. If your company or organization would like to sponsor Let’s Encrypt please email us at [email protected]. We ask that you make an individual contribution if it is within your means.

We’re grateful for the industry and community support that we receive, and we look forward to continuing to create a more secure and privacy-respecting Web!

Security updates for Wednesday

Post Syndicated from ris original https://lwn.net/Articles/740799/rss

Security updates have been issued by CentOS (samba4), Mageia (libxcursor and libxfont/libxfont2), openSUSE (exim, GraphicsMagick, graphviz, pdns, and pdns-recursor), Oracle (firefox and liblouis), Red Hat (java-1.7.0-openjdk), Scientific Linux (java-1.7.0-openjdk), SUSE (firefox, shibboleth-sp, and xen), and Ubuntu (linux-firmware).

Security updates for Tuesday

Post Syndicated from ris original https://lwn.net/Articles/740721/rss

Security updates have been issued by Debian (libextractor), Fedora (java-9-openjdk, kernel, python, and qt5-qtwebengine), Oracle (sssd and thunderbird), Red Hat (firefox, liblouis, and sssd), Scientific Linux (firefox, liblouis, and sssd), and Ubuntu (libxml2).

Security updates for Monday

Post Syndicated from ris original https://lwn.net/Articles/740605/rss

Security updates have been issued by Arch Linux (cacti, curl, exim, lib32-curl, lib32-libcurl-compat, lib32-libcurl-gnutls, lib32-libxcursor, libcurl-compat, libcurl-gnutls, libofx, libxcursor, procmail, samba, shadowsocks-libev, and thunderbird), Debian (tor), Fedora (kernel, moodle, mupdf, python-sanic, qbittorrent, qpid-cpp, and rb_libtorrent), Mageia (git, lame, memcached, nagios, perl-Catalyst-Plugin-Static-Simple, php-phpmailer, shadowsocks-libev, and varnish), openSUSE (binutils, libressl, lynx, openssl, tor, wireshark, and xen), Red Hat (thunderbird), Scientific Linux (kernel, qemu-kvm, and thunderbird), SUSE (kernel, ncurses, openvpn-openssl1, and xen), and Ubuntu (curl, evince, and firefox).

Coalition Against Piracy Wants Singapore to Block Streaming Piracy Software

Post Syndicated from Andy original https://torrentfreak.com/coalition-against-piracy-wants-singapore-to-block-streaming-piracy-software-171204/

Earlier this year, major industry players including Disney, HBO, Netflix, Amazon and NBCUniversal formed the Alliance for Creativity and Entertainment (ACE), a huge coalition set to tackle piracy on a global scale.

Shortly after the Coalition Against Piracy (CAP) was announced. With a focus on Asia and backed by CASBAA, CAP counts Disney, Fox, HBO Asia, NBCUniversal, Premier League, Turner Asia-Pacific, A&E Networks, BBC Worldwide, National Basketball Association, Viacom International, and others among its members.

In several recent reports, CAP has homed in on the piracy situation in Singapore. Describing the phenomenon as “rampant”, the group says that around 40% of locals engage in the practice, many of them through unlicensed streaming. Now CAP, in line with its anti-streaming stance, wants the government to do more – much more.

Since a large proportion of illicit streaming takes place through set-top devices, CAP’s 21 members want the authorities to block the software inside them that enables piracy, Straits Times reports.

“Within the Asia-Pacific region, Singapore is the worst in terms of availability of illicit streaming devices,” said CAP General Manager Neil Gane.

“They have access to hundreds of illicit broadcasts of channels and video-on-demand content.”

There are no precise details on CAP’s demands but it is far from clear how any government could effectively block software.

Blocking access to the software package itself would prove all but impossible, so that would leave blocking the infrastructure the software uses. While that would be relatively straightforward technically, the job would be large and fast-moving, particularly when dozens of apps and addons would need to be targeted.

However, CAP is also calling on the authorities to block pirate streams from entering Singapore. The country already has legislation in place that can be used for site-blocking, so that is not out of the question. It’s notable that the English Premier League is part of the CAP coalition and following legal action taken in the UK earlier this year, now has plenty of experience in blocking streams, particularly of live broadcasts.

While that is a game of cat-and-mouse, TorrentFreak sources that have been monitoring the Premier League’s actions over the past several months report that the soccer outfit has become more effective over time. Its blocks can still be evaded but it can be hard work for those involved. That kind of expertise could prove invaluable to CAP.

“The Premier League is currently engaged in its most comprehensive global anti-piracy programme,” a spokesperson told ST. “This includes supporting our broadcast partners in South-east Asia with their efforts to prevent the sale of illicit streaming devices.”

In common with other countries around the world, the legality of using ‘pirate’ streaming boxes is somewhat unclear in Singapore. A Bloomberg report cites a local salesman who reports sales of 10 to 20 boxes on a typical weekend, rising to 300 a day during electronic fairs. He believes the devices are legal, since they don’t download full copies of programs.

While that point is yet to be argued in court (previously an Intellectual Property Office of Singapore spokesperson said that copyright owners could potentially go after viewers), it seems unlikely that those selling the devices will be allowed to continue completely unhindered. The big question is how current legislation can be successfully applied.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and more. We also have VPN discounts, offers and coupons

Security updates for Tuesday

Post Syndicated from ris original https://lwn.net/Articles/740133/rss

Security updates have been issued by Arch Linux (powerdns and powerdns-recursor), CentOS (curl and samba), Debian (ffmpeg and roundcube), Fedora (cacti and samba), openSUSE (thunderbird), Oracle (curl), Red Hat (java-1.8.0-ibm and rh-mysql56-mysql), Scientific Linux (curl), Slackware (samba), SUSE (kernel-firmware and samba), and Ubuntu (exim4, firefox, libxml-libxml-perl, optipng, and postgresql-common).

ACE and CAP Shut Down Aussie Pirate IPTV Operation

Post Syndicated from Andy original https://torrentfreak.com/ace-and-cap-shut-down-aussie-pirate-iptv-operation-171128/

Instead of companies like the MPAA, Amazon, Netflix, CBS, HBO, BBC, Sky, CBS, Foxtel, and Village Roadshow tackling piracy completely solo, this year they teamed up to form the Alliance for Creativity and Entertainment (ACE).

This massive collaboration of 30 companies represents a new front in the fight against piracy, with global players publicly cooperating to tackle the phenomenon in all its forms.

The same is true of CASBAA‘s Coalition Against Piracy (CAP), a separate anti-piracy collective which to some extent shares the same members as ACE but with a sharp of focus on Asia.

This morning the groups announced the results of a joint investigation in Australia which targeted a large supplier of illicit IPTV devices. These small set-top boxes, which come in several forms, are often configured to receive programming from unauthorized sources. In this particular case, they came pre-loaded to play pirated movies, television shows, sports programming, plus other content.

The Melbourne-based company targeted by ACE and CAP allegedly sold these devices in Asia for many years. The company demanded AUS$400 (US$305) per IPTV unit and bundled each with a year’s subscription to pirated TV channels and on-demand movies from the US, EU, India and South East Asia markets.

In the past, companies operating in these areas have often been met with overwhelming force including criminal action, but ACE and CAP appear to have reached an agreement with the company and its owner, even going as far as keeping their names out of the press.

In return, the company has agreed to measures which will prevent people who have already invested in these boxes being able to access ACE and CAP content going forward. That is likely to result in a whole bunch of irritated customers.

“The film and television industry has made significant investments to provide audiences with access to creative content how, where, and when they want it,” says ACE spokesperson Zoe Thorogood.

“ACE and CAP members initiated this investigation as part of a comprehensive global approach to protect the legal marketplace for creative content, reduce online piracy, and bolster a creative economy that supports millions of workers. This latest action was part of a series of global actions to address the growth of illegal and unsafe piracy devices and apps.”

Neil Gane, General Manager of the CASBAA Coalition Against Piracy (CAP), also weighed in with what are now becoming industry-standard warnings of losses to content makers and supposed risks to consumers.

“These little black boxes are now beginning to dominate the piracy ecosystem, causing significant damage to all sectors of the content industry, from producers to telecommunication platforms,” Gane said.

“They also pose a risk to consumers who face a well-documented increase in exposure to malware. The surge in availability of these illicit streaming devices is an international issue that requires a coordinated effort between industry and government. This will be the first of many disruption and enforcement initiatives on which CAP, ACE, and other industry associations will be collaborating together.”

In September, TF revealed the secret agreement behind the ACE initiative, noting how the group’s founding members are required to commit $5m each annually to the project. The remaining 21 companies on the coalition’s Executive Committee put in $200,000 each.

While today’s IPTV announcement was very public, ACE has already been flexing its muscles behind the scenes. Earlier this month we reported on several cases where UK-based Kodi addon developers were approached by the anti-piracy group and warned to shut down – or else.

While all complied, each was warned not to reveal the terms of their agreement with ACE. This means that the legal basis for its threats remains shrouded in mystery. That being said, it’s likely that several European Court of Justice decisions earlier in the year played a key role.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and more. We also have VPN discounts, offers and coupons

Potential impact of the Intel ME vulnerability

Post Syndicated from Matthew Garrett original https://mjg59.dreamwidth.org/49611.html

(Note: this is my personal opinion based on public knowledge around this issue. I have no knowledge of any non-public details of these vulnerabilities, and this should not be interpreted as the position or opinion of my employer)

Intel’s Management Engine (ME) is a small coprocessor built into the majority of Intel CPUs[0]. Older versions were based on the ARC architecture[1] running an embedded realtime operating system, but from version 11 onwards they’ve been small x86 cores running Minix. The precise capabilities of the ME have not been publicly disclosed, but it is at minimum capable of interacting with the network[2], display[3], USB, input devices and system flash. In other words, software running on the ME is capable of doing a lot, without requiring any OS permission in the process.

Back in May, Intel announced a vulnerability in the Advanced Management Technology (AMT) that runs on the ME. AMT offers functionality like providing a remote console to the system (so IT support can connect to your system and interact with it as if they were physically present), remote disk support (so IT support can reinstall your machine over the network) and various other bits of system management. The vulnerability meant that it was possible to log into systems with enabled AMT with an empty authentication token, making it possible to log in without knowing the configured password.

This vulnerability was less serious than it could have been for a couple of reasons – the first is that “consumer”[4] systems don’t ship with AMT, and the second is that AMT is almost always disabled (Shodan found only a few thousand systems on the public internet with AMT enabled, out of many millions of laptops). I wrote more about it here at the time.

How does this compare to the newly announced vulnerabilities? Good question. Two of the announced vulnerabilities are in AMT. The previous AMT vulnerability allowed you to bypass authentication, but restricted you to doing what AMT was designed to let you do. While AMT gives an authenticated user a great deal of power, it’s also designed with some degree of privacy protection in mind – for instance, when the remote console is enabled, an animated warning border is drawn on the user’s screen to alert them.

This vulnerability is different in that it allows an authenticated attacker to execute arbitrary code within the AMT process. This means that the attacker shouldn’t have any capabilities that AMT doesn’t, but it’s unclear where various aspects of the privacy protection are implemented – for instance, if the warning border is implemented in AMT rather than in hardware, an attacker could duplicate that functionality without drawing the warning. If the USB storage emulation for remote booting is implemented as a generic USB passthrough, the attacker could pretend to be an arbitrary USB device and potentially exploit the operating system through bugs in USB device drivers. Unfortunately we don’t currently know.

Note that this exploit still requires two things – first, AMT has to be enabled, and second, the attacker has to be able to log into AMT. If the attacker has physical access to your system and you don’t have a BIOS password set, they will be able to enable it – however, if AMT isn’t enabled and the attacker isn’t physically present, you’re probably safe. But if AMT is enabled and you haven’t patched the previous vulnerability, the attacker will be able to access AMT over the network without a password and then proceed with the exploit. This is bad, so you should probably (1) ensure that you’ve updated your BIOS and (2) ensure that AMT is disabled unless you have a really good reason to use it.

The AMT vulnerability applies to a wide range of versions, everything from version 6 (which shipped around 2008) and later. The other vulnerability that Intel describe is restricted to version 11 of the ME, which only applies to much more recent systems. This vulnerability allows an attacker to execute arbitrary code on the ME, which means they can do literally anything the ME is able to do. This probably also means that they are able to interfere with any other code running on the ME. While AMT has been the most frequently discussed part of this, various other Intel technologies are tied to ME functionality.

Intel’s Platform Trust Technology (PTT) is a software implementation of a Trusted Platform Module (TPM) that runs on the ME. TPMs are intended to protect access to secrets and encryption keys and record the state of the system as it boots, making it possible to determine whether a system has had part of its boot process modified and denying access to the secrets as a result. The most common usage of TPMs is to protect disk encryption keys – Microsoft Bitlocker defaults to storing its encryption key in the TPM, automatically unlocking the drive if the boot process is unmodified. In addition, TPMs support something called Remote Attestation (I wrote about that here), which allows the TPM to provide a signed copy of information about what the system booted to a remote site. This can be used for various purposes, such as not allowing a compute node to join a cloud unless it’s booted the correct version of the OS and is running the latest firmware version. Remote Attestation depends on the TPM having a unique cryptographic identity that is tied to the TPM and inaccessible to the OS.

PTT allows manufacturers to simply license some additional code from Intel and run it on the ME rather than having to pay for an additional chip on the system motherboard. This seems great, but if an attacker is able to run code on the ME then they potentially have the ability to tamper with PTT, which means they can obtain access to disk encryption secrets and circumvent Bitlocker. It also means that they can tamper with Remote Attestation, “attesting” that the system booted a set of software that it didn’t or copying the keys to another system and allowing that to impersonate the first. This is, uh, bad.

Intel also recently announced Intel Online Connect, a mechanism for providing the functionality of security keys directly in the operating system. Components of this are run on the ME in order to avoid scenarios where a compromised OS could be used to steal the identity secrets – if the ME is compromised, this may make it possible for an attacker to obtain those secrets and duplicate the keys.

It’s also not entirely clear how much of Intel’s Secure Guard Extensions (SGX) functionality depends on the ME. The ME does appear to be required for SGX Remote Attestation (which allows an application using SGX to prove to a remote site that it’s the SGX app rather than something pretending to be it), and again if those secrets can be extracted from a compromised ME it may be possible to compromise some of the security assumptions around SGX. Again, it’s not clear how serious this is because it’s not publicly documented.

Various other things also run on the ME, including stuff like video DRM (ensuring that high resolution video streams can’t be intercepted by the OS). It may be possible to obtain encryption keys from a compromised ME that allow things like Netflix streams to be decoded and dumped. From a user privacy or security perspective, these things seem less serious.

The big problem at the moment is that we have no idea what the actual process of compromise is. Intel state that it requires local access, but don’t describe what kind. Local access in this case could simply require the ability to send commands to the ME (possible on any system that has the ME drivers installed), could require direct hardware access to the exposed ME (which would require either kernel access or the ability to install a custom driver) or even the ability to modify system flash (possible only if the attacker has physical access and enough time and skill to take the system apart and modify the flash contents with an SPI programmer). The other thing we don’t know is whether it’s possible for an attacker to modify the system such that the ME is persistently compromised or whether it needs to be re-compromised every time the ME reboots. Note that even the latter is more serious than you might think – the ME may only be rebooted if the system loses power completely, so even a “temporary” compromise could affect a system for a long period of time.

It’s also almost impossible to determine if a system is compromised. If the ME is compromised then it’s probably possible for it to roll back any firmware updates but still report that it’s been updated, giving admins a false sense of security. The only way to determine for sure would be to dump the system flash and compare it to a known good image. This is impractical to do at scale.

So, overall, given what we know right now it’s hard to say how serious this is in terms of real world impact. It’s unlikely that this is the kind of vulnerability that would be used to attack individual end users – anyone able to compromise a system like this could just backdoor your browser instead with much less effort, and that already gives them your banking details. The people who have the most to worry about here are potential targets of skilled attackers, which means activists, dissidents and companies with interesting personal or business data. It’s hard to make strong recommendations about what to do here without more insight into what the vulnerability actually is, and we may not know that until this presentation next month.

Summary: Worst case here is terrible, but unlikely to be relevant to the vast majority of users.

[0] Earlier versions of the ME were built into the motherboard chipset, but as portions of that were incorporated onto the CPU package the ME followed
[1] A descendent of the SuperFX chip used in Super Nintendo cartridges such as Starfox, because why not
[2] Without any OS involvement for wired ethernet and for wireless networks in the system firmware, but requires OS support for wireless access once the OS drivers have loaded
[3] Assuming you’re using integrated Intel graphics
[4] “Consumer” is a bit of a misnomer here – “enterprise” laptops like Thinkpads ship with AMT, but are often bought by consumers.

comment count unavailable comments

Weekly roundup: VK Ultra

Post Syndicated from Eevee original https://eev.ee/dev/2017/11/27/weekly-roundup-vk-ultra/

  • fox flux: Cleaned up and committed the “heart get” overlay and worked on some more art for it. Diagnosed a very obscure physics problem, but didn’t come up with a good solution yet; physics is hard! Drew a very good tree trunk to use as a spawn point; also worked on some background foliage, though less successfully. Played with colors a bit. Tried to work out a tileset for underground areas.

  • music: I wrote like half of a little chiptune song that I actually like so far! I’m now seriously toying with the idea of doing my own music for fox flux. Played a bit with more sound effects, too.

  • blog: I wrote up the Eevee mugshot set for Doom I made, as an inaugural post for the release category.

  • veekun: Finished up Ultra Sun and Ultra Moon! Pokémon sprites, box sprites, item sprites, and the same data as Sun/Moon. I say “finished” but of course plenty of stuff is still missing, alas.

  • cc: I’m trying to make glip some building blocks so that they can actually start building the game, so I made some breakable blocks. Also wrote a little shader for implementing their parallax background, which involves a bunch of layer modes.

  • misc: I got a new keyboard. Also I installed umatrix because noscript’s web extension version is half-broken and driving me up the wall. Sorry, noscript.

Huh, that’s not a bad haul, despite a few nights of incredibly bad sleep. Cool.

UI Testing at Scale with AWS Lambda

Post Syndicated from Stas Neyman original https://aws.amazon.com/blogs/devops/ui-testing-at-scale-with-aws-lambda/

This is a guest blog post by Wes Couch and Kurt Waechter from the Blackboard Internal Product Development team about their experience using AWS Lambda.

One year ago, one of our UI test suites took hours to run. Last month, it took 16 minutes. Today, it takes 39 seconds. Here’s how we did it.

The backstory:

Blackboard is a global leader in delivering robust and innovative education software and services to clients in higher education, government, K12, and corporate training. We have a large product development team working across the globe in at least 10 different time zones, with an internal tools team providing support for quality and workflows. We have been using Selenium Webdriver to perform automated cross-browser UI testing since 2007. Because we are now practicing continuous delivery, the automated UI testing challenge has grown due to the faster release schedule. On top of that, every commit made to each branch triggers an execution of our automated UI test suite. If you have ever implemented an automated UI testing infrastructure, you know that it can be very challenging to scale and maintain. Although there are services that are useful for testing different browser/OS combinations, they don’t meet our scale needs.

It used to take three hours to synchronously run our functional UI suite, which revealed the obvious need for parallel execution. Previously, we used Mesos to orchestrate a Selenium Grid Docker container for each test run. This way, we were able to run eight concurrent threads for test execution, which took an average of 16 minutes. Although this setup is fine for a single workflow, the cracks started to show when we reached the scale required for Blackboard’s mature product lines. Going beyond eight concurrent sessions on a single container introduced performance problems that impact the reliability of tests (for example, issues in Webdriver or the browser popping up frequently). We tried Mesos and considered Kubernetes for Selenium Grid orchestration, but the answer to scaling a Selenium Grid was to think smaller, not larger. This led to our breakthrough with AWS Lambda.

The solution:

We started using AWS Lambda for UI testing because it doesn’t require costly infrastructure or countless man hours to maintain. The steps we outline in this blog post took one work day, from inception to implementation. By simply packaging the UI test suite into a Lambda function, we can execute these tests in parallel on a massive scale. We use a custom JUnit test runner that invokes the Lambda function with a request to run each test from the suite. The runner then aggregates the results returned from each Lambda test execution.

Selenium is the industry standard for testing UI at scale. Although there are other options to achieve the same thing in Lambda, we chose this mature suite of tools. Selenium is backed by Google, Firefox, and others to help the industry drive their browsers with code. This makes Lambda and Selenium a compelling stack for achieving UI testing at scale.

Making Chrome Run in Lambda

Currently, Chrome for Linux will not run in Lambda due to an absent mount point. By rebuilding Chrome with a slight modification, as Marco Lüthy originally demonstrated, you can run it inside Lambda anyway! It took about two hours to build the current master branch of Chromium to build on a c4.4xlarge. Unfortunately, the current version of ChromeDriver, 2.33, does not support any version of Chrome above 62, so we’ll be using Marco’s modified version of version 60 for the near future.

Required System Libraries

The Lambda runtime environment comes with a subset of common shared libraries. This means we need to include some extra libraries to get Chrome and ChromeDriver to work. Anything that exists in the java resources folder during compile time is included in the base directory of the compiled jar file. When this jar file is deployed to Lambda, it is placed in the /var/task/ directory. This allows us to simply place the libraries in the java resources folder under a folder named lib/ so they are right where they need to be when the Lambda function is invoked.

To get these libraries, create an EC2 instance and choose the Amazon Linux AMI.

Next, use ssh to connect to the server. After you connect to the new instance, search for the libraries to find their locations.

sudo find / -name libgconf-2.so.4
sudo find / -name libORBit-2.so.0

Now that you have the locations of the libraries, copy these files from the EC2 instance and place them in the java resources folder under lib/.

Packaging the Tests

To deploy the test suite to Lambda, we used a simple Gradle tool called ShadowJar, which is similar to the Maven Shade Plugin. It packages the libraries and dependencies inside the jar that is built. Usually test dependencies and sources aren’t included in a jar, but for this instance we want to include them. To include the test dependencies, add this section to the build.gradle file.

shadowJar {
   from sourceSets.test.output
   configurations = [project.configurations.testRuntime]
}

Deploying the Test Suite

Now that our tests are packaged with the dependencies in a jar, we need to get them into a running Lambda function. We use  simple SAM  templates to upload the packaged jar into S3, and then deploy it to Lambda with our settings.

{
   "AWSTemplateFormatVersion": "2010-09-09",
   "Transform": "AWS::Serverless-2016-10-31",
   "Resources": {
       "LambdaTestHandler": {
           "Type": "AWS::Serverless::Function",
           "Properties": {
               "CodeUri": "./build/libs/your-test-jar-all.jar",
               "Runtime": "java8",
               "Handler": "com.example.LambdaTestHandler::handleRequest",
               "Role": "<YourLambdaRoleArn>",
               "Timeout": 300,
               "MemorySize": 1536
           }
       }
   }
}

We use the maximum timeout available to ensure our tests have plenty of time to run. We also use the maximum memory size because this ensures our Lambda function can support Chrome and other resources required to run a UI test.

Specifying the handler is important because this class executes the desired test. The test handler should be able to receive a test class and method. With this information it will then execute the test and respond with the results.

public LambdaTestResult handleRequest(TestRequest testRequest, Context context) {
   LoggerContainer.LOGGER = new Logger(context.getLogger());
  
   BlockJUnit4ClassRunner runner = getRunnerForSingleTest(testRequest);
  
   Result result = new JUnitCore().run(runner);

   return new LambdaTestResult(result);
}

Creating a Lambda-Compatible ChromeDriver

We provide developers with an easily accessible ChromeDriver for local test writing and debugging. When we are running tests on AWS, we have configured ChromeDriver to run them in Lambda.

To configure ChromeDriver, we first need to tell ChromeDriver where to find the Chrome binary. Because we know that ChromeDriver is going to be unzipped into the root task directory, we should point the ChromeDriver configuration at that location.

The settings for getting ChromeDriver running are mostly related to Chrome, which must have its working directories pointed at the tmp/ folder.

Start with the default DesiredCapabilities for ChromeDriver, and then add the following settings to enable your ChromeDriver to start in Lambda.

public ChromeDriver createLambdaChromeDriver() {
   ChromeOptions options = new ChromeOptions();

   // Set the location of the chrome binary from the resources folder
   options.setBinary("/var/task/chrome");

   // Include these settings to allow Chrome to run in Lambda
   options.addArguments("--disable-gpu");
   options.addArguments("--headless");
   options.addArguments("--window-size=1366,768");
   options.addArguments("--single-process");
   options.addArguments("--no-sandbox");
   options.addArguments("--user-data-dir=/tmp/user-data");
   options.addArguments("--data-path=/tmp/data-path");
   options.addArguments("--homedir=/tmp");
   options.addArguments("--disk-cache-dir=/tmp/cache-dir");
  
   DesiredCapabilities desiredCapabilities = DesiredCapabilities.chrome();
   desiredCapabilities.setCapability(ChromeOptions.CAPABILITY, options);
  
   return new ChromeDriver(desiredCapabilities);
}

Executing Tests in Parallel

You can approach parallel test execution in Lambda in many different ways. Your approach depends on the structure and design of your test suite. For our solution, we implemented a custom test runner that uses reflection and JUnit libraries to create a list of test cases we want run. When we have the list, we create a TestRequest object to pass into the Lambda function that we have deployed. In this TestRequest, we place the class name, test method, and the test run identifier. When the Lambda function receives this TestRequest, our LambdaTestHandler generates and runs the JUnit test. After the test is complete, the test result is sent to the test runner. The test runner compiles a result after all of the tests are complete. By executing the same Lambda function multiple times with different test requests, we can effectively run the entire test suite in parallel.

To get screenshots and other test data, we pipe those files during test execution to an S3 bucket under the test run identifier prefix. When the tests are complete, we link the files to each test execution in the report generated from the test run. This lets us easily investigate test executions.

Pro Tip: Dynamically Loading Binaries

AWS Lambda has a limit of 250 MB of uncompressed space for packaged Lambda functions. Because we have libraries and other dependencies to our test suite, we hit this limit when we tried to upload a function that contained Chrome and ChromeDriver (~140 MB). This test suite was not originally intended to be used with Lambda. Otherwise, we would have scrutinized some of the included libraries. To get around this limit, we used the Lambda functions temporary directory, which allows up to 500 MB of space at runtime. Downloading these binaries at runtime moves some of that space requirement into the temporary directory. This allows more room for libraries and dependencies. You can do this by grabbing Chrome and ChromeDriver from an S3 bucket and marking them as executable using built-in Java libraries. If you take this route, be sure to point to the new location for these executables in order to create a ChromeDriver.

private static void downloadS3ObjectToExecutableFile(String key) throws IOException {
   File file = new File("/tmp/" + key);

   GetObjectRequest request = new GetObjectRequest("s3-bucket-name", key);

   FileUtils.copyInputStreamToFile(s3client.getObject(request).getObjectContent(), file);
   file.setExecutable(true);
}

Lambda-Selenium Project Source

We have compiled an open source example that you can grab from the Blackboard Github repository. Grab the code and try it out!

https://blackboard.github.io/lambda-selenium/

Conclusion

One year ago, one of our UI test suites took hours to run. Last month, it took 16 minutes. Today, it takes 39 seconds. Thanks to AWS Lambda, we can reduce our build times and perform automated UI testing at scale!

Weekly roundup: Upside down

Post Syndicated from Eevee original https://eev.ee/dev/2017/11/22/weekly-roundup-upside-down/

Complicated week.

  • blog: I wrote a rather large chunk of one post, but didn’t finish it. I also made a release category for, well, release announcements, so that maybe things I make will have a permanent listing and not fade into obscurity on my Twitter timeline.

  • fox flux: Drew some experimental pickups. Started putting together a real level with a real tileset (rather than the messy sketch sheet i’ve been using). Got doors partially working with some cool transitions. Wrote a little jingle for picking up a heart.

  • veekun: Started working on Ultra Sun and Ultra Moon; I have the games dumped to YAML already, so getting them onto the site shouldn’t take too much more work.

Security updates for Monday

Post Syndicated from ris original https://lwn.net/Articles/739648/rss

Security updates have been issued by Arch Linux (icu and lib32-icu), CentOS (firefox), Debian (imagemagick, konversation, libspring-ldap-java, libxml-libxml-perl, lynx-cur, ming, opensaml2, poppler, procmail, shibboleth-sp2, and xen), Fedora (firefox, java-9-openjdk, jbig2dec, kernel, knot, knot-resolver, qt5-qtwebengine, and roundcubemail), Gentoo (adobe-flash, couchdb, icedtea-bin, and phpunit), Mageia (apr, bluez, firefox, jq, konversation, libextractor, and quagga), Oracle (firefox), Red Hat (firefox), and Scientific Linux (firefox).