Tag Archives: game

Sci-Hub ‘Pirate Bay For Science’ Security Certs Revoked by Comodo

Post Syndicated from Andy original https://torrentfreak.com/sci-hub-pirate-bay-for-science-security-certs-revoked-by-comodo-ca-180503/

Sci-Hub is often referred to as the “Pirate Bay of Science”. Like its namesake, it offers masses of unlicensed content for free, mostly against the wishes of copyright holders.

While The Pirate Bay will index almost anything, Sci-Hub is dedicated to distributing tens of millions of academic papers and articles, something which has turned itself into a target for publishing giants like Elsevier.

Sci-Hub and its Kazakhstan-born founder Alexandra Elbakyan have been under sustained attack for several years but more recently have been fending off an unprecedented barrage of legal action initiated by the American Chemical Society (ACS), a leading source of academic publications in the field of chemistry.

After winning a default judgment for $4.8 million in copyright infringement damages last year, ACS was further granted a broad injunction.

It required various third-party services (including domain registries, hosting companies and search engines) to stop facilitating access to the site. This plunged Sci-Hub into a game of domain whac-a-mole, one that continues to this day.

Determined to head Sci-Hub off at the pass, ACS obtained additional authority to tackle the evasive site and any new domains it may register in the future.

While Sci-Hub has been hopping around domains for a while, this week a new development appeared on the horizon. Visitors to some of the site’s domains were greeted with errors indicating that the domains’ security certificates had been revoked.

Tests conducted by TorrentFreak revealed clear revocations on Sci-Hub.hk and Sci-Hub.nz, both of which returned the error ‘NET::ERR_CERT_REVOKED’.

Certificate revoked

These certificates were first issued and then revoked by Comodo CA, the world’s largest certification authority. TF contacted the company who confirmed that it had been forced to take action against Sci-Hub.

“In response to a court order against Sci-Hub, Comodo CA has revoked four certificates for the site,” Jonathan Skinner, Director, Global Channel Programs at Comodo CA informed TorrentFreak.

“By policy Comodo CA obeys court orders and the law to the full extent of its ability.”

Comodo refused to confirm any additional details, including whether these revocations were anything to do with the current ACS injunction. However, Susan R. Morrissey, Director of Communications at ACS, told TorrentFreak that the revocations were indeed part of ACS’ legal action against Sci-Hub.

“[T]he action is related to our continuing efforts to protect ACS’ intellectual property,” Morrissey confirmed.

Sci-Hub operates multiple domains (an up-to-date list is usually available on Wikipedia) that can be switched at any time. At the time of writing the domain sci-hub.ga currently returns ‘ERR_SSL_VERSION_OR_CIPHER_MISMATCH’ while .CN and .GS variants both have Comodo certificates that expired last year.

When TF first approached Comodo earlier this week, Sci-Hub’s certificates with the company hadn’t been completely wiped out. For example, the domain https://sci-hub.tw operated perfectly, with an active and non-revoked Comodo certificate.

Still in the game…but not for long

By Wednesday, however, the domain was returning the now-familiar “revoked” message.

These domain issues are the latest technical problems to hit Sci-Hub as a result of the ACS injunction. In February, Cloudflare terminated service to several of the site’s domains.

“Cloudflare will terminate your service for the following domains sci-hub.la, sci-hub.tv, and sci-hub.tw by disabling our authoritative DNS in 24 hours,” Cloudflare told Sci-Hub.

While ACS has certainly caused problems for Sci-Hub, the platform is extremely resilient and remains online.

The domains https://sci-hub.is and https://sci-hub.nu are fully operational with certificates issued by Let’s Encrypt, a free and open certificate authority supported by the likes of Mozilla, EFF, Chrome, Private Internet Access, and other prominent tech companies.

It’s unclear whether these certificates will be targeted in the future but Sci-Hub doesn’t appear to be in the mood to back down.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and more. We also have VPN reviews, discounts, offers and coupons.

Own your own working Pokémon Pokédex!

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/deep-learning-pokedex/

Squeal with delight as your inner Pokémon trainer witnesses the wonder of Adrian Rosebrock’s deep learning Pokédex.

Creating a real-life Pokedex with a Raspberry Pi, Python, and Deep Learning

This video demos a real-like Pokedex, complete with visual recognition, that I created using a Raspberry Pi, Python, and Deep Learning. You can find the entire blog post, including code, using this link: https://www.pyimagesearch.com/2018/04/30/a-fun-hands-on-deep-learning-project-for-beginners-students-and-hobbyists/ Music credit to YouTube user “No Copyright” for providing royalty free music: https://www.youtube.com/watch?v=PXpjqURczn8

The history of Pokémon in 30 seconds

The Pokémon franchise was created by video game designer Satoshi Tajiri in 1995. In the fictional world of Pokémon, Pokémon Trainers explore the vast landscape, catching and training small creatures called Pokémon. To date, there are 802 different types of Pokémon. They range from the ever recognisable Pikachu, a bright yellow electric Pokémon, to the highly sought-after Shiny Charizard, a metallic, playing-card-shaped Pokémon that your mate Alex claims she has in mint condition, but refuses to show you.

Pokemon GIF

In the world of Pokémon, children as young as ten-year-old protagonist and all-round annoyance Ash Ketchum are allowed to leave home and wander the wilderness. There, they hunt vicious, deadly creatures in the hope of becoming a Pokémon Master.

Adrian’s deep learning Pokédex

Adrian is a bit of a deep learning pro, as demonstrated by his Santa/Not Santa detector, which we wrote about last year. For that project, he also provided a great explanation of what deep learning actually is. In a nutshell:

…a subfield of machine learning, which is, in turn, a subfield of artificial intelligence (AI).While AI embodies a large, diverse set of techniques and algorithms related to automatic reasoning (inference, planning, heuristics, etc), the machine learning subfields are specifically interested in pattern recognition and learning from data.

As with his earlier Raspberry Pi project, Adrian uses the Keras deep learning model and the TensorFlow backend, plus a few other packages such as Adrian’s own imutils functions and OpenCV.

Adrian trained a Convolutional Neural Network using Keras on a dataset of 1191 Pokémon images, obtaining 96.84% accuracy. As Adrian explains, this model is able to identify Pokémon via still image and video. It’s perfect for creating a Pokédex – an interactive Pokémon catalogue that should, according to the franchise, be able to identify and read out information on any known Pokémon when captured by camera. More information on model training can be found on Adrian’s blog.

Adrian Rosebeck deep learning pokemon pokedex

For the physical build, a Raspberry Pi 3 with camera module is paired with the Raspberry Pi 7″ touch display to create a portable Pokédex. And while Adrian comments that the same result can be achieved using your home computer and a webcam, that’s not how Adrian rolls as a Raspberry Pi fan.

Adrian Rosebeck deep learning pokemon pokedex

Plus, the smaller size of the Pi is perfect for one of you to incorporate this deep learning model into a 3D-printed Pokédex for ultimate Pokémon glory, pretty please, thank you.

Adrian Rosebeck deep learning pokemon pokedex

Adrian has gone into impressive detail about how the project works and how you can create your own on his blog, pyimagesearch. So if you’re interested in learning more about deep learning, and making your own Pokédex, be sure to visit.

The post Own your own working Pokémon Pokédex! appeared first on Raspberry Pi.

Stream to Twitch with the push of a button

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/tinkernut-twitch-streaming/

Stream your video gaming exploits to the internet at the touch of a button with the Twitch-O-Matic. Everyone else is doing it, so you should too.

Twitch-O-Matic: Raspberry Pi Twitch Streaming Device – Weekend Hacker #1804

Some gaming consoles make it easy to stream to Twitch, some gaming consoles don’t (come on, Nintendo). So for those that don’t, I’ve made this beta version of the “Twitch-O-Matic”. No it doesn’t chop onions or fold your laundry, but what it DOES do is stream anything with HDMI output to your Twitch channel with the simple push of a button!

eSports and online game streaming

Interest in eSports has skyrocketed over the last few years, with viewership numbers in the hundreds of millions, sponsorship deals increasing in value and prestige, and tournament prize funds reaching millions of dollars. So it’s no wonder that more and more gamers are starting to stream live to online platforms in order to boost their fanbase and try to cash in on this growing industry.

Streaming to Twitch

Launched in 2011, Twitch.tv is an online live-streaming platform with a primary focus on video gaming. Users can create accounts to contribute their comments and content to the site, as well as watching live-streamed gaming competitions and broadcasts. With a staggering fifteen million daily users, Twitch is accessible via smartphone and gaming console apps, smart TVs, computers, and tablets. But if you want to stream to Twitch, you may find yourself using third-party software in order to do so. And with more buttons to click and more wires to plug in for older, app-less consoles, streaming can get confusing.

Enter Tinkernut.

Side note: we ❤ Tinkernut

We’ve featured Tinkernut a few times on the Raspberry Pi blog – his tutorials are clear, his projects are interesting and useful, and his live-streamed comment videos for every build are a nice touch to sharing homebrew builds on the internet.

Tinkernut Raspberry Pi Zero W Twitch-O-Matic

So, yes, we love him. [This is true. Alex never shuts up about him. – Ed.] And since he has over 500K subscribers on YouTube, we’re obviously not the only ones. We wave our Tinkernut flags with pride.

Twitch-O-Matic

With a Raspberry Pi Zero W, an HDMI to CSI adapter, and a case to fit it all in, Tinkernut’s Twitch-O-Matic allows easy connection to the Twitch streaming service. You’ll also need a button – the bigger, the better in our opinion, though Tinkernut has opted for the Adafruit 16mm Illuminated Pushbutton for his build, and not the 100mm Massive Arcade Button that, sadly, we still haven’t found a reason to use yet.

Adafruit massive button

“I’m sorry, Dave…”

For added frills and pizzazz, Tinketnut has also incorporated Adafruit’s White LED Backlight Module into the case, though you don’t have to do so unless you’re feeling super fancy.

The setup

The Raspberry Pi Zero W is connected to the HDMI to CSI adapter via the camera connector, in the same way you’d attach the camera ribbon. Tinkernut uses a standard Raspbian image on an 8GB SD card, with SSH enabled for remote access from his laptop. He uses the simple command Raspivid to test the HDMI connection by recording ten seconds of video footage from his console.

Tinkernut Raspberry Pi Zero W Twitch-O-Matic

One lead is all you need

Once you have the Pi receiving video from your console, you can connect to Twitch using your Twitch stream key, which you can find by logging in to your account at Twitch.tv. Tinkernut’s tutorial gives you all the commands you need to stream from your Pi.

The frills

To up the aesthetic impact of your project, adding buttons and backlights is fairly straightforward.

Tinkernut Raspberry Pi Zero W Twitch-O-Matic

Pretty LED frills

To run the stream command, Tinketnut uses a button: press once to start the stream, press again to stop. Pressing the button also turns on the LED backlight, so it’s obvious when streaming is in progress.

The tutorial

For the full code and 3D-printable case STL file, head to Tinketnut’s hackster.io project page. And if you’re already using a Raspberry Pi for Twitch streaming, share your build setup with us. Cheers!

The post Stream to Twitch with the push of a button appeared first on Raspberry Pi.

Under-Fire “Kodi Box” Company “Sold to Chinese Investor” For US$8.82m

Post Syndicated from Andy original https://torrentfreak.com/under-fire-kodi-box-company-sold-to-chinese-investor-for-us8-82m-180426/

Back in 2016, an article appeared in Kiwi media discussing the rise of a new company pledging to beat media giant Sky TV at its own game.

My Box NZ owner Krish Reddy told the publication he was selling Android boxes loaded with Kodi software and augmented with third-party addons.

Without any hint of fear, he stated that these devices enabled customers to access movies, TV shows and live channels for free, after shelling out a substantial US$182 for the box first, that is.

“Why pay $80 minimum per month for Sky when for one payment you can have it free for good?” a claim on the company’s website asked.

Noting that he’d been importing the boxes from China, Reddy suggested that his lawyers hadn’t found any problem with the business plan.

“I don’t see why [Sky] would contact me but if they do contact me and … if there’s something of theirs that they feel I’ve unlawfully taken then yeah … but as it stands I don’t [have any concerns],” he said.

At this point, Reddy said he’d been selling the boxes for just six weeks and had shifted around 80 units. To get coverage from a national newspaper at this stage of the game must’ve been very much appreciated but Reddy didn’t stop there.

In a bulk advertising email sent out to 50,000 people, Reddy described his boxes as “better than Sky”. However, by design or misfortune, the email managed to land in the inboxes of 50 Sky TV staff and directors, something that didn’t go unnoticed by the TV giant.

With Reddy claiming sales of 8,000 units, Sky ran out of patience last April. In a letter from its lawyers, the pay-TV company said Reddy’s devices breached copyright law and the Fair Trading Act. Reddy responded by calling the TV giant “a playground bully”, again denying that he was breaking the law.

“From a legal perspective, what we do is completely within the law. We advertise Sky television channels being available through our website and social media platforms as these are available via streams which you can find through My Box,” he said.

“The content is already available, I’m not going out there and bringing the content so how am I infringing the copyright… the content is already there, if someone uses the box to search for the content, that’s what it is.”

The initial compensation demand from Sky against Reddy’s company My Box ran to NZD$1.4m, around US$1m. It was an amount that had the potential rise by millions if matters got drawn out and/or escalated. But despite picking a terrible opponent in a battle he was unlikely to win, Reddy refused to give up.

“[Sky’s] point of view is they own copyright and I’m destroying the market by giving people content for free. To me it is business; I have got something that is new … that’s competition,” he said.

The Auckland High Court heard the case against My Box last month with Judge Warwick Smith reserving his judgment and Reddy still maintaining that his business is entirely legal. Sales were fantastic, he said, with 20,000 devices sold to customers in 12 countries.

Then something truly amazing happened.

A company up to its eyeballs in litigation, selling a commodity product that an amateur can buy and configure at home for US$40, reportedly got a chance of a lifetime. Reddy revealed to Stuff that a Chinese investor had offered to buy his company for an eye-watering NZ$10 million (US$7.06m).

“We have to thank Sky,” he said. “If they had left us alone we would just have been selling a few boxes, but the controversy made us world famous.”

Reddy noted he’d been given 21 days to respond to the offer, but refused to name the company. Interestingly, he also acknowledged that if My Box lost its case, the company would be liable for damages. However, that wouldn’t bother the potential investor.

“It makes no difference to them whether we win or lose, because their operations won’t be in New Zealand,” Reddy said.

According to the entrepreneur, that’s how things are playing out.

The Chinese firm – which Reddy is still refusing to name – has apparently accepted a counter offer from Reddy of US$8.8m for My Box. As a result, Reddy will wrap up his New Zealand operations within the next 90 days and his six employees will be rendered unemployed.

Given that anyone with the ability to install Kodi and a few addons before putting a box in the mail could replicate Reddy’s business model, the multi-million dollar offer for My Box was never anything less than a bewildering business proposition. That someone carried through with it an even higher price is so fantastic as to be almost unbelievable.

In a sea of unhappy endings for piracy-enabled Kodi box sellers globally, this is the only big win to ever grace the headlines. Assuming this really is the end of the story (and that might not be the case) it will almost certainly be the last.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and more. We also have VPN reviews, discounts, offers and coupons.

Continued: the answers to your questions for Eben Upton

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/eben-q-a-2/

Last week, we shared the first half of our Q&A with Raspberry Pi Trading CEO and Raspberry Pi creator Eben Upton. Today we follow up with all your other questions, including your expectations for a Raspberry Pi 4, Eben’s dream add-ons, and whether we really could go smaller than the Zero.

Live Q&A with Eben Upton, creator of the Raspberry Pi

Get your questions to us now using #AskRaspberryPi on Twitter

With internet security becoming more necessary, will there be automated versions of VPN on an SD card?

There are already third-party tools which turn your Raspberry Pi into a VPN endpoint. Would we do it ourselves? Like the power button, it’s one of those cases where there are a million things we could do and so it’s more efficient to let the community get on with it.

Just to give a counterexample, while we don’t generally invest in optimising for particular use cases, we did invest a bunch of money into optimising Kodi to run well on Raspberry Pi, because we found that very large numbers of people were using it. So, if we find that we get half a million people a year using a Raspberry Pi as a VPN endpoint, then we’ll probably invest money into optimising it and feature it on the website as we’ve done with Kodi. But I don’t think we’re there today.

Have you ever seen any Pis running and doing important jobs in the wild, and if so, how does it feel?

It’s amazing how often you see them driving displays, for example in radio and TV studios. Of course, it feels great. There’s something wonderful about the geographic spread as well. The Raspberry Pi desktop is quite distinctive, both in its previous incarnation with the grey background and logo, and the current one where we have Greg Annandale’s road picture.

The PIXEL desktop on Raspberry Pi

And so it’s funny when you see it in places. Somebody sent me a video of them teaching in a classroom in rural Pakistan and in the background was Greg’s picture.

Raspberry Pi 4!?!

There will be a Raspberry Pi 4, obviously. We get asked about it a lot. I’m sticking to the guidance that I gave people that they shouldn’t expect to see a Raspberry Pi 4 this year. To some extent, the opportunity to do the 3B+ was a surprise: we were surprised that we’ve been able to get 200MHz more clock speed, triple the wireless and wired throughput, and better thermals, and still stick to the $35 price point.

We’re up against the wall from a silicon perspective; we’re at the end of what you can do with the 40nm process. It’s not that you couldn’t clock the processor faster, or put a larger processor which can execute more instructions per clock in there, it’s simply about the energy consumption and the fact that you can’t dissipate the heat. So we’ve got to go to a smaller process node and that’s an order of magnitude more challenging from an engineering perspective. There’s more effort, more risk, more cost, and all of those things are challenging.

With 3B+ out of the way, we’re going to start looking at this now. For the first six months or so we’re going to be figuring out exactly what people want from a Raspberry Pi 4. We’re listening to people’s comments about what they’d like to see in a new Raspberry Pi, and I’m hoping by early autumn we should have an idea of what we want to put in it and a strategy for how we might achieve that.

Could you go smaller than the Zero?

The challenge with Zero as that we’re periphery-limited. If you run your hand around the unit, there is no edge of that board that doesn’t have something there. So the question is: “If you want to go smaller than Zero, what feature are you willing to throw out?”

It’s a single-sided board, so you could certainly halve the PCB area if you fold the circuitry and use both sides, though you’d have to lose something. You could give up some GPIO and go back to 26 pins like the first Raspberry Pi. You could give up the camera connector, you could go to micro HDMI from mini HDMI. You could remove the SD card and just do USB boot. I’m inventing a product live on air! But really, you could get down to two thirds and lose a bunch of GPIO – it’s hard to imagine you could get to half the size.

What’s the one feature that you wish you could outfit on the Raspberry Pi that isn’t cost effective at this time? Your dream feature.

Well, more memory. There are obviously technical reasons why we don’t have more memory on there, but there are also market reasons. People ask “why doesn’t the Raspberry Pi have more memory?”, and my response is typically “go and Google ‘DRAM price’”. We’re used to the price of memory going down. And currently, we’re going through a phase where this has turned around and memory is getting more expensive again.

Machine learning would be interesting. There are machine learning accelerators which would be interesting to put on a piece of hardware. But again, they are not going to be used by everyone, so according to our method of pricing what we might add to a board, machine learning gets treated like a $50 chip. But that would be lovely to do.

Which citizen science projects using the Pi have most caught your attention?

I like the wildlife camera projects. We live out in the countryside in a little village, and we’re conscious of being surrounded by nature but we don’t see a lot of it on a day-to-day basis. So I like the nature cam projects, though, to my everlasting shame, I haven’t set one up yet. There’s a range of them, from very professional products to people taking a Raspberry Pi and a camera and putting them in a plastic box. So those are good fun.

Raspberry Shake seismometer

The Raspberry Shake seismometer

And there’s Meteor Pi from the Cambridge Science Centre, that’s a lot of fun. And the seismometer Raspberry Shake – that sort of thing is really nice. We missed the recent South Wales earthquake; perhaps we should set one up at our Californian office.

How does it feel to go to bed every day knowing you’ve changed the world for the better in such a massive way?

What feels really good is that when we started this in 2006 nobody else was talking about it, but now we’re part of a very broad movement.

We were in a really bad way: we’d seen a collapse in the number of applicants applying to study Computer Science at Cambridge and elsewhere. In our view, this reflected a move away from seeing technology as ‘a thing you do’ to seeing it as a ‘thing that you have done to you’. It is problematic from the point of view of the economy, industry, and academia, but most importantly it damages the life prospects of individual children, particularly those from disadvantaged backgrounds. The great thing about STEM subjects is that you can’t fake being good at them. There are a lot of industries where your Dad can get you a job based on who he knows and then you can kind of muddle along. But if your dad gets you a job building bridges and you suck at it, after the first or second bridge falls down, then you probably aren’t going to be building bridges anymore. So access to STEM education can be a great driver of social mobility.

By the time we were launching the Raspberry Pi in 2012, there was this wonderful movement going on. Code Club, for example, and CoderDojo came along. Lots of different ways of trying to solve the same problem. What feels really, really good is that we’ve been able to do this as part of an enormous community. And some parts of that community became part of the Raspberry Pi Foundation – we merged with Code Club, we merged with CoderDojo, and we continue to work alongside a lot of these other organisations. So in the two seconds it takes me to fall asleep after my face hits the pillow, that’s what I think about.

We’re currently advertising a Programme Manager role in New Delhi, India. Did you ever think that Raspberry Pi would be advertising a role like this when you were bringing together the Foundation?

No, I didn’t.

But if you told me we were going to be hiring somewhere, India probably would have been top of my list because there’s a massive IT industry in India. When we think about our interaction with emerging markets, India, in a lot of ways, is the poster child for how we would like it to work. There have already been some wonderful deployments of Raspberry Pi, for example in Kerala, without our direct involvement. And we think we’ve got something that’s useful for the Indian market. We have a product, we have clubs, we have teacher training. And we have a body of experience in how to teach people, so we have a physical commercial product as well as a charitable offering that we think are a good fit.

It’s going to be massive.

What is your favourite BBC type-in listing?

There was a game called Codename: Druid. There is a famous game called Codename: Droid which was the sequel to Stryker’s Run, which was an awesome, awesome game. And there was a type-in game called Codename: Druid, which was at the bottom end of what you would consider a commercial game.

codename druid

And I remember typing that in. And what was really cool about it was that the next month, the guy who wrote it did another article that talks about the memory map and which operating system functions used which bits of memory. So if you weren’t going to do disc access, which bits of memory could you trample on and know the operating system would survive.

babbage versus bugs Raspberry Pi annual

See the full listing for Babbage versus Bugs in the Raspberry Pi 2018 Annual

I still like type-in listings. The Raspberry Pi 2018 Annual has a type-in listing that I wrote for a Babbage versus Bugs game. I will say that’s not the last type-in listing you will see from me in the next twelve months. And if you download the PDF, you could probably copy and paste it into your favourite text editor to save yourself some time.

The post Continued: the answers to your questions for Eben Upton appeared first on Raspberry Pi.

How Many Piracy Warnings Would Get You to Stop?

Post Syndicated from Andy original https://torrentfreak.com/how-many-piracy-warnings-would-get-you-to-stop-180422/

For the past several years, copyright holders in the US and Europe have been trying to reach out to file-sharers in an effort to change their habits.

Whether via high-profile publicity lawsuits or a simple email, it’s hoped that by letting people know they aren’t anonymous, they’ll stop pirating and buy more content instead.

Traditionally, most ISPs haven’t been that keen on passing infringement notices on. However, the BMG v Cox lawsuit seems to have made a big difference, with a growing number of ISPs now visibly warning their users that they operate a repeat infringer policy.

But perhaps the big question is how seriously users take these warnings because – let’s face it – that’s the entire point of their existence.

There can be little doubt that a few recipients will be scurrying away at the slightest hint of trouble, intimidated by the mere suggestion that they’re being watched.

Indeed, a father in the UK – who received a warning last year as part of the Get it Right From a Genuine Site campaign – confidently and forcefully assured TF that there would be no more illegal file-sharing taking place on his ten-year-old son’s computer again – ever.

In France, where the HADOPI anti-piracy scheme received much publicity, people receiving an initial notice are most unlikely to receive additional ones in future. A December 2017 report indicated that of nine million first warning notices sent to alleged pirates since 2012, ‘just’ 800,000 received a follow-up warning on top.

The suggestion is that people either stop their piracy after getting a notice or two, or choose to “go dark” instead, using streaming sites for example or perhaps torrenting behind a decent VPN.

But for some people, the message simply doesn’t sink in early on.

A post on Reddit this week by a TWC Spectrum customer revealed that despite a wealth of readily available information (including masses in the specialist subreddit where the post was made), even several warnings fail to have an effect.

“Was just hit with my 5th copyright violation. They halted my internet and all,” the self-confessed pirate wrote.

There are at least three important things to note from this opening sentence.

Firstly, the first four warnings did nothing to change the user’s piracy habits. Secondly, Spectrum presumably had enough at five warnings and kicked in a repeat-infringer suspension, presumably to avoid the same fate as Cox in the BMG case. Third, the account suspension seems to have changed the game.

Notably, rather than some huge blockbuster movie, that fifth warning came due to something rather less prominent.

“Thought I could sneak in a random episode of Rosanne. The new one that aired LOL. That fast. Under 24 hours I got shut off. Which makes me feel like [ISPs] do monitor your traffic and its not just the people sending them notices,” the post read.

Again, some interesting points here.

Any content can be monitored by rightsholders but if it’s popular in the US then a warning delivered via an ISP seems to be more likely than elsewhere. However, the misconception that the monitoring is done by ISPs persists, despite that not being the case.

ISPs do not monitor users’ file-sharing activity, anti-piracy companies do. They can grab an IP address the second someone enters a torrent swarm, or even connects to a tracker. It happens in an instant, at a time of their choosing. Quickly jumping in and out of a torrent is no guarantee and the fallacy of not getting caught due to a failure to seed is just that – a fallacy.

But perhaps the most important thing is that after five warnings and a disconnection, the Reddit user decided to take action. Sadly for the people behind Rosanne, it’s not exactly the reaction they’d have hoped for.

“I do not want to push it but I am curious to what happens 6th time, and if I would even be safe behind a VPN,” he wrote.

“Just want to learn how to use a VPN and Sonarr and have a guilt free stress free torrent watching.”

Of course, there was no shortage of advice.

“If you have gotten 5 notices, you really should of learnt [sic] how to use a VPN before now,” one poster noted, perhaps inevitably.

But curiously, or perhaps obviously given the number of previous warnings, the fifth warning didn’t come as a surprise to the user.

“I knew they were going to hit me for it. I just didn’t think a 195mb file would do it. They were getting me for Disney movies in the past,” he added.

So how do you grab the attention of a persistent infringer like this? Five warnings and a suspension apparently. But clearly, not even that is a guarantee of success. Perhaps this is why most ‘strike’ schemes tend to give up on people who can’t be rehabilitated.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and more. We also have VPN reviews, discounts, offers and coupons.

Build a house in Minecraft using Python

Post Syndicated from Rob Zwetsloot original https://www.raspberrypi.org/blog/build-minecraft-house-using-python/

In this tutorial from The MagPi issue 68, Steve Martin takes us through the process of house-building in Minecraft Pi. Get your copy of The MagPi in stores now, or download it as a free PDF here.

Minecraft Pi is provided for free as part of the Raspbian operating system. To start your Minecraft: Pi Edition adventures, try our free tutorial Getting started with Minecraft.

Minecraft Raspberry Pi

Writing programs that create things in Minecraft is not only a great way to learn how to code, but it also means that you have a program that you can run again and again to make as many copies of your Minecraft design as you want. You never need to worry about your creation being destroyed by your brother or sister ever again — simply rerun your program and get it back! Whilst it might take a little longer to write the program than to build one house, once it’s finished you can build as many houses as you want.

Co-ordinates in Minecraft

Let’s start with a review of the coordinate system that Minecraft uses to know where to place blocks. If you are already familiar with this, you can skip to the next section. Otherwise, read on.

Minecraft Raspberry Pi Edition

Plan view of our house design

Minecraft shows us a three-dimensional (3D) view of the world. Imagine that the room you are in is the Minecraft world and you want to describe your location within that room. You can do so with three numbers, as follows:

  • How far across the room are you? As you move from side to side, you change this number. We can consider this value to be our X coordinate.
  • How high off the ground are you? If you are upstairs, or if you jump, this value increases. We can consider this value to be our Y coordinate.
  • How far into the room are you? As you walk forwards or backwards, you change this number. We can consider this value to be our Z coordinate.

You might have done graphs in school with X going across the page and Y going up the page. Coordinates in Minecraft are very similar, except that we have an extra value, Z, for our third dimension. Don’t worry if this still seems a little confusing: once we start to build our house, you will see how these three dimensions work in Minecraft.

Designing our house

It is a good idea to start with a rough design for our house. This will help us to work out the values for the coordinates when we are adding doors and windows to our house. You don’t have to plan every detail of your house right away. It is always fun to enhance it once you have got the basic design written. The image above shows the plan view of the house design that we will be creating in this tutorial. Note that because this is a plan view, it only shows the X and Z co-ordinates; we can’t see how high anything is. Hopefully, you can imagine the house extending up from the screen.

We will build our house close to where the Minecraft player is standing. This a good idea when creating something in Minecraft with Python, as it saves us from having to walk around the Minecraft world to try to find our creation.

Starting our program

Type in the code as you work through this tutorial. You can use any editor you like; we would suggest either Python 3 (IDLE) or Thonny Python IDE, both of which you can find on the Raspberry Pi menu under Programming. Start by selecting the File menu and creating a new file. Save the file with a name of your choice; it must end with .py so that the Raspberry Pi knows that it is a Python program.

It is important to enter the code exactly as it is shown in the listing. Pay particular attention to both the spelling and capitalisation (upper- or lower-case letters) used. You may find that when you run your program the first time, it doesn’t work. This is very common and just means there’s a small error somewhere. The error message will give you a clue about where the error is.

It is good practice to start all of your Python programs with the first line shown in our listing. All other lines that start with a # are comments. These are ignored by Python, but they are a good way to remind us what the program is doing.

The two lines starting with from tell Python about the Minecraft API; this is a code library that our program will be using to talk to Minecraft. The line starting mc = creates a connection between our Python program and the game. Then we get the player’s location broken down into three variables: x, y, and z.

Building the shell of our house

To help us build our house, we define three variables that specify its width, height, and depth. Defining these variables makes it easy for us to change the size of our house later; it also makes the code easier to understand when we are setting the co-ordinates of the Minecraft bricks. For now, we suggest that you use the same values that we have; you can go back and change them once the house is complete and you want to alter its design.

It’s now time to start placing some bricks. We create the shell of our house with just two lines of code! These lines of code each use the setBlocks command to create a complete block of bricks. This function takes the following arguments:

setBlocks(x1, y1, z1, x2, y2, z2, block-id, data)

x1, y1, and z1 are the coordinates of one corner of the block of bricks that we want to create; x1, y1, and z1 are the coordinates of the other corner. The block-id is the type of block that we want to use. Some blocks require another value called data; we will see this being used later, but you can ignore it for now.

We have to work out the values that we need to use in place of x1, y1, z1, x1, y1, z1 for our walls. Note that what we want is a larger outer block made of bricks and that is filled with a slightly smaller block of air blocks. Yes, in Minecraft even air is actually just another type of block.

Once you have typed in the two lines that create the shell of your house, you almost ready to run your program. Before doing so, you must have Minecraft running and displaying the contents of your world. Do not have a world loaded with things that you have created, as they may get destroyed by the house that we are building. Go to a clear area in the Minecraft world before running the program. When you run your program, check for any errors in the ‘console’ window and fix them, repeatedly running the code again until you’ve corrected all the errors.

You should see a block of bricks now, as shown above. You may have to turn the player around in the Minecraft world before you can see your house.

Adding the floor and door

Now, let’s make our house a bit more interesting! Add the lines for the floor and door. Note that the floor extends beyond the boundary of the wall of the house; can you see how we achieve this?

Hint: look closely at how we calculate the x and z attributes as compared to when we created the house shell above. Also note that we use a value of y-1 to create the floor below our feet.

Minecraft doors are two blocks high, so we have to create them in two parts. This is where we have to use the data argument. A value of 0 is used for the lower half of the door, and a value of 8 is used for the upper half (the part with the windows in it). These values will create an open door. If we add 4 to each of these values, a closed door will be created.

Before you run your program again, move to a new location in Minecraft to build the house away from the previous one. Then run it to check that the floor and door are created; you will need to fix any errors again. Even if your program runs without errors, check that the floor and door are positioned correctly. If they aren’t, then you will need to check the arguments so setBlock and setBlocks are exactly as shown in the listing.

Adding windows

Hopefully you will agree that your house is beginning to take shape! Now let’s add some windows. Looking at the plan for our house, we can see that there is a window on each side; see if you can follow along. Add the four lines of code, one for each window.

Now you can move to yet another location and run the program again; you should have a window on each side of the house. Our house is starting to look pretty good!

Adding a roof

The final stage is to add a roof to the house. To do this we are going to use wooden stairs. We will do this inside a loop so that if you change the width of your house, more layers are added to the roof. Enter the rest of the code. Be careful with the indentation: I recommend using spaces and avoiding the use of tabs. After the if statement, you need to indent the code even further. Each indentation level needs four spaces, so below the line with if on it, you will need eight spaces.

Since some of these code lines are lengthy and indented a lot, you may well find that the text wraps around as you reach the right-hand side of your editor window — don’t worry about this. You will have to be careful to get those indents right, however.

Now move somewhere new in your world and run the complete program. Iron out any last bugs, then admire your house! Does it look how you expect? Can you make it better?

Customising your house

Now you can start to customise your house. It is a good idea to use Save As in the menu to save a new version of your program. Then you can keep different designs, or refer back to your previous program if you get to a point where you don’t understand why your new one doesn’t work.

Consider these changes:

  • Change the size of your house. Are you able also to move the door and windows so they stay in proportion?
  • Change the materials used for the house. An ice house placed in an area of snow would look really cool!
  • Add a back door to your house. Or make the front door a double-width door!

We hope that you have enjoyed writing this program to build a house. Now you can easily add a house to your Minecraft world whenever you want to by simply running this program.

Get the complete code for this project here.

Continue your Minecraft journey

Minecraft Pi’s programmable interface is an ideal platform for learning Python. If you’d like to try more of our free tutorials, check out:

You may also enjoy Martin O’Hanlon’s and David Whale’s Adventures in Minecraft, and the Hacking and Making in Minecraft MagPi Essentials guide, which you can download for free or buy in print here.

The post Build a house in Minecraft using Python appeared first on Raspberry Pi.

AWS Online Tech Talks – April & Early May 2018

Post Syndicated from Betsy Chernoff original https://aws.amazon.com/blogs/aws/aws-online-tech-talks-april-early-may-2018/

We have several upcoming tech talks in the month of April and early May. Come join us to learn about AWS services and solution offerings. We’ll have AWS experts online to help answer questions in real-time. Sign up now to learn more, we look forward to seeing you.

Note – All sessions are free and in Pacific Time.

April & early May — 2018 Schedule

Compute

April 30, 2018 | 01:00 PM – 01:45 PM PTBest Practices for Running Amazon EC2 Spot Instances with Amazon EMR (300) – Learn about the best practices for scaling big data workloads as well as process, store, and analyze big data securely and cost effectively with Amazon EMR and Amazon EC2 Spot Instances.

May 1, 2018 | 01:00 PM – 01:45 PM PTHow to Bring Microsoft Apps to AWS (300) – Learn more about how to save significant money by bringing your Microsoft workloads to AWS.

May 2, 2018 | 01:00 PM – 01:45 PM PTDeep Dive on Amazon EC2 Accelerated Computing (300) – Get a technical deep dive on how AWS’ GPU and FGPA-based compute services can help you to optimize and accelerate your ML/DL and HPC workloads in the cloud.

Containers

April 23, 2018 | 11:00 AM – 11:45 AM PTNew Features for Building Powerful Containerized Microservices on AWS (300) – Learn about how this new feature works and how you can start using it to build and run modern, containerized applications on AWS.

Databases

April 23, 2018 | 01:00 PM – 01:45 PM PTElastiCache: Deep Dive Best Practices and Usage Patterns (200) – Learn about Redis-compatible in-memory data store and cache with Amazon ElastiCache.

April 25, 2018 | 01:00 PM – 01:45 PM PTIntro to Open Source Databases on AWS (200) – Learn how to tap the benefits of open source databases on AWS without the administrative hassle.

DevOps

April 25, 2018 | 09:00 AM – 09:45 AM PTDebug your Container and Serverless Applications with AWS X-Ray in 5 Minutes (300) – Learn how AWS X-Ray makes debugging your Container and Serverless applications fun.

Enterprise & Hybrid

April 23, 2018 | 09:00 AM – 09:45 AM PTAn Overview of Best Practices of Large-Scale Migrations (300) – Learn about the tools and best practices on how to migrate to AWS at scale.

April 24, 2018 | 11:00 AM – 11:45 AM PTDeploy your Desktops and Apps on AWS (300) – Learn how to deploy your desktops and apps on AWS with Amazon WorkSpaces and Amazon AppStream 2.0

IoT

May 2, 2018 | 11:00 AM – 11:45 AM PTHow to Easily and Securely Connect Devices to AWS IoT (200) – Learn how to easily and securely connect devices to the cloud and reliably scale to billions of devices and trillions of messages with AWS IoT.

Machine Learning

April 24, 2018 | 09:00 AM – 09:45 AM PT Automate for Efficiency with Amazon Transcribe and Amazon Translate (200) – Learn how you can increase the efficiency and reach your operations with Amazon Translate and Amazon Transcribe.

April 26, 2018 | 09:00 AM – 09:45 AM PT Perform Machine Learning at the IoT Edge using AWS Greengrass and Amazon Sagemaker (200) – Learn more about developing machine learning applications for the IoT edge.

Mobile

April 30, 2018 | 11:00 AM – 11:45 AM PTOffline GraphQL Apps with AWS AppSync (300) – Come learn how to enable real-time and offline data in your applications with GraphQL using AWS AppSync.

Networking

May 2, 2018 | 09:00 AM – 09:45 AM PT Taking Serverless to the Edge (300) – Learn how to run your code closer to your end users in a serverless fashion. Also, David Von Lehman from Aerobatic will discuss how they used [email protected] to reduce latency and cloud costs for their customer’s websites.

Security, Identity & Compliance

April 30, 2018 | 09:00 AM – 09:45 AM PTAmazon GuardDuty – Let’s Attack My Account! (300) – Amazon GuardDuty Test Drive – Practical steps on generating test findings.

May 3, 2018 | 09:00 AM – 09:45 AM PTProtect Your Game Servers from DDoS Attacks (200) – Learn how to use the new AWS Shield Advanced for EC2 to protect your internet-facing game servers against network layer DDoS attacks and application layer attacks of all kinds.

Serverless

April 24, 2018 | 01:00 PM – 01:45 PM PTTips and Tricks for Building and Deploying Serverless Apps In Minutes (200) – Learn how to build and deploy apps in minutes.

Storage

May 1, 2018 | 11:00 AM – 11:45 AM PTBuilding Data Lakes That Cost Less and Deliver Results Faster (300) – Learn how Amazon S3 Select And Amazon Glacier Select increase application performance by up to 400% and reduce total cost of ownership by extending your data lake into cost-effective archive storage.

May 3, 2018 | 11:00 AM – 11:45 AM PTIntegrating On-Premises Vendors with AWS for Backup (300) – Learn how to work with AWS and technology partners to build backup & restore solutions for your on-premises, hybrid, and cloud native environments.

American Public Television Embraces the Cloud — And the Future

Post Syndicated from Andy Klein original https://www.backblaze.com/blog/american-public-television-embraces-the-cloud-and-the-future/

American Public Television website

American Public Television was like many organizations that have been around for a while. They were entrenched using an older technology — in their case, tape storage and distribution — that once met their needs but was limiting their productivity and preventing them from effectively collaborating with their many media partners. APT’s VP of Technology knew that he needed to move into the future and embrace cloud storage to keep APT ahead of the game.
Since 1961, American Public Television (APT) has been a leading distributor of groundbreaking, high-quality, top-rated programming to the nation’s public television stations. Gerry Field is the Vice President of Technology at APT and is responsible for delivering their extensive program catalog to 350+ public television stations nationwide.

In the time since Gerry  joined APT in 2007, the industry has been in digital overdrive. During that time APT has continued to acquire and distribute the best in public television programming to their technically diverse subscribers.

This created two challenges for Gerry. First, new technology and format proliferation were driving dramatic increases in digital storage. Second, many of APT’s subscribers struggled to keep up with the rapidly changing industry. While some subscribers had state-of-the-art satellite systems to receive programming, others had to wait for the post office to drop off programs recorded on tape weeks earlier. With no slowdown on the horizon of innovation in the industry, Gerry knew that his storage and distribution systems would reach a crossroads in no time at all.

American Public Television logo

Living the tape paradigm

The digital media industry is only a few years removed from its film, and later videotape, roots. Tape was the input and the output of the industry for many years. As a consequence, the tools and workflows used by the industry were built and designed to work with tape. Over time, the “file” slowly replaced the tape as the object to be captured, edited, stored and distributed. Trouble was, many of the systems and more importantly workflows were based on processing tape, and these have proven to be hard to change.

At APT, Gerry realized the limits of the tape paradigm and began looking for technologies and solutions that enabled workflows based on file and object based storage and distribution.

Thinking file based storage and distribution

For data (digital media) storage, APT, like everyone else, started by installing onsite storage servers. As the amount of digital data grew, more storage was added. In addition, APT was expanding its distribution footprint by creating or partnering with distribution channels such as CreateTV and APT Worldwide. This dramatically increased the number of programming formats and the amount of data that had to be stored. As a consequence, updating, maintaining, and managing the APT storage systems was becoming a major challenge and a major resource hog.

APT Online

Knowing that his in-house storage system was only going to cost more time and money, Gerry decided it was time to look at cloud storage. But that wasn’t the only reason he looked at the cloud. While most people consider cloud storage as just a place to back up and archive files, Gerry was envisioning how the ubiquity of the cloud could help solve his distribution challenges. The trouble was the price of cloud storage from vendors like Amazon S3 and Microsoft Azure was a non-starter, especially for a non-profit. Then Gerry came across Backblaze. B2 Cloud Storage service met all of his performance requirements, and at $0.005/GB/month for storage and $0.01/GB for downloads it was nearly 75% less than S3 or Azure.

Gerry did the math and found that he could economically incorporate B2 Cloud Storage into his IT portfolio, using it for both program submission and for active storage and archiving of the APT programs. In addition, B2 now gives him the foundation necessary to receive and distribute programming content over the Internet. This is especially useful for organizations that can’t conveniently access satellite distribution systems. Not to mention downloading from the cloud is much faster than sending a tape through the mail.

Adding B2 Cloud Storage to their infrastructure has helped American Public Television address two key challenges. First, they now have “unlimited” storage in the cloud without having to add any hardware. In addition, with B2, they only pay for the storage they use. That means they don’t have to buy storage upfront trying to match the maximum amount of storage they’ll ever need. Second, by using B2 as a distribution source for their programming APT subscribers, especially the smaller and remote ones, can get content faster and more reliably without having to perform costly upgrades to their infrastructure.

The road ahead

As APT gets used to their file based infrastructure and workflow, there are a number of cost saving and income generating ideas they are pondering which are now worth considering. Here are a few:

Program Submissions — New content can be uploaded from anywhere using a web browser, an Internet connection, and a login. For example, a producer in Cambodia can upload their film to B2. From there the film is downloaded to an in-house system where it is processed and transcoded using compute. The finished film is added to the APT catalog and added to B2. Once there, the program is instantly available for subscribers to order and download.

“The affordability and performance of Backblaze B2 is what allowed us to make the B2 cloud part of the APT data storage and distribution strategy into the future.” — Gerry Field

Easier Previews — At any time, work in process or finished programs can be made available for download from the B2 cloud. One place this could be useful is where a subscriber needs to review a program to comply with local policies and practices before airing. In the old system, each “one-off” was a time consuming manual process.

Instant Subscriptions — There are many organizations such as schools and businesses that want to use just one episode of a desired show. With an e-commerce based website, current or even archived programming kept in B2 could be available to download or stream for a minimal charge.

At APT there were multiple technologies needed to make their file-based infrastructure work, but as Gerry notes, having an affordable, trustworthy, cloud storage service like B2 is one of the critical building blocks needed to make everything work together.

The post American Public Television Embraces the Cloud — And the Future appeared first on Backblaze Blog | Cloud Storage & Cloud Backup.

Raspberry Pi aboard Pino, the smart sailboat

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/pino-smart-sailing-boat/

As they sail aboard their floating game design studio Pino, Rekka Bellum and Devine Lu Linvega are starting to explore the use of Raspberry Pis. As part of an experimental development tool and a weather station, Pis are now aiding them on their nautical adventures!

Mar 2018: A Smart Sailboat

Pino is on its way to becoming a smart sailboat! Raspberry Pi is the ideal device for sailors, we hope to make many more projects with it. Also the projects continue still, but we have windows now yay!

Barometer

Using a haul of Pimoroni tech including the Enviro pHat, Scroll pHat HD and Mini Black HAT Hack3r, Rekka and Devine have been experimenting with using a Raspberry Pi Zero as an onboard barometer for their sailboat. On their Hundred Rabbits YouTube channel and website, the pair has documented their experimental setups. They have also built another Raspberry Pi rig for distraction-free work and development.

Hundred Rabbits Pino onboard Raspberry Pi workstation and barometer

The official Raspberry Pi 7″ touch display, a Raspberry Pi 3B+, a Pimorni Blinkt, and a Poker II Keyboard make up Pino‘s experimental development station.

“The Pi computer is currently used only as an experimental development tool aboard Pino, but could readily be turned into a complete development platform, would our principal computers fail.” they explain, before going into the build process for the Raspberry Pi–powered barometer.

Hundred Rabbits Pino onboard Raspberry Pi workstation and barometer

The use of solderless headers make this weather station an ideal build wherever space and tools are limited.

The barometer uses the sensor power of the Pimoroni Enviro HAT to measure atmospheric pressure, and a Raspberry Pi Zero displays this data on the Scroll pHAT HD. It thus advises the two travellers of oncoming storms. By taking advantage of the solderless header provided by the Sheffield-based pirates, the Hundred Rabbits team was able to put the device together with relative ease. They provide all information for the build here.

Hundred Rabbits Pino onboard Raspberry Pi workstation and barometer

All aboard Pino

If you’d like to follow the journey of Rekka Bellum and Devine Lu Linvega as they continue to travel the oceans aboard Pino, you can follow them on YouTube or Twitter, and via their website.

We are Hundred Rabbits

This is us, this what we do, and these are our intentions! We live, and work from our sailboat Pino. Traveling helps us stay creative, and we feed what we see back into our work. We make games, art, books and music under the studio name ‘Hundred Rabbits.’

 

The post Raspberry Pi aboard Pino, the smart sailboat appeared first on Raspberry Pi.

Weekly roundup: Fortnite

Post Syndicated from Eevee original https://eev.ee/dev/2018/04/02/weekly-roundup-fortnite/

I skipped a week again because, surprise, I’ve been mostly working on the same game…

  • art: Actually been doing a bit of it! I painted a thing on a whim, and some misc sketches, a few of which I even felt like posting.

  • alice: Finally kind of hit my stride here and wrote, um, a pretty good chunk of stuff. Also played with extending the syntax a bit, and came up with a choice menu that hangs around while the dialogue continues. Kinda cool, though I’m not totally sure what we’ll use it for yet.

    Even with my figuring out how to accelerate, it’s looking like we’ll have to rush if we want to hit our promised date of June 9. So we might delay that a little… maybe even Kickstart some stretch goals? I dunno, I’m leaving that all up to glip and just writing stuff.

  • writing: While I’m at it, I actually picked up and worked on a Twine from ages ago. Cool.

  • idchoppers: Holy moly, it actually works. The basics actually work, at least. I can’t believe how much effort this hecking took.

    I also tried to start putting together an actual map API, with mixed results. And tried to figure out the maximum distance you can jump in Doom, which is surprisingly tricky? Doom physics are super goofy.

  • blog: I actually published a post, which is even tangentially about that idchoppers stuff! Wow! Maybe I’ll do it again, even!

Huh, that almost makes it sound like I’ve been busy.

Here, have some videos!

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/easter-monday-2018/

Today is Easter Monday and as such, the drawbridge is up at Pi Towers. So while we spend time with familytoo much chocolate…family and chocolate, here are some great Pi-themed videos from members of our community. Enjoy!

Eggies live stream!

Bluebird Birdhouse

Raspberry Pi and NoIR camera installed in roof of Bluebird house with IR LEDs. Currently 5 eggs being incubated.

Doctor Who TARDIS doorbell

Raspberry pi Tardis

Raspberry pi Tardis doorbell

Google AIY with Tech-nic-Allie

Ok Google! AIY Voice Kit MagPi

Allie assembles this Google Home kit, that runs on a Raspberry Pi, then uses the Google Home to test her space knowledge with a little trivia game. Stay tuned at the end to see a few printed cases you can use instead of the cardboard.

Buying a Coke with a Raspberry Pi rover

Buy a coke with raspberry pi rover

Mission date : March 26 2018 My raspberry pi project. I use LTE modem to connect internet. python programming. raspberry pi controls pi cam, 2servo motor, 2dc motor. (This video recoded with gopro to upload youtube. Actually I controll this rover by pi cam.

Raspberry Pi security camera

🔴How to Make a Smart Security Camera With Movement Notification – Under 60$

I built my first security camera with motion-control connected to my raspberry pi with MotionEyeOS. What you need: *Raspberry pi 3 (I prefer pi 3) *Any Webcam or raspberry pi cam *Mirco SD card (min 8gb) Useful links : Download the motioneyeOS software here ➜ https://github.com/ccrisan/motioneyeos/releases How to do it: – Download motioneyeOS to your empty SD card (I mounted it via Etcher ) – I always do a sudo apt-upgrade & sudo apt-update on my projects, in the Pi.

Happy Easter!

The post Here, have some videos! appeared first on Raspberry Pi.

An elephant being eaten by a snake: Easter eggs on your Pi

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/raspberry-pi-easter-eggs/

Grab your Raspberry Pi, everyone — we’re going on an Easter egg hunt, and all of you are invited!

Voilà, a terminal window!

When they’re not chocolate, Easter eggs are hidden content in movies, games, DVD menus, and computers. So open a terminal window and try the following:

1. A little attitude

Type aptitude moo into the terminal window and press Enter. Now type aptitude -v moo. Keep adding v’s, like this: aptitude -vv moo

2. Party

Addicted to memes? Type curl parrot.live into your window!

3. In a galaxy far, far away…

You’ll need to install telnet for this one: start by typing sudo apt-get install telnet into the terminal. Once it’s installed, enter telnet towel.blinkenlights.nl

4. Pinout

Type pinout into the window to see a handy GPIO pinout diagram for your Pi. Ideal for physical digital making projects!

5. Demo programs

Easter egg-ish: you can try out various demo programs on your Raspberry Pi, such as 1080p video playback and spinning teapots.

Any more?

There’s lots of fun to be had in the terminal of a Raspberry Pi. Do you know any other fun Easter eggs? Share them in the comments!

The post An elephant being eaten by a snake: Easter eggs on your Pi appeared first on Raspberry Pi.

MagPi 68: an in-depth look at the new Raspberry Pi 3B+

Post Syndicated from Rob Zwetsloot original https://www.raspberrypi.org/blog/magpi-68/

Hi folks, Rob from The MagPi here! You may remember that a couple of weeks ago, the Raspberry Pi 3 Model B+ was released, the updated version of the Raspberry Pi 3 Model B. It’s better, faster, and stronger than the original and it’s also the main topic in The MagPi issue 68, out now!

Everything you need to know about the new Raspberry Pi 3B+

What goes into ‘plussing’ a Raspberry Pi? We talked to Eben Upton and Roger Thornton about the work that went into making the Raspberry Pi 3B+, and we also have all the benchmarks to show you just how much the new Pi 3B+ has been improved.

Super fighting robots

Did you know that the next Pi Wars is soon? The 2018 Raspberry Pi robotics competition is taking place later in April, and we’ve got a full feature on what to expect, as well as top tips on how to make your own kick-punching robot for the next round.

More to read

Still want more after all that? Well, we have our usual excellent selection of outstanding project showcases, reviews, and tutorials to keep you entertained.

See pictures from Raspberry Pi’s sixth birthday, celebrated around the world!

This includes amazing projects like a custom Pi-powered, Switch-esque retro games console, a Minecraft Pi hack that creates a house at the touch of a button, and the Matrix Voice.

With a Pi and a 3D printer, you can make something as cool as this!

Get The MagPi 68

Issue 68 is available today from WHSmith, Tesco, Sainsbury’s, and Asda. If you live in the US, head over to your local Barnes & Noble or Micro Center in the next few days for a print copy. You can also get the new issue online from our store, or digitally via our Android and iOS apps. And don’t forget, there’s always the free PDF as well.

New subscription offer!

Want to support the Raspberry Pi Foundation and the magazine? We’ve launched a new way to subscribe to the print version of The MagPi: you can now take out a monthly £4 subscription to the magazine, effectively creating a rolling pre-order system that saves you money on each issue.

You can also take out a twelve-month print subscription and get a Pi Zero W, Pi Zero case, and adapter cables absolutely free! This offer does not currently have an end date.

That’s it for now. See you next month!

The post MagPi 68: an in-depth look at the new Raspberry Pi 3B+ appeared first on Raspberry Pi.

Welcome Nathan – Our Solutions Engineer

Post Syndicated from Yev original https://www.backblaze.com/blog/welcome-nathan-our-solutions-engineer/

Backblaze is growing, and with it our need to cater to a lot of different use cases that our customers bring to us. We needed a Solutions Engineer to help out, and after a long search we’ve hired our first one! Lets learn a bit more about Nathan shall we?

What is your Backblaze Title?
Solutions Engineer. Our customers bring a thousand different use cases to both B1 and B2, and I’m here to help them figure out how best to make those use cases a reality. Also, any odd jobs that Nilay wants me to do.

Where are you originally from?
I am native to the San Francisco Bay Area, studying mathematics at UC Santa Cruz, and then computer science at California University of Hayward (which has since renamed itself California University of the East Hills. I observe that it’s still in Hayward).

What attracted you to Backblaze?
As a stable, growing company with huge growth and even bigger potential, the business model is attractive, and the team is outstanding. Add to that the strong commitment to transparency, and it’s a hard company to resist. We can store – and restore – data while offering superior reliability at an economic advantage to do-it-yourself, and that’s a great place to be.

What do you expect to learn while being at Backblaze?
Everything I need to, but principally how our customers choose to interact with web storage. Storage isn’t a solution per se, but it’s an important component of any persistent solution. I’m looking forward to working with all the different concepts our customers have to make use of storage.

Where else have you worked?
All sorts of places, but I’ll admit publicly to EMC, Gemalto, and my own little (failed, alas) startup, IC2N. I worked with low-level document imaging.

Where did you go to school?
UC Santa Cruz, BA Mathematics CU Hayward, Master of Science in Computer Science.

What’s your dream job?
Sipping tea in the California redwood forest. However, solutions engineer at Backblaze is a good second choice!

Favorite place you’ve traveled?
Ashland, Oregon, for the Oregon Shakespeare Festival and the marble caves (most caves form from limestone).

Favorite hobby?
Theater. Pathfinder. Writing. Baking cookies and cakes.

Of what achievement are you most proud?
Marrying the most wonderful man in the world.

Star Trek or Star Wars?
Star Trek’s utopian science fiction vision of humanity and science resonates a lot more strongly with me than the dystopian science fantasy of Star Wars.

Coke or Pepsi?
Neither. I’d much rather have a cup of jasmine tea.

Favorite food?
It varies, but I love Indian and Thai cuisine. Truly excellent Italian food is marvelous – wood fired pizza, if I had to pick only one, but the world would be a boring place with a single favorite food.

Why do you like certain things?
If I knew that, I’d be in marketing.

Anything else you’d like you’d like to tell us?
If you haven’t already encountered the amazing authors Patricia McKillip and Lois McMasters Bujold – go encounter them. Be happy.

There’s nothing wrong with a nice cup of tea and a long game of Pathfinder. Sign us up! Welcome to the team Nathan!

The post Welcome Nathan – Our Solutions Engineer appeared first on Backblaze Blog | Cloud Storage & Cloud Backup.

The robotic teapot from your nightmares

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/robotic-teapot/

For those moments when you wish the cast of Disney’s Beauty and the Beast was real, only to realise what a nightmare that would be, here’s Paul-Louis Ageneau’s robotic teapot!

Paul-Louis Ageneau Robotic teapot Raspberry Pi Zero

See what I mean?

Tale as old as time…

It’s the classic story of guy meets digital killer teapot, digital killer teapot inspires him to 3D print his own. Loosely based on a boss level of the video game Alice: Madness Returns, Paul-Louis’s creation is a one-eyed walking teapot robot with a (possible) thirst for blood.

Kill Build the beast

“My new robot is based on a Raspberry Pi Zero W with a camera.” Paul-Louis explains in his blog. “It is connected via a serial link to an Arduino Pro Mini board, which drives servos.”

Each leg has two points of articulation, one for the knee and one for the ankle. In order to move each of the joints, the teapot uses eight servo motor in total.

Paul-Louis Ageneau Robotic teapot Raspberry Pi Zero

Paul-Louis designed and 3D printed the body of the teapot to fit the components needed. So if you’re considering this build as a means of acquiring tea on your laziest of days, I hate to be the bearer of bad news, but the most you’ll get from your pour will be jumper leads and Pi.

Paul-Louis Ageneau Robotic Raspberry Pi Zero teapot
Paul-Louis Ageneau Robotic Raspberry Pi Zero teapot
Paul-Louis Ageneau Robotic Raspberry Pi Zero teapot

While the Arduino board controls the legs, it’s the Raspberry Pi’s job to receive user commands and tell the board how to direct the servos. The protocol for moving the servos is simple, with short lines of characters specifying instructions. First a digit from 0 to 7 selects a servo; next the angle of movement, such as 45 or 90, is input; and finally, the use of C commits the instruction.

Typing in commands is great for debugging, but you don’t want to be glued to a keyboard. Therefore, Paul-Louis continued to work on the code in order to string together several lines to create larger movements.

Paul-Louis Ageneau Robotic teapot Raspberry Pi Zero

The final control system of the teapot runs on a web browser as a standard four-axis arrow pad, with two extra arrows for turning.

Something there that wasn’t there before

Jean-Paul also included an ‘eye’ in the side of the pot to fit the Raspberry Pi Camera Module as another nod to the walking teapot from the video game, but with a purpose other than evil and wrong-doing. As you can see from the image above, the camera live-streams footage, allowing for remote control of the monster teapot regardless of your location.

If you like it all that much, it’s yours

In case you fancy yourself as an inventor, Paul-Louis has provided the entire build process and the code on his blog, documenting how to bring your own teapot to life. And if you’ve created any robotic household items or any props from video games or movies, we’d love to see them, so leave a link in the comments or share it with us across social media using the hashtag #IBuiltThisAndNowIThinkItIsTryingToKillMe.

The post The robotic teapot from your nightmares appeared first on Raspberry Pi.

AWS Quest- a puzzling situation

Post Syndicated from Ana Visneski original https://aws.amazon.com/blogs/aws/aws-quest-a-puzzling-situation/

Ain't nobody here but us chickens. No clues hidden here this time!Starting on March 8th you might have seen AWS Quest popping up in different places. Now that we are a bit over halfway through the game, we thought it would be a great time give everyone a peek behind the curtain.

The whole idea started about a year ago during an casual conversation with Jeff when I first joined AWS. While we’re usually pretty good at staying focused in our meetings, he brought up that he had just finished a book he really enjoyed and asked me if I had read it. (A book that has since been made into a movie.) I don’t think there was a way for him to even imagine that as a huge fan of games, both table top and video games, how stoked I would be about the idea of bringing a game to our readers.

We got to talking about how great it would be to attempt a game that would involve the entire suite of AWS products and our various platforms. This idea might appear to be easy, but it has kept us busy with Lone Shark for about a year and we haven’t even scratched the surface of what we would like to do. Being able to finally share this first game with our customers has been an absolute delight.

From March 8-27th, each day we have been and will be releasing a new puzzle. The clues for the puzzles are hidden somewhere all over AWS, and once customers have found the clues they can figure out the puzzle which results in a word. That word is the name of a component to rebuild Ozz, Jeff’s robot buddy.

We wanted to try make sure that anyone could play and we tried to surround each puzzle with interesting Easter eggs. So far, it seems to be working and we are seeing some really cool collaborative effort between customers to solve the puzzles. From tech talks to women who code, posts both recent and well in the past, and to Twitter and podcasts, we wanted to hide the puzzles in places our customers might not have had a chance to really explore before. Given how much Jeff enjoyed doing a live Twitch stream so much I won’t be surprised when he tells me he wants to do a TV show next.

So far players have solved 8 of 13 puzzles!

09 Mar10 Mar11 Mar12 Mar13 Mar14 Mar15 Mar16 Mar17 Mar18 Mar19 Mar20 Mar

The learnings we have already gathered as we are just a little past halfway in the quest are mind boggling. We have learned that there will be a guy who figures out how to build a chicken coop in 3D to solve a puzzle, or build a script to crawl a site looking for any reply to a blog post that might be a clue. There were puzzles we completely expected people to get stuck on that they have solved in a snap. They have really kept us on our toes, which isn’t a bad thing. It really doesn’t hurt that the players are incredibly adept at thinking outside the box, and we can’t wait to tell you how the puzzles were solved at the end.

We still have a little under a week of puzzles to go, before you can all join Jeff and special guests on a live Twitch stream to reassemble Ozz 2.0! And you don’t have to hold off for the next time we play, as there are still many puzzles to be solved and every player matters! Just keep an eye out for new puzzles to appear everyday until March 27th, join the Reddit, come to the AMA, or take a peek into the chat and get solving!

Time to wipe off your brow, and get back into solving the last of the puzzles! I am going to try to go explain to my mother and father what exactly I am doing with those two masters degrees and how much fun it really is…

 

Conundrum

Post Syndicated from Eevee original https://eev.ee/blog/2018/03/20/conundrum/

Here’s a problem I’m having. Or, rather, a problem I’m solving, but so slowly that I wonder if I’m going about it very inefficiently.

I intended to just make a huge image out of this and tweet it, but it takes so much text to explain that I might as well put it on my internet website.

The setup

I want to do pathfinding through a Doom map. The ultimate goal is to be able to automatically determine the path the player needs to take to reach the exit — what switches to hit in what order, what keys to get, etc.

Doom maps are 2D planes cut into arbitrary shapes. Everything outside a shape is the void, which we don’t care about. Here are some shapes.

The shapes are defined implicitly by their edges. All of the edges touching the red area, for example, say that they’re red on one side.

That’s very nice, because it means I don’t have to do any geometry to detect which areas touch each other. I can tell at a glance that the red and blue areas touch, because the line between them says it’s red on one side and blue on the other.

Unfortunately, this doesn’t seem to be all that useful. The player can’t necessarily move from the red area to the blue area, because there’s a skinny bottleneck. If the yellow area were a raised platform, the player couldn’t fit through the gap. Worse, if there’s a switch somewhere that lowers that platform, then the gap is conditionally passable.

I thought this would be uncommon enough that I could get started only looking at neighbors and do actual geometry later, but that “conditionally passable” pattern shows up all the time in the form of locked “bars” that let you peek between or around them. So I might as well just do the dang geometry.


The player is a 32×32 square and always axis-aligned (i.e., the hitbox doesn’t actually rotate). That’s very convenient, because it means I can “dilate the world” — expand all the walls by 16 units in both directions, while shrinking the player to a single point. That expansion eliminates narrow gaps and leaves a map of everywhere the player’s center is allowed to be. Allegedly this is how Quake did collision detection — but in 3D! How hard can it be in 2D?

The plan, then, is to do this:

This creates a bit of an unholy mess. (I could avoid some of the overlap by being clever at points where exactly two lines touch, but I have to deal with a ton of overlap anyway so I’m not sure if that buys anything.)

The gray outlines are dilations of inner walls, where both sides touch a shape. The black outlines are dilations of outer walls, touching the void on one side. This map tells me that the player’s center can never go within 16 units of an outer wall, which checks out — their hitbox would get in the way! So I can delete all that stuff completely.

Consider that bottom-left outline, where red and yellow touch horizontally. If the player is in the red area, they can only enter that outlined part if they’re also allowed to be in the yellow area. Once they’re inside it, though, they can move around freely. I’ll color that piece orange, and similarly blend colors for the other outlines. (A small sliver at the top requires access to all three areas, so I colored it gray, because I can’t be bothered to figure out how to do a stripe pattern in Inkscape.)

This is the final map, and it’s easy to traverse because it works like a graph! Each contiguous region is a node, and each border is an edge. Some of the edges are one-way (falling off a ledge) or conditional (walking through a door), but the player can move freely within a region, so I don’t need to care about world geometry any more.

The problem

I’m having a hell of a time doing this mass-intersection of a big pile of shapes.

I’m writing this in Rust, and I would very very very strongly prefer not to wrap a C library (or, god forbid, a C++ library), because that will considerably complicate actually releasing this dang software. Unfortunately, that also limits my options rather a lot.

I was referred to a paper (A simple algorithm for Boolean operations on polygons, Martínez et al, 2013) that describes doing a Boolean operation (union, intersection, difference, xor) on two shapes, and works even with self-intersections and holes and whatnot.

I spent an inordinate amount of time porting its reference implementation from very bad C++ to moderately bad Rust, and I extended it to work with an arbitrary number of polygons and to spit out all resulting shapes. It has been a very bumpy ride, and I keep hitting walls — the latest is that it panics when intersecting everything results in two distinct but exactly coincident edges, which obviously happens a lot with this approach.

So the question is: is there some better way to do this that I’m overlooking, or should I just keep fiddling with this algorithm and hope I come out the other side with something that works?


Bear in mind, the input shapes are not necessarily convex, and quite frequently aren’t. Also, they can have holes, and quite frequently do. That rules out most common algorithms. It’s probably possible to triangulate everything, but I’m a little wary of cutting the map into even more microscopic shards; feel free to convince me otherwise.

Also, the map format technically allows absolutely any arbitrary combination of lines, so all of these are possible:

It would be nice to handle these gracefully somehow, or at least not crash on them. But they’re usually total nonsense as far as the game is concerned. But also that middle one does show up in the original stock maps a couple times.

Another common trick is that lines might be part of the same shape on both sides:

The left example suggests that such a line is redundant and can simply be ignored without changing anything. The right example shows why this is a problem.

A common trick in vanilla Doom is the so-called self-referencing sector. Here, the edges of the inner yellow square all claim to be yellow — on both sides. The outer edges all claim to be blue only on the inside, as normal. The yellow square therefore doesn’t neighbor the blue square at all, because no edges that are yellow on one side and blue on the other. The effect in-game is that the yellow area is invisible, but still solid, so it can be used as an invisible bridge or invisible pit for various effects.

This does raise the question of exactly how Doom itself handles all these edge cases. Vanilla maps are preprocessed by a node builder and split into subsectors, which are all convex polygons. So for any given weird trick or broken geometry, the answer to “how does this behave” is: however the node builder deals with it.

Subsectors are built right into vanilla maps, so I could use those. The drawback is that they’re optional for maps targeting ZDoom (and maybe other ports as well?), because ZDoom has its own internal node builder. Also, relying on built nodes in general would make this code less useful for map editing, or generating, or whatever.

ZDoom’s node builder is open source, so I could bake it in? Or port it to Rust? (It’s only, ah, ten times bigger than the shape algorithm I ported.) It’d be interesting to have a fairly-correct reflection of how the game sees broken geometry, which is something no map editor really tries to do. Is it fast enough? Running it on the largest map I know to exist (MAP14 of Sunder) takes 1.4 seconds, which seems like a long time, but also that’s from scratch, and maybe it could be adapted to work incrementally…? Christ.

I’m not sure I have the time to dedicate to flesh this out beyond a proof of concept anyway, so maybe this is all moot. But all the more reason to avoid spending a lot of time on dead ends.

Weekly roundup: Visual novelty

Post Syndicated from Eevee original https://eev.ee/dev/2018/03/20/weekly-roundup-visual-novelty/

Doin’ game stuff. Probably going to be quiet for a few weeks still.

  • alice: Actually wrote a decent amount of stuff, though fairly haphazardly. Finally kind of getting into the groove here. Still contemplating more interesting ways to offer choices, without turning the game into a combinatorial explosion.

  • art: Did some doodles. Not as frequently as I’d like, and mostly not published, but I did some, and that’s nice.

  • fox flux: Revisited the parallax forest background briefly. Made some progress, but talked to glip and maybe it’s not the right approach in the first place? Not thinking about it too seriously right now, regardless.

  • idchoppers: Miraculously, I got multi-polygon splitting finally working… and then hit a panic when there are coincident segments, which offhand I’m not sure how to fix. Sigh.

Way behind on blogging, I know, sorry.

Getting Ready for the AWS Quest Finale on Twitch

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/getting-ready-for-the-aws-quest-finale-on-twitch/

Whew! March has been one crazy month for me and it is only half over. After a week with my wife in the Caribbean, we hopped on a non-stop Seattle to Tokyo flight so that I could speak at JAWS Days, Startup Day, and some internal events. We arrived home last Wednesday and I am now sufficiently clear-headed and recovered from jet lag to do anything more intellectually demanding than respond to emails. The AWS Blogging Team and the great folks at Lone Shark Games have been working on AWS Quest for quite some time and it has been great to see all of the progress made toward solving the puzzles in order to find the orangeprints that I will use to rebuild Ozz.

The community effort has been impressive! There’s a shared spreadsheet with tabs for puzzles and clues, a busy Slack channel, and a leaderboard, all organized and built by a team that spans the globe.

I’ve been checking out the orangeprints as they are uncovered and have been doing a bit of planning and preparation to make sure that I am ready for the live-streamed rebuild on Twitch later this month. Yesterday I labeled a bunch of containers, one per puzzle, and stocked each one with the parts that I will use to rebuild the corresponding component of Ozz. Fortunately, I have at least (my last count may have skipped a few) 119,807 bricks and other parts at hand so this was easy. Here’s what I have set up so far:

The Twitch session will take place on Tuesday, March 27 at Noon PT. In the meantime, you should check out the #awsquest tweets and see what you can do to help me to rebuild Ozz.

Jeff;