Tag Archives: guide

Friday Squid Blogging: Injured Giant Squid Video

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2017/06/friday_squid_bl_582.html

A paddleboarder had a run-in with an injured giant squid. Video. Here’s the real story.

As usual, you can also use this squid post to talk about the security stories in the news that I haven’t covered.

Read my blog posting guidelines here.

From Idea to Launch: Getting Your First Customers

Post Syndicated from Gleb Budman original https://www.backblaze.com/blog/how-to-get-your-first-customers/

line outside of Apple

After deciding to build an unlimited backup service and developing our own storage platform, the next step was to get customers and feedback. Not all customers are created equal. Let’s talk about the types, and when and how to attract them.

How to Get Your First Customers

First Step – Don’t Launch Publicly
Launch when you’re ready for the judgments of people who don’t know you at all. Until then, don’t launch. Sign up users and customers either that you know, those you can trust to cut you some slack (while providing you feedback), or at minimum those for whom you can set expectations. For months the Backblaze website was a single page with no ability to get the product and minimal info on what it would be. This is not to counter the Lean Startup ‘iterate quickly with customer feedback’ advice. Rather, this is an acknowledgement that there are different types of feedback required based on your development stage.

Sign Up Your Friends
We knew all of our first customers; they were friends, family, and previous co-workers. Many knew what we were up to and were excited to help us. No magic marketing or tech savviness was required to reach them – we just asked that they try the service. We asked them to provide us feedback on their experience and collected it through email and conversations. While the feedback wasn’t unbiased, it was nonetheless wide-ranging, real, and often insightful. These people were willing to spend time carefully thinking about their feedback and delving deeper into the conversations.

Broaden to Beta
Unless you’re famous or your service costs $1 million per customer, you’ll probably need to expand quickly beyond your friends to build a business – and to get broader feedback. Our next step was to broaden the customer base to beta users.

Opening up the service in beta provides three benefits:

  1. Air cover for the early warts. There are going to be issues, bugs, unnecessarily complicated user flows, and poorly worded text. Beta tells people, “We don’t consider the product ‘done’ and you should expect some of these issues. Please be patient with us.”
  2. A request for feedback. Some people always provide feedback, but beta communicates that you want it.
  3. An awareness opportunity. Opening up in beta provides an early (but not only) opportunity to have an announcement and build awareness.

Pitching Beta to Press
Not all press cares about, or is even willing to cover, beta products. Much of the mainstream press wants to write about services that are fully live, have scale, and are important in the marketplace. However, there are a number of sites that like to cover the leading edge – and that means covering betas. Techcrunch, Ars Technica, and SimpleHelp covered our initial private beta launch. I’ll go into the details of how to work with the press to cover your announcements in a post next month.

Private vs. Public Beta
Both private and public beta provide all three of the benefits above. The difference between the two is that private betas are much more controlled, whereas public ones bring in more users. But this isn’t an either/or – I recommend doing both.

Private Beta
For our original beta in 2008, we decided that we were comfortable with about 1,000 users subscribing to our service. That would provide us with a healthy amount of feedback and get some early adoption, while not overwhelming us or our server capacity, and equally important not causing cash flow issues from having to buy more equipment. So we decided to limit the sign-up to only the first 1,000 people who signed up; then we would shut off sign-ups for a while.

But how do you even get 1,000 people to sign up for your service? In our case, get some major publications to write about our beta. (Note: In a future post I’ll explain exactly how to find and reach out to writers. Sign up to receive all of the entrepreneurial posts in this series.)

Public Beta
For our original service (computer backup), we did not have a public beta; but when we launched Backblaze B2, we had a private and then a public beta. The private beta allowed us to work out early kinks, while the public beta brought us a more varied set of use cases. In public beta, there is no cap on the number of users that may try the service.

While this is a first-class problem to have, if your service is flooded and stops working, it’s still a problem. Think through what you will do if that happens. In our early days, when our system could get overwhelmed by volume, we had a static web page hosted with a different registrar that wouldn’t let customers sign up but would tell them when our service would be open again. When we reached a critical volume level we would redirect to it in order to at least provide status for when we could accept more customers.

Collect Feedback
Since one of the goals of betas is to get feedback, we made sure that we had our email addresses clearly presented on the site so users could send us thoughts. We were most interested in broad qualitative feedback on users’ experience, so all emails went to an internal mailing list that would be read by everyone at Backblaze.

For our B2 public and private betas, we also added an optional short survey to the sign-up process. In order to be considered for the private beta you had to fill the survey out, though we found that 80% of users continued to fill out the survey even when it was not required. This survey had both closed-end questions (“how much data do you have”) and open-ended ones (“what do you want to use cloud storage for?”).

BTW, despite us getting a lot of feedback now via our support team, Twitter, and marketing surveys, we are always open to more – you can email me directly at gleb.budman {at} backblaze.com.

Don’t Throw Away Users
Initially our backup service was available only on Windows, but we had an email sign-up list for people who wanted it for their Mac. This provided us with a sense of market demand and a ready list of folks who could be beta users and early adopters when we had a Mac version. Have a service targeted at doctors but lawyers are expressing interest? Capture that.

Product Launch

When
The first question is “when” to launch. Presuming your service is in ‘public beta’, what is the advantage of moving out of beta and into a “version 1.0”, “gold”, or “public availability”? That depends on your service and customer base. Some services fly through public beta. Gmail, on the other hand, was (in)famous for being in beta for 5 years, despite having over 100 million users.

The term beta says to users, “give us some leeway, but feel free to use the service”. That’s fine for many consumer apps and will have near zero impact on them. However, services aimed at businesses and government will often not be adopted with a beta label as the enterprise customers want to know the company feels the service is ‘ready’. While Backblaze started out as a purely consumer service, because it was a data backup service, it was important for customers to trust that the service was ready.

No product is bug-free. But from a product readiness perspective, the nomenclature should also be a reflection of the quality of the product. You can launch a product with one feature that works well out of beta. But a product with fifty features on which half the users will bump into problems should likely stay in beta. The customer feedback, surveys, and your own internal testing should guide you in determining this quality during the beta. Be careful about “we’ve only seen that one time” or “I haven’t been able to reproduce that on my machine”; those issues are likely to scale with customers when you launch.

How
Launching out of beta can be as simple as removing the beta label from the website/product. However, this can be a great time to reach out to press, write a blog post, and send an email announcement to your customers.

Consider thanking your beta testers somehow; can they get some feature turned out for free, an extension of their trial, or premium support? If nothing else, remember to thank them for their feedback. Users that signed up during your beta are likely the ones who will propel your service. They had the need and interest to both be early adopters and deal with bugs. They are likely the key to getting 1,000 true fans.

The Beginning
The title of this post was “Getting your first customers”, because getting to launch may feel like the peak of your journey when you’re pre-launch, but it really is just the beginning. It’s a step along the journey of building your business. If your launch is wildly successful, enjoy it, work to build on the momentum, but don’t lose track of building your business. If your launch is a dud, go out for a coffee with your team, say “well that sucks”, and then get back to building your business. You can learn a tremendous amount from your early customers, and they can become your biggest fans, but the success of your business will depend on what you continue to do the months and years after your launch.

The post From Idea to Launch: Getting Your First Customers appeared first on Backblaze Blog | Cloud Storage & Cloud Backup.

Is your product “Powered by Raspberry Pi”?

Post Syndicated from Mike Buffham original https://www.raspberrypi.org/blog/powered-by-raspberry-pi/

One of the most exciting things for us about the growth of the Raspberry Pi community has been the number of companies that have grown up around the platform, and who have chosen to embed our products into their own. While many of these design-ins have been “silent”, a number of people have asked us for a standardised way to indicate that a product contains a Raspberry Pi or a Raspberry Pi Compute Module.

Powered by Raspberry Pi Logo

At the end of last year, we introduced a “Powered by Raspberry Pi” logo to meet this need. It is now included in our trademark rules and brand guidelines, which you can find on our website. Below we’re showing an early example of a “Powered by Raspberry Pi”-branded device, the KUNBUS Revolution Pi industrial PC. It has already made it onto the market, and we think it will inspire you to include our logo on the packaging of your own product.

KUNBUS RevPi
Powered by Raspberry Pi logo on RevPi

Using the “Powered by Raspberry Pi” brand

Adding the “Powered by Raspberry Pi” logo to your packaging design is a great way to remind your customers that a portion of the sale price of your product goes to the Raspberry Pi Foundation and supports our educational work.

As with all things Raspberry Pi, our rules for using this brand are fairly straightforward: the only thing you need to do is to fill out this simple application form. Once you have submitted it, we will review your details and get back to you as soon as possible.

When we approve your application, we will require that you use one of the official “Powered by Raspberry Pi” logos and that you ensure it is at least 30 mm wide. We are more than happy to help you if you have any design queries related to this – just contact us at [email protected]

The post Is your product “Powered by Raspberry Pi”? appeared first on Raspberry Pi.

Building Loosely Coupled, Scalable, C# Applications with Amazon SQS and Amazon SNS

Post Syndicated from Tara Van Unen original https://aws.amazon.com/blogs/compute/building-loosely-coupled-scalable-c-applications-with-amazon-sqs-and-amazon-sns/

 
Stephen Liedig, Solutions Architect

 

One of the many challenges professional software architects and developers face is how to make cloud-native applications scalable, fault-tolerant, and highly available.

Fundamental to your project success is understanding the importance of making systems highly cohesive and loosely coupled. That means considering the multi-dimensional facets of system coupling to support the distributed nature of the applications that you are building for the cloud.

By that, I mean addressing not only the application-level coupling (managing incoming and outgoing dependencies), but also considering the impacts of of platform, spatial, and temporal coupling of your systems. Platform coupling relates to the interoperability, or lack thereof, of heterogeneous systems components. Spatial coupling deals with managing components at a network topology level or protocol level. Temporal, or runtime coupling, refers to the ability of a component within your system to do any kind of meaningful work while it is performing a synchronous, blocking operation.

The AWS messaging services, Amazon SQS and Amazon SNS, help you deal with these forms of coupling by providing mechanisms for:

  • Reliable, durable, and fault-tolerant delivery of messages between application components
  • Logical decomposition of systems and increased autonomy of components
  • Creating unidirectional, non-blocking operations, temporarily decoupling system components at runtime
  • Decreasing the dependencies that components have on each other through standard communication and network channels

Following on the recent topic, Building Scalable Applications and Microservices: Adding Messaging to Your Toolbox, in this post, I look at some of the ways you can introduce SQS and SNS into your architectures to decouple your components, and show how you can implement them using C#.

Walkthrough

To illustrate some of these concepts, consider a web application that processes customer orders. As good architects and developers, you have followed best practices and made your application scalable and highly available. Your solution included implementing load balancing, dynamic scaling across multiple Availability Zones, and persisting orders in a Multi-AZ Amazon RDS database instance, as in the following diagram.


In this example, the application is responsible for handling and persisting the order data, as well as dealing with increases in traffic for popular items.

One potential point of vulnerability in the order processing workflow is in saving the order in the database. The business expects that every order has been persisted into the database. However, any potential deadlock, race condition, or network issue could cause the persistence of the order to fail. Then, the order is lost with no recourse to restore the order.

With good logging capability, you may be able to identify when an error occurred and which customer’s order failed. This wouldn’t allow you to “restore” the transaction, and by that stage, your customer is no longer your customer.

As illustrated in the following diagram, introducing an SQS queue helps improve your ordering application. Using the queue isolates the processing logic into its own component and runs it in a separate process from the web application. This, in turn, allows the system to be more resilient to spikes in traffic, while allowing work to be performed only as fast as necessary in order to manage costs.


In addition, you now have a mechanism for persisting orders as messages (with the queue acting as a temporary database), and have moved the scope of your transaction with your database further down the stack. In the event of an application exception or transaction failure, this ensures that the order processing can be retired or redirected to the Amazon SQS Dead Letter Queue (DLQ), for re-processing at a later stage. (See the recent post, Using Amazon SQS Dead-Letter Queues to Control Message Failure, for more information on dead-letter queues.)

Scaling the order processing nodes

This change allows you now to scale the web application frontend independently from the processing nodes. The frontend application can continue to scale based on metrics such as CPU usage, or the number of requests hitting the load balancer. Processing nodes can scale based on the number of orders in the queue. Here is an example of scale-in and scale-out alarms that you would associate with the scaling policy.

Scale-out Alarm

aws cloudwatch put-metric-alarm --alarm-name AddCapacityToCustomerOrderQueue --metric-name ApproximateNumberOfMessagesVisible --namespace "AWS/SQS" 
--statistic Average --period 300 --threshold 3 --comparison-operator GreaterThanOrEqualToThreshold --dimensions Name=QueueName,Value=customer-orders
--evaluation-periods 2 --alarm-actions <arn of the scale-out autoscaling policy>

Scale-in Alarm

aws cloudwatch put-metric-alarm --alarm-name RemoveCapacityFromCustomerOrderQueue --metric-name ApproximateNumberOfMessagesVisible --namespace "AWS/SQS" 
 --statistic Average --period 300 --threshold 1 --comparison-operator LessThanOrEqualToThreshold --dimensions Name=QueueName,Value=customer-orders
 --evaluation-periods 2 --alarm-actions <arn of the scale-in autoscaling policy>

In the above example, use the ApproximateNumberOfMessagesVisible metric to discover the queue length and drive the scaling policy of the Auto Scaling group. Another useful metric is ApproximateAgeOfOldestMessage, when applications have time-sensitive messages and developers need to ensure that messages are processed within a specific time period.

Scaling the order processing implementation

On top of scaling at an infrastructure level using Auto Scaling, make sure to take advantage of the processing power of your Amazon EC2 instances by using as many of the available threads as possible. There are several ways to implement this. In this post, we build a Windows service that uses the BackgroundWorker class to process the messages from the queue.

Here’s a closer look at the implementation. In the first section of the consuming application, use a loop to continually poll the queue for new messages, and construct a ReceiveMessageRequest variable.

public static void PollQueue()
{
    while (_running)
    {
        Task<ReceiveMessageResponse> receiveMessageResponse;

        // Pull messages off the queue
        using (var sqs = new AmazonSQSClient())
        {
            const int maxMessages = 10;  // 1-10

            //Receiving a message
            var receiveMessageRequest = new ReceiveMessageRequest
            {
                // Get URL from Configuration
                QueueUrl = _queueUrl, 
                // The maximum number of messages to return. 
                // Fewer messages might be returned. 
                MaxNumberOfMessages = maxMessages, 
                // A list of attributes that need to be returned with message.
                AttributeNames = new List<string> { "All" },
                // Enable long polling. 
                // Time to wait for message to arrive on queue.
                WaitTimeSeconds = 5 
            };

            receiveMessageResponse = sqs.ReceiveMessageAsync(receiveMessageRequest);
        }

The WaitTimeSeconds property of the ReceiveMessageRequest specifies the duration (in seconds) that the call waits for a message to arrive in the queue before returning a response to the calling application. There are a few benefits to using long polling:

  • It reduces the number of empty responses by allowing SQS to wait until a message is available in the queue before sending a response.
  • It eliminates false empty responses by querying all (rather than a limited number) of the servers.
  • It returns messages as soon any message becomes available.

For more information, see Amazon SQS Long Polling.

After you have returned messages from the queue, you can start to process them by looping through each message in the response and invoking a new BackgroundWorker thread.

// Process messages
if (receiveMessageResponse.Result.Messages != null)
{
    foreach (var message in receiveMessageResponse.Result.Messages)
    {
        Console.WriteLine("Received SQS message, starting worker thread");

        // Create background worker to process message
        BackgroundWorker worker = new BackgroundWorker();
        worker.DoWork += (obj, e) => ProcessMessage(message);
        worker.RunWorkerAsync();
    }
}
else
{
    Console.WriteLine("No messages on queue");
}

The event handler, ProcessMessage, is where you implement business logic for processing orders. It is important to have a good understanding of how long a typical transaction takes so you can set a message VisibilityTimeout that is long enough to complete your operation. If order processing takes longer than the specified timeout period, the message becomes visible on the queue. Other nodes may pick it and process the same order twice, leading to unintended consequences.

Handling Duplicate Messages

In order to manage duplicate messages, seek to make your processing application idempotent. In mathematics, idempotent describes a function that produces the same result if it is applied to itself:

f(x) = f(f(x))

No matter how many times you process the same message, the end result is the same (definition from Enterprise Integration Patterns: Designing, Building, and Deploying Messaging Solutions, Hohpe and Wolf, 2004).

There are several strategies you could apply to achieve this:

  • Create messages that have inherent idempotent characteristics. That is, they are non-transactional in nature and are unique at a specified point in time. Rather than saying “place new order for Customer A,” which adds a duplicate order to the customer, use “place order <orderid> on <timestamp> for Customer A,” which creates a single order no matter how often it is persisted.
  • Deliver your messages via an Amazon SQS FIFO queue, which provides the benefits of message sequencing, but also mechanisms for content-based deduplication. You can deduplicate using the MessageDeduplicationId property on the SendMessage request or by enabling content-based deduplication on the queue, which generates a hash for MessageDeduplicationId, based on the content of the message, not the attributes.
var sendMessageRequest = new SendMessageRequest
{
    QueueUrl = _queueUrl,
    MessageBody = JsonConvert.SerializeObject(order),
    MessageGroupId = Guid.NewGuid().ToString("N"),
    MessageDeduplicationId = Guid.NewGuid().ToString("N")
};
  • If using SQS FIFO queues is not an option, keep a message log of all messages attributes processed for a specified period of time, as an alternative to message deduplication on the receiving end. Verifying the existence of the message in the log before processing the message adds additional computational overhead to your processing. This can be minimized through low latency persistence solutions such as Amazon DynamoDB. Bear in mind that this solution is dependent on the successful, distributed transaction of the message and the message log.

Handling exceptions

Because of the distributed nature of SQS queues, it does not automatically delete the message. Therefore, you must explicitly delete the message from the queue after processing it, using the message ReceiptHandle property (see the following code example).

However, if at any stage you have an exception, avoid handling it as you normally would. The intention is to make sure that the message ends back on the queue, so that you can gracefully deal with intermittent failures. Instead, log the exception to capture diagnostic information, and swallow it.

By not explicitly deleting the message from the queue, you can take advantage of the VisibilityTimeout behavior described earlier. Gracefully handle the message processing failure and make the unprocessed message available to other nodes to process.

In the event that subsequent retries fail, SQS automatically moves the message to the configured DLQ after the configured number of receives has been reached. You can further investigate why the order process failed. Most importantly, the order has not been lost, and your customer is still your customer.

private static void ProcessMessage(Message message)
{
    using (var sqs = new AmazonSQSClient())
    {
        try
        {
            Console.WriteLine("Processing message id: {0}", message.MessageId);

            // Implement messaging processing here
            // Ensure no downstream resource contention (parallel processing)
            // <your order processing logic in here…>
            Console.WriteLine("{0} Thread {1}: {2}", DateTime.Now.ToString("s"), Thread.CurrentThread.ManagedThreadId, message.MessageId);
            
            // Delete the message off the queue. 
            // Receipt handle is the identifier you must provide 
            // when deleting the message.
            var deleteRequest = new DeleteMessageRequest(_queueName, message.ReceiptHandle);
            sqs.DeleteMessageAsync(deleteRequest);
            Console.WriteLine("Processed message id: {0}", message.MessageId);

        }
        catch (Exception ex)
        {
            // Do nothing.
            // Swallow exception, message will return to the queue when 
            // visibility timeout has been exceeded.
            Console.WriteLine("Could not process message due to error. Exception: {0}", ex.Message);
        }
    }
}

Using SQS to adapt to changing business requirements

One of the benefits of introducing a message queue is that you can accommodate new business requirements without dramatically affecting your application.

If, for example, the business decided that all orders placed over $5000 are to be handled as a priority, you could introduce a new “priority order” queue. The way the orders are processed does not change. The only significant change to the processing application is to ensure that messages from the “priority order” queue are processed before the “standard order” queue.

The following diagram shows how this logic could be isolated in an “order dispatcher,” whose only purpose is to route order messages to the appropriate queue based on whether the order exceeds $5000. Nothing on the web application or the processing nodes changes other than the target queue to which the order is sent. The rates at which orders are processed can be achieved by modifying the poll rates and scalability settings that I have already discussed.

Extending the design pattern with Amazon SNS

Amazon SNS supports reliable publish-subscribe (pub-sub) scenarios and push notifications to known endpoints across a wide variety of protocols. It eliminates the need to periodically check or poll for new information and updates. SNS supports:

  • Reliable storage of messages for immediate or delayed processing
  • Publish / subscribe – direct, broadcast, targeted “push” messaging
  • Multiple subscriber protocols
  • Amazon SQS, HTTP, HTTPS, email, SMS, mobile push, AWS Lambda

With these capabilities, you can provide parallel asynchronous processing of orders in the system and extend it to support any number of different business use cases without affecting the production environment. This is commonly referred to as a “fanout” scenario.

Rather than your web application pushing orders to a queue for processing, send a notification via SNS. The SNS messages are sent to a topic and then replicated and pushed to multiple SQS queues and Lambda functions for processing.

As the diagram above shows, you have the development team consuming “live” data as they work on the next version of the processing application, or potentially using the messages to troubleshoot issues in production.

Marketing is consuming all order information, via a Lambda function that has subscribed to the SNS topic, inserting the records into an Amazon Redshift warehouse for analysis.

All of this, of course, is happening without affecting your order processing application.

Summary

While I haven’t dived deep into the specifics of each service, I have discussed how these services can be applied at an architectural level to build loosely coupled systems that facilitate multiple business use cases. I’ve also shown you how to use infrastructure and application-level scaling techniques, so you can get the most out of your EC2 instances.

One of the many benefits of using these managed services is how quickly and easily you can implement powerful messaging capabilities in your systems, and lower the capital and operational costs of managing your own messaging middleware.

Using Amazon SQS and Amazon SNS together can provide you with a powerful mechanism for decoupling application components. This should be part of design considerations as you architect for the cloud.

For more information, see the Amazon SQS Developer Guide and Amazon SNS Developer Guide. You’ll find tutorials on all the concepts covered in this post, and more. To can get started using the AWS console or SDK of your choice visit:

Happy messaging!

Shelfchecker Smart Shelf: build a home library system

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/smart-shelf-home-library/

Are you tired of friends borrowing your books and never returning them? Maybe you’re sure you own 1984 but can’t seem to locate it? Do you find a strange satisfaction in using the supermarket self-checkout simply because of the barcode beep? With the ShelfChecker smart shelf from maker Annelynn described on Instructables, you can be your own librarian and never misplace your books again! Beep!

Shelfchecker smart shelf annelynn Raspberry Pi

Harry Potter and the Aesthetically Pleasing Smart Shelf

The ShelfChecker smart shelf

Annelynn built her smart shelf utilising a barcode scanner, LDR light sensors, a Raspberry Pi, plus a few other peripherals and some Python scripts. She has created a fully integrated library checkout system with accompanying NeoPixel location notification for your favourite books.

This build allows you to issue your book-borrowing friends their own IDs and catalogue their usage of your treasured library. On top of that, you’ll be able to use LED NeoPixels to highlight your favourite books, registering their removal and return via light sensor tracking.

Using light sensors for book cataloguing

Once Annelynn had built the shelf, she drilled holes to fit the eight LDRs that would guard her favourite books, and separated them with corner brackets to prevent confusion.

Shelfchecker smart shelf annelynn Raspberry Pi

Corner brackets keep the books in place without confusion between their respective light sensors

Due to the limitations of the MCP3008 Adafruit microchip, the smart shelf can only keep track of eight of your favourite books. But this limitation won’t stop you from cataloguing your entire home library; it simply means you get to pick your ultimate favourites that will occupy the prime real estate on your wall.

Obviously, the light sensors sense light. So when you remove or insert a book, light floods or is blocked from that book’s sensor. The sensor sends this information to the Raspberry Pi. In response, an Arduino controls the NeoPixel strip along the ‘favourites’ shelf to indicate the book’s status.

Shelfchecker smart shelf annelynn Raspberry Pi

The book you are looking for is temporarily unavailable

Code your own library

While keeping a close eye on your favourite books, the system also allows creation of a complete library catalogue system with the help of a MySQL database. Users of the library can log into the system with a barcode scanner, and take out or return books recorded in the database guided by an LCD screen attached to the Pi.

Shelfchecker smart shelf annelynn Raspberry Pi

Beep!

I won’t go into an extensive how-to on creating MySQL databases here on the blog, because my glamourous assistant Janina has pulled up these MySQL tutorials to help you get started. Annelynn’s Github scripts are also packed with useful comments to keep you on track.

Raspberry Pi and books

We love books and libraries. And considering the growing number of Code Clubs and makespaces into libraries across the world, and the host of book-based Pi builds we’ve come across, the love seems to be mutual.

We’ve seen the Raspberry Pi introduced into the Wordery bookseller warehouse, a Pi-powered page-by-page book scanner by Jonathon Duerig, and these brilliant text-to-speech and page turner projects that use our Pis!

Did I say we love books? In fact we love them so much that members of our team have even written a few.*

If you’ve set up any sort of digital making event in a library, have in some way incorporated Raspberry Pi into your own personal book collection, or even managed to recreate the events of your favourite story using digital making, make sure to let us know in the comments below.

* Shameless plug**

Fancy adding some Pi to your home library? Check out these publications from the Raspberry Pi staff:

A Beginner’s Guide to Coding by Marc Scott

Adventures in Raspberry Pi by Carrie Anne Philbin

Getting Started with Raspberry Pi by Matt Richardson

Raspberry Pi User Guide by Eben Upton

The MagPi Magazine, Essentials Guides and Project Books

Make Your Own Game and Build Your Own Website by CoderDojo

** Shameless Pug

 

The post Shelfchecker Smart Shelf: build a home library system appeared first on Raspberry Pi.

“Kodi Boxes Are a Fire Risk”: Awful Timing or Opportunism?

Post Syndicated from Andy original https://torrentfreak.com/kodi-boxes-are-a-fire-risk-awful-timing-or-opportunism-170618/

Anyone who saw the pictures this week couldn’t have failed to be moved by the plight of Londoners caught up in the Grenfell Tower inferno. The apocalyptic images are likely to stay with people for years to come and the scars for those involved may never heal.

As the building continued to smolder and the death toll increased, UK tabloids provided wall-to-wall coverage of the disaster. On Thursday, however, The Sun took a short break to put out yet another sensationalized story about Kodi. Given the week’s events, it was bound to raise eyebrows.

“HOT GOODS: Kodi boxes are a fire hazard because thousands of IPTV devices nabbed by customs ‘failed UK electrical standards’,” the headline reads.

Another sensational ‘Kodi’ headline

“It’s estimated that thousands of Brits have bought so-called Kodi boxes which can be connected to telly sets to stream pay-per-view sport and films for free,” the piece continued.

“But they could be a fire hazard, according to the Federation Against Copyright Theft (FACT), which has been nabbing huge deliveries of the devices as they arrive in the UK.”

As the image below shows, “Kodi box” fire hazard claims appeared next to images from other news articles about the huge London fire. While all separate stories, the pairing is not a great look.

A ‘Kodi Box’, as depicted in The Sun

FACT chief executive Kieron Sharp told The Sun that his group had uncovered two parcels of 2,000 ‘Kodi’ boxes and found that they “failed electrical safety standards”, making them potentially dangerous. While that may well be the case, the big question is all about timing.

It’s FACT’s job to reduce copyright infringement on behalf of clients such as The Premier League so it’s no surprise that they’re making a sustained effort to deter the public from buying these devices. That being said, it can’t have escaped FACT or The Sun that fire and death are extremely sensitive topics this week.

That leaves us with a few options including unfortunate opportunism or perhaps terrible timing, but let’s give the benefit of the doubt for a moment.

There’s a good argument that FACT and The Sun brought a valid issue to the public’s attention at a time when fire safety is on everyone’s lips. So, to give credit where it’s due, providing people with a heads-up about potentially dangerous devices is something that most people would welcome.

However, it’s difficult to offer congratulations on the PSA when the story as it appears in The Sun does nothing – absolutely nothing – to help people stay safe.

If some boxes are a risk (and that’s certainly likely given the level of Far East imports coming into the UK) which ones are dangerous? Where were they manufactured? Who sold them? What are the serial numbers? Which devices do people need to get out of their houses?

Sadly, none of these questions were answered or even addressed in the article, making it little more than scaremongering. Only making matters worse, the piece notes that it isn’t even clear how many of the seized devices are indeed a fire risk and that more tests need to be done. Is this how we should tackle such an important issue during an extremely sensitive week?

Timing and lack of useful information aside, one then has to question the terminology employed in the article.

As a piece of computer software, Kodi cannot catch fire. So, what we’re actually talking about here is small computers coming into the country without passing safety checks. The presence of Kodi on the devices – if indeed Kodi was even installed pre-import – is absolutely irrelevant.

Anti-piracy groups warning people of the dangers associated with their piracy habits is nothing new. For years, Internet users have been told that their computers will become malware infested if they share files or stream infringing content. While in some cases that may be true, there’s rarely any effort by those delivering the warnings to inform people on how to stay safe.

A classic example can be found in the numerous reports put out by the Digital Citizens Alliance in the United States. The DCA has produced several and no doubt expensive reports which claim to highlight the risks Internet users are exposed to on ‘pirate’ sites.

The DCA claims to do this in the interests of consumers but the group offers no practical advice on staying safe nor does it provide consumers with risk reduction strategies. Like many high-level ‘drug prevention’ documents shuffled around government, it could be argued that on a ‘street’ level their reports are next to useless.

Demonizing piracy is a well-worn and well-understood strategy but if warnings are to be interpreted as representing genuine concern for the welfare of people, they have to be a lot more substantial than mere scaremongering.

Anyone concerned about potentially dangerous devices can check out these useful guides from Electrical Safety First (pdf) and the Electrical Safety Council (pdf)

Source: TF, for the latest info on copyright, file-sharing, torrent sites and ANONYMOUS VPN services.

Digital painter rundown

Post Syndicated from Eevee original https://eev.ee/blog/2017/06/17/digital-painter-rundown/

Another patron post! IndustrialRobot asks:

You should totally write about drawing/image manipulation programs! (Inspired by https://eev.ee/blog/2015/05/31/text-editor-rundown/)

This is a little trickier than a text editor comparison — while most text editors are cross-platform, quite a few digital art programs are not. So I’m effectively unable to even try a decent chunk of the offerings. I’m also still a relatively new artist, and image editors are much harder to briefly compare than text editors…

Right, now that your expectations have been suitably lowered:

Krita

I do all of my digital art in Krita. It’s pretty alright.

Okay so Krita grew out of Calligra, which used to be KOffice, which was an office suite designed for KDE (a Linux desktop environment). I bring this up because KDE has a certain… reputation. With KDE, there are at least three completely different ways to do anything, each of those ways has ludicrous amounts of customization and settings, and somehow it still can’t do what you want.

Krita inherits this aesthetic by attempting to do literally everything. It has 17 different brush engines, more than 70 layer blending modes, seven color picker dockers, and an ungodly number of colorspaces. It’s clearly intended primarily for drawing, but it also supports animation and vector layers and a pretty decent spread of raster editing tools. I just right now discovered that it has Photoshop-like “layer styles” (e.g. drop shadow), after a year and a half of using it.

In fairness, Krita manages all of this stuff well enough, and (apparently!) it manages to stay out of your way if you’re not using it. In less fairness, they managed to break erasing with a Wacom tablet pen for three months?

I don’t want to rag on it too hard; it’s an impressive piece of work, and I enjoy using it! The emotion it evokes isn’t so much frustration as… mystified bewilderment.

I once filed a ticket suggesting the addition of a brush size palette — a panel showing a grid of fixed brush sizes that makes it easy to switch between known sizes with a tablet pen (and increases the chances that you’ll be able to get a brush back to the right size again). It’s a prominent feature of Paint Tool SAI and Clip Studio Paint, and while I’ve never used either of those myself, I’ve seen a good few artists swear by it.

The developer response was that I could emulate the behavior by creating brush presets. But that’s flat-out wrong: getting the same effect would require creating a ton of brush presets for every brush I have, plus giving them all distinct icons so the size is obvious at a glance. Even then, it would be much more tedious to use and fill my presets with junk.

And that sort of response is what’s so mysterious to me. I’ve never even been able to use this feature myself, but a year of amateur painting with Krita has convinced me that it would be pretty useful. But a developer didn’t see the use and suggested an incredibly tedious alternative that only half-solves the problem and creates new ones. Meanwhile, of the 28 existing dockable panels, a quarter of them are different ways to choose colors.

What is Krita trying to be, then? What does Krita think it is? Who precisely is the target audience? I have no idea.


Anyway, I enjoy drawing in Krita well enough. It ships with a respectable set of brushes, and there are plenty more floating around. It has canvas rotation, canvas mirroring, perspective guide tools, and other art goodies. It doesn’t colordrop on right click by default, which is arguably a grave sin (it shows a customizable radial menu instead), but that’s easy to rebind. It understands having a background color beneath a bottom transparent layer, which is very nice. You can also toggle any brush between painting and erasing with the press of a button, and that turns out to be very useful.

It doesn’t support infinite canvases, though it does offer a one-click button to extend the canvas in a given direction. I’ve never used it (and didn’t even know what it did until just now), but would totally use an infinite canvas.

I haven’t used the animation support too much, but it’s pretty nice to have. Granted, the only other animation software I’ve used is Aseprite, so I don’t have many points of reference here. It’s a relatively new addition, too, so I assume it’ll improve over time.

The one annoyance I remember with animation was really an interaction with a larger annoyance, which is: working with selections kind of sucks. You can’t drag a selection around with the selection tool; you have to switch to the move tool. That would be fine if you could at least drag the selection ring around with the selection tool, but you can’t do that either; dragging just creates a new selection.

If you want to copy a selection, you have to explicitly copy it to the clipboard and paste it, which creates a new layer. Ctrl-drag with the move tool doesn’t work. So then you have to merge that layer down, which I think is where the problem with animation comes in: a new layer is non-animated by default, meaning it effectively appears in any frame, so simply merging it down with merge it onto every single frame of the layer below. And you won’t even notice until you switch frames or play back the animation. Not ideal.

This is another thing that makes me wonder about Krita’s sense of identity. It has a lot of fancy general-purpose raster editing features that even GIMP is still struggling to implement, like high color depth support and non-destructive filters, yet something as basic as working with selections is clumsy. (In fairness, GIMP is a bit clumsy here too, but it has a consistent notion of “floating selection” that’s easy enough to work with.)

I don’t know how well Krita would work as a general-purpose raster editor; I’ve never tried to use it that way. I can’t think of anything obvious that’s missing. The only real gotcha is that some things you might expect to be tools, like smudge or clone, are just types of brush in Krita.

GIMP

Ah, GIMP — open source’s answer to Photoshop.

It’s very obviously intended for raster editing, and I’m pretty familiar with it after half a lifetime of only using Linux. I even wrote a little Scheme script for it ages ago to automate some simple edits to a couple hundred files, back before I was aware of ImageMagick. I don’t know what to say about it, specifically; it’s fairly powerful and does a wide variety of things.

In fact I’d say it’s almost frustratingly intended for raster editing. I used GIMP in my first attempts at digital painting, before I’d heard of Krita. It was okay, but so much of it felt clunky and awkward. Painting is split between a pencil tool, a paintbrush tool, and an airbrush tool; I don’t really know why. The default brushes are largely uninteresting. Instead of brush presets, there are tool presets that can be saved for any tool; it’s a neat idea, but doesn’t feel like a real substitute for brush presets.

Much of the same functionality as Krita is there, but it’s all somehow more clunky. I’m sure it’s possible to fiddle with the interface to get something friendlier for painting, but I never really figured out how.

And then there’s the surprising stuff that’s missing. There’s no canvas rotation, for example. There’s only one type of brush, and it just stamps the same pattern along a path. I don’t think it’s possible to smear or blend or pick up color while painting. The only way to change the brush size is via the very sensitive slider on the tool options panel, which I remember being a little annoying with a tablet pen. Also, you have to specifically enable tablet support? It’s not difficult or anything, but I have no idea why the default is to ignore tablet pressure and treat it like a regular mouse cursor.

As I mentioned above, there’s also no support for high color depth or non-destructive editing, which is honestly a little embarrassing. Those are the major things Serious Professionals™ have been asking for for ages, and GIMP has been trying to provide them, but it’s taking a very long time. The first signs of GEGL, a new library intended to provide these features, appeared in GIMP 2.6… in 2008. The last major release was in 2012. GIMP has been working on this new plumbing for almost as long as Krita’s entire development history. (To be fair, Krita has also raised almost €90,000 from three Kickstarters to fund its development; I don’t know that GIMP is funded at all.)

I don’t know what’s up with GIMP nowadays. It’s still under active development, but the exact status and roadmap are a little unclear. I still use it for some general-purpose editing, but I don’t see any reason to use it to draw.

I do know that canvas rotation will be in the next release, and there was some experimentation with embedding MyPaint’s brush engine (though when I tried it it was basically unusable), so maybe GIMP is interested in wooing artists? I guess we’ll see.

MyPaint

Ah, MyPaint. I gave it a try once. Once.

It’s a shame, really. It sounds pretty great: specifically built for drawing, has very powerful brushes, supports an infinite canvas, supports canvas rotation, has a simple UI that gets out of your way. Perfect.

Or so it seems. But in MyPaint’s eagerness to shed unnecessary raster editing tools, it forgot a few of the more useful ones. Like selections.

MyPaint has no notion of a selection, nor of copy/paste. If you want to move a head to align better to a body, for example, the sanctioned approach is to duplicate the layer, erase the head from the old layer, erase everything but the head from the new layer, then move the new layer.

I can’t find anything that resembles HSL adjustment, either. I guess the workaround for that is to create H/S/L layers and floodfill them with different colors until you get what you want.

I can’t work seriously without these basic editing tools. I could see myself doodling in MyPaint, but Krita works just as well for doodling as for serious painting, so I’ve never gone back to it.

Drawpile

Drawpile is the modern equivalent to OpenCanvas, I suppose? It lets multiple people draw on the same canvas simultaneously. (I would not recommend it as a general-purpose raster editor.)

It’s a little clunky in places — I sometimes have bugs where keyboard focus gets stuck in the chat, or my tablet cursor becomes invisible — but the collaborative part works surprisingly well. It’s not a brush powerhouse or anything, and I don’t think it allows textured brushes, but it supports tablet pressure and canvas rotation and locked alpha and selections and whatnot.

I’ve used it a couple times, and it’s worked well enough that… well, other people made pretty decent drawings with it? I’m not sure I’ve managed yet. And I wouldn’t use it single-player. Still, it’s fun.

Aseprite

Aseprite is for pixel art so it doesn’t really belong here at all. But it’s very good at that and I like it a lot.

That’s all

I can’t name any other serious contender that exists for Linux.

I’m dimly aware of a thing called “Photo Shop” that’s more intended for photos but functions as a passable painter. More artists seem to swear by Paint Tool SAI and Clip Studio Paint. Also there’s Paint.NET, but I have no idea how well it’s actually suited for painting.

And that’s it! That’s all I’ve got. Krita for drawing, GIMP for editing, Drawpile for collaborative doodling.

Alleged KickassTorrents Owner Considers ‘Voluntary Surrender’ to the US

Post Syndicated from Ernesto original https://torrentfreak.com/alleged-kickasstorrents-owner-considers-voluntary-surrender-to-the-us-170616/

Earlier this year a Polish court ruled that Artem Vaulin, the alleged owner of the defunct torrent site KickassTorrents, can be extradited to the United States.

The decision came as a disappointment to the defense team, which quickly announced an appeal.

Vaulin has since been released on bail and currently resides in a Warsaw apartment. His release has made it easier to communicate with his attorneys in the United States, who have started negotiations with the US Government.

While the extradition appeal is still ongoing, it now appears that under the right conditions Vaulin might consider traveling to the United States voluntarily, so he can “resolve” the pending charges.

This is what the defense team states in a motion for a status conference (pdf), which was submitted earlier this week.

“Mr. Vaulin and his counsel in the United States recently have engaged in discussions with the government to determine if the parties can resolve this matter, or at least certain significant issues,” Vaulin’s legal team writes.

This includes “…issues relating to the proper calculation of the sentencing guidelines and/or the possibility of an agreement for bond should Mr. Vaulin decide to voluntarily surrender to the United States authorities and appear before this Court to resolve the pending charges.”

While the alleged KickassTorrents operator would be open to a voluntary “surrender,” he probably wants several guarantees before that happens. TorrentFreak reached out to the defense team for more information, but they preferred not to comment on ongoing negotiations.

Previously, Megaupload’s Kim Dotcom made a similar offer in his criminal case, requesting living expenses and a fair trial. The US Government never took him up on this offer, it appears, as Dotcom still resides in New Zealand.

In Vaulin’s case, the defense previously submitted a motion to dismiss some or all of the charges in the indictment, and they hope a ruling on this will bring more clarity soon. With the requested status conference, both parties will at least be able to update the court on various procedural issues

Source: TF, for the latest info on copyright, file-sharing, torrent sites and ANONYMOUS VPN services.

New – Auto Scaling for Amazon DynamoDB

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/new-auto-scaling-for-amazon-dynamodb/

Amazon DynamoDB has more than one hundred thousand customers, spanning a wide range of industries and use cases. These customers depend on DynamoDB’s consistent performance at any scale and presence in 16 geographic regions around the world. A recent trend we’ve been observing is customers using DynamoDB to power their serverless applications. This is a good match: with DynamoDB, you don’t have to think about things like provisioning servers, performing OS and database software patching, or configuring replication across availability zones to ensure high availability – you can simply create tables and start adding data, and let DynamoDB handle the rest.

DynamoDB provides a provisioned capacity model that lets you set the amount of read and write capacity required by your applications. While this frees you from thinking about servers and enables you to change provisioning for your table with a simple API call or button click in the AWS Management Console, customers have asked us how we can make managing capacity for DynamoDB even easier.

Today we are introducing Auto Scaling for DynamoDB to help automate capacity management for your tables and global secondary indexes. You simply specify the desired target utilization and provide upper and lower bounds for read and write capacity. DynamoDB will then monitor throughput consumption using Amazon CloudWatch alarms and then will adjust provisioned capacity up or down as needed. Auto Scaling will be on by default for all new tables and indexes, and you can also configure it for existing ones.

Even if you’re not around, DynamoDB Auto Scaling will be monitoring your tables and indexes to automatically adjust throughput in response to changes in application traffic. This can make it easier to administer your DynamoDB data, help you maximize availability for your applications, and help you reduce your DynamoDB costs.

Let’s see how it works…

Using Auto Scaling
The DynamoDB Console now proposes a comfortable set of default parameters when you create a new table. You can accept them as-is or you can uncheck Use default settings and enter your own parameters:

Here’s how you enter your own parameters:

Target utilization is expressed in terms of the ratio of consumed capacity to provisioned capacity. The parameters above would allow for sufficient headroom to allow consumed capacity to double due to a burst in read or write requests (read Capacity Unit Calculations to learn more about the relationship between DynamoDB read and write operations and provisioned capacity). Changes in provisioned capacity take place in the background.

Auto Scaling in Action
In order to see this important new feature in action, I followed the directions in the Getting Started Guide. I launched a fresh EC2 instance, installed (sudo pip install boto3) and configured (aws configure) the AWS SDK for Python. Then I used the code in the Python and DynamoDB section to create and populate a table with some data, and manually configured the table for 5 units each of read and write capacity.

I took a quick break in order to have clean, straight lines for the CloudWatch metrics so that I could show the effect of Auto Scaling. Here’s what the metrics look like before I started to apply a load:

I modified the code in Step 3 to continually issue queries for random years in the range of 1920 to 2007, ran a single copy of the code, and checked the read metrics a minute or two later:

The consumed capacity is higher than the provisioned capacity, resulting in a large number of throttled reads. Time for Auto Scaling!

I returned to the console and clicked on the Capacity tab for my table. Then I clicked on Read capacity, accepted the default values, and clicked on Save:

DynamoDB created a new IAM role (DynamoDBAutoscaleRole) and a pair of CloudWatch alarms to manage the Auto Scaling of read capacity:

DynamoDB Auto Scaling will manage the thresholds for the alarms, moving them up and down as part of the scaling process. The first alarm was triggered and the table state changed to Updating while additional read capacity was provisioned:

The change was visible in the read metrics within minutes:

I started a couple of additional copies of my modified query script and watched as additional capacity was provisioned, as indicated by the red line:

I killed all of the scripts and turned my attention to other things while waiting for the scale-down alarm to trigger. Here’s what I saw when I came back:

The next morning I checked my Scaling activities and saw that the alarm had triggered several more times overnight:

This was also visible in the metrics:

Until now, you would prepare for this situation by setting your read capacity well about your expected usage, and pay for the excess capacity (the space between the blue line and the red line). Or, you might set it too low, forget to monitor it, and run out of capacity when traffic picked up. With Auto Scaling you can get the best of both worlds: an automatic response when an increase in demand suggests that more capacity is needed, and another automated response when the capacity is no longer needed.

Things to Know
DynamoDB Auto Scaling is designed to accommodate request rates that vary in a somewhat predictable, generally periodic fashion. If you need to accommodate unpredictable bursts of read activity, you should use Auto Scaling in combination with DAX (read Amazon DynamoDB Accelerator (DAX) – In-Memory Caching for Read-Intensive Workloads to learn more). Also, the AWS SDKs will detect throttled read and write requests and retry them after a suitable delay.

I mentioned the DynamoDBAutoscaleRole earlier. This role provides Auto Scaling with the privileges that it needs to have in order for it to be able to scale your tables and indexes up and down. To learn more about this role and the permissions that it uses, read Grant User Permissions for DynamoDB Auto Scaling.

Auto Scaling has complete CLI and API support, including the ability to enable and disable the Auto Scaling policies. If you have some predictable, time-bound spikes in traffic, you can programmatically disable an Auto Scaling policy, provision higher throughput for a set period of time, and then enable Auto Scaling again later.

As noted on the Limits in DynamoDB page, you can increase provisioned capacity as often as you would like and as high as you need (subject to per-account limits that we can increase on request). You can decrease capacity up to nine times per day for each table or global secondary index.

You pay for the capacity that you provision, at the regular DynamoDB prices. You can also purchase DynamoDB Reserved Capacity to further savings.

Available Now
This feature is available now in all regions and you can start using it today!

Jeff;

“Top ISPs” Are Discussing Fines & Browsing Hijacking For Pirates

Post Syndicated from Andy original https://torrentfreak.com/top-isps-are-discussing-fines-browsing-hijacking-for-pirates-170614/

For the past several years, anti-piracy outfit Rightscorp has been moderately successful in forcing smaller fringe ISPs in the United States to collaborate in a low-tier copyright trolling operation.

The way it works is relatively simple. Rightscorp monitors BitTorrent networks, captures the IP addresses of alleged infringers, and sends DMCA notices to their ISPs. Rightscorp expects ISPs to forward these to their customers along with an attached cash settlement demand.

These demands are usually for small amounts ($20 or $30) but most of the larger ISPs don’t forward them to their customers. This deprives Rightscorp (and clients such as BMG) of the opportunity to generate revenue, a situation that the anti-piracy outfit is desperate to remedy.

One of the problems is that when people who receive Rightscorp ‘fines’ refuse to pay them, the company does nothing, leading to a lack of respect for the company. With this in mind, Rightscorp has been trying to get ISPs involved in forcing people to pay up.

In 2014, Rightscorp said that its goal was to have ISPs place a redirect page in front of ‘pirate’ subscribers until they pay a cash fine.

“[What] we really want to do is move away from termination and move to what’s called a hard redirect, like, when you go into a hotel and you have to put your room number in order to get past the browser and get on to browsing the web,” the company said.

In the three years since that statement, the company has raised the issue again but nothing concrete has come to fruition. However, there are now signs of fresh movement which could be significant, if Rightscorp is to be believed.

“An ISP Good Corporate Citizenship Program is what we feel will drive revenue associated with our primary revenue model. This program is an attempt to garner the attention and ultimately inspire a behavior shift in any ISP that elects to embrace our suggestions to be DMCA-compliant,” the company told shareholders yesterday.

“In this program, we ask for the ISPs to forward our notices referencing the infringement and the settlement offer. We ask that ISPs take action against repeat infringers through suspensions or a redirect screen. A redirect screen will guide the infringer to our payment screen while limiting all but essential internet access.”

At first view, this sounds like a straightforward replay of Rightscorp’s wishlist of three years ago, but it’s worth noting that the legal landscape has shifted fairly significantly since then.

Perhaps the most important development is the BMG v Cox Communications case, in which the ISP was sued for not doing enough to tackle repeat infringers. In that case (for which Rightscorp provided the evidence), Cox was held liable for third-party infringement and ordered to pay damages of $25 million alongside $8 million in legal fees.

All along, the suggestion has been that if Cox had taken action against infringing subscribers (primarily by passing on Rightscorp ‘fines’ and/or disconnecting repeat infringers) the ISP wouldn’t have ended up in court. Instead, it chose to sweat it out to a highly unfavorable decision.

The BMG decision is a potentially powerful ruling for Rightscorp, particularly when it comes to seeking ‘cooperation’ from other ISPs who might not want a similar legal battle on their hands. But are other ISPs interested in getting involved?

According to the Rightscorp, preliminary negotiations are already underway with some big players.

“We are now beginning to have some initial and very thorough discussions with a handful of the top ISPs to create and implement such a program that others can follow. We have every reason to believe that the litigations referred to above are directly responsible for the beginning of a change in thinking of ISPs,” the company says.

Rightscorp didn’t identify these “top ISPs” but by implication, these could include companies such as Comcast, AT&T, Time Warner Cable, CenturyLink, Charter, Verizon, and/or even Cox Communications.

With cooperation from these companies, Rightscorp predicts that a “cultural shift” could be brought about which would significantly increase the numbers of subscribers paying cash demands. It’s also clear that while it may be seeking cooperation from ISPs, a gun is being held under the table too, in case any feel hesitant about putting up a redirect screen.

“This is the preferred approach that we advocate for any willing ISP as an alternative to becoming a defendant in a litigation and facing potential liability and significantly larger statutory damages,” Rightscorp says.

A recent development suggests the company may not be bluffing. Back in April the RIAA sued ISP Grande Communcations for failing to disconnect persistent pirates. Yet again, Rightscorp is deeply involved in the case, having provided the infringement data to the labels for a considerable sum.

Whether the “top ISPs” in the United States will cave into the pressure and implied threats remains to be seen but there’s no doubting the rising confidence at Rightscorp.

“We have demonstrated the tenacity to support two major litigation efforts initiated by two of our clients, which we feel will set a precedent for the entire anti-piracy industry led by Rightscorp. If you can predict the law, you can set the competition,” the company concludes.

Meanwhile, Rightscorp appears to continue its use of disingenuous tactics to extract money from alleged file-sharers.

In the wake of several similar reports, this week a Reddit user reported that Rightscorp asked him to pay a single $20 fine for pirating a song. After paying up, the next day the company allegedly called the user back and demanded payment for a further 200 notices.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and ANONYMOUS VPN services.

Teaching tech

Post Syndicated from Eevee original https://eev.ee/blog/2017/06/10/teaching-tech/

A sponsored post from Manishearth:

I would kinda like to hear about any thoughts you have on technical teaching or technical writing. Pedagogy is something I care about. But I don’t know how much you do, so feel free to ignore this suggestion 🙂

Good news: I care enough that I’m trying to write a sorta-kinda-teaching book!

Ironically, one of the biggest problems I’ve had with writing the introduction to that book is that I keep accidentally rambling on for pages about problems and difficulties with teaching technical subjects. So maybe this is a good chance to get it out of my system.

Phaser

I recently tried out a new thing. It was Phaser, but this isn’t a dig on them in particular, just a convenient example fresh in my mind. If anything, they’re better than most.

As you can see from Phaser’s website, it appears to have tons of documentation. Two of the six headings are “LEARN” and “EXAMPLES”, which seems very promising. And indeed, Phaser offers:

  • Several getting-started walkthroughs
  • Possibly hundreds of examples
  • A news feed that regularly links to third-party tutorials
  • Thorough API docs

Perfect. Beautiful. Surely, a dream.

Well, almost.

The examples are all microscopic, usually focused around a single tiny feature — many of them could be explained just as well with one line of code. There are a few example games, but they’re short aimless demos. None of them are complete games, and there’s no showcase either. Games sometimes pop up in the news feed, but most of them don’t include source code, so they’re not useful for learning from.

Likewise, the API docs are just API docs, leading to the sorts of problems you might imagine. For example, in a few places there’s a mention of a preUpdate stage that (naturally) happens before update. You might rightfully wonder what kinds of things happen in preUpdate — and more importantly, what should you put there, and why?

Let’s check the API docs for Phaser.Group.preUpdate:

The core preUpdate – as called by World.

Okay, that didn’t help too much, but let’s check what Phaser.World has to say:

The core preUpdate – as called by World.

Ah. Hm. It turns out World is a subclass of Group and inherits this method — and thus its unaltered docstring — from Group.

I did eventually find some brief docs attached to Phaser.Stage (but only by grepping the source code). It mentions what the framework uses preUpdate for, but not why, and not when I might want to use it too.


The trouble here is that there’s no narrative documentation — nothing explaining how the library is put together and how I’m supposed to use it. I get handed some brief primers and a massive reference, but nothing in between. It’s like buying an O’Reilly book and finding out it only has one chapter followed by a 500-page glossary.

API docs are great if you know specifically what you’re looking for, but they don’t explain the best way to approach higher-level problems, and they don’t offer much guidance on how to mesh nicely with the design of a framework or big library. Phaser does a decent chunk of stuff for you, off in the background somewhere, so it gives the strong impression that it expects you to build around it in a particular way… but it never tells you what that way is.

Tutorials

Ah, but this is what tutorials are for, right?

I confess I recoil whenever I hear the word “tutorial”. It conjures an image of a uniquely useless sort of post, which goes something like this:

  1. Look at this cool thing I made! I’ll teach you how to do it too.

  2. Press all of these buttons in this order. Here’s a screenshot, which looks nothing like what you have, because I’ve customized the hell out of everything.

  3. You did it!

The author is often less than forthcoming about why they made any of the decisions they did, where you might want to try something else, or what might go wrong (and how to fix it).

And this is to be expected! Writing out any of that stuff requires far more extensive knowledge than you need just to do the thing in the first place, and you need to do a good bit of introspection to sort out something coherent to say.

In other words, teaching is hard. It’s a skill, and it takes practice, and most people blogging are not experts at it. Including me!


With Phaser, I noticed that several of the third-party tutorials I tried to look at were 404s — sometimes less than a year after they were linked on the site. Pretty major downside to relying on the community for teaching resources.

But I also notice that… um…

Okay, look. I really am not trying to rag on this author. I’m not. They tried to share their knowledge with the world, and that’s a good thing, something worthy of praise. I’m glad they did it! I hope it helps someone.

But for the sake of example, here is the most recent entry in Phaser’s list of community tutorials. I have to link it, because it’s such a perfect example. Consider:

  • The post itself is a bulleted list of explanation followed by a single contiguous 250 lines of source code. (Not that there’s anything wrong with bulleted lists, mind you.) That code contains zero comments and zero blank lines.

  • This is only part two in what I think is a series aimed at beginners, yet the title and much of the prose focus on object pooling, a performance hack that’s easy to add later and that’s almost certainly unnecessary for a game this simple. There is no explanation of why this is done; the prose only says you’ll understand why it’s critical once you add a lot more game objects.

  • It turns out I only have two things to say here so I don’t know why I made this a bulleted list.

In short, it’s not really a guided explanation; it’s “look what I did”.

And that’s fine, and it can still be interesting. I’m not sure English is even this person’s first language, so I’m hardly going to criticize them for not writing a novel about platforming.

The trouble is that I doubt a beginner would walk away from this feeling very enlightened. They might be closer to having the game they wanted, so there’s still value in it, but it feels closer to having someone else do it for them. And an awful lot of tutorials I’ve seen — particularly of the “post on some blog” form (which I’m aware is the genre of thing I’m writing right now) — look similar.

This isn’t some huge social problem; it’s just people writing on their blog and contributing to the corpus of written knowledge. It does become a bit stickier when a large project relies on these community tutorials as its main set of teaching aids.


Again, I’m not ragging on Phaser here. I had a slightly frustrating experience with it, coming in knowing what I wanted but unable to find a description of the semantics anywhere, but I do sympathize. Teaching is hard, writing documentation is hard, and programmers would usually rather program than do either of those things. For free projects that run on volunteer work, and in an industry where anything other than programming is a little undervalued, getting good docs written can be tricky.

(Then again, Phaser sells books and plugins, so maybe they could hire a documentation writer. Or maybe the whole point is for you to buy the books?)

Some pretty good docs

Python has pretty good documentation. It introduces the language with a tutorial, then documents everything else in both a library and language reference.

This sounds an awful lot like Phaser’s setup, but there’s some considerable depth in the Python docs. The tutorial is highly narrative and walks through quite a few corners of the language, stopping to mention common pitfalls and possible use cases. I clicked an arbitrary heading and found a pleasant, informative read that somehow avoids being bewilderingly dense.

The API docs also take on a narrative tone — even something as humble as the collections module offers numerous examples, use cases, patterns, recipes, and hints of interesting ways you might extend the existing types.

I’m being a little vague and hand-wavey here, but it’s hard to give specific examples without just quoting two pages of Python documentation. Hopefully you can see right away what I mean if you just take a look at them. They’re good docs, Bront.

I’ve likewise always enjoyed the SQLAlchemy documentation, which follows much the same structure as the main Python documentation. SQLAlchemy is a database abstraction layer plus ORM, so it can do a lot of subtly intertwined stuff, and the complexity of the docs reflects this. Figuring out how to do very advanced things correctly, in particular, can be challenging. But for the most part it does a very thorough job of introducing you to a large library with a particular philosophy and how to best work alongside it.

I softly contrast this with, say, the Perl documentation.

It’s gotten better since I first learned Perl, but Perl’s docs are still a bit of a strange beast. They exist as a flat collection of manpage-like documents with terse names like perlootut. The documentation is certainly thorough, but much of it has a strange… allocation of detail.

For example, perllol — the explanation of how to make a list of lists, which somehow merits its own separate documentation — offers no fewer than nine similar variations of the same code for reading a file into a nested lists of words on each line. Where Python offers examples for a variety of different problems, Perl shows you a lot of subtly different ways to do the same basic thing.

A similar problem is that Perl’s docs sometimes offer far too much context; consider the references tutorial, which starts by explaining that references are a powerful “new” feature in Perl 5 (first released in 1994). It then explains why you might want to nest data structures… from a Perl 4 perspective, thus explaining why Perl 5 is so much better.

Some stuff I’ve tried

I don’t claim to be a great teacher. I like to talk about stuff I find interesting, and I try to do it in ways that are accessible to people who aren’t lugging around the mountain of context I already have. This being just some blog, it’s hard to tell how well that works, but I do my best.

I also know that I learn best when I can understand what’s going on, rather than just seeing surface-level cause and effect. Of course, with complex subjects, it’s hard to develop an understanding before you’ve seen the cause and effect a few times, so there’s a balancing act between showing examples and trying to provide an explanation. Too many concrete examples feel like rote memorization; too much abstract theory feels disconnected from anything tangible.

The attempt I’m most pleased with is probably my post on Perlin noise. It covers a fairly specific subject, which made it much easier. It builds up one step at a time from scratch, with visualizations at every point. It offers some interpretations of what’s going on. It clearly explains some possible extensions to the idea, but distinguishes those from the core concept.

It is a little math-heavy, I grant you, but that was hard to avoid with a fundamentally mathematical topic. I had to be economical with the background information, so I let the math be a little dense in places.

But the best part about it by far is that I learned a lot about Perlin noise in the process of writing it. In several places I realized I couldn’t explain what was going on in a satisfying way, so I had to dig deeper into it before I could write about it. Perhaps there’s a good guideline hidden in there: don’t try to teach as much as you know?

I’m also fairly happy with my series on making Doom maps, though they meander into tangents a little more often. It’s hard to talk about something like Doom without meandering, since it’s a convoluted ecosystem that’s grown organically over the course of 24 years and has at least three ways of doing anything.


And finally there’s the book I’m trying to write, which is sort of about game development.

One of my biggest grievances with game development teaching in particular is how often it leaves out important touches. Very few guides will tell you how to make a title screen or menu, how to handle death, how to get a Mario-style variable jump height. They’ll show you how to build a clearly unfinished demo game, then leave you to your own devices.

I realized that the only reliable way to show how to build a game is to build a real game, then write about it. So the book is laid out as a narrative of how I wrote my first few games, complete with stumbling blocks and dead ends and tiny bits of polish.

I have no idea how well this will work, or whether recapping my own mistakes will be interesting or distracting for a beginner, but it ought to be an interesting experiment.

Friday Squid Blogging: Sex Is Traumatic for the Female Dumpling Squid

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2017/06/friday_squid_bl_580.html

The more they mate, the sooner they die. Academic paper (paywall). News article.

As usual, you can also use this squid post to talk about the security stories in the news that I haven’t covered.

Read my blog posting guidelines here.

Using Amazon SQS Dead-Letter Queues to Control Message Failure

Post Syndicated from Tara Van Unen original https://aws.amazon.com/blogs/compute/using-amazon-sqs-dead-letter-queues-to-control-message-failure/


Michael G. Khmelnitsky, Senior Programmer Writer

 

Sometimes, messages can’t be processed because of a variety of possible issues, such as erroneous conditions within the producer or consumer application. For example, if a user places an order within a certain number of minutes of creating an account, the producer might pass a message with an empty string instead of a customer identifier. Occasionally, producers and consumers might fail to interpret aspects of the protocol that they use to communicate, causing message corruption or loss. Also, the consumer’s hardware errors might corrupt message payload. For these reasons, messages that can’t be processed in a timely manner are delivered to a dead-letter queue.

The recent post Building Scalable Applications and Microservices: Adding Messaging to Your Toolbox gives an overview of messaging in the microservice architecture of modern applications. This post explains how and when you should use dead-letter queues to gain better control over message handling in your applications. It also offers some resources for configuring a dead-letter queue in Amazon Simple Queue Service (SQS).

What are the benefits of dead-letter queues?

The main task of a dead-letter queue is handling message failure. A dead-letter queue lets you set aside and isolate messages that can’t be processed correctly to determine why their processing didn’t succeed. Setting up a dead-letter queue allows you to do the following:

  • Configure an alarm for any messages delivered to a dead-letter queue.
  • Examine logs for exceptions that might have caused messages to be delivered to a dead-letter queue.
  • Analyze the contents of messages delivered to a dead-letter queue to diagnose software or the producer’s or consumer’s hardware issues.
  • Determine whether you have given your consumer sufficient time to process messages.

How do high-throughput, unordered queues handle message failure?

High-throughput, unordered queues (sometimes called standard or storage queues) keep processing messages until the expiration of the retention period. This helps ensure continuous processing of messages, which minimizes the chances of your queue being blocked by messages that can’t be processed. It also ensures fast recovery for your queue.

In a system that processes thousands of messages, having a large number of messages that the consumer repeatedly fails to acknowledge and delete might increase costs and place extra load on the hardware. Instead of trying to process failing messages until they expire, it is better to move them to a dead-letter queue after a few processing attempts.

Note: This queue type often allows a high number of in-flight messages. If the majority of your messages can’t be consumed and aren’t sent to a dead-letter queue, your rate of processing valid messages can slow down. Thus, to maintain the efficiency of your queue, you must ensure that your application handles message processing correctly.

How do FIFO queues handle message failure?

FIFO (first-in-first-out) queues (sometimes called service bus queues) help ensure exactly-once processing by consuming messages in sequence from a message group. Thus, although the consumer can continue to retrieve ordered messages from another message group, the first message group remains unavailable until the message blocking the queue is processed successfully.

Note: This queue type often allows a lower number of in-flight messages. Thus, to help ensure that your FIFO queue doesn’t get blocked by a message, you must ensure that your application handles message processing correctly.

When should I use a dead-letter queue?

  • Do use dead-letter queues with high-throughput, unordered queues. You should always take advantage of dead-letter queues when your applications don’t depend on ordering. Dead-letter queues can help you troubleshoot incorrect message transmission operations. Note: Even when you use dead-letter queues, you should continue to monitor your queues and retry sending messages that fail for transient reasons.
  • Do use dead-letter queues to decrease the number of messages and to reduce the possibility of exposing your system to poison-pill messages (messages that can be received but can’t be processed).
  • Don’t use a dead-letter queue with high-throughput, unordered queues when you want to be able to keep retrying the transmission of a message indefinitely. For example, don’t use a dead-letter queue if your program must wait for a dependent process to become active or available.
  • Don’t use a dead-letter queue with a FIFO queue if you don’t want to break the exact order of messages or operations. For example, don’t use a dead-letter queue with instructions in an Edit Decision List (EDL) for a video editing suite, where changing the order of edits changes the context of subsequent edits.

How do I get started with dead-letter queues in Amazon SQS?

Amazon SQS is a fully managed service that offers reliable, highly scalable hosted queues for exchanging messages between applications or microservices. Amazon SQS moves data between distributed application components and helps you decouple these components. It supports both standard queues and FIFO queues. To configure a queue as a dead-letter queue, you can use the AWS Management Console or the Amazon SQS SetQueueAttributes API action.

To get started with dead-letter queues in Amazon SQS, see the following topics in the Amazon SQS Developer Guide:

To start working with dead-letter queues programmatically, see the following resources:

AWS Greengrass – Run AWS Lambda Functions on Connected Devices

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/aws-greengrass-run-aws-lambda-functions-on-connected-devices/

I first told you about AWS Greengrass in the post that I published during re:Invent (AWS Greengrass – Ubiquitous Real-World Computing). We launched a limited preview of Greengrass at that time and invited you to sign up if you were interested.

As I noted at the time, many AWS customers want to collect and process data out in the field, where connectivity is often slow and sometimes either intermittent or unreliable. Greengrass allows them to extend the AWS programming model to small, simple, field-based devices. It builds on AWS IoT and AWS Lambda, and supports access to the ever-increasing variety of services that are available in the AWS Cloud.

Greengrass gives you access to compute, messaging, data caching, and syncing services that run in the field, and that do not depend on constant, high-bandwidth connectivity to an AWS Region. You can write Lambda functions in Python 2.7 and deploy them to your Greengrass devices from the cloud while using device shadows to maintain state. Your devices and peripherals can talk to each other using local messaging that does not pass through the cloud.

Now Generally Available
Today we are making Greengrass generally available in the US East (Northern Virginia) and US West (Oregon) Regions. During the preview, AWS customers were able to get hands-on experience with Greengrass and to start building applications and businesses around it. I’ll share a few of these early successes later in this post.

The Greengrass Core code runs on each device. It allows you to deploy and run Lambda applications on the device, supports local MQTT messaging across a secure network, and also ensures that conversations between devices and the cloud are made across secure connections. The Greengrass Core also supports secure, over-the-air software updates, including Lambda functions. It includes a message broker, a Lambda runtime, a Thing Shadows implementation, and a deployment agent. Greengrass Core and (optionally) other devices make up a Greengrass Group. The group includes configuration data, the list of devices and the identity of the Greengrass Core, a list of Lambda functions, and a set of subscriptions that define where the messages should go. All of this information is copied to the Greengrass core devices during the deployment process.

Your Lambda functions can use APIs in three distinct SDKs:

AWS SDK for Python – This SDK allows your code to interact with Amazon Simple Storage Service (S3), Amazon DynamoDB, Amazon Simple Queue Service (SQS), and other AWS services.

AWS IoT Device SDK – This SDK (available for Node.js, Python, Java, and C++) helps you to connect your hardware devices to AWS IoT. The C++ SDK has a few extra features including access to the Greengrass Discovery Service and support for root CA downloads.

AWS Greengrass Core SDK – This SDK provides APIs that allow local invocation of other Lambda functions, publish messages, and work with thing shadows.

You can run the Greengrass Core on x86 and ARM devices that have version 4.4.11 (or newer) of the Linux kernel, with the OverlayFS and user namespace features enabled. While most deployments of Greengrass will be targeted at specialized, industrial-grade hardware, you can also run the Greengrass Core on a Raspberry Pi or an EC2 instance for development and test purposes.

For this post, I used a Raspberry Pi attached to a BrickPi, connected to my home network via WiFi:

The Raspberry Pi, the BrickPi, the case, and all of the other parts are available in the BrickPi 3 Starter Kit. You will need some Linux command-line expertise and a decent amount of manual dexterity to put all of this together, but if I did it then you surely can.

Greengrass in Action
I can access Greengrass from the Console, API, or CLI. I’ll use the Console. The intro page of the Greengrass Console lets me define groups, add Greengrass Cores, and add devices to my groups:

I click on Get Started and then on Use easy creation:

Then I name my group:

And name my first Greengrass Core:

I’m ready to go, so I click on Create Group and Core:

This runs for a few seconds and then offers up my security resources (two keys and a certificate) for downloading, along with the Greengrass Core:

I download the security resources and put them in a safe place, and select and download the desired version of the Greengrass Core software (ARMv7l for my Raspberry Pi), and click on Finish.

Now I power up my Pi, and copy the security resources and the software to it (I put them in an S3 bucket and pulled them down with wget). Here’s my shell history at that point:

Following the directions in the user guide, I create a new user and group, run the rpi-update script, and install several packages including sqlite3 and openssl. After a couple of reboots, I am ready to proceed!

Next, still following the directions, I untar the Greengrass Core software and move the security resources to their final destination (/greengrass/configuration/certs), giving them generic names along the way. Here’s what the directory looks like:

The next step is to associate the core with an AWS IoT thing. I return to the Console, click through the group and the Greengrass Core, and find the Thing ARN:

I insert the names of the certificates and the Thing ARN into the config.json file, and also fill in the missing sections of the iotHost and ggHost:

I start the Greengrass demon (this was my second attempt; I had a typo in one of my path names the first time around):

After all of this pleasant time at the command line (taking me back to my Unix v7 and BSD 4.2 days), it is time to go visual once again! I visit my AWS IoT dashboard and see that my Greengrass Core is making connections to IoT:

I go to the Lambda Console and create a Lambda function using the Python 2.7 runtime (the IAM role does not matter here):

I publish the function in the usual way and, hop over to the Greengrass Console, click on my group, and choose to add a Lambda function:

Then I choose the version to deploy:

I also configure the function to be long-lived instead of on-demand:

My code will publish messages to AWS IoT, so I create a subscription by specifying the source and destination:

I set up a topic filter (hello/world) on the subscription as well:

I confirm my settings and save my subscription and I am just about ready to deploy my code. I revisit my group, click on Deployments, and choose Deploy from the Actions menu:

I choose Automatic detection to move forward:

Since this is my first deployment, I need to create a service-level role that gives Greengrass permission to access other AWS services. I simply click on Grant permission:

I can see the status of each deployment:

The code is now running on my Pi! It publishes messages to topic hello/world; I can see them by going to the IoT Console, clicking on Test, and subscribing to the topic:

And here are the messages:

With all of the setup work taken care of, I can do iterative development by uploading, publishing, and deploying new versions of my code. I plan to use the BrickPi to control some LEGO Technic motors and to publish data collected from some sensors. Stay tuned for that post!

Greengrass Pricing
You can run the Greengrass Core on three devices free for one year as part of the AWS Free Tier. At the next level (3 to 10,000 devices) two options are available:

  • Pay as You Go – $0.16 per month per device.
  • Annual Commitment – $1.49 per year per device, a 17.5% savings.

If you want to run the Greengrass Core on more than 10,000 devices or make a longer commitment, please get in touch with us; details on all pricing models are on the Greengrass Pricing page.

Jeff;

Event: AWS Serverless Roadshow – Hands-on Workshops

Post Syndicated from Tara Walker original https://aws.amazon.com/blogs/aws/event-aws-serverless-roadshow-hands-on-workshops/

Surely, some of you have contemplated how you would survive the possible Zombie apocalypse or how you would build your exciting new startup to disrupt the transportation industry when Unicorn haven is uncovered. Well, there is no need to worry; I know just the thing to get you prepared to handle both of those scenarios: the AWS Serverless Computing Workshop Roadshow.

With the roadshow’s serverless workshops, you can get hands-on experience building serverless applications and microservices so you can rebuild what remains of our great civilization after a widespread viral infection causes human corpses to reanimate around the world in the AWS Zombie Microservices Workshop. In addition, you can give your startup a jump on the competition with the Wild Rydes workshop in order to revolutionize the transportation industry; just in time for a pilot’s crash landing leading the way to the discovery of abundant Unicorn pastures found on the outskirts of the female Amazonian warrior inhabited island of Themyscira also known as Paradise Island.

These free, guided hands-on workshops will introduce the basics of building serverless applications and microservices for common and uncommon scenarios using services like AWS Lambda, Amazon API Gateway, Amazon DynamoDB, Amazon S3, Amazon Kinesis, AWS Step Functions, and more. Let me share some advice before you decide to tackle Zombies and mount Unicorns – don’t forget to bring your laptop to the workshop and make sure you have an AWS account established and available for use for the event.

Check out the schedule below and get prepared today by registering for an upcoming workshop in a city near you. Remember these are workshops are completely free, so participation is on a first come, first served basis. So register and get there early, we need Zombie hunters and Unicorn riders across the globe.  Learn more about AWS Serverless Computing Workshops here and register for your city using links below.

Event Location Date
Wild Rydes New York Thursday, June 8
Wild Rydes Austin Thursday, June 22
Wild Rydes Santa Monica Thursday, July 20
Zombie Apocalypse Chicago Thursday, July 20
Wild Rydes Atlanta Tuesday, September 12
Zombie Apocalypse Dallas Tuesday, September 19

 

I look forward to fighting zombies and riding unicorns with you all.

Tara

Friday Squid Blogging: Squid as Prey

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2017/06/friday_squid_bl_579.html

There’s lots of video of squid as undersea predators. This is one of the few instances of squid as prey (from a deep submersible in the Pacific):

“We saw brittle stars capturing a squid from the water column while it was swimming. I didn’t know that was possible. And then there was a tussle among the brittle stars to see who got to have the squid,” says France.

As usual, you can also use this squid post to talk about the security stories in the news that I haven’t covered.

Read my blog posting guidelines here.

Amazon QuickSight Adds Support for Amazon Redshift Spectrum

Post Syndicated from Luis Wang original https://aws.amazon.com/blogs/big-data/amazon-quicksight-adds-support-for-amazon-redshift-spectrum/

In April, we announced Amazon Redshift Spectrum in the AWS Blog. Redshift Spectrum is a new feature of Amazon Redshift that allows you to run complex SQL queries against exabytes of data in Amazon without having to load and transform any data.

We’re happy to announce that Amazon QuickSight now supports Redshift Spectrum. Starting today, QuickSight customers can leverage Redshift Spectrum to visualize and analyze vast amounts of unstructured data in their Amazon S3 data lake. With QuickSight and Redshift Spectrum, customers can now visualize combined data sets that include frequently accessed data stored in Amazon Redshift and bulk data sets stored cost effectively in S3 using the familiar SQL syntax of Amazon Redshift.

With Redshift Spectrum, you can start querying your data in Amazon S3 immediately, with no loading or transformation required. You just need to register your Amazon Athena data catalog or Hive Metastore as an external schema. You can then use QuickSight to select the external schema and the Redshift Spectrum tables—just like any other Amazon Redshift tables in your cluster―and start visualizing your S3 data in seconds. You don’t have to worry about scaling your cluster. Redshift Spectrum lets you separate storage and compute, allowing you to scale each independently. You only pay for the queries that you run.

Redshift Spectrum support is now available in all QuickSight regions – US East (N. Virginia and Ohio), US West (Oregon), and EU (Ireland).

To learn more about these capabilities and start using them in your dashboards, check out the QuickSight User Guide.

If you have questions and suggestions, post them on the QuickSight Discussion Forum.

Not a QuickSight user? Get started for FREE on the QuickSight page.

 

Passwords at the Border

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2017/06/passwords_at_th.html

The password-manager 1Password has just implemented a travel mode that tries to protect users while crossing borders. It doesn’t make much sense. To enable it, you have to create a list of passwords you feel safe traveling with, and then you can turn on the mode that only gives you access to those passwords. But since you can turn it off at will, a border official can just demand you do so. Better would be some sort of time lock where you are unable to turn it off at the border.

There are a bunch of tricks you can use to ensure that you are unable to decrypt your devices, even if someone demands that you do. Back in 2009, I described such a scheme, and mentioned some other tricks the year before. Here’s more. They work with any password manager, including my own Password Safe.

There’s a problem, though. Everything you do along these lines is problematic, because 1) you don’t want to ever lie to a customs official, and 2) any steps you take to make your data inaccessible is in itself suspicious. Your best defense is not to have anything incriminating on your computer or in the various social media accounts you use. (This advice was given to Australian citizens by their Department of Immigration and Border Protection specifically to Muslims pilgrims returning from hajj. Bizarrely, an Australian MP complained when Muslims repeated that advice.)

The EFF has a comprehensive guide to both the tech and policy of securing your electronics for border crossings.