Tag Archives: guide

Friday Squid Blogging: "How the Squid Lost Its Shell"

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2017/10/friday_squid_bl_597.html

Interesting essay by Danna Staaf, the author of Squid Empire. (I mentioned the book two weeks ago.)

As usual, you can also use this squid post to talk about the security stories in the news that I haven’t covered.

Read my blog posting guidelines here.

Amazon QuickSight Adds Support for Combo Charts and Row-Level Security

Post Syndicated from Jose Kunnackal original https://aws.amazon.com/blogs/big-data/amazon-quicksight-adds-support-for-combo-charts-and-row-level-security/

We are excited to announce support for two new features in Amazon QuickSight: 1) Combo charts, the first visual type in QuickSight to support dual-axis visualization, and 2) Row-Level Security, which allows access control over data at the row level based on the user who is accessing QuickSight. Together, these features enable you to present more engaging and personalized dashboards in Amazon QuickSight, while enforcing stricter controls over data.

Combo charts

Amazon QuickSight now supports charts with bars and lines, which you can use to visualize metrics of different scale or numeric types. For example, you can view sales ($) and margin (%) figures for different product categories of a business on the same visual.

You can also add a field to group the bars by an additional category. Following the example above, a business might want to break up sales across product categories by state to understand the details better. Amazon QuickSight supports this as a clustered bar chart with a line:

Or, as a stacked bar chart with a line:

Row-Level Security

Today’s release also adds support for Row-Level Security (RLS) in Amazon QuickSight Enterprise Edition. RLS allows control over data at a row level based on the permissions that are associated with the user who is accessing the data. With RLS, owners of a dataset can ensure that consumers of dashboards and analyses based on the dataset only view slices of data that they are authorized to. This removes the need for dataset owners to prepare separate data sets and dashboards for users (or groups of users) with different levels of access within the data.

You can use RLS for any dataset (SPICE or direct query) by simply associating a set of user access rules. These user-specific rules can be managed in a dataset (which can also be SPICE or direct query), which is linked to the dataset that is to be restricted. Let’s walk through an example to see how this works.

Using the earlier business data example, let’s consider a situation where Susan and Jane are two users in the company who need access to different views of the same data. Susan manages sales for the state of California and should be granted access to all sales data related to the state. Jane, on the other hand, is a salesperson who covers the Aquatics, Exercise & Fitness, and Outdoors categories for Washington and Oregon.

To apply RLS for this use case, the administrator can create a new rules dataset with a username field and the specific fields that should be used to filter the data. Based on the user personas above, the rules dataset will look as follows

Username Category State
Jane Aquatics, Exercise & Fitness, Outdoors WA, OR
Susan CA

 

After creating the rules dataset in Amazon QuickSight, the administrator can link the dataset that contains sales data with this rules dataset via the new Permissions option.

After the administrator selects and links the dataset rules, the target dataset is now always filtered by the rules specified. This means that when Jane accesses the system, she sees data related to the states she covers and the categories she handles.

Similarly, Susan now sees all categories, but only for the state of California. 

With RLS in place, a data administrator no longer has to create multiple datasets to serve such use cases and can also use the same dashboards/analyses for multiple users. For more information about RLS and details about dataset rules configuration, see the Amazon QuickSight documentation.

Learn more: To learn more about these capabilities and start using them in your dashboards, see the Amazon QuickSight User Guide. 

Stay engaged: If you have questions or suggestions, you can post them on the Amazon QuickSight discussion forum. 

Not an Amazon QuickSight user?

To get started for FREE, see quicksight.aws.

 

US Senators Ask Apple Why VPN Apps Were Removed in China

Post Syndicated from Andy original https://torrentfreak.com/us-senators-ask-apple-why-vpn-apps-were-removed-in-china-171020/

As part of what is now clearly a crackdown on Great Firewall-evading tools and services, during the summer Chinese government pressure reached technology giant Apple.

On or around July 29, Apple removed many of the most-used VPN applications from its Chinese app store. In a short email from the company, VPN providers were informed that VPN applications are considered illegal in China.

“We are writing to notify you that your application will be removed from the China App Store because it includes content that is illegal in China, which is not in compliance with the App Store Review Guidelines,” Apple informed the affected VPNs.

Apple’s email to VPN providers

Now, in a letter sent to Apple CEO Tim Cook, US senators Ted Cruz and Patrick Leahy express concern at the move by Apple, noting that if reports of the software removals are true, the company could be assisting China’s restrictive approach to the Internet.

“VPNs allow users to access the uncensored Internet in China and other countries that restrict Internet freedom. If these reports are true, we are concerned that Apple may be enabling the Chines government’s censorship and surveillance of the Internet.”

Describing China as a country with “an abysmal human rights record, including with respect to the rights of free expression and free access to information, both online and offline”, the senators cite Reporters Without Borders who previously labeled the country as “the enemy of the Internet”.

While senators Cruz and Leahy go on to praise Apple for its contribution to the spread of information, they criticize the company for going along with the wishes of the Chinese government as it seeks to suppress knowledge and communication.

“While Apple’s many contributions to the global exchange of information are admirable, removing VPN apps that allow individuals in China to evade the Great Firewall and access the Internet privately does not enable people in China to ‘speak up’,” the senators write.

“To the contrary, if Apple complies with such demands from the Chinese government it inhibits free expression for users across China, particularly in light of the Cyberspace Administration of China’s new regulations targeting online anonymity.”

In January, a notice published by China’s Ministry of Industry and Information Technology said that the government had indeed launched a 14-month campaign to crack down on local ‘unauthorized’ Internet platforms.

This means that all VPN services have to be pre-approved by the Government if they want to operate in China. And the aggression against VPNs and their providers didn’t stop there.

In September, a Chinese man who sold Great Firewall-evading VPN software via a website was sentenced to nine months in prison by a Chinese court. Just weeks later, a software developer who set up a VPN for his own use but later sold access to the service was arrested and detained for three days.

This emerging pattern is clearly a concern for the senators who are now demanding that Tim Cook responds to ten questions (pdf), including whether Apple raised concerns about China’s VPN removal demands and details of how many apps were removed from its store. The senators also want to see copies of any pro-free speech statements Apple has made in China.

Whether the letter will make any difference on the ground in China remains to be seen, but the public involvement of the senators and technology giant Apple is certain to thrust censorship and privacy further into the public eye.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and ANONYMOUS VPN services.

timeShift(GrafanaBuzz, 1w) Issue 18

Post Syndicated from Blogs on Grafana Labs Blog original https://grafana.com/blog/2017/10/20/timeshiftgrafanabuzz-1w-issue-18/

Welcome to another issue of timeShift. This week we released Grafana 4.6.0-beta2, which includes some fixes for alerts, annotations, the Cloudwatch data source, and a few panel updates. We’re also gearing up for Oredev, one of the biggest tech conferences in Scandinavia, November 7-10. In addition to sponsoring, our very own Carl Bergquist will be presenting “Monitoring for everyone.” Hope to see you there – swing by our booth and say hi!


Latest Release

Grafana 4.6-beta-2 is now available! Grafana 4.6.0-beta2 adds fixes for:

  • ColorPicker display
  • Alerting test
  • Cloudwatch improvements
  • CSV export
  • Text panel enhancements
  • Annotation fix for MySQL

To see more details on what’s in the newest version, please see the release notes.

Download Grafana 4.6.0-beta-2 Now


From the Blogosphere

Screeps and Grafana: Graphing your AI: If you’re unfamiliar with Screeps, it’s a MMO RTS game for programmers, where the objective is to grow your colony through programming your units’ AI. You control your colony by writing JavaScript, which operates 247 in the single persistent real-time world filled by other players. This article walks you through graphing all your game stats with Grafana.

ntopng Grafana Integration: The Beauty of Data Visualization: Our friends at ntop created a tutorial so that you can graph ntop monitoring data in Grafana. He goes through the metrics exposed, configuring the ntopng Data Source plugin, and building your first dashboard. They’ve also created a nice video tutorial of the process.

Installing Graphite and Grafana to Display the Graphs of Centreon: This article, provides a step-by-step guide to getting your Centreon data into Graphite and visualizing the data in Grafana.

Bit v. Byte Episode 3 – Metrics for the Win: Bit v. Byte is a new weekly Podcast about the web industry, tools and techniques upcoming and in use today. This episode dives into metrics, and discusses Grafana, Prometheus and NGINX Amplify.

Code-Quickie: Visualize heating with Grafana: With the winter weather coming, Reinhard wanted to monitor the stats in his boiler room. This article covers not only the visualization of the data, but the different devices and sensors you can use to can use in your own home.

RuuviTag with C.H.I.P – BLE – Node-RED: Following the temperature-monitoring theme from the last article, Tobias writes about his journey of hooking up his new RuuviTag to Grafana to measure temperature, relative humidity, air pressure and more.


Early Bird will be Ending Soon

Early bird discounts will be ending soon, but you still have a few days to lock in the lower price. We will be closing early bird on October 31, so don’t wait until the last minute to take advantage of the discounted tickets!

Also, there’s still time to submit your talk. We’ll accept submissions through the end of October. We’re looking for technical and non-technical talks of all sizes. Submit a CFP now.

Get Your Early Bird Ticket Now


Grafana Plugins

This week we have updates to two panels and a brand new panel that can add some animation to your dashboards. Installing plugins in Grafana is easy; for on-prem Grafana, use the Grafana-cli tool, or with 1 click if you are using Hosted Grafana.

NEW PLUGIN

Geoloop Panel – The Geoloop panel is a simple visualizer for joining GeoJSON to Time Series data, and animating the geo features in a loop. An example of using the panel would be showing the rate of rainfall during a 5-hour storm.

Install Now

UPDATED PLUGIN

Breadcrumb Panel – This plugin keeps track of dashboards you have visited within one session and displays them as a breadcrumb. The latest update fixes some issues with back navigation and url query params.

Update

UPDATED PLUGIN

Influx Admin Panel – The Influx Admin panel duplicates features from the now deprecated Web Admin Interface for InfluxDB and has lots of features like letting you see the currently running queries, which can also be easily killed.

Changes in the latest release:

  • Converted to typescript project based on typescript-template-datasource
  • Select Databases. This only works with PR#8096
  • Added time format options
  • Show tags from response
  • Support template variables in the query

Update


Contribution of the week:

Each week we highlight some of the important contributions from our amazing open source community. Thank you for helping make Grafana better!

The Stockholm Go Meetup had a hackathon this week and sent a PR for letting whitelisted cookies pass through the Grafana proxy. Thanks to everyone who worked on this PR!


Tweet of the Week

We scour Twitter each week to find an interesting/beautiful dashboard and show it off! #monitoringLove

This is awesome – we can’t get enough of these public dashboards!

We Need Your Help!

Do you have a graph that you love because the data is beautiful or because the graph provides interesting information? Please get in touch. Tweet or send us an email with a screenshot, and we’ll tell you about this fun experiment.

Tell Me More


Grafana Labs is Hiring!

We are passionate about open source software and thrive on tackling complex challenges to build the future. We ship code from every corner of the globe and love working with the community. If this sounds exciting, you’re in luck – WE’RE HIRING!

Check out our Open Positions


How are we doing?

Please tell us how we’re doing. Submit a comment on this article below, or post something at our community forum. Help us make these weekly roundups better!

Follow us on Twitter, like us on Facebook, and join the Grafana Labs community.

What’s new in HiveMQ 3.3

Post Syndicated from The HiveMQ Team original https://www.hivemq.com/whats-new-in-hivemq-3-3

We are pleased to announce the release of HiveMQ 3.3. This version of HiveMQ is the most advanced and user friendly version of HiveMQ ever. A broker is the heart of every MQTT deployment and it’s key to monitor and understand how healthy your system and your connected clients are. Version 3.3 of HiveMQ focuses on observability, usability and advanced administration features and introduces a brand new Web UI. This version is a drop-in replacement for HiveMQ 3.2 and of course supports rolling upgrades for zero-downtime.

HiveMQ 3.3 brings many features that your users, administrators and plugin developers are going to love. These are the highlights:

Web UI

Web UI
The new HiveMQ version has a built-in Web UI for advanced analysis and administrative tasks. A powerful dashboard shows important data about the health of the broker cluster and an overview of the whole MQTT deployment.
With the new Web UI, administrators are able to drill down to specific client information and can perform administrative actions like disconnecting a client. Advanced analytics functionality allows indetifying clients with irregular behavior. It’s easy to identify message-dropping clients as HiveMQ shows detailed statistics of such misbehaving MQTT participants.
Of course all Web UI features work at scale with more than a million connected MQTT clients. Learn more about the Web UI in the documentation.

Time To Live

TTL
HiveMQ introduces Time to Live (TTL) on various levels of the MQTT lifecycle. Automatic cleanup of expired messages is as well supported as the wiping of abandoned persistent MQTT sessions. In particular, version 3.3 implements the following TTL features:

  • MQTT client session expiration
  • Retained Message expiration
  • MQTT PUBLISH message expiration

Configuring a TTL for MQTT client sessions and retained messages allows freeing system resources without manual administrative intervention as soon as the data is not needed anymore.
Beside global configuration, MQTT PUBLISHES can have individual TTLs based on application specific characteristics. It’s a breeze to change the TTL of particular messages with the HiveMQ plugin system. As soon as a message TTL expires, the broker won’t send out the message anymore, even if the message was previously queued or in-flight. This can save precious bandwidth for mobile connections as unnecessary traffic is avoided for expired messages.

Trace Recordings

Trace Recordings
Debugging specific MQTT clients or groups of MQTT clients can be challenging at scale. HiveMQ 3.3 introduces an innovative Trace Recording mechanism that allows creating detailed recordings of all client interactions with given filters.
It’s possible to filter based on client identifiers, MQTT message types and topics. And the best of all: You can use regular expressions to select multiple MQTT clients at once as well as topics with complex structures. Getting detailed information about the behavior of specific MQTT clients for debugging complex issues was never easier.

Native SSL

Native SSL
The new native SSL integration of HiveMQ brings a performance boost of more than 40% for SSL Handshakes (in terms of CPU usage) by utilizing an integration with BoringSSL. BoringSSL is Google’s fork of OpenSSL which is also used in Google Chrome and Android. Besides the compute and huge memory optimizations (saves up to 60% Java Heap), additional secure state-of-the-art cipher suites are supported by HiveMQ which are not directly available for Java (like ChaCha20-Poly1305).
Most HiveMQ deployments on Linux systems are expected to see decreased CPU load on TLS handshakes with the native SSL integration and huge memory improvements.

New Plugin System Features

New Plugin System Features
The popular and powerful plugin system has received additional services and callbacks which are useful for many existing and future plugins.
Plugin developers can now use a ConnectionAttributeStore and a SessionAttributeStore for storing arbitrary data for the lifetime of a single MQTT connection of a client or for the whole session of a client. The new ClientGroupService allows grouping different MQTT client identifiers by the same key, so it’s easy to address multiple MQTT clients (with the same group) at once.

A new callback was introduced which notifies a plugin when a HiveMQ instance is ready, which means the instance is part of the cluster and all listeners were started successfully. Developers can now react when a MQTT client session is ready and usable in the cluster with a dedicated callback.

Some use cases require modifying a MQTT PUBLISH packet before it’s sent out to a client. This is now possible with a new callback that was introduced for modifying a PUBLISH before sending it out to a individual client.
The offline queue size for persistent clients is now also configurable for individual clients as well as the queue discard strategy.

Additional Features

Additional Features
HiveMQ 3.3 has many additional features designed for power users and professional MQTT deployments. The new version also has the following highlights:

  • OCSP Stapling
  • Event Log for MQTT client connects, disconnects and unusual events (e.g. discarded message due to slow consumption on the client side
  • Throttling of concurrent TLS handshakes
  • Connect Packet overload protection
  • Configuration of Socket send and receive buffer sizes
  • Global System Information like the HiveMQ Home folder can now be set via Environment Variables without changing the run script
  • The internal HTTP server of HiveMQ is now exposed to the holistic monitoring subsystem
  • Many additional useful metrics were exposed to HiveMQ’s monitoring subsystem

 

In order to upgrade to HiveMQ 3.3 from HiveMQ 3.2 or older versions, take a look at our Upgrade Guide.
Don’t forget to learn more about all the new features with our HiveMQ User Guide.

Download HiveMQ 3.3 now

Amazon Redshift Dense Compute (DC2) Nodes Deliver Twice the Performance as DC1 at the Same Price

Post Syndicated from Quaseer Mujawar original https://aws.amazon.com/blogs/big-data/amazon-redshift-dense-compute-dc2-nodes-deliver-twice-the-performance-as-dc1-at-the-same-price/

Amazon Redshift makes analyzing exabyte-scale data fast, simple, and cost-effective. It delivers advanced data warehousing capabilities, including parallel execution, compressed columnar storage, and end-to-end encryption as a fully managed service, for less than $1,000/TB/year. With Amazon Redshift Spectrum, you can run SQL queries directly against exabytes of unstructured data in Amazon S3 for $5/TB scanned.

Today, we are making our Dense Compute (DC) family faster and more cost-effective with new second-generation Dense Compute (DC2) nodes at the same price as our previous generation DC1. DC2 is designed for demanding data warehousing workloads that require low latency and high throughput. DC2 features powerful Intel E5-2686 v4 (Broadwell) CPUs, fast DDR4 memory, and NVMe-based solid state disks.

We’ve tuned Amazon Redshift to take advantage of the better CPU, network, and disk on DC2 nodes, providing up to twice the performance of DC1 at the same price. Our DC2.8xlarge instances now provide twice the memory per slice of data and an optimized storage layout with 30 percent better storage utilization.

Customer successes

Several flagship customers, ranging from fast growing startups to large Fortune 100 companies, previewed the new DC2 node type. In their tests, DC2 provided up to twice the performance as DC1. Our preview customers saw faster ETL (extract, transform, and load) jobs, higher query throughput, better concurrency, faster reports, and shorter data-to-insights—all at the same cost as DC1. DC2.8xlarge customers also noted that their databases used up to 30 percent less disk space due to our optimized storage format, reducing their costs.

4Cite Marketing, one of America’s fastest growing private companies, uses Amazon Redshift to analyze customer data and determine personalized product recommendations for retailers. “Amazon Redshift’s new DC2 node is giving us a 100 percent performance increase, allowing us to provide faster insights for our retailers, more cost-effectively, to drive incremental revenue,” said Jim Finnerty, 4Cite’s senior vice president of product.

BrandVerity, a Seattle-based brand protection and compliance‎ company, provides solutions to monitor, detect, and mitigate online brand, trademark, and compliance abuse. “We saw a 70 percent performance boost with the DC2 nodes for running Redshift Spectrum queries. As a result, we can analyze far more data for our customers and deliver results much faster,” said Hyung-Joon Kim, principal software engineer at BrandVerity.

“Amazon Redshift is at the core of our operations and our marketing automation tools,” said Jarno Kartela, head of analytics and chief data scientist at DNA Plc, one of the leading Finnish telecommunications groups and Finland’s largest cable operator and pay TV provider. “We saw a 52 percent performance gain in moving to Amazon Redshift’s DC2 nodes. We can now run queries in half the time, allowing us to provide more analytics power and reduce time-to-insight for our analytics and marketing automation users.”

You can read about their experiences on our Customer Success page.

Get started

You can try the new node type using our getting started guide. Just choose dc2.large or dc2.8xlarge in the Amazon Redshift console:

If you have a DC1.large Amazon Redshift cluster, you can restore to a new DC2.large cluster using an existing snapshot. To migrate from DS2.xlarge, DS2.8xlarge, or DC1.8xlarge Amazon Redshift clusters, you can use the resize operation to move data to your new DC2 cluster. For more information, see Clusters and Nodes in Amazon Redshift.

To get the latest Amazon Redshift feature announcements, check out our What’s New page, and subscribe to the RSS feed.

Friday Squid Blogging: International Squid Awareness Day

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2017/10/friday_squid_bl_596.html

It’s International Cephalopod Awareness Days this week, and Tuesday was Squid Day.

I can’t believe I missed it.

As usual, you can also use this squid post to talk about the security stories in the news that I haven’t covered.

Read my blog posting guidelines here.

Introducing Email Templates and Bulk Sending

Post Syndicated from Brent Meyer original https://aws.amazon.com/blogs/ses/introducing-email-templates-and-bulk-sending/

The Amazon SES team is excited to announce our latest update, which includes two related features that help you send personalized emails to large groups of customers. This post discusses these features, and provides examples that you can follow to start using these features right away.

Email templates

You can use email templates to create the structure of an email that you plan to send to multiple recipients, or that you will use again in the future. Each template contains a subject line, a text part, and an HTML part. Both the subject and the email body can contain variables that are automatically replaced with values specific to each recipient. For example, you can include a {{name}} variable in the body of your email. When you send the email, you specify the value of {{name}} for each recipient. Amazon SES then automatically replaces the {{name}} variable with the recipient’s first name.

Creating a template

To create a template, you use the CreateTemplate API operation. To use this operation, pass a JSON object with four properties: a template name (TemplateName), a subject line (SubjectPart), a plain text version of the email body (TextPart), and an HTML version of the email body (HtmlPart). You can include variables in the subject line or message body by enclosing the variable names in two sets of curly braces. The following example shows the structure of this JSON object.

{
  "TemplateName": "MyTemplate",
  "SubjectPart": "Greetings, {{name}}!",
  "TextPart": "Dear {{name}},\r\nYour favorite animal is {{favoriteanimal}}.",
  "HtmlPart": "<h1>Hello {{name}}</h1><p>Your favorite animal is {{favoriteanimal}}.</p>"
}

Use this example to create your own template, and save the resulting file as mytemplate.json. You can then use the AWS Command Line Interface (AWS CLI) to create your template by running the following command: aws ses create-template --cli-input-json mytemplate.json

Sending an email created with a template

Now that you have created a template, you’re ready to send email that uses the template. You can use the SendTemplatedEmail API operation to send email to a single destination using a template. Like the CreateTemplate operation, this operation accepts a JSON object with four properties. For this operation, the properties are the sender’s email address (Source), the name of an existing template (Template), an object called Destination that contains the recipient addresses (and, optionally, any CC or BCC addresses) that will receive the email, and a property that refers to the values that will be replaced in the email (TemplateData). The following example shows the structure of the JSON object used by the SendTemplatedEmail operation.

{
  "Source": "[email protected]",
  "Template": "MyTemplate",
  "Destination": {
    "ToAddresses": [ "[email protected]" ]
  },
  "TemplateData": "{ \"name\":\"Alejandro\", \"favoriteanimal\": \"zebra\" }"
}

Customize this example to fit your needs, and then save the resulting file as myemail.json. One important note: in the TemplateData property, you must use a blackslash (\) character to escape the quotes within this object, as shown in the preceding example.

When you’re ready to send the email, run the following command: aws ses send-templated-email --cli-input-json myemail.json

Bulk email sending

In most cases, you should use email templates to send personalized emails to several customers at the same time. The SendBulkTemplatedEmail API operation helps you do that. This operation also accepts a JSON object. At a minimum, you must supply a sender email address (Source), a reference to an existing template (Template), a list of recipients in an array called Destinations (within which you specify the recipient’s email address, and the variable values for that recipient), and a list of fallback values for the variables in the template (DefaultTemplateData). The following example shows the structure of this JSON object.

{
  "Source":"[email protected]",
  "ConfigurationSetName":"ConfigSet",
  "Template":"MyTemplate",
  "Destinations":[
    {
      "Destination":{
        "ToAddresses":[
          "[email protected]"
        ]
      },
      "ReplacementTemplateData":"{ \"name\":\"Anaya\", \"favoriteanimal\":\"yak\" }"
    },
    {
      "Destination":{ 
        "ToAddresses":[
          "[email protected]"
        ]
      },
      "ReplacementTemplateData":"{ \"name\":\"Liu\", \"favoriteanimal\":\"water buffalo\" }"
    },
    {
      "Destination":{
        "ToAddresses":[
          "[email protected]"
        ]
      },
      "ReplacementTemplateData":"{ \"name\":\"Shirley\", \"favoriteanimal\":\"vulture\" }"
    },
    {
      "Destination":{
        "ToAddresses":[
          "[email protected]"
        ]
      },
      "ReplacementTemplateData":"{}"
    }
  ],
  "DefaultTemplateData":"{ \"name\":\"friend\", \"favoriteanimal\":\"unknown\" }"
}

This example sends unique emails to Anaya ([email protected]), Liu ([email protected]), Shirley ([email protected]), and a fourth recipient ([email protected]), whose name and favorite animal we didn’t specify. Anaya, Liu, and Shirley will see their names in place of the {{name}} tag in the template (which, in this example, is present in both the subject line and message body), as well as their favorite animals in place of the {{favoriteanimal}} tag in the message body. The DefaultTemplateData property determines what happens if you do not specify the ReplacementTemplateData property for a recipient. In this case, the fourth recipient will see the word “friend” in place of the {{name}} tag, and “unknown” in place of the {{favoriteanimal}} tag.

Use the example to create your own list of recipients, and save the resulting file as mybulkemail.json. When you’re ready to send the email, run the following command: aws ses send-bulk-templated-email --cli-input-json mybulkemail.json

Other considerations

There are a few limits and other considerations when using these features:

  • You can create up to 10,000 email templates per Amazon SES account.
  • Each template can be up to 10 MB in size.
  • You can include an unlimited number of replacement variables in each template.
  • You can send email to up to 50 destinations in each call to the SendBulkTemplatedEmail operation. A destination includes a list of recipients, as well as CC and BCC recipients. Note that the number of destinations you can contact in a single call to the API may be limited by your account’s maximum sending rate. For more information, see Managing Your Amazon SES Sending Limits in the Amazon SES Developer Guide.

We look forward to seeing the amazing things you create with these new features. If you have any questions, please leave a comment on this post, or let us know in the Amazon SES forum.

AWS Developer Tools Expands Integration to Include GitHub

Post Syndicated from Balaji Iyer original https://aws.amazon.com/blogs/devops/aws-developer-tools-expands-integration-to-include-github/

AWS Developer Tools is a set of services that include AWS CodeCommit, AWS CodePipeline, AWS CodeBuild, and AWS CodeDeploy. Together, these services help you securely store and maintain version control of your application’s source code and automatically build, test, and deploy your application to AWS or your on-premises environment. These services are designed to enable developers and IT professionals to rapidly and safely deliver software.

As part of our continued commitment to extend the AWS Developer Tools ecosystem to third-party tools and services, we’re pleased to announce AWS CodeStar and AWS CodeBuild now integrate with GitHub. This will make it easier for GitHub users to set up a continuous integration and continuous delivery toolchain as part of their release process using AWS Developer Tools.

In this post, I will walk through the following:

Prerequisites:

You’ll need an AWS account, a GitHub account, an Amazon EC2 key pair, and administrator-level permissions for AWS Identity and Access Management (IAM), AWS CodeStar, AWS CodeBuild, AWS CodePipeline, Amazon EC2, Amazon S3.

 

Integrating GitHub with AWS CodeStar

AWS CodeStar enables you to quickly develop, build, and deploy applications on AWS. Its unified user interface helps you easily manage your software development activities in one place. With AWS CodeStar, you can set up your entire continuous delivery toolchain in minutes, so you can start releasing code faster.

When AWS CodeStar launched in April of this year, it used AWS CodeCommit as the hosted source repository. You can now choose between AWS CodeCommit or GitHub as the source control service for your CodeStar projects. In addition, your CodeStar project dashboard lets you centrally track GitHub activities, including commits, issues, and pull requests. This makes it easy to manage project activity across the components of your CI/CD toolchain. Adding the GitHub dashboard view will simplify development of your AWS applications.

In this section, I will show you how to use GitHub as the source provider for your CodeStar projects. I’ll also show you how to work with recent commits, issues, and pull requests in the CodeStar dashboard.

Sign in to the AWS Management Console and from the Services menu, choose CodeStar. In the CodeStar console, choose Create a new project. You should see the Choose a project template page.

CodeStar Project

Choose an option by programming language, application category, or AWS service. I am going to choose the Ruby on Rails web application that will be running on Amazon EC2.

On the Project details page, you’ll now see the GitHub option. Type a name for your project, and then choose Connect to GitHub.

Project details

You’ll see a message requesting authorization to connect to your GitHub repository. When prompted, choose Authorize, and then type your GitHub account password.

Authorize

This connects your GitHub identity to AWS CodeStar through OAuth. You can always review your settings by navigating to your GitHub application settings.

Installed GitHub Apps

You’ll see AWS CodeStar is now connected to GitHub:

Create project

You can choose a public or private repository. GitHub offers free accounts for users and organizations working on public and open source projects and paid accounts that offer unlimited private repositories and optional user management and security features.

In this example, I am going to choose the public repository option. Edit the repository description, if you like, and then choose Next.

Review your CodeStar project details, and then choose Create Project. On Choose an Amazon EC2 Key Pair, choose Create Project.

Key Pair

On the Review project details page, you’ll see Edit Amazon EC2 configuration. Choose this link to configure instance type, VPC, and subnet options. AWS CodeStar requires a service role to create and manage AWS resources and IAM permissions. This role will be created for you when you select the AWS CodeStar would like permission to administer AWS resources on your behalf check box.

Choose Create Project. It might take a few minutes to create your project and resources.

Review project details

When you create a CodeStar project, you’re added to the project team as an owner. If this is the first time you’ve used AWS CodeStar, you’ll be asked to provide the following information, which will be shown to others:

  • Your display name.
  • Your email address.

This information is used in your AWS CodeStar user profile. User profiles are not project-specific, but they are limited to a single AWS region. If you are a team member in projects in more than one region, you’ll have to create a user profile in each region.

User settings

User settings

Choose Next. AWS CodeStar will create a GitHub repository with your configuration settings (for example, https://github.com/biyer/ruby-on-rails-service).

When you integrate your integrated development environment (IDE) with AWS CodeStar, you can continue to write and develop code in your preferred environment. The changes you make will be included in the AWS CodeStar project each time you commit and push your code.

IDE

After setting up your IDE, choose Next to go to the CodeStar dashboard. Take a few minutes to familiarize yourself with the dashboard. You can easily track progress across your entire software development process, from your backlog of work items to recent code deployments.

Dashboard

After the application deployment is complete, choose the endpoint that will display the application.

Pipeline

This is what you’ll see when you open the application endpoint:

The Commit history section of the dashboard lists the commits made to the Git repository. If you choose the commit ID or the Open in GitHub option, you can use a hotlink to your GitHub repository.

Commit history

Your AWS CodeStar project dashboard is where you and your team view the status of your project resources, including the latest commits to your project, the state of your continuous delivery pipeline, and the performance of your instances. This information is displayed on tiles that are dedicated to a particular resource. To see more information about any of these resources, choose the details link on the tile. The console for that AWS service will open on the details page for that resource.

Issues

You can also filter issues based on their status and the assigned user.

Filter

AWS CodeBuild Now Supports Building GitHub Pull Requests

CodeBuild is a fully managed build service that compiles source code, runs tests, and produces software packages that are ready to deploy. With CodeBuild, you don’t need to provision, manage, and scale your own build servers. CodeBuild scales continuously and processes multiple builds concurrently, so your builds are not left waiting in a queue. You can use prepackaged build environments to get started quickly or you can create custom build environments that use your own build tools.

We recently announced support for GitHub pull requests in AWS CodeBuild. This functionality makes it easier to collaborate across your team while editing and building your application code with CodeBuild. You can use the AWS CodeBuild or AWS CodePipeline consoles to run AWS CodeBuild. You can also automate the running of AWS CodeBuild by using the AWS Command Line Interface (AWS CLI), the AWS SDKs, or the AWS CodeBuild Plugin for Jenkins.

AWS CodeBuild

In this section, I will show you how to trigger a build in AWS CodeBuild with a pull request from GitHub through webhooks.

Open the AWS CodeBuild console at https://console.aws.amazon.com/codebuild/. Choose Create project. If you already have a CodeBuild project, you can choose Edit project, and then follow along. CodeBuild can connect to AWS CodeCommit, S3, BitBucket, and GitHub to pull source code for builds. For Source provider, choose GitHub, and then choose Connect to GitHub.

Configure

After you’ve successfully linked GitHub and your CodeBuild project, you can choose a repository in your GitHub account. CodeBuild also supports connections to any public repository. You can review your settings by navigating to your GitHub application settings.

GitHub Apps

On Source: What to Build, for Webhook, select the Rebuild every time a code change is pushed to this repository check box.

Note: You can select this option only if, under Repository, you chose Use a repository in my account.

Source

In Environment: How to build, for Environment image, select Use an image managed by AWS CodeBuild. For Operating system, choose Ubuntu. For Runtime, choose Base. For Version, choose the latest available version. For Build specification, you can provide a collection of build commands and related settings, in YAML format (buildspec.yml) or you can override the build spec by inserting build commands directly in the console. AWS CodeBuild uses these commands to run a build. In this example, the output is the string “hello.”

Environment

On Artifacts: Where to put the artifacts from this build project, for Type, choose No artifacts. (This is also the type to choose if you are just running tests or pushing a Docker image to Amazon ECR.) You also need an AWS CodeBuild service role so that AWS CodeBuild can interact with dependent AWS services on your behalf. Unless you already have a role, choose Create a role, and for Role name, type a name for your role.

Artifacts

In this example, leave the advanced settings at their defaults.

If you expand Show advanced settings, you’ll see options for customizing your build, including:

  • A build timeout.
  • A KMS key to encrypt all the artifacts that the builds for this project will use.
  • Options for building a Docker image.
  • Elevated permissions during your build action (for example, accessing Docker inside your build container to build a Dockerfile).
  • Resource options for the build compute type.
  • Environment variables (built-in or custom). For more information, see Create a Build Project in the AWS CodeBuild User Guide.

Advanced settings

You can use the AWS CodeBuild console to create a parameter in Amazon EC2 Systems Manager. Choose Create a parameter, and then follow the instructions in the dialog box. (In that dialog box, for KMS key, you can optionally specify the ARN of an AWS KMS key in your account. Amazon EC2 Systems Manager uses this key to encrypt the parameter’s value during storage and decrypt during retrieval.)

Create parameter

Choose Continue. On the Review page, either choose Save and build or choose Save to run the build later.

Choose Start build. When the build is complete, the Build logs section should display detailed information about the build.

Logs

To demonstrate a pull request, I will fork the repository as a different GitHub user, make commits to the forked repo, check in the changes to a newly created branch, and then open a pull request.

Pull request

As soon as the pull request is submitted, you’ll see CodeBuild start executing the build.

Build

GitHub sends an HTTP POST payload to the webhook’s configured URL (highlighted here), which CodeBuild uses to download the latest source code and execute the build phases.

Build project

If you expand the Show all checks option for the GitHub pull request, you’ll see that CodeBuild has completed the build, all checks have passed, and a deep link is provided in Details, which opens the build history in the CodeBuild console.

Pull request

Summary:

In this post, I showed you how to use GitHub as the source provider for your CodeStar projects and how to work with recent commits, issues, and pull requests in the CodeStar dashboard. I also showed you how you can use GitHub pull requests to automatically trigger a build in AWS CodeBuild — specifically, how this functionality makes it easier to collaborate across your team while editing and building your application code with CodeBuild.


About the author:

Balaji Iyer is an Enterprise Consultant for the Professional Services Team at Amazon Web Services. In this role, he has helped several customers successfully navigate their journey to AWS. His specialties include architecting and implementing highly scalable distributed systems, serverless architectures, large scale migrations, operational security, and leading strategic AWS initiatives. Before he joined Amazon, Balaji spent more than a decade building operating systems, big data analytics solutions, mobile services, and web applications. In his spare time, he enjoys experiencing the great outdoors and spending time with his family.

 

Changes in Password Best Practices

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2017/10/changes_in_pass.html

NIST recently published its four-volume SP800-63b Digital Identity Guidelines. Among other things, it makes three important suggestions when it comes to passwords:

  1. Stop it with the annoying password complexity rules. They make passwords harder to remember. They increase errors because artificially complex passwords are harder to type in. And they don’t help that much. It’s better to allow people to use pass phrases.
  2. Stop it with password expiration. That was an old idea for an old way we used computers. Today, don’t make people change their passwords unless there’s indication of compromise.

  3. Let people use password managers. This is how we deal with all the passwords we need.

These password rules were failed attempts to fix the user. Better we fix the security systems.

The CoderDojo Girls Initiative

Post Syndicated from Nuala McHale original https://www.raspberrypi.org/blog/coderdojo-girls-initiative/

In March, the CoderDojo Foundation launched their Girls Initiative, which aims to increase the average proportion of girls attending CoderDojo clubs from 29% to at least 40% over the next three years.

The CoderDojo Girls Initiative

Six months on, we wanted to highlight what we’ve done so far and what’s next for our initiative.

What we’ve done so far

To date, we have focussed our efforts on four key areas:

  • Developing and improving content
  • Conducting and learning from research
  • Highlighting role models
  • Developing a guide of tried and tested best practices for encouraging and sustaining girls in a Dojo setting (Empowering the Future)

Content

We’ve taken measures to ensure our resources are as friendly to girls as well as boys, and we are improving them based on feedback from girls. For example, we have developed beginner-level content (Sushi Cards) for working with wearables and for building apps using App Inventor. In response to girls’ feedback, we are exploring more creative goal-orientated content.

The CoderDojo Girls Initiative

Moreover, as part of our Empowering the Future guide, we have developed three short ‘Mini-Sushi’ projects which provide a taster of different programming languages, such as Scratch, HTML, and App Inventor.

What’s next?

We are currently finalising our intermediate-level wearables Sushi Cards. These are resources for learners to further explore wearables and integrate them with other coding skills they are developing. The Cards will enable young people to program LEDs which can be sewn into clothing with conductive thread. We are also planning another series of Sushi Cards focused on using coding skills to solve problems Ninjas have reported as important to them.

Research

In June 2017 we conducted the first Ninja survey. It was sent to all young people registered on the CoderDojo community platform, Zen. Hundreds of young people involved in Dojos around the world responded and shared their experiences.

The CoderDojo Girls Initiative

We are currently examining these results to identify areas in which girls feel most or least confident, as well as the motivations and influencing factors that cause them to continue with coding.

What’s next?

Over the coming months we will delve deeper into the findings of this research, and decide how we can improve our content and Dojo support to adapt accordingly. Additionally, as part of sending out our Empowering the Future guide, we’re asking Dojos to provide insights into their current proportions of girls and female Mentors.

The CoderDojo Girls Initiative

We will follow up with recipients of the guide to document the impact of the recommended approaches they try at their Dojo. Thus, we will find out which approaches are most effective in different regional contexts, which will help us improve our support for Dojos wanting to increase their proportion of attending girls.

Role models

Many Dojos, Champions, and Mentors are doing amazing work to support and encourage girls at their Dojos. Female Mentors not only help by supporting attending girls, but they also act as vital role models in an environment which is often male-dominated. Blogs by female Mentors and Ninjas which have already featured on our website include:

What’s next?

We recognise the importance of female role models, and over the coming months we will continue to encourage community members to share their stories so that we bring them to the wider CoderDojo community. Do you know a female Mentor or Ninja you would like to shine a spotline on? Get in touch with us at [email protected] You can also use #CoderDojoGirls on social media.

The CoderDojo Girls Initiative

Empowering the Future guide

Ahead of Ada Lovelace Day and International Day of the Girl Child, the CoderDojo Foundation has released Empowering the Future, a comprehensive guide of practical approaches which Dojos have tested to engage and sustain girls.

Some topics covered in the guide are:

  • Approaches to improve the Dojo environment and layout
  • Language and images used to describe and promote Dojos
  • Content considerations, and suggested resources
  • The importance of female Mentors, and ways to increase access to role models

For the next month, Dojos that want to improve their proportion of girls can still sign up to have the guide book sent to them for free! From today, Dojos and anyone else can also download a PDF file of the guide.

The CoderDojo Girls Initiative

We would like to say a massive thank you to all community members who have shared their insights with us to make our Empowering the Future guide as comprehensive and beneficial as possible for other Dojos.

Tell us what you think

Have you found an approach, or used content, which girls find particularly engaging? Do you have questions about our Girls Initiative? We would love to hear your ideas, insights, and experiences in relation to supporting CoderDojo girls! Feel free to use our forums to share with the global CoderDojo community, and email us at [email protected]

The post The CoderDojo Girls Initiative appeared first on Raspberry Pi.

RIAA Identifies Top YouTube MP3 Rippers and Other Pirate Sites

Post Syndicated from Ernesto original https://torrentfreak.com/riaa-identifies-top-youtube-mp3-rippers-and-other-pirate-sites-171006/

Around the same time as Hollywood’s MPAA, the RIAA has also submitted its overview of “notorious markets” to the Office of the US Trade Representative (USTR).

These submissions help to guide the U.S. Government’s position toward foreign countries when it comes to copyright enforcement.

The RIAA’s overview begins positively, announcing two major successes achieved over the past year.

The first is the shutdown of sites such as Emp3world, AudioCastle, Viperial, Album Kings, and im1music. These sites all used the now-defunct Sharebeast platform, whose operator pleaded guilty to criminal copyright infringement.

Another victory followed a few weeks ago when YouTube-MP3.org shut down its services after being sued by the RIAA.

“The most popular YouTube ripping site, youtube-mp3.org, based in Germany and included in last year’s list of notorious markes [sic], recently shut down in response to a civil action brought by major record labels,” the RIAA writes.

This case also had an effect on similar services. Some stream ripping services that were reported to the USTR last year no longer permit the conversion and download of music videos on YouTube, the RIAA reports. However, they add that the problem is far from over.

“Unfortunately, several other stream-ripping sites have ‘doubled down’ and carry on in this illegal behavior, continuing to make this form of theft a major concern for the music industry,” the music group writes.

“The overall popularity of these sites and the staggering volume of traffic it attracts evidences the enormous damage being inflicted on the U.S. record industry.”

The music industry group is tracking more than 70 of these stream ripping sites and the most popular ones are listed in the overview of notorious markets. These are Mp3juices.cc, Convert2mp3.net, Savefrom.net, Ytmp3.cc, Convertmp3.io, Flvto.biz, and 2conv.com.

Youtube2mp3’s listing

The RIAA notes that many sites use domain privacy services to hide their identities, as well as Cloudflare to obscure the sites’ true hosting locations. This frustrates efforts to take action against these sites, they say.

Popular torrent sites are also highlighted, including The Pirate Bay. These sites regularly change domain names to avoid ISP blockades and domain seizures, and also use Cloudflare to hide their hosting location.

“BitTorrent sites, like many other pirate sites, are increasing [sic] turning to Cloudflare because routing their site through Cloudflare obfuscates the IP address of the actual hosting provider, masking the location of the site.”

Finally, the RIAA reports several emerging threats reported to the Government. Third party app stores, such as DownloadAtoZ.com, reportedly offer a slew of infringing apps. In addition, there’s a boom of Nigerian pirate sites that flood the market with free music.

“The number of such infringing sites with a Nigerian operator stands at over 200. Their primary method of promotion is via Twitter, and most sites make use of the Nigerian operated ISP speedhost247.com,” the report notes

The full list of RIAA’s “notorious” pirate sites, which also includes several cyberlockers, MP3 search and download sites, as well as unlicensed pay services, can be found below. The full report is available here (pdf).

Stream-Ripping Sites

– Mp3juices.cc
– Convert2mp3.net
– Savefrom.net
– Ytmp3.cc
– Convertmp3.io
– Flvto.biz
– 2conv.com.

Search-and-Download Sites

– Newalbumreleases.net
– Rnbxclusive.top
– DNJ.to

BitTorrent Indexing and Tracker Sites

– Thepiratebay.org
– Torrentdownloads.me
– Rarbg.to
– 1337x.to

Cyberlockers

– 4shared.com
– Uploaded.net
– Zippyshare.com
– Rapidgator.net
– Dopefile.pk
– Chomikuj.pl

Unlicensed Pay-for-Download Sites

– Mp3va.com
– Mp3fiesta.com

Source: TF, for the latest info on copyright, file-sharing, torrent sites and ANONYMOUS VPN services.

Spotify Threatened Researchers Who Revealed ‘Pirate’ History

Post Syndicated from Andy original https://torrentfreak.com/spotify-threatened-researchers-who-revealed-pirate-history-171006/

As one of the members of Sweden’s infamous Piratbyrån (Piracy Bureau), Rasmus Fleischer was also one of early key figures at The Pirate Bay. Over the years he’s been a writer, researcher, debater, and musician, and in 2012 he finished his PhD thesis on “music’s political economy.”

As part of a five-person research team (Pelle Snickars, Patrick Vonderau, Anna Johansson, Rasmus Fleischer, Maria Eriksson) funded by the Swedish Research Council, Fleischer has co-written a book about the history of Spotify.

Titled ‘Spotify Teardown – Inside the Black Box of Streaming Music’, the publication is set to shine light on the history of the now famous music service while revealing quite a few past secrets.

With its release scheduled for 2018, Fleischer has already teased a few interesting nuggets, not least that Spotify’s early beta version used ‘pirate’ MP3 files, some of them sourced from The Pirate Bay.

Fleischer says that following an interview earlier this year with DI.se, in which he revealed that Spotify distributed unlicensed music between May 2007 to October 2008, Spotify looked at ways to try and stop his team’s research. However, the ‘pirate’ angle wasn’t the clear target, another facet of the team’s research was.

“Building on the tradition of ‘breaching experiments’ in ethnomethodology, the research group sought to break into the hidden infrastructures of digital music distribution in order to study its underlying norms and structures,” project leader Pelle Snickars previously revealed.

With this goal, the team conducted experiments to see if the system was open to abuse or could be manipulated, as Fleischer now explains.

“For example, some hundreds of robot users were created to study whether the same listening behavior results in different recommendations depending on whether the user was registered as male or female,” he says.

“We have also investigated on a small scale the possibilities of manipulating the system. However, we have not collected any data about real users. Our proposed methods appeared several years ago in our research funding application, which was approved by the Swedish Research Council, which was already noted in 2013.”

Fleischer says that Spotify had been aware of the project for several years but it wasn’t until this year, after he spoke of Spotify’s past as a ‘pirate’ service, that pressure began to mount.

“On May 19, our project manager received a letter from Benjamin Helldén-Hegelund, a lawyer at Spotify. The timing was hardly a coincidence. Spotify demanded that we ‘confirm in writing’ that we had ‘ceased activities contrary to their Terms of Use’,” Fleischer reveals.

A corresponding letter to the Swedish Research Council detailed Spotify’s problems with the project.

“Spotify is particularly concerned about the information that has emerged regarding the research group’s methods in the project. The data indicate that the research team has deliberately taken action that is explicitly in violation of Spotify’s Terms of Use and by means of technical methods they sought to conceal these breaches of conditions,” the letter read.

“The research group has worked, among other things, to artificially increase the number of plays and manipulate Spotify’s services using scripts or other automated processes.

“Spotify assumes that the systematic breach of its conditions has not been known to the Swedish Research Council and is convinced that the Swedish Research Council is convinced that the research undertaken with the support of the Swedish Research Council in all respects meets ethical guidelines and is carried out reasonably and in accordance with applicable law.”

Fleischer admits that part of the research was concerned with the possibility of artificially increasing the number of plays, but he says that was carried out on a small scale without any commercial gain.

“The purpose was simply to test if it is true that Spotify could be manipulated on a larger scale, as claimed by journalists who did similar experiments. It is also true that we ‘sought to hide these crimes’ by using a VPN connection,” he says.

Fleischer says that Spotify’s lawyer blended complaints together, such as correlating terms of service violations with violation of research ethics, while presenting the same as grounds for legal action.

“The argument was quite ridiculous. Nevertheless, the letter could not be interpreted as anything other than an attempt by Spotify to prevent us from pursuing the research project,” he notes.

This week, however, it appears the dispute has reached some kind of conclusion. In a posting on his Copyriot blog (Swedish), Fleischer reveals that Spotify has informed the Swedish Research Council that the case has been closed, meaning that the research into the streaming service can continue.

“It must be acknowledged that Spotify’s threats have taken both time and power from the project. This seems to be the purpose when big companies go after researchers who they perceive as uncomfortable. It may not be possible to stop the research but it can be delayed,” Fleischer says.

“Sure [Spotify] dislikes people being reminded of how the service started as a pirate service. But instead of inviting an open dialogue, lawyers are sent out for the purpose of slowing down researchers.”

Spotify Teardown. Inside the Black Box of Streaming Music is to be published by MIT Press in 2018.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and ANONYMOUS VPN services.

Dynamic Users with systemd

Post Syndicated from Lennart Poettering original http://0pointer.net/blog/dynamic-users-with-systemd.html

TL;DR: you may now configure systemd to dynamically allocate a UNIX
user ID for service processes when it starts them and release it when
it stops them. It’s pretty secure, mixes well with transient services,
socket activated services and service templating.

Today we released systemd
235
. Among
other improvements this greatly extends the dynamic user logic of
systemd. Dynamic users are a powerful but little known concept,
supported in its basic form since systemd 232. With this blog story I
hope to make it a bit better known.

The UNIX user concept is the most basic and well-understood security
concept in POSIX operating systems. It is UNIX/POSIX’ primary security
concept, the one everybody can agree on, and most security concepts
that came after it (such as process capabilities, SELinux and other
MACs, user name-spaces, …) in some form or another build on it, extend
it or at least interface with it. If you build a Linux kernel with all
security features turned off, the user concept is pretty much the one
you’ll still retain.

Originally, the user concept was introduced to make multi-user systems
a reality, i.e. systems enabling multiple human users to share the
same system at the same time, cleanly separating their resources and
protecting them from each other. The majority of today’s UNIX systems
don’t really use the user concept like that anymore though. Most of
today’s systems probably have only one actual human user (or even
less!), but their user databases (/etc/passwd) list a good number
more entries than that. Today, the majority of UNIX users in most
environments are system users, i.e. users that are not the technical
representation of a human sitting in front of a PC anymore, but the
security identity a system service — an executable program — runs
as. Event though traditional, simultaneous multi-user systems slowly
became less relevant, their ground-breaking basic concept became the
cornerstone of UNIX security. The OS is nowadays partitioned into
isolated services — and each service runs as its own system user, and
thus within its own, minimal security context.

The people behind the Android OS realized the relevance of the UNIX
user concept as the primary security concept on UNIX, and took its use
even further: on Android not only system services take benefit of the
UNIX user concept, but each UI app gets its own, individual user
identity too — thus neatly separating app resources from each other,
and protecting app processes from each other, too.

Back in the more traditional Linux world things are a bit less
advanced in this area. Even though users are the quintessential UNIX
security concept, allocation and management of system users is still a
pretty limited, raw and static affair. In most cases, RPM or DEB
package installation scripts allocate a fixed number of (usually one)
system users when you install the package of a service that wants to
take benefit of the user concept, and from that point on the system
user remains allocated on the system and is never deallocated again,
even if the package is later removed again. Most Linux distributions
limit the number of system users to 1000 (which isn’t particularly a
lot). Allocating a system user is hence expensive: the number of
available users is limited, and there’s no defined way to dispose of
them after use. If you make use of system users too liberally, you are
very likely to run out of them sooner rather than later.

You may wonder why system users are generally not deallocated when the
package that registered them is uninstalled from a system (at least on
most distributions). The reason for that is one relevant property of
the user concept (you might even want to call this a design flaw):
user IDs are sticky to files (and other objects such as IPC
objects). If a service running as a specific system user creates a
file at some location, and is then terminated and its package and user
removed, then the created file still belongs to the numeric ID (“UID”)
the system user originally got assigned. When the next system user is
allocated and — due to ID recycling — happens to get assigned the same
numeric ID, then it will also gain access to the file, and that’s
generally considered a problem, given that the file belonged to a
potentially very different service once upon a time, and likely should
not be readable or changeable by anything coming after
it. Distributions hence tend to avoid UID recycling which means system
users remain registered forever on a system after they have been
allocated once.

The above is a description of the status quo ante. Let’s now focus on
what systemd’s dynamic user concept brings to the table, to improve
the situation.

Introducing Dynamic Users

With systemd dynamic users we hope to make make it easier and cheaper
to allocate system users on-the-fly, thus substantially increasing the
possible uses of this core UNIX security concept.

If you write a systemd service unit file, you may enable the dynamic
user logic for it by setting the
DynamicUser=
option in its [Service] section to yes. If you do a system user is
dynamically allocated the instant the service binary is invoked, and
released again when the service terminates. The user is automatically
allocated from the UID range 61184–65519, by looking for a so far
unused UID.

Now you may wonder, how does this concept deal with the sticky user
issue discussed above? In order to counter the problem, two strategies
easily come to mind:

  1. Prohibit the service from creating any files/directories or IPC objects

  2. Automatically removing the files/directories or IPC objects the
    service created when it shuts down.

In systemd we implemented both strategies, but for different parts of
the execution environment. Specifically:

  1. Setting DynamicUser=yes implies
    ProtectSystem=strict
    and
    ProtectHome=read-only. These
    sand-boxing options turn off write access to pretty much the whole OS
    directory tree, with a few relevant exceptions, such as the API file
    systems /proc, /sys and so on, as well as /tmp and
    /var/tmp. (BTW: setting these two options on your regular services
    that do not use DynamicUser= is a good idea too, as it drastically
    reduces the exposure of the system to exploited services.)

  2. Setting DynamicUser=yes implies
    PrivateTmp=yes. This
    option sets up /tmp and /var/tmp for the service in a way that it
    gets its own, disconnected version of these directories, that are not
    shared by other services, and whose life-cycle is bound to the
    service’s own life-cycle. Thus if the service goes down, the user is
    removed and all its temporary files and directories with it. (BTW: as
    above, consider setting this option for your regular services that do
    not use DynamicUser= too, it’s a great way to lock things down
    security-wise.)

  3. Setting DynamicUser=yes implies
    RemoveIPC=yes. This
    option ensures that when the service goes down all SysV and POSIX IPC
    objects (shared memory, message queues, semaphores) owned by the
    service’s user are removed. Thus, the life-cycle of the IPC objects is
    bound to the life-cycle of the dynamic user and service, too. (BTW:
    yes, here too, consider using this in your regular services, too!)

With these four settings in effect, services with dynamic users are
nicely sand-boxed. They cannot create files or directories, except in
/tmp and /var/tmp, where they will be removed automatically when
the service shuts down, as will any IPC objects created. Sticky
ownership of files/directories and IPC objects is hence dealt with
effectively.

The
RuntimeDirectory=
option may be used to open up a bit the sandbox to external
programs. If you set it to a directory name of your choice, it will be
created below /run when the service is started, and removed in its
entirety when it is terminated. The ownership of the directory is
assigned to the service’s dynamic user. This way, a dynamic user
service can expose API interfaces (AF_UNIX sockets, …) to other
services at a well-defined place and again bind the life-cycle of it to
the service’s own run-time. Example: set RuntimeDirectory=foobar in
your service, and watch how a directory /run/foobar appears at the
moment you start the service, and disappears the moment you stop
it again. (BTW: Much like the other settings discussed above,
RuntimeDirectory= may be used outside of the DynamicUser= context
too, and is a nice way to run any service with a properly owned,
life-cycle-managed run-time directory.)

Persistent Data

Of course, a service running in such an environment (although already
very useful for many cases!), has a major limitation: it cannot leave
persistent data around it can reuse on a later run. As pretty much the
whole OS directory tree is read-only to it, there’s simply no place it
could put the data that survives from one service invocation to the
next.

With systemd 235 this limitation is removed: there are now three new
settings:
StateDirectory=,
LogsDirectory= and CacheDirectory=. In many ways they operate like
RuntimeDirectory=, but create sub-directories below /var/lib,
/var/log and /var/cache, respectively. There’s one major
difference beyond that however: directories created that way are
persistent, they will survive the run-time cycle of a service, and
thus may be used to store data that is supposed to stay around between
invocations of the service.

Of course, the obvious question to ask now is: how do these three
settings deal with the sticky file ownership problem?

For that we lifted a concept from container managers. Container
managers have a very similar problem: each container and the host
typically end up using a very similar set of numeric UIDs, and unless
user name-spacing is deployed this means that host users might be able
to access the data of specific containers that also have a user by the
same numeric UID assigned, even though it actually refers to a very
different identity in a different context. (Actually, it’s even worse
than just getting access, due to the existence of setuid file bits,
access might translate to privilege elevation.) The way container
managers protect the container images from the host (and from each
other to some level) is by placing the container trees below a
boundary directory, with very restrictive access modes and ownership
(0700 and root:root or so). A host user hence cannot take advantage
of the files/directories of a container user of the same UID inside of
a local container tree, simply because the boundary directory makes it
impossible to even reference files in it. After all on UNIX, in order
to get access to a specific path you need access to every single
component of it.

How is that applied to dynamic user services? Let’s say
StateDirectory=foobar is set for a service that has DynamicUser=
turned off. The instant the service is started, /var/lib/foobar is
created as state directory, owned by the service’s user and remains in
existence when the service is stopped. If the same service now is run
with DynamicUser= turned on, the implementation is slightly
altered. Instead of a directory /var/lib/foobar a symbolic link by
the same path is created (owned by root), pointing to
/var/lib/private/foobar (the latter being owned by the service’s
dynamic user). The /var/lib/private directory is created as boundary
directory: it’s owned by root:root, and has a restrictive access
mode of 0700. Both the symlink and the service’s state directory will
survive the service’s life-cycle, but the state directory will remain,
and continues to be owned by the now disposed dynamic UID — however it
is protected from other host users (and other services which might get
the same dynamic UID assigned due to UID recycling) by the boundary
directory.

The obvious question to ask now is: but if the boundary directory
prohibits access to the directory from unprivileged processes, how can
the service itself which runs under its own dynamic UID access it
anyway? This is achieved by invoking the service process in a slightly
modified mount name-space: it will see most of the file hierarchy the
same way as everything else on the system (modulo /tmp and
/var/tmp as mentioned above), except for /var/lib/private, which
is over-mounted with a read-only tmpfs file system instance, with a
slightly more liberal access mode permitting the service read
access. Inside of this tmpfs file system instance another mount is
placed: a bind mount to the host’s real /var/lib/private/foobar
directory, onto the same name. Putting this together these means that
superficially everything looks the same and is available at the same
place on the host and from inside the service, but two important
changes have been made: the /var/lib/private boundary directory lost
its restrictive character inside the service, and has been emptied of
the state directories of any other service, thus making the protection
complete. Note that the symlink /var/lib/foobar hides the fact that
the boundary directory is used (making it little more than an
implementation detail), as the directory is available this way under
the same name as it would be if DynamicUser= was not used. Long
story short: for the daemon and from the view from the host the
indirection through /var/lib/private is mostly transparent.

This logic of course raises another question: what happens to the
state directory if a dynamic user service is started with a state
directory configured, gets UID X assigned on this first invocation,
then terminates and is restarted and now gets UID Y assigned on the
second invocation, with X ≠ Y? On the second invocation the directory
— and all the files and directories below it — will still be owned by
the original UID X so how could the second instance running as Y
access it? Our way out is simple: systemd will recursively change the
ownership of the directory and everything contained within it to UID Y
before invoking the service’s executable.

Of course, such recursive ownership changing (chown()ing) of whole
directory trees can become expensive (though according to my
experiences, IRL and for most services it’s much cheaper than you
might think), hence in order to optimize behavior in this regard, the
allocation of dynamic UIDs has been tweaked in two ways to avoid the
necessity to do this expensive operation in most cases: firstly, when
a dynamic UID is allocated for a service an allocation loop is
employed that starts out with a UID hashed from the service’s
name. This means a service by the same name is likely to always use
the same numeric UID. That means that a stable service name translates
into a stable dynamic UID, and that means recursive file ownership
adjustments can be skipped (of course, after validation). Secondly, if
the configured state directory already exists, and is owned by a
suitable currently unused dynamic UID, it’s preferably used above
everything else, thus maximizing the chance we can avoid the
chown()ing. (That all said, ultimately we have to face it, the
currently available UID space of 4K+ is very small still, and
conflicts are pretty likely sooner or later, thus a chown()ing has to
be expected every now and then when this feature is used extensively).

Note that CacheDirectory= and LogsDirectory= work very similar to
StateDirectory=. The only difference is that they manage directories
below the /var/cache and /var/logs directories, and their boundary
directory hence is /var/cache/private and /var/log/private,
respectively.

Examples

So, after all this introduction, let’s have a look how this all can be
put together. Here’s a trivial example:

# cat > /etc/systemd/system/dynamic-user-test.service <<EOF
[Service]
ExecStart=/usr/bin/sleep 4711
DynamicUser=yes
EOF
# systemctl daemon-reload
# systemctl start dynamic-user-test
# systemctl status dynamic-user-test
● dynamic-user-test.service
   Loaded: loaded (/etc/systemd/system/dynamic-user-test.service; static; vendor preset: disabled)
   Active: active (running) since Fri 2017-10-06 13:12:25 CEST; 3s ago
 Main PID: 2967 (sleep)
    Tasks: 1 (limit: 4915)
   CGroup: /system.slice/dynamic-user-test.service
           └─2967 /usr/bin/sleep 4711

Okt 06 13:12:25 sigma systemd[1]: Started dynamic-user-test.service.
# ps -e -o pid,comm,user | grep 2967
 2967 sleep           dynamic-user-test
# id dynamic-user-test
uid=64642(dynamic-user-test) gid=64642(dynamic-user-test) groups=64642(dynamic-user-test)
# systemctl stop dynamic-user-test
# id dynamic-user-test
id: ‘dynamic-user-test’: no such user

In this example, we create a unit file with DynamicUser= turned on,
start it, check if it’s running correctly, have a look at the service
process’ user (which is named like the service; systemd does this
automatically if the service name is suitable as user name, and you
didn’t configure any user name to use explicitly), stop the service
and verify that the user ceased to exist too.

That’s already pretty cool. Let’s step it up a notch, by doing the
same in an interactive transient service (for those who don’t know
systemd well: a transient service is a service that is defined and
started dynamically at run-time, for example via the systemd-run
command from the shell. Think: run a service without having to write a
unit file first):

# systemd-run --pty --property=DynamicUser=yes --property=StateDirectory=wuff /bin/sh
Running as unit: run-u15750.service
Press ^] three times within 1s to disconnect TTY.
sh-4.4$ id
uid=63122(run-u15750) gid=63122(run-u15750) groups=63122(run-u15750) context=system_u:system_r:initrc_t:s0
sh-4.4$ ls -al /var/lib/private/
total 0
drwxr-xr-x. 3 root       root        60  6. Okt 13:21 .
drwxr-xr-x. 1 root       root       852  6. Okt 13:21 ..
drwxr-xr-x. 1 run-u15750 run-u15750   8  6. Okt 13:22 wuff
sh-4.4$ ls -ld /var/lib/wuff
lrwxrwxrwx. 1 root root 12  6. Okt 13:21 /var/lib/wuff -> private/wuff
sh-4.4$ ls -ld /var/lib/wuff/
drwxr-xr-x. 1 run-u15750 run-u15750 0  6. Okt 13:21 /var/lib/wuff/
sh-4.4$ echo hello > /var/lib/wuff/test
sh-4.4$ exit
exit
# id run-u15750
id: ‘run-u15750’: no such user
# ls -al /var/lib/private
total 0
drwx------. 1 root  root   66  6. Okt 13:21 .
drwxr-xr-x. 1 root  root  852  6. Okt 13:21 ..
drwxr-xr-x. 1 63122 63122   8  6. Okt 13:22 wuff
# ls -ld /var/lib/wuff
lrwxrwxrwx. 1 root root 12  6. Okt 13:21 /var/lib/wuff -> private/wuff
# ls -ld /var/lib/wuff/
drwxr-xr-x. 1 63122 63122 8  6. Okt 13:22 /var/lib/wuff/
# cat /var/lib/wuff/test
hello

The above invokes an interactive shell as transient service
run-u15750.service (systemd-run picked that name automatically,
since we didn’t specify anything explicitly) with a dynamic user whose
name is derived automatically from the service name. Because
StateDirectory=wuff is used, a persistent state directory for the
service is made available as /var/lib/wuff. In the interactive shell
running inside the service, the ls commands show the
/var/lib/private boundary directory and its contents, as well as the
symlink that is placed for the service. Finally, before exiting the
shell, a file is created in the state directory. Back in the original
command shell we check if the user is still allocated: it is not, of
course, since the service ceased to exist when we exited the shell and
with it the dynamic user associated with it. From the host we check
the state directory of the service, with similar commands as we did
from inside of it. We see that things are set up pretty much the same
way in both cases, except for two things: first of all the user/group
of the files is now shown as raw numeric UIDs instead of the
user/group names derived from the unit name. That’s because the user
ceased to exist at this point, and “ls” shows the raw UID for files
owned by users that don’t exist. Secondly, the access mode of the
boundary directory is different: when we look at it from outside of
the service it is not readable by anyone but root, when we looked from
inside we saw it it being world readable.

Now, let’s see how things look if we start another transient service,
reusing the state directory from the first invocation:

# systemd-run --pty --property=DynamicUser=yes --property=StateDirectory=wuff /bin/sh
Running as unit: run-u16087.service
Press ^] three times within 1s to disconnect TTY.
sh-4.4$ cat /var/lib/wuff/test
hello
sh-4.4$ ls -al /var/lib/wuff/
total 4
drwxr-xr-x. 1 run-u16087 run-u16087  8  6. Okt 13:22 .
drwxr-xr-x. 3 root       root       60  6. Okt 15:42 ..
-rw-r--r--. 1 run-u16087 run-u16087  6  6. Okt 13:22 test
sh-4.4$ id
uid=63122(run-u16087) gid=63122(run-u16087) groups=63122(run-u16087) context=system_u:system_r:initrc_t:s0
sh-4.4$ exit
exit

Here, systemd-run picked a different auto-generated unit name, but
the used dynamic UID is still the same, as it was read from the
pre-existing state directory, and was otherwise unused. As we can see
the test file we generated earlier is accessible and still contains
the data we left in there. Do note that the user name is different
this time (as it is derived from the unit name, which is different),
but the UID it is assigned to is the same one as on the first
invocation. We can thus see that the mentioned optimization of the UID
allocation logic (i.e. that we start the allocation loop from the UID
owner of any existing state directory) took effect, so that no
recursive chown()ing was required.

And that’s the end of our example, which hopefully illustrated a bit
how this concept and implementation works.

Use-cases

Now that we had a look at how to enable this logic for a unit and how
it is implemented, let’s discuss where this actually could be useful
in real life.

  • One major benefit of dynamic user IDs is that running a
    privilege-separated service leaves no artifacts in the system. A
    system user is allocated and made use of, but it is discarded
    automatically in a safe and secure way after use, in a fashion that is
    safe for later recycling. Thus, quickly invoking a short-lived service
    for processing some job can be protected properly through a user ID
    without having to pre-allocate it and without this draining the
    available UID pool any longer than necessary.

  • In many cases, starting a service no longer requires
    package-specific preparation. Or in other words, quite often
    useradd/mkdir/chown/chmod invocations in “post-inst” package
    scripts, as well as
    sysusers.d
    and
    tmpfiles.d
    drop-ins become unnecessary, as the DynamicUser= and
    StateDirectory=/CacheDirectory=/LogsDirectory= logic can do the
    necessary work automatically, on-demand and with a well-defined
    life-cycle.

  • By combining dynamic user IDs with the transient unit concept, new
    creative ways of sand-boxing are made available. For example, let’s say
    you don’t trust the correct implementation of the sort command. You
    can now lock it into a simple, robust, dynamic UID sandbox with a
    simple systemd-run and still integrate it into a shell pipeline like
    any other command. Here’s an example, showcasing a shell pipeline
    whose middle element runs as a dynamically on-the-fly allocated UID,
    that is released when the pipelines ends.

    # cat some-file.txt | systemd-run ---pipe --property=DynamicUser=1 sort -u | grep -i foobar > some-other-file.txt
    
  • By combining dynamic user IDs with the systemd templating logic it
    is now possible to do much more fine-grained and fully automatic UID
    management. For example, let’s say you have a template unit file
    /etc/systemd/system/[email protected]:

    [Service]
    ExecStart=/usr/bin/myfoobarserviced
    DynamicUser=1
    StateDirectory=foobar/%i
    

    Now, let’s say you want to start one instance of this service for
    each of your customers. All you need to do now for that is:

    # systemctl enable [email protected] --now
    

    And you are done. (Invoke this as many times as you like, each time
    replacing customerxyz by some customer identifier, you get the
    idea.)

  • By combining dynamic user IDs with socket activation you may easily
    implement a system where each incoming connection is served by a
    process instance running as a different, fresh, newly allocated UID
    within its own sandbox. Here’s an example waldo.socket:

    [Socket]
    ListenStream=2048
    Accept=yes
    

    With a matching [email protected]:

    [Service]
    ExecStart=-/usr/bin/myservicebinary
    DynamicUser=yes
    

    With the two unit files above, systemd will listen on TCP/IP port
    2048, and for each incoming connection invoke a fresh instance of
    [email protected], each time utilizing a different, new,
    dynamically allocated UID, neatly isolated from any other
    instance.

  • Dynamic user IDs combine very well with state-less systems,
    i.e. systems that come up with an unpopulated /etc and /var. A
    service using dynamic user IDs and the StateDirectory=,
    CacheDirectory=, LogsDirectory= and RuntimeDirectory= concepts
    will implicitly allocate the users and directories it needs for
    running, right at the moment where it needs it.

Dynamic users are a very generic concept, hence a multitude of other
uses are thinkable; the list above is just supposed to trigger your
imagination.

What does this mean for you as a packager?

I am pretty sure that a large number of services shipped with today’s
distributions could benefit from using DynamicUser= and
StateDirectory= (and related settings). It often allows removal of
post-inst packaging scripts altogether, as well as any sysusers.d
and tmpfiles.d drop-ins by unifying the needed declarations in the
unit file itself. Hence, as a packager please consider switching your
unit files over. That said, there are a number of conditions where
DynamicUser= and StateDirectory= (and friends) cannot or should
not be used. To name a few:

  1. Service that need to write to files outside of /run/<package>,
    /var/lib/<package>, /var/cache/<package>, /var/log/<package>,
    /var/tmp, /tmp, /dev/shm are generally incompatible with this
    scheme. This rules out daemons that upgrade the system as one example,
    as that involves writing to /usr.

  2. Services that maintain a herd of processes with different user
    IDs. Some SMTP services are like this. If your service has such a
    super-server design, UID management needs to be done by the
    super-server itself, which rules out systemd doing its dynamic UID
    magic for it.

  3. Services which run as root (obviously…) or are otherwise
    privileged.

  4. Services that need to live in the same mount name-space as the host
    system (for example, because they want to establish mount points
    visible system-wide). As mentioned DynamicUser= implies
    ProtectSystem=, PrivateTmp= and related options, which all require
    the service to run in its own mount name-space.

  5. Your focus is older distributions, i.e. distributions that do not
    have systemd 232 (for DynamicUser=) or systemd 235 (for
    StateDirectory= and friends) yet.

  6. If your distribution’s packaging guides don’t allow it. Consult
    your packaging guides, and possibly start a discussion on your
    distribution’s mailing list about this.

Notes

A couple of additional, random notes about the implementation and use
of these features:

  1. Do note that allocating or deallocating a dynamic user leaves
    /etc/passwd untouched. A dynamic user is added into the user
    database through the glibc NSS module
    nss-systemd,
    and this information never hits the disk.

  2. On traditional UNIX systems it was the job of the daemon process
    itself to drop privileges, while the DynamicUser= concept is
    designed around the service manager (i.e. systemd) being responsible
    for that. That said, since v235 there’s a way to marry DynamicUser=
    and such services which want to drop privileges on their own. For
    that, turn on DynamicUser= and set
    User=
    to the user name the service wants to setuid() to. This has the
    effect that systemd will allocate the dynamic user under the specified
    name when the service is started. Then, prefix the command line you
    specify in
    ExecStart=
    with a single ! character. If you do, the user is allocated for the
    service, but the daemon binary is is invoked as root instead of the
    allocated user, under the assumption that the daemon changes its UID
    on its own the right way. Not that after registration the user will
    show up instantly in the user database, and is hence resolvable like
    any other by the daemon process. Example:
    ExecStart=!/usr/bin/mydaemond

  3. You may wonder why systemd uses the UID range 61184–65519 for its
    dynamic user allocations (side note: in hexadecimal this reads as
    0xEF00–0xFFEF). That’s because distributions (specifically Fedora)
    tend to allocate regular users from below the 60000 range, and we
    don’t want to step into that. We also want to stay away from 65535 and
    a bit around it, as some of these UIDs have special meanings (65535 is
    often used as special value for “invalid” or “no” UID, as it is
    identical to the 16bit value -1; 65534 is generally mapped to the
    “nobody” user, and is where some kernel subsystems map unmappable
    UIDs). Finally, we want to stay within the 16bit range. In a user
    name-spacing world each container tends to have much less than the full
    32bit UID range available that Linux kernels theoretically
    provide. Everybody apparently can agree that a container should at
    least cover the 16bit range though — already to include a nobody
    user. (And quite frankly, I am pretty sure assigning 64K UIDs per
    container is nicely systematic, as the the higher 16bit of the 32bit
    UID values this way become a container ID, while the lower 16bit
    become the logical UID within each container, if you still follow what
    I am babbling here…). And before you ask: no this range cannot be
    changed right now, it’s compiled in. We might change that eventually
    however.

  4. You might wonder what happens if you already used UIDs from the
    61184–65519 range on your system for other purposes. systemd should
    handle that mostly fine, as long as that usage is properly registered
    in the user database: when allocating a dynamic user we pick a UID,
    see if it is currently used somehow, and if yes pick a different one,
    until we find a free one. Whether a UID is used right now or not is
    checked through NSS calls. Moreover the IPC object lists are checked to
    see if there are any objects owned by the UID we are about to
    pick. This means systemd will avoid using UIDs you have assigned
    otherwise. Note however that this of course makes the pool of
    available UIDs smaller, and in the worst cases this means that
    allocating a dynamic user might fail because there simply are no
    unused UIDs in the range.

  5. If not specified otherwise the name for a dynamically allocated
    user is derived from the service name. Not everything that’s valid in
    a service name is valid in a user-name however, and in some cases a
    randomized name is used instead to deal with this. Often it makes
    sense to pick the user names to register explicitly. For that use
    User= and choose whatever you like.

  6. If you pick a user name with User= and combine it with
    DynamicUser= and the user already exists statically it will be used
    for the service and the dynamic user logic is automatically
    disabled. This permits automatic up- and downgrades between static and
    dynamic UIDs. For example, it provides a nice way to move a system
    from static to dynamic UIDs in a compatible way: as long as you select
    the same User= value before and after switching DynamicUser= on,
    the service will continue to use the statically allocated user if it
    exists, and only operates in the dynamic mode if it does not. This is
    useful for other cases as well, for example to adapt a service that
    normally would use a dynamic user to concepts that require statically
    assigned UIDs, for example to marry classic UID-based file system
    quota with such services.

  7. systemd always allocates a pair of dynamic UID and GID at the same
    time, with the same numeric ID.

  8. If the Linux kernel had a “shiftfs” or similar functionality,
    i.e. a way to mount an existing directory to a second place, but map
    the exposed UIDs/GIDs in some way configurable at mount time, this
    would be excellent for the implementation of StateDirectory= in
    conjunction with DynamicUser=. It would make the recursive
    chown()ing step unnecessary, as the host version of the state
    directory could simply be mounted into a the service’s mount
    name-space, with a shift applied that maps the directory’s owner to the
    services’ UID/GID. But I don’t have high hopes in this regard, as all
    work being done in this area appears to be bound to user name-spacing
    — which is a concept not used here (and I guess one could say user
    name-spacing is probably more a source of problems than a solution to
    one, but you are welcome to disagree on that).

And that’s all for now. Enjoy your dynamic users!

Things Go Better With Step Functions

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/things-go-better-with-step-functions/

I often give presentations on Amazon’s culture of innovation, and start out with a slide that features a revealing quote from Amazon founder Jeff Bezos:

I love to sit down with our customers and to learn how we have empowered their creativity and to pursue their dreams. Earlier this year I chatted with Patrick from The Coca-Cola Company in order to learn how they used AWS Step Functions and other AWS services to support the Coke.com Vending Pass program. This program includes drink rewards earned by purchasing products at vending machines equipped to support mobile payments using the Coca-Cola Vending Pass. Participants swipe their NFC-enabled phones to complete an Apple Pay or Android Pay purchase, identifying themselves to the vending machine and earning credit towards future free vending purchases in the process

After the swipe, a combination of SNS topics and AWS Lambda functions initiated a pair of calls to some existing backend code to count the vending points and update the participant’s record. Unfortunately, the backend code was slow to react and had some timing dependencies, leading to missing updates that had the potential to confuse Vending Pass participants. The initial solution to this issue was very simple: modify the Lambda code to include a 90 second delay between the two calls. This solved the problem, but ate up process time for no good reason (billing for the use of Lambda functions is based on the duration of the request, in 100 ms intervals).

In order to make their solution more cost-effective, the team turned to AWS Step Functions, building a very simple state machine. As I wrote in an earlier blog post, Step Functions coordinate the components of distributed applications and microservices at scale, using visual workflows that are easy to build.

Coke built a very simple state machine to simplify their business logic and reduce their costs. Yours can be equally simple, or they can make use of other Step Function features such as sequential and parallel execution and the ability to make decisions and choose alternate states. The Coke state machine looks like this:

The FirstState and the SecondState states (Task states) call the appropriate Lambda functions while Step Functions implements the 90 second delay (a Wait state). This modification simplified their logic and reduced their costs. Here’s how it all fits together:

 

What’s Next
This initial success led them to take a closer look at serverless computing and to consider using it for other projects. Patrick told me that they have already seen a boost in productivity and developer happiness. Developers no longer need to wait for servers to be provisioned, and can now (as Jeff says) unleash their creativity and pursue their dreams. They expect to use Step Functions to improve the scalability, functionality, and reliability of their applications, going far beyond the initial use for the Coca-Cola Vending Pass. For example, Coke has built a serverless solution for publishing nutrition information to their food service partners using Lambda, Step Functions, and API Gateway.

Patrick and his team are now experimenting with machine learning and artificial intelligence. They built a prototype application to analyze a stream of photos from Instagram and extract trends in tastes and flavors. The application (built as a quick, one-day prototype) made use of Lambda, Amazon DynamoDB, Amazon API Gateway, and Amazon Rekognition and was, in Patrick’s words, a “big win and an enabler.”

In order to build serverless applications even more quickly, the development team has created an internal CI/CD reference architecture that builds on the Serverless Application Framework. The architecture includes a guided tour of Serverless and some boilerplate code to access internal services and assets. Patrick told me that this model allows them to easily scale promising projects from “a guy with a computer” to an entire development team.

Patrick will be on stage at AWS re:Invent next to my colleague Tim Bray. To meet them in person, be sure to attend SRV306 – State Machines in the Wild! How Customers Use AWS Step Functions.

Jeff;

Cloudflare Bans Sites For Using Cryptocurrency Miners

Post Syndicated from Andy original https://torrentfreak.com/cloudflare-bans-sites-for-using-cryptocurrency-miners-171004/

After years of accepting donations via Bitcoin, last month various ‘pirate’ sites began to generate digital currency revenues in a brand new way.

It all began with The Pirate Bay, which quietly added a Javascript cryptocurrency miner to its main site, something that first manifested itself as a large spike in CPU utilization on the machines of visitors.

The stealth addition to the platform, which its operators later described as a test, was extremely controversial. While many thought of the miner as a cool and innovative way to generate revenue in a secure fashion, a vocal majority expressed a preference for permission being requested first, in case they didn’t want to participate in the program.

Over the past couple of weeks, several other sites have added similar miners, some which ask permission to run and others that do not. While the former probably aren’t considered problematic, the latter are now being viewed as a serious problem by an unexpected player in the ecosystem.

TorrentFreak has learned that popular CDN service Cloudflare, which is often criticized for not being harsh enough on ‘pirate’ sites, is actively suspending the accounts of sites that deploy cryptocurrency miners on their platforms.

“Cloudflare kicked us from their service for using a Coinhive miner,” the operator of ProxyBunker.online informed TF this morning.

ProxyBunker is a site that that links to several other domains that offer unofficial proxy services for the likes of The Pirate Bay, RARBG, KickassTorrents, Torrentz2, and dozens of other sites. It first tested a miner for four days starting September 23. Official implementation began October 1 but was ended last evening, abruptly.

“Late last night, all our domains got deleted off Cloudflare without warning so I emailed Cloudflare to ask what was going on,” the operator explained.

Bye bye

As the email above shows, Cloudflare cited only a “possible” terms of service violation. Further clarification was needed to get to the root of the problem.

So, just a few minutes later, the site operator contacted Cloudflare, acknowledging the suspension but pointing out that the notification email was somewhat vague and didn’t give a reason for the violation. A follow-up email from Cloudflare certainly put some meat on the bones.

“Multiple domains in your account were injecting Coinhive mining code without
notifying users and without any option to disabling [sic] the mining,” wrote Justin Paine, Head of Trust & Safety at Cloudflare.

“We consider this to be malware, and as such the account was suspended, and all domains removed from Cloudflare.”

Cloudflare: Unannounced miners are malware

ProxyBunker’s operator wrote back to Cloudflare explaining that the Coinhive miner had been running on his domains but that his main domain had a way of disabling mining, as per new code made available from Coinhive.

“We were running the miner on our proxybunker.online domain using Coinhive’s new Javacode Simple Miner UI that lets the user stop the miner at anytime and set the CPU speed it mines at,” he told TF.

Nevertheless, some element of the configuration appears to have fallen short of Cloudflare’s standards. So, shortly after Cloudflare’s explanation, the site operator asked if he could be reinstated if he completely removed the miner from his site. The response was a ‘yes’ but with a stern caveat attached.

“We will remove the account suspension, however do note you’ll need to re-sign up the domains as they were removed as a result of the account suspension. Please note — if we discover similar activity again the domains and account will be permanently blocked,” Cloudflare’s Justin warned.

ProxyBunker’s operator says that while he sees the value in cryptocurrency miners, he can understand why people might be opposed to them too. That being said, he would appreciate it if services like Cloudflare published clear guidelines on what is and is not acceptable.

“We do understand that most users will not like the miner using up a bit of their CPU but we do see the full potential as a new revenue stream,” he explains.

“I think third-party services need to post clear information that they’re not allowed on their services, if that’s the case.”

At time of publication, Cloudflare had not responded to TorrentFreak’s requests for comment.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and ANONYMOUS VPN services.

MPAA Reports Pirate Sites, Hosts and Ad-Networks to US Government

Post Syndicated from Ernesto original https://torrentfreak.com/mpaa-reports-pirate-sites-hosts-and-ad-networks-to-us-government-171004/

Responding to a request from the Office of the US Trade Representative (USTR), the MPAA has submitted an updated list of “notorious markets” that it says promote the illegal distribution of movies and TV-shows.

These annual submissions help to guide the U.S. Government’s position towards foreign countries when it comes to copyright enforcement.

What stands out in the MPAA’s latest overview is that it no longer includes offline markets, only sites and services that are available on the Internet. This suggests that online copyright infringement is seen as a priority.

The MPAA’s report includes more than two dozen alleged pirate sites in various categories. While this is not an exhaustive list, the movie industry specifically highlights some of the worst offenders in various categories.

“Content thieves take advantage of a wide constellation of easy-to-use online technologies, such as direct download and streaming, to create infringing sites and applications, often with the look and feel of legitimate content distributors, luring unsuspecting consumers into piracy,” the MPAA writes.

According to the MPAA, torrent sites remain popular, serving millions of torrents to tens of millions of users at any given time.

The Pirate Bay has traditionally been one of the main targets. Based on data from Alexa and SimilarWeb, the MPAA says that TPB has about 62 million unique visitors per month. The other torrent sites mentioned are 1337x.to, Rarbg.to, Rutracker.org, and Torrentz2.eu.

MPAA calls out torrent sites

The second highlighted category covers various linking and streaming sites. This includes the likes of Fmovies.is, Gostream.is, Primewire.ag, Kinogo.club, MeWatchSeries.to, Movie4k.tv and Repelis.tv.

Direct download sites and video hosting services also get a mention. Nowvideo.sx, Openload.co, Rapidgator.net, Uploaded.net and the Russian social network VK.com. Many of these services refuse to properly process takedown notices, the MPAA claims.

The last category is new and centers around piracy apps. These sites offer mobile applications that allow users to stream pirated content, such as IpPlayBox.tv, MoreTV, 3DBoBoVR, TVBrowser, and KuaiKa, which are particularly popular in Asia.

Aside from listing specific sites, the MPAA also draws the US Government’s attention to the streaming box problem. The report specifically mentions that Kodi-powered boxes are regularly abused for infringing purposes.

“An emerging global threat is streaming piracy which is enabled by piracy devices preloaded with software to illicitly stream movies and television programming and a burgeoning ecosystem of infringing add-ons,” the MPAA notes.

“The most popular software is an open source media player software, Kodi. Although Kodi is not itself unlawful, and does not host or link to unlicensed content, it can be easily configured to direct consumers toward unlicensed films and television shows.”

Pirate streaming boxes

There are more than 750 websites offering infringing devices, the Hollywood group notes, adding that the rapid growth of this problem is startling. Interestingly, the report mentions TVAddons.ag as a “piracy add-on repository,” noting that it’s currently offline. Whether the new TVAddons is also seen a problematic is unclear.

The MPAA also continues its trend of calling out third-party intermediaries, including hosting providers. These companies refuse to take pirate sites offline following complaints, even when the MPAA views them as blatantly violating the law.

“Hosting companies provide the essential infrastructure required to operate a website,” the MPAA writes. “Given the central role of hosting providers in the online ecosystem, it is very concerning that many refuse to take action upon being notified…”

The Hollywood group specifically mentions Private Layer and Netbrella as notorious markets. CDN provider CloudFlare is also named. As a US-based company, the latter can’t be included in the list. However, the MPAA explains that it is often used as an anonymization tool by sites and services that are mentioned in the report.

Another group of intermediaries that play a role in fueling piracy (mentioned for the first time) are advertising networks. The MPAA specifically calls out the Canadian company WWWPromoter, which works with sites such as Primewire.ag, Projectfreetv.at and 123movies.to

“The companies connecting advertisers to infringing websites and inadvertently contribute to the prevalence and prosperity of infringing sites by providing funding to the operators of these sites through advertising revenue,” the MPAA writes.

The MPAA’s full report is available here (pdf). The USTR will use this input above to make up its own list of notorious markets. This will help to identify current threats and call on foreign governments to take appropriate action.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and ANONYMOUS VPN services.

‘New “DeUHD” Tool Can Rip UHD Blu-Ray Discs’

Post Syndicated from Ernesto original https://torrentfreak.com/new-deuhd-tool-can-rip-uhd-blu-ray-discs-171002/

While there is no shortage of pirated films on the Internet, Ultra-high-definition content is often hard to find.

Not only are the file sizes enormous, but the protection is better than that deployed to regular content. Protected with strong AACS 2 encryption, it has long been one of the last bastions movie pirates had yet to breach.

This year there have been some major developments on this front, as full copies of UHD Blu-Ray Discs began to leak online. While it remained unclear how these were ripped, it was a definite milestone.

Now, there’s another breakthrough to report on. Russian company Arusoft has released a new commercially available tool called DeUHD which claims the ability to rip UHD Blu-ray discs.

“It is a tool to decrypt the UHD disc, like remove the AACS 2.0 protections,” the company states.

“DeUHD works in the background to automatically enable read access of the contents of a 4K UHD movie as soon as it’s inserted into the drive. It is also able to rip the disc to your hard disk as a folder or an ISO file, and then you can play them on your UHD player.”

The software works on recent Windows operating systems and is compatible with a limited number of UHD drives, including the LG WH16NS60 and Buffalo BRUHD-PU3.

The list of supported UHD Blu-rays is not exhaustive but includes a few dozen popular movies such as Arrival, John Wick: Chapter 2, Passengers, and Terminator Genisys. New titles are added on a regular basis, the developers promise.

DeUHD in action

TorrentFreak reached out to a source who tested the software with the supported LG BE16NU50 drive and three of the listed movies, but this didn’t work. This could mean that there are still some issues that need to be ironed out.

The developers are adamant that their software works as advertised, and have published a detailed guide on their website.

It’s not clear whether AACS 2.0 has indeed been cracked. The DeUHD team informed MyCE, who first reported on the tool, that they see it as such. In any case, the tool promises to successfully decrypt UHD Blu-ray discs, which is quite an achievement by itself.

That said, the DeUHD software doesn’t come cheap. A lifetime license is currently selling for $199. Those who want to try it first to see if it works for them can download a free trial. This trial is limited to decrypting roughly 10 minutes of a single disc.

Interestingly, a handful of new UHD releases were published by the group HDRINVASION in recent days, all titles that are also supported by DeUHD. Whether there’s a connection between the two is unknown at this point.

DeUHD website

Source: TF, for the latest info on copyright, file-sharing, torrent sites and ANONYMOUS VPN services.

Friday Squid Blogging: Squid Empire Is a New Book

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2017/09/friday_squid_bl_594.html

Regularly I receive mail from people wanting to advertise on, write for, or sponsor posts on my blog. My rule is that I say no to everyone. There is no amount of money or free stuff that will get me to write about your security product or service.

With regard to squid, however, I have no such compunctions. Send me any sort of squid anything, and I am happy to write about it. Earlier this week, for example, I received two — not one — copies of the new book Squid Empire: The Rise and Fall of Cephalopods. I haven’t read it yet, but it looks good. It’s the story of prehistoric squid.

Here’s a review by someone who has read it.

As usual, you can also use this squid post to talk about the security stories in the news that I haven’t covered.

Read my blog posting guidelines here.