Tag Archives: header

Pirates Taunt Amazon Over New “Turd Sandwich” Prime Video Quality

Post Syndicated from Andy original https://torrentfreak.com/pirates-taunt-amazon-over-new-turd-sandwich-prime-video-quality-180419/

Even though they generally aren’t paying for the content they consume, don’t fall into the trap of believing that all pirates are eternally grateful for even poor quality media.

Without a doubt, some of the most quality-sensitive individuals are to be found in pirate communities and they aren’t scared to make their voices known when release groups fail to come up with the best possible goods.

This week there’s been a sustained chorus of disapproval over the quality of pirate video releases sourced from Amazon Prime. The anger is usually directed at piracy groups who fail to capture content in the correct manner but according to a number of observers, the problem is actually at Amazon’s end.

Discussions on Reddit, for example, report that episodes in a single TV series have been declining in filesize and bitrate, from 1.56 GB in 720p at a 3073 kb/s video bitrate for episode 1, down to 907 MB in 720p at just 1514 kb/s video bitrate for episode 10.

Numerous theories as to why this may be the case are being floated around, including that Amazon is trying to save on bandwidth expenses. While this is a possibility, the company hasn’t made any announcements to that end.

Indeed, one legitimate customer reported that he’d raised the quality issue with Amazon and they’d said that the problem was “probably on his end”.

“I have Amazon Prime Video and I noticed the quality was always great for their exclusive shows, so I decided to try buying the shows on Amazon instead of iTunes this year. I paid for season pass subscriptions for Legion, Billions and Homeland this year,” he wrote.

“Just this past weekend, I have noticed a significant drop in details compared to weeks before! So naturally I assumed it was an issue on my end. I started trying different devices, calling support, etc, but nothing really helped.

“Billions continued to look like a blurry mess, almost like I was watching a standard definition DVD instead of the crystal clear HD I paid for and have experienced in the past! And when I check the previous episodes, sure enough, they look fantastic again. What the heck??”

With Amazon distancing itself from the issues, piracy groups have already begun to dig in the knife. Release group DEFLATE has been particularly critical.

“Amazon, in their infinite wisdom, have decided to start fucking with the quality of their encodes. They’re now reaching Netflix’s subpar 1080p.H264 levels, and their H265 encodes aren’t even close to what Netflix produces,” the group said in a file attached to S02E07 of The Good Fight released on Sunday.

“Netflix is able to produce drastic visual improvements with their H265 encodes compared to H264 across every original. In comparison, Amazon can’t decide whether H265 or H264 is going to produce better results, and as a result we suffer for it.”

Arrr! The quality be fallin’

So what’s happening exactly?

A TorrentFreak source (who tells us he’s been working in the BluRay/DCP authoring business for the last 10 years) was kind enough to give us two opinions, one aimed at the techies and another at us mere mortals.

“In technical terms, it appears [Amazon has] increased the CRF [Constant Rate Factor] value they use when encoding for both the HEVC [H265] and H264 streams. Previously, their H264 streams were using CRF 18 and a max bitrate of 15Mbit/s, which usually resulted in file sizes of roughly 3GB, or around 10Mbit/s. Similarly with their HEVC streams, they were using CRF 20 and resulting in streams which were around the same size,” he explained.

“In the past week, the H264 streams have decreased by up to 50% for some streams. While there are no longer any x264 headers embedded in the H264 streams, the HEVC streams still retain those headers and the CRF value used has been increased, so it does appear this change has been done on purpose.”

In layman’s terms, our source believes that Amazon had previously been using an encoding profile that was “right on the edge of relatively good quality” which kept bitrates relatively low but high enough to ensure no perceivable loss of quality.

“H264 streams encoded with CRF 18 could provide an acceptable compromise between quality and file size, where the loss of detail is often negligible when watched at regular viewing distances, at a desk, or in a lounge room on a larger TV,” he explained.

“Recently, it appears these values have been intentionally changed in order to lower the bitrate and file sizes for reasons unknown. As a result, the quality of some streams has been reduced by up to 50% of their previous values. This has introduced a visual loss of quality, comparable to that of viewing something in standard definition versus high definition.”

With the situation failing to improve during the week, by the time piracy group DEFLATE released S03E14 of Supergirl on Tuesday their original criticism had transformed into flat-out insults.

“These are only being done in H265 because Amazon have shit the bed, and it’s a choice between a turd sandwich and a giant douche,” they wrote, offering these images as illustrative of the problem and these indicating what should be achievable.

With DEFLATE advising customers to start complaining to Amazon, the memes have already begun, with unfavorable references to now-defunct group YIFY (which was often chastized for its low quality rips) and even a spin on one of the most well known anti-piracy campaigns.

You wouldn’t download stream….

TorrentFreak contacted Amazon Prime for comment on both the recent changes and growing customer complaints but at the time of publication we were yet to receive a response.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and more. We also have VPN reviews, discounts, offers and coupons.

AIY Projects 2: Google’s AIY Projects Kits get an upgrade

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/google-aiy-projects-2/

After the outstanding success of their AIY Projects Voice and Vision Kits, Google has announced the release of upgraded kits, complete with Raspberry Pi Zero WH, Camera Module, and preloaded SD card.

Google AIY Projects Vision Kit 2 Raspberry Pi

Google’s AIY Projects Kits

Google launched the AIY Projects Voice Kit last year, first as a cover gift with The MagPi magazine and later as a standalone product.

Makers needed to provide their own Raspberry Pi for the original kit. The new kits include everything you need, from Pi to SD card.

Within a DIY cardboard box, makers were able to assemble their own voice-activated AI assistant akin to the Amazon Alexa, Apple’s Siri, and Google’s own Google Home Assistant. The Voice Kit was an instant hit that spurred no end of maker videos and tutorials, including our own free tutorial for controlling a robot using voice commands.

Later in the year, the team followed up the success of the Voice Kit with the AIY Projects Vision Kit — the same cardboard box hosting a camera perfect for some pretty nifty image recognition projects.

For more on the AIY Voice Kit, here’s our release video hosted by the rather delightful Rob Zwetsloot.

AIY Projects adds natural human interaction to your Raspberry Pi

Check out the exclusive Google AIY Projects Kit that comes free with The MagPi 57! Grab yourself a copy in stores or online now: http://magpi.cc/2pI6IiQ This first AIY Projects kit taps into the Google Assistant SDK and Cloud Speech API using the AIY Projects Voice HAT (Hardware Accessory on Top) board, stereo microphone, and speaker (included free with the magazine).

AIY Projects 2

So what’s new with version 2 of the AIY Projects Voice Kit? The kit now includes the recently released Raspberry Pi Zero WH, our Zero W with added pre-soldered header pins for instant digital making accessibility. Purchasers of the kits will also get a micro SD card with preloaded OS to help them get started without having to set the card up themselves.

Google AIY Projects Vision Kit 2 Raspberry Pi

Everything you need to build your own Raspberry Pi-powered Google voice assistant

In the newly upgraded AIY Projects Vision Kit v1.2, makers are also treated to an official Raspberry Pi Camera Module v2, the latest model of our add-on camera.

Google AIY Projects Vision Kit 2 Raspberry Pi

“Everything you need to get started is right there in the box,” explains Billy Rutledge, Google’s Director of AIY Projects. “We knew from our research that even though makers are interested in AI, many felt that adding it to their projects was too difficult or required expensive hardware.”

Google AIY Projects Vision Kit 2 Raspberry Pi
Google AIY Projects Vision Kit 2 Raspberry Pi
Google AIY Projects Vision Kit 2 Raspberry Pi

Google is also hard at work producing AIY Projects companion apps for Android, iOS, and Chrome. The Android app is available now to coincide with the launch of the upgraded kits, with the other two due for release soon. The app supports wireless setup of the AIY Kit, though avid coders will still be able to hack theirs to better suit their projects.

Google has also updated the AIY Projects website with an AIY Models section highlighting a range of neural network projects for the kits.

Get your kit

The updated Voice and Vision Kits were announced last night, and in the US they are available now from Target. UK-based makers should be able to get their hands on them this summer — keep an eye on our social channels for updates and links.

The post AIY Projects 2: Google’s AIY Projects Kits get an upgrade appeared first on Raspberry Pi.

Amazon S3 Update: New Storage Class and General Availability of S3 Select

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/amazon-s3-update-new-storage-class-general-availability-of-s3-select/

I’ve got two big pieces of news for anyone who stores and retrieves data in Amazon Simple Storage Service (S3):

New S3 One Zone-IA Storage Class – This new storage class is 20% less expensive than the existing Standard-IA storage class. It is designed to be used to store data that does not need the extra level of protection provided by geographic redundancy.

General Availability of S3 Select – This unique retrieval option lets you retrieve subsets of data from S3 objects using simple SQL expressions, with the possibility for a 400% performance improvement in the process.

Let’s take a look at both!

S3 One Zone-IA (Infrequent Access) Storage Class
This new storage class stores data in a single AWS Availability Zone and is designed to provide eleven 9’s (99.99999999%) of data durability, just like the other S3 storage classes. Unlike those other classes, it is not designed to be resilient to the physical loss of an AZ due to major event such as an earthquake or a flood, and data could be lost in the unlikely event that an AZ is destroyed. S3 One Zone-IA storage gives you a lower cost option for secondary backups of on-premises data and for data that can be easily re-created. You can also use it as the target of S3 Cross-Region Replication from another AWS region.

You can specify the use of S3 One Zone-IA storage when you upload a new object to S3:

You can also make use of it as part of an S3 lifecycle rule:

You can set up a lifecycle rule that moves previous versions of an object to S3 One Zone-IA after 30 or more days:

And you can modify the storage class of an existing object:

You can also manage storage classes using the S3 API, CLI, and CloudFormation templates.

The S3 One Zone-IA storage class can be used in all public AWS regions. As I noted earlier, pricing is 20% lower than for the S3 Standard-IA storage class (see the S3 Pricing page for more info). There’s a 30 day minimum retention period, and a 128 KB minimum object size.

General Availability of S3 Select
Randall wrote a detailed introduction to S3 Select last year and showed you how you can use it to retrieve selected data from within S3 objects. During the preview we added support for server-side encryption and the ability to run queries from the S3 Console.

I used a CSV file of airport codes to exercise the new console functionality:

This file contains listings for over 9100 airports, so it makes for useful test data but it definitely does not test the limits of S3 Select in any way. I select the file, open the More menu, and choose Select from:

The console sets the file format and compression according to the file name and the encryption status. I set delimiter and click Show file preview to verify that my settings are correct. Then I click Next to proceed:

I type SQL expressions in the SQL editor and click Run SQL to issue the query:

Or:

I can also issue queries from the AWS SDKs. I initiate the select operation:

s3 = boto3.client('s3', region_name='us-west-2')

r = s3.select_object_content(
        Bucket='jbarr-us-west-2',
        Key='sample-data/airportCodes.csv',
        ExpressionType='SQL',
        Expression="select * from s3object s where s.\"Country (Name)\" like '%United States%'",
        InputSerialization = {'CSV': {"FileHeaderInfo": "Use"}},
        OutputSerialization = {'CSV': {}},
)

And then I process the stream of results:

for event in r['Payload']:
    if 'Records' in event:
        records = event['Records']['Payload'].decode('utf-8')
        print(records)
    elif 'Stats' in event:
        statsDetails = event['Stats']['Details']
        print("Stats details bytesScanned: ")
        print(statsDetails['BytesScanned'])
        print("Stats details bytesProcessed: ")
        print(statsDetails['BytesProcessed'])

S3 Select is available in all public regions and you can start using it today. Pricing is based on the amount of data scanned and the amount of data returned.

Jeff;

Raspberry Pi aboard Pino, the smart sailboat

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/pino-smart-sailing-boat/

As they sail aboard their floating game design studio Pino, Rekka Bellum and Devine Lu Linvega are starting to explore the use of Raspberry Pis. As part of an experimental development tool and a weather station, Pis are now aiding them on their nautical adventures!

Mar 2018: A Smart Sailboat

Pino is on its way to becoming a smart sailboat! Raspberry Pi is the ideal device for sailors, we hope to make many more projects with it. Also the projects continue still, but we have windows now yay!

Barometer

Using a haul of Pimoroni tech including the Enviro pHat, Scroll pHat HD and Mini Black HAT Hack3r, Rekka and Devine have been experimenting with using a Raspberry Pi Zero as an onboard barometer for their sailboat. On their Hundred Rabbits YouTube channel and website, the pair has documented their experimental setups. They have also built another Raspberry Pi rig for distraction-free work and development.

Hundred Rabbits Pino onboard Raspberry Pi workstation and barometer

The official Raspberry Pi 7″ touch display, a Raspberry Pi 3B+, a Pimorni Blinkt, and a Poker II Keyboard make up Pino‘s experimental development station.

“The Pi computer is currently used only as an experimental development tool aboard Pino, but could readily be turned into a complete development platform, would our principal computers fail.” they explain, before going into the build process for the Raspberry Pi–powered barometer.

Hundred Rabbits Pino onboard Raspberry Pi workstation and barometer

The use of solderless headers make this weather station an ideal build wherever space and tools are limited.

The barometer uses the sensor power of the Pimoroni Enviro HAT to measure atmospheric pressure, and a Raspberry Pi Zero displays this data on the Scroll pHAT HD. It thus advises the two travellers of oncoming storms. By taking advantage of the solderless header provided by the Sheffield-based pirates, the Hundred Rabbits team was able to put the device together with relative ease. They provide all information for the build here.

Hundred Rabbits Pino onboard Raspberry Pi workstation and barometer

All aboard Pino

If you’d like to follow the journey of Rekka Bellum and Devine Lu Linvega as they continue to travel the oceans aboard Pino, you can follow them on YouTube or Twitter, and via their website.

We are Hundred Rabbits

This is us, this what we do, and these are our intentions! We live, and work from our sailboat Pino. Traveling helps us stay creative, and we feed what we see back into our work. We make games, art, books and music under the studio name ‘Hundred Rabbits.’

 

The post Raspberry Pi aboard Pino, the smart sailboat appeared first on Raspberry Pi.

Performing Unit Testing in an AWS CodeStar Project

Post Syndicated from Jerry Mathen Jacob original https://aws.amazon.com/blogs/devops/performing-unit-testing-in-an-aws-codestar-project/

In this blog post, I will show how you can perform unit testing as a part of your AWS CodeStar project. AWS CodeStar helps you quickly develop, build, and deploy applications on AWS. With AWS CodeStar, you can set up your continuous delivery (CD) toolchain and manage your software development from one place.

Because unit testing tests individual units of application code, it is helpful for quickly identifying and isolating issues. As a part of an automated CI/CD process, it can also be used to prevent bad code from being deployed into production.

Many of the AWS CodeStar project templates come preconfigured with a unit testing framework so that you can start deploying your code with more confidence. The unit testing is configured to run in the provided build stage so that, if the unit tests do not pass, the code is not deployed. For a list of AWS CodeStar project templates that include unit testing, see AWS CodeStar Project Templates in the AWS CodeStar User Guide.

The scenario

As a big fan of superhero movies, I decided to list my favorites and ask my friends to vote on theirs by using a WebService endpoint I created. The example I use is a Python web service running on AWS Lambda with AWS CodeCommit as the code repository. CodeCommit is a fully managed source control system that hosts Git repositories and works with all Git-based tools.

Here’s how you can create the WebService endpoint:

Sign in to the AWS CodeStar console. Choose Start a project, which will take you to the list of project templates.

create project

For code edits I will choose AWS Cloud9, which is a cloud-based integrated development environment (IDE) that you use to write, run, and debug code.

choose cloud9

Here are the other tasks required by my scenario:

  • Create a database table where the votes can be stored and retrieved as needed.
  • Update the logic in the Lambda function that was created for posting and getting the votes.
  • Update the unit tests (of course!) to verify that the logic works as expected.

For a database table, I’ve chosen Amazon DynamoDB, which offers a fast and flexible NoSQL database.

Getting set up on AWS Cloud9

From the AWS CodeStar console, go to the AWS Cloud9 console, which should take you to your project code. I will open up a terminal at the top-level folder under which I will set up my environment and required libraries.

Use the following command to set the PYTHONPATH environment variable on the terminal.

export PYTHONPATH=/home/ec2-user/environment/vote-your-movie

You should now be able to use the following command to execute the unit tests in your project.

python -m unittest discover vote-your-movie/tests

cloud9 setup

Start coding

Now that you have set up your local environment and have a copy of your code, add a DynamoDB table to the project by defining it through a template file. Open template.yml, which is the Serverless Application Model (SAM) template file. This template extends AWS CloudFormation to provide a simplified way of defining the Amazon API Gateway APIs, AWS Lambda functions, and Amazon DynamoDB tables required by your serverless application.

AWSTemplateFormatVersion: 2010-09-09
Transform:
- AWS::Serverless-2016-10-31
- AWS::CodeStar

Parameters:
  ProjectId:
    Type: String
    Description: CodeStar projectId used to associate new resources to team members

Resources:
  # The DB table to store the votes.
  MovieVoteTable:
    Type: AWS::Serverless::SimpleTable
    Properties:
      PrimaryKey:
        # Name of the "Candidate" is the partition key of the table.
        Name: Candidate
        Type: String
  # Creating a new lambda function for retrieving and storing votes.
  MovieVoteLambda:
    Type: AWS::Serverless::Function
    Properties:
      Handler: index.handler
      Runtime: python3.6
      Environment:
        # Setting environment variables for your lambda function.
        Variables:
          TABLE_NAME: !Ref "MovieVoteTable"
          TABLE_REGION: !Ref "AWS::Region"
      Role:
        Fn::ImportValue:
          !Join ['-', [!Ref 'ProjectId', !Ref 'AWS::Region', 'LambdaTrustRole']]
      Events:
        GetEvent:
          Type: Api
          Properties:
            Path: /
            Method: get
        PostEvent:
          Type: Api
          Properties:
            Path: /
            Method: post

We’ll use Python’s boto3 library to connect to AWS services. And we’ll use Python’s mock library to mock AWS service calls for our unit tests.
Use the following command to install these libraries:

pip install --upgrade boto3 mock -t .

install dependencies

Add these libraries to the buildspec.yml, which is the YAML file that is required for CodeBuild to execute.

version: 0.2

phases:
  install:
    commands:

      # Upgrade AWS CLI to the latest version
      - pip install --upgrade awscli boto3 mock

  pre_build:
    commands:

      # Discover and run unit tests in the 'tests' directory. For more information, see <https://docs.python.org/3/library/unittest.html#test-discovery>
      - python -m unittest discover tests

  build:
    commands:

      # Use AWS SAM to package the application by using AWS CloudFormation
      - aws cloudformation package --template template.yml --s3-bucket $S3_BUCKET --output-template template-export.yml

artifacts:
  type: zip
  files:
    - template-export.yml

Open the index.py where we can write the simple voting logic for our Lambda function.

import json
import datetime
import boto3
import os

table_name = os.environ['TABLE_NAME']
table_region = os.environ['TABLE_REGION']

VOTES_TABLE = boto3.resource('dynamodb', region_name=table_region).Table(table_name)
CANDIDATES = {"A": "Black Panther", "B": "Captain America: Civil War", "C": "Guardians of the Galaxy", "D": "Thor: Ragnarok"}

def handler(event, context):
    if event['httpMethod'] == 'GET':
        resp = VOTES_TABLE.scan()
        return {'statusCode': 200,
                'body': json.dumps({item['Candidate']: int(item['Votes']) for item in resp['Items']}),
                'headers': {'Content-Type': 'application/json'}}

    elif event['httpMethod'] == 'POST':
        try:
            body = json.loads(event['body'])
        except:
            return {'statusCode': 400,
                    'body': 'Invalid input! Expecting a JSON.',
                    'headers': {'Content-Type': 'application/json'}}
        if 'candidate' not in body:
            return {'statusCode': 400,
                    'body': 'Missing "candidate" in request.',
                    'headers': {'Content-Type': 'application/json'}}
        if body['candidate'] not in CANDIDATES.keys():
            return {'statusCode': 400,
                    'body': 'You must vote for one of the following candidates - {}.'.format(get_allowed_candidates()),
                    'headers': {'Content-Type': 'application/json'}}

        resp = VOTES_TABLE.update_item(
            Key={'Candidate': CANDIDATES.get(body['candidate'])},
            UpdateExpression='ADD Votes :incr',
            ExpressionAttributeValues={':incr': 1},
            ReturnValues='ALL_NEW'
        )
        return {'statusCode': 200,
                'body': "{} now has {} votes".format(CANDIDATES.get(body['candidate']), resp['Attributes']['Votes']),
                'headers': {'Content-Type': 'application/json'}}

def get_allowed_candidates():
    l = []
    for key in CANDIDATES:
        l.append("'{}' for '{}'".format(key, CANDIDATES.get(key)))
    return ", ".join(l)

What our code basically does is take in the HTTPS request call as an event. If it is an HTTP GET request, it gets the votes result from the table. If it is an HTTP POST request, it sets a vote for the candidate of choice. We also validate the inputs in the POST request to filter out requests that seem malicious. That way, only valid calls are stored in the table.

In the example code provided, we use a CANDIDATES variable to store our candidates, but you can store the candidates in a JSON file and use Python’s json library instead.

Let’s update the tests now. Under the tests folder, open the test_handler.py and modify it to verify the logic.

import os
# Some mock environment variables that would be used by the mock for DynamoDB
os.environ['TABLE_NAME'] = "MockHelloWorldTable"
os.environ['TABLE_REGION'] = "us-east-1"

# The library containing our logic.
import index

# Boto3's core library
import botocore
# For handling JSON.
import json
# Unit test library
import unittest
## Getting StringIO based on your setup.
try:
    from StringIO import StringIO
except ImportError:
    from io import StringIO
## Python mock library
from mock import patch, call
from decimal import Decimal

@patch('botocore.client.BaseClient._make_api_call')
class TestCandidateVotes(unittest.TestCase):

    ## Test the HTTP GET request flow. 
    ## We expect to get back a successful response with results of votes from the table (mocked).
    def test_get_votes(self, boto_mock):
        # Input event to our method to test.
        expected_event = {'httpMethod': 'GET'}
        # The mocked values in our DynamoDB table.
        items_in_db = [{'Candidate': 'Black Panther', 'Votes': Decimal('3')},
                        {'Candidate': 'Captain America: Civil War', 'Votes': Decimal('8')},
                        {'Candidate': 'Guardians of the Galaxy', 'Votes': Decimal('8')},
                        {'Candidate': "Thor: Ragnarok", 'Votes': Decimal('1')}
                    ]
        # The mocked DynamoDB response.
        expected_ddb_response = {'Items': items_in_db}
        # The mocked response we expect back by calling DynamoDB through boto.
        response_body = botocore.response.StreamingBody(StringIO(str(expected_ddb_response)),
                                                        len(str(expected_ddb_response)))
        # Setting the expected value in the mock.
        boto_mock.side_effect = [expected_ddb_response]
        # Expecting that there would be a call to DynamoDB Scan function during execution with these parameters.
        expected_calls = [call('Scan', {'TableName': os.environ['TABLE_NAME']})]

        # Call the function to test.
        result = index.handler(expected_event, {})

        # Run unit test assertions to verify the expected calls to mock have occurred and verify the response.
        assert result.get('headers').get('Content-Type') == 'application/json'
        assert result.get('statusCode') == 200

        result_body = json.loads(result.get('body'))
        # Verifying that the results match to that from the table.
        assert len(result_body) == len(items_in_db)
        for i in range(len(result_body)):
            assert result_body.get(items_in_db[i].get("Candidate")) == int(items_in_db[i].get("Votes"))

        assert boto_mock.call_count == 1
        boto_mock.assert_has_calls(expected_calls)

    ## Test the HTTP POST request flow that places a vote for a selected candidate.
    ## We expect to get back a successful response with a confirmation message.
    def test_place_valid_candidate_vote(self, boto_mock):
        # Input event to our method to test.
        expected_event = {'httpMethod': 'POST', 'body': "{\"candidate\": \"D\"}"}
        # The mocked response in our DynamoDB table.
        expected_ddb_response = {'Attributes': {'Candidate': "Thor: Ragnarok", 'Votes': Decimal('2')}}
        # The mocked response we expect back by calling DynamoDB through boto.
        response_body = botocore.response.StreamingBody(StringIO(str(expected_ddb_response)),
                                                        len(str(expected_ddb_response)))
        # Setting the expected value in the mock.
        boto_mock.side_effect = [expected_ddb_response]
        # Expecting that there would be a call to DynamoDB UpdateItem function during execution with these parameters.
        expected_calls = [call('UpdateItem', {
                                                'TableName': os.environ['TABLE_NAME'], 
                                                'Key': {'Candidate': 'Thor: Ragnarok'},
                                                'UpdateExpression': 'ADD Votes :incr',
                                                'ExpressionAttributeValues': {':incr': 1},
                                                'ReturnValues': 'ALL_NEW'
                                            })]
        # Call the function to test.
        result = index.handler(expected_event, {})
        # Run unit test assertions to verify the expected calls to mock have occurred and verify the response.
        assert result.get('headers').get('Content-Type') == 'application/json'
        assert result.get('statusCode') == 200

        assert result.get('body') == "{} now has {} votes".format(
            expected_ddb_response['Attributes']['Candidate'], 
            expected_ddb_response['Attributes']['Votes'])

        assert boto_mock.call_count == 1
        boto_mock.assert_has_calls(expected_calls)

    ## Test the HTTP POST request flow that places a vote for an non-existant candidate.
    ## We expect to get back a successful response with a confirmation message.
    def test_place_invalid_candidate_vote(self, boto_mock):
        # Input event to our method to test.
        # The valid IDs for the candidates are A, B, C, and D
        expected_event = {'httpMethod': 'POST', 'body': "{\"candidate\": \"E\"}"}
        # Call the function to test.
        result = index.handler(expected_event, {})
        # Run unit test assertions to verify the expected calls to mock have occurred and verify the response.
        assert result.get('headers').get('Content-Type') == 'application/json'
        assert result.get('statusCode') == 400
        assert result.get('body') == 'You must vote for one of the following candidates - {}.'.format(index.get_allowed_candidates())

    ## Test the HTTP POST request flow that places a vote for a selected candidate but associated with an invalid key in the POST body.
    ## We expect to get back a failed (400) response with an appropriate error message.
    def test_place_invalid_data_vote(self, boto_mock):
        # Input event to our method to test.
        # "name" is not the expected input key.
        expected_event = {'httpMethod': 'POST', 'body': "{\"name\": \"D\"}"}
        # Call the function to test.
        result = index.handler(expected_event, {})
        # Run unit test assertions to verify the expected calls to mock have occurred and verify the response.
        assert result.get('headers').get('Content-Type') == 'application/json'
        assert result.get('statusCode') == 400
        assert result.get('body') == 'Missing "candidate" in request.'

    ## Test the HTTP POST request flow that places a vote for a selected candidate but not as a JSON string which the body of the request expects.
    ## We expect to get back a failed (400) response with an appropriate error message.
    def test_place_malformed_json_vote(self, boto_mock):
        # Input event to our method to test.
        # "body" receives a string rather than a JSON string.
        expected_event = {'httpMethod': 'POST', 'body': "Thor: Ragnarok"}
        # Call the function to test.
        result = index.handler(expected_event, {})
        # Run unit test assertions to verify the expected calls to mock have occurred and verify the response.
        assert result.get('headers').get('Content-Type') == 'application/json'
        assert result.get('statusCode') == 400
        assert result.get('body') == 'Invalid input! Expecting a JSON.'

if __name__ == '__main__':
    unittest.main()

I am keeping the code samples well commented so that it’s clear what each unit test accomplishes. It tests the success conditions and the failure paths that are handled in the logic.

In my unit tests I use the patch decorator (@patch) in the mock library. @patch helps mock the function you want to call (in this case, the botocore library’s _make_api_call function in the BaseClient class).
Before we commit our changes, let’s run the tests locally. On the terminal, run the tests again. If all the unit tests pass, you should expect to see a result like this:

You:~/environment $ python -m unittest discover vote-your-movie/tests
.....
----------------------------------------------------------------------
Ran 5 tests in 0.003s

OK
You:~/environment $

Upload to AWS

Now that the tests have passed, it’s time to commit and push the code to source repository!

Add your changes

From the terminal, go to the project’s folder and use the following command to verify the changes you are about to push.

git status

To add the modified files only, use the following command:

git add -u

Commit your changes

To commit the changes (with a message), use the following command:

git commit -m "Logic and tests for the voting webservice."

Push your changes to AWS CodeCommit

To push your committed changes to CodeCommit, use the following command:

git push

In the AWS CodeStar console, you can see your changes flowing through the pipeline and being deployed. There are also links in the AWS CodeStar console that take you to this project’s build runs so you can see your tests running on AWS CodeBuild. The latest link under the Build Runs table takes you to the logs.

unit tests at codebuild

After the deployment is complete, AWS CodeStar should now display the AWS Lambda function and DynamoDB table created and synced with this project. The Project link in the AWS CodeStar project’s navigation bar displays the AWS resources linked to this project.

codestar resources

Because this is a new database table, there should be no data in it. So, let’s put in some votes. You can download Postman to test your application endpoint for POST and GET calls. The endpoint you want to test is the URL displayed under Application endpoints in the AWS CodeStar console.

Now let’s open Postman and look at the results. Let’s create some votes through POST requests. Based on this example, a valid vote has a value of A, B, C, or D.
Here’s what a successful POST request looks like:

POST success

Here’s what it looks like if I use some value other than A, B, C, or D:

 

POST Fail

Now I am going to use a GET request to fetch the results of the votes from the database.

GET success

And that’s it! You have now created a simple voting web service using AWS Lambda, Amazon API Gateway, and DynamoDB and used unit tests to verify your logic so that you ship good code.
Happy coding!

Malcolm: Usability improvements in GCC 8

Post Syndicated from jake original https://lwn.net/Articles/749450/rss

Over on the Red Hat Developer Program blog, David Malcolm describes a number of usability improvements that he has made for the upcoming GCC 8 release. Malcolm has made a number of the C/C++ compiler error messages much more helpful, including adding hints for integrated development environments (IDEs) and other tools to suggest fixes for syntax and other kinds of errors. “[…] the code is fine, but, as is common with fragments of code seen on random websites, it’s missing #include directives. If you simply copy this into a new file and try to compile it as-is, it fails.

This can be frustrating when copying and pasting examples – off the top of your head, which header files are needed by the above? – so for gcc 8 I’ve added hints telling you which header files are missing (for the most common cases).” He has various examples showing what the new error messages and hints look like in the blog post.

Raspberry Pi 3 Model B+ on sale now at $35

Post Syndicated from Eben Upton original https://www.raspberrypi.org/blog/raspberry-pi-3-model-bplus-sale-now-35/

Here’s a long post. We think you’ll find it interesting. If you don’t have time to read it all, we recommend you watch this video, which will fill you in with everything you need, and then head straight to the product page to fill yer boots. (We recommend the video anyway, even if you do have time for a long read. ‘Cos it’s fab.)

A BRAND-NEW PI FOR π DAY

Raspberry Pi 3 Model B+ is now on sale now for $35, featuring: – A 1.4GHz 64-bit quad-core ARM Cortex-A53 CPU – Dual-band 802.11ac wireless LAN and Bluetooth 4.2 – Faster Ethernet (Gigabit Ethernet over USB 2.0) – Power-over-Ethernet support (with separate PoE HAT) – Improved PXE network and USB mass-storage booting – Improved thermal management Alongside a 200MHz increase in peak CPU clock frequency, we have roughly three times the wired and wireless network throughput, and the ability to sustain high performance for much longer periods.

If you’ve been a Raspberry Pi watcher for a while now, you’ll have a bit of a feel for how we update our products. Just over two years ago, we released Raspberry Pi 3 Model B. This was our first 64-bit product, and our first product to feature integrated wireless connectivity. Since then, we’ve sold over nine million Raspberry Pi 3 units (we’ve sold 19 million Raspberry Pis in total), which have been put to work in schools, homes, offices and factories all over the globe.

Those Raspberry Pi watchers will know that we have a history of releasing improved versions of our products a couple of years into their lives. The first example was Raspberry Pi 1 Model B+, which added two additional USB ports, introduced our current form factor, and rolled up a variety of other feedback from the community. Raspberry Pi 2 didn’t get this treatment, of course, as it was superseded after only one year; but it feels like it’s high time that Raspberry Pi 3 received the “plus” treatment.

So, without further ado, Raspberry Pi 3 Model B+ is now on sale for $35 (the same price as the existing Raspberry Pi 3 Model B), featuring:

  • A 1.4GHz 64-bit quad-core ARM Cortex-A53 CPU
  • Dual-band 802.11ac wireless LAN and Bluetooth 4.2
  • Faster Ethernet (Gigabit Ethernet over USB 2.0)
  • Power-over-Ethernet support (with separate PoE HAT)
  • Improved PXE network and USB mass-storage booting
  • Improved thermal management

Alongside a 200MHz increase in peak CPU clock frequency, we have roughly three times the wired and wireless network throughput, and the ability to sustain high performance for much longer periods.

Behold the shiny

Raspberry Pi 3B+ is available to buy today from our network of Approved Resellers.

New features, new chips

Roger Thornton did the design work on this revision of the Raspberry Pi. Here, he and I have a chat about what’s new.

Introducing the Raspberry Pi 3 Model B+

Raspberry Pi 3 Model B+ is now on sale now for $35, featuring: – A 1.4GHz 64-bit quad-core ARM Cortex-A53 CPU – Dual-band 802.11ac wireless LAN and Bluetooth 4.2 – Faster Ethernet (Gigabit Ethernet over USB 2.0) – Power-over-Ethernet support (with separate PoE HAT) – Improved PXE network and USB mass-storage booting – Improved thermal management Alongside a 200MHz increase in peak CPU clock frequency, we have roughly three times the wired and wireless network throughput, and the ability to sustain high performance for much longer periods.

The new product is built around BCM2837B0, an updated version of the 64-bit Broadcom application processor used in Raspberry Pi 3B, which incorporates power integrity optimisations, and a heat spreader (that’s the shiny metal bit you can see in the photos). Together these allow us to reach higher clock frequencies (or to run at lower voltages to reduce power consumption), and to more accurately monitor and control the temperature of the chip.

Dual-band wireless LAN and Bluetooth are provided by the Cypress CYW43455 “combo” chip, connected to a Proant PCB antenna similar to the one used on Raspberry Pi Zero W. Compared to its predecessor, Raspberry Pi 3B+ delivers somewhat better performance in the 2.4GHz band, and far better performance in the 5GHz band, as demonstrated by these iperf results from LibreELEC developer Milhouse.

Tx bandwidth (Mb/s) Rx bandwidth (Mb/s)
Raspberry Pi 3B 35.7 35.6
Raspberry Pi 3B+ (2.4GHz) 46.7 46.3
Raspberry Pi 3B+ (5GHz) 102 102

The wireless circuitry is encapsulated under a metal shield, rather fetchingly embossed with our logo. This has allowed us to certify the entire board as a radio module under FCC rules, which in turn will significantly reduce the cost of conformance testing Raspberry Pi-based products.

We’ll be teaching metalwork next.

Previous Raspberry Pi devices have used the LAN951x family of chips, which combine a USB hub and 10/100 Ethernet controller. For Raspberry Pi 3B+, Microchip have supported us with an upgraded version, LAN7515, which supports Gigabit Ethernet. While the USB 2.0 connection to the application processor limits the available bandwidth, we still see roughly a threefold increase in throughput compared to Raspberry Pi 3B. Again, here are some typical iperf results.

Tx bandwidth (Mb/s) Rx bandwidth (Mb/s)
Raspberry Pi 3B 94.1 95.5
Raspberry Pi 3B+ 315 315

We use a magjack that supports Power over Ethernet (PoE), and bring the relevant signals to a new 4-pin header. We will shortly launch a PoE HAT which can generate the 5V necessary to power the Raspberry Pi from the 48V PoE supply.

There… are… four… pins!

Coming soon to a Raspberry Pi 3B+ near you

Raspberry Pi 3B was our first product to support PXE Ethernet boot. Testing it in the wild shook out a number of compatibility issues with particular switches and traffic environments. Gordon has rolled up fixes for all known issues into the BCM2837B0 boot ROM, and PXE boot is now enabled by default.

Clocking, voltages and thermals

The improved power integrity of the BCM2837B0 package, and the improved regulation accuracy of our new MaxLinear MxL7704 power management IC, have allowed us to tune our clocking and voltage rules for both better peak performance and longer-duration sustained performance.

Below 70°C, we use the improvements to increase the core frequency to 1.4GHz. Above 70°C, we drop to 1.2GHz, and use the improvements to decrease the core voltage, increasing the period of time before we reach our 80°C thermal throttle; the reduction in power consumption is such that many use cases will never reach the throttle. Like a modern smartphone, we treat the thermal mass of the device as a resource, to be spent carefully with the goal of optimising user experience.

This graph, courtesy of Gareth Halfacree, demonstrates that Raspberry Pi 3B+ runs faster and at a lower temperature for the duration of an eight‑minute quad‑core Sysbench CPU test.

Note that Raspberry Pi 3B+ does consume substantially more power than its predecessor. We strongly encourage you to use a high-quality 2.5A power supply, such as the official Raspberry Pi Universal Power Supply.

FAQs

We’ll keep updating this list over the next couple of days, but here are a few to get you started.

Are you discontinuing earlier Raspberry Pi models?

No. We have a lot of industrial customers who will want to stick with the existing products for the time being. We’ll keep building these models for as long as there’s demand. Raspberry Pi 1B+, Raspberry Pi 2B, and Raspberry Pi 3B will continue to sell for $25, $35, and $35 respectively.

What about Model A+?

Raspberry Pi 1A+ continues to be the $20 entry-level “big” Raspberry Pi for the time being. We are considering the possibility of producing a Raspberry Pi 3A+ in due course.

What about the Compute Module?

CM1, CM3 and CM3L will continue to be available. We may offer versions of CM3 and CM3L with BCM2837B0 in due course, depending on customer demand.

Are you still using VideoCore?

Yes. VideoCore IV 3D is the only publicly-documented 3D graphics core for ARM‑based SoCs, and we want to make Raspberry Pi more open over time, not less.

Credits

A project like this requires a vast amount of focused work from a large team over an extended period. Particular credit is due to Roger Thornton, who designed the board and ran the exhaustive (and exhausting) RF compliance campaign, and to the team at the Sony UK Technology Centre in Pencoed, South Wales. A partial list of others who made major direct contributions to the BCM2837B0 chip program, CYW43455 integration, LAN7515 and MxL7704 developments, and Raspberry Pi 3B+ itself follows:

James Adams, David Armour, Jonathan Bell, Maria Blazquez, Jamie Brogan-Shaw, Mike Buffham, Rob Campling, Cindy Cao, Victor Carmon, KK Chan, Nick Chase, Nigel Cheetham, Scott Clark, Nigel Clift, Dominic Cobley, Peter Coyle, John Cronk, Di Dai, Kurt Dennis, David Doyle, Andrew Edwards, Phil Elwell, John Ferdinand, Doug Freegard, Ian Furlong, Shawn Guo, Philip Harrison, Jason Hicks, Stefan Ho, Andrew Hoare, Gordon Hollingworth, Tuomas Hollman, EikPei Hu, James Hughes, Andy Hulbert, Anand Jain, David John, Prasanna Kerekoppa, Shaik Labeeb, Trevor Latham, Steve Le, David Lee, David Lewsey, Sherman Li, Xizhe Li, Simon Long, Fu Luo Larson, Juan Martinez, Sandhya Menon, Ben Mercer, James Mills, Max Passell, Mark Perry, Eric Phiri, Ashwin Rao, Justin Rees, James Reilly, Matt Rowley, Akshaye Sama, Ian Saturley, Serge Schneider, Manuel Sedlmair, Shawn Shadburn, Veeresh Shivashimper, Graham Smith, Ben Stephens, Mike Stimson, Yuree Tchong, Stuart Thomson, John Wadsworth, Ian Watch, Sarah Williams, Jason Zhu.

If you’re not on this list and think you should be, please let me know, and accept my apologies.

The post Raspberry Pi 3 Model B+ on sale now at $35 appeared first on Raspberry Pi.

Serverless Dynamic Web Pages in AWS: Provisioned with CloudFormation

Post Syndicated from AWS Admin original https://aws.amazon.com/blogs/architecture/serverless-dynamic-web-pages-in-aws-provisioned-with-cloudformation/

***This blog is authored by Mike Okner of Monsanto, an AWS customer. It originally appeared on the Monsanto company blog. Minor edits were made to the original post.***

Recently, I was looking to create a status page app to monitor a few important internal services. I wanted this app to be as lightweight, reliable, and hassle-free as possible, so using a “serverless” architecture that doesn’t require any patching or other maintenance was quite appealing.

I also don’t deploy anything in a production AWS environment outside of some sort of template (usually CloudFormation) as a rule. I don’t want to have to come back to something I created ad hoc in the console after 6 months and try to recall exactly how I architected all of the resources. I’ll inevitably forget something and create more problems before solving the original one. So building the status page in a template was a requirement.

The Design
I settled on a design using two Lambda functions, both written in Python 3.6.

The first Lambda function makes requests out to a list of important services and writes their current status to a DynamoDB table. This function is executed once per minute via CloudWatch Event Rule.

The second Lambda function reads each service’s status & uptime information from DynamoDB and renders a Jinja template. This function is behind an API Gateway that has been configured to return text/html instead of its default application/json Content-Type.

The CloudFormation Template
AWS provides a Serverless Application Model template transformer to streamline the templating of Lambda + API Gateway designs, but it assumes (like everything else about the API Gateway) that you’re actually serving an API that returns JSON content. So, unfortunately, it won’t work for this use-case because we want to return HTML content. Instead, we’ll have to enumerate every resource like usual.

The Skeleton
We’ll be using YAML for the template in this example. I find it easier to read than JSON, but you can easily convert between the two with a converter if you disagree.

---
AWSTemplateFormatVersion: '2010-09-09'
Description: Serverless status page app
Resources:
  # [...Resources]

The Status-Checker Lambda Resource
This one is triggered on a schedule by CloudWatch, and looks like:

# Status Checker Lambda
CheckerLambda:
  Type: AWS::Lambda::Function
  Properties:
    Code: ./lambda.zip
    Environment:
      Variables:
        TABLE_NAME: !Ref DynamoTable
    Handler: checker.handler
    Role:
      Fn::GetAtt:
      - CheckerLambdaRole
      - Arn
    Runtime: python3.6
    Timeout: 45
CheckerLambdaRole:
  Type: AWS::IAM::Role
  Properties:
    ManagedPolicyArns:
    - arn:aws:iam::aws:policy/AmazonDynamoDBFullAccess
    - arn:aws:iam::aws:policy/service-role/AWSLambdaBasicExecutionRole
    AssumeRolePolicyDocument:
      Version: '2012-10-17'
      Statement:
      - Action:
        - sts:AssumeRole
        Effect: Allow
        Principal:
          Service:
          - lambda.amazonaws.com
CheckerLambdaTimer:
  Type: AWS::Events::Rule
  Properties:
    ScheduleExpression: rate(1 minute)
    Targets:
    - Id: CheckerLambdaTimerLambdaTarget
      Arn:
        Fn::GetAtt:
        - CheckerLambda
        - Arn
CheckerLambdaTimerPermission:
  Type: AWS::Lambda::Permission
  Properties:
    Action: lambda:invokeFunction
    FunctionName: !Ref CheckerLambda
    SourceArn:
      Fn::GetAtt:
      - CheckerLambdaTimer
      - Arn
    Principal: events.amazonaws.com

Let’s break that down a bit.

The CheckerLambda is the actual Lambda function. The Code section is a local path to a ZIP file containing the code and its dependencies. I’m using CloudFormation’s packaging feature to automatically push the deployable to S3.

The CheckerLambdaRole is the IAM role the Lambda will assume which grants it access to DynamoDB in addition to the usual Lambda logging permissions.

The CheckerLambdaTimer is the CloudWatch Events Rule that triggers the checker to run once per minute.

The CheckerLambdaTimerPermission grants CloudWatch the ability to invoke the checker Lambda function on its interval.

The Web Page Gateway
The API Gateway handles incoming requests for the web page, invokes the Lambda, and then returns the Lambda’s results as HTML content. Its template looks like:

# API Gateway for Web Page Lambda
PageGateway:
  Type: AWS::ApiGateway::RestApi
  Properties:
    Name: Service Checker Gateway
PageResource:
  Type: AWS::ApiGateway::Resource
  Properties:
    RestApiId: !Ref PageGateway
    ParentId:
      Fn::GetAtt:
      - PageGateway
      - RootResourceId
    PathPart: page
PageGatewayMethod:
  Type: AWS::ApiGateway::Method
  Properties:
    AuthorizationType: NONE
    HttpMethod: GET
    Integration:
      Type: AWS
      IntegrationHttpMethod: POST
      Uri:
        Fn::Sub: arn:aws:apigateway:${AWS::Region}:lambda:path/2015-03-31/functions/${WebRenderLambda.Arn}/invocations
      RequestTemplates:
        application/json: |
          {
              "method": "$context.httpMethod",
              "body" : $input.json('$'),
              "headers": {
                  #foreach($param in $input.params().header.keySet())
                  "$param": "$util.escapeJavaScript($input.params().header.get($param))"
                  #if($foreach.hasNext),#end
                  #end
              }
          }
      IntegrationResponses:
      - StatusCode: 200
        ResponseParameters:
          method.response.header.Content-Type: "'text/html'"
        ResponseTemplates:
          text/html: "$input.path('$')"
    ResourceId: !Ref PageResource
    RestApiId: !Ref PageGateway
    MethodResponses:
    - StatusCode: 200
      ResponseParameters:
        method.response.header.Content-Type: true
PageGatewayProdStage:
  Type: AWS::ApiGateway::Stage
  Properties:
    DeploymentId: !Ref PageGatewayDeployment
    RestApiId: !Ref PageGateway
    StageName: Prod
PageGatewayDeployment:
  Type: AWS::ApiGateway::Deployment
  DependsOn: PageGatewayMethod
  Properties:
    RestApiId: !Ref PageGateway
    Description: PageGateway deployment
    StageName: Stage

There’s a lot going on here, but the real meat is in the PageGatewayMethod section. There are a couple properties that deviate from the default which is why we couldn’t use the SAM transformer.

First, we’re passing request headers through to the Lambda in theRequestTemplates section. I’m doing this so I can validate incoming auth headers. The API Gateway can do some types of auth, but I found it easier to check auth myself in the Lambda function since the Gateway is designed to handle API calls and not browser requests.

Next, note that in the IntegrationResponses section we’re defining the Content-Type header to be ‘text/html’ (with single-quotes) and defining the ResponseTemplate to be $input.path(‘$’). This is what makes the request render as a HTML page in your browser instead of just raw text.

Due to the StageName and PathPart values in the other sections, your actual page will be accessible at https://someId.execute-api.region.amazonaws.com/Prod/page. I have the page behind an existing reverse-proxy and give it a saner URL for end-users. The reverse proxy also attaches the auth header I mentioned above. If that header isn’t present, the Lambda will render an error page instead so the proxy can’t be bypassed.

The Web Page Rendering Lambda
This Lambda is invoked by calls to the API Gateway and looks like:

# Web Page Lambda
WebRenderLambda:
  Type: AWS::Lambda::Function
  Properties:
    Code: ./lambda.zip
    Environment:
      Variables:
        TABLE_NAME: !Ref DynamoTable
    Handler: web.handler
    Role:
      Fn::GetAtt:
      - WebRenderLambdaRole
      - Arn
    Runtime: python3.6
    Timeout: 30
WebRenderLambdaRole:
  Type: AWS::IAM::Role
  Properties:
    ManagedPolicyArns:
    - arn:aws:iam::aws:policy/AmazonDynamoDBReadOnlyAccess
    - arn:aws:iam::aws:policy/service-role/AWSLambdaBasicExecutionRole
    AssumeRolePolicyDocument:
      Version: '2012-10-17'
      Statement:
      - Action:
        - sts:AssumeRole
        Effect: Allow
        Principal:
          Service:
          - lambda.amazonaws.com
WebRenderLambdaGatewayPermission:
  Type: AWS::Lambda::Permission
  Properties:
    FunctionName: !Ref WebRenderLambda
    Action: lambda:invokeFunction
    Principal: apigateway.amazonaws.com
    SourceArn:
      Fn::Sub:
      - arn:aws:execute-api:${AWS::Region}:${AWS::AccountId}:${__ApiId__}/*/*/*
      - __ApiId__: !Ref PageGateway

The WebRenderLambda and WebRenderLambdaRole should look familiar.

The WebRenderLambdaGatewayPermission is similar to the Status Checker’s CloudWatch permission, only this time it allows the API Gateway to invoke this Lambda.

The DynamoDB Table
This one is straightforward.

# DynamoDB table
DynamoTable:
  Type: AWS::DynamoDB::Table
  Properties:
    AttributeDefinitions:
    - AttributeName: name
      AttributeType: S
    ProvisionedThroughput:
      WriteCapacityUnits: 1
      ReadCapacityUnits: 1
    TableName: status-page-checker-results
    KeySchema:
    - KeyType: HASH
      AttributeName: name

The Deployment
We’ve made it this far defining every resource in a template that we can check in to version control, so we might as well script the deployment as well rather than manually manage the CloudFormation Stack via the AWS web console.

Since I’m using the packaging feature, I first run:

$ aws cloudformation package \
    --template-file template.yaml \
    --s3-bucket <some-bucket-name> \
    --output-template-file template-packaged.yaml
Uploading to 34cd6e82c5e8205f9b35e71afd9e1548 1922559 / 1922559.0 (100.00%) Successfully packaged artifacts and wrote output template to file template-packaged.yaml.

Then to deploy the template (whether new or modified), I run:

$ aws cloudformation deploy \
    --region '<aws-region>' \
    --template-file template-packaged.yaml \
    --stack-name '<some-name>' \
    --capabilities CAPABILITY_IAM
Waiting for changeset to be created.. Waiting for stack create/update to complete Successfully created/updated stack - <some-name>

And that’s it! You’ve just created a dynamic web page that will never require you to SSH anywhere, patch a server, recover from a disaster after Amazon terminates your unhealthy EC2, or any other number of pitfalls that are now the problem of some ops person at AWS. And you can reproduce deployments and make changes with confidence because everything is defined in the template and can be tracked in version control.

Using JWT For Sessions

Post Syndicated from Bozho original https://techblog.bozho.net/using-jwt-sessions/

The topic has been discussed many times, on hacker news, reddit, blogs. And the consensus is – DON’T USE JWT (for user sessions).

And I largely agree with the criticism of typical arguments for the JWT, the typical “but I can make it work…” explanations and the flaws of the JWT standard..

I won’t repeat everything here, so please go and read those articles. You can really shoot yourself in the foot with JWT, it’s complex to get to know it well and it has little benefits for most of the usecases. I guess for API calls it makes sense, especially if you reuse the same API in a single-page application and for your RESTful clients, but I’ll focus on the user session usecase.

Having all this criticism, I’ve gone against what the articles above recommend, and use JWT, navigating through their arguments and claiming I’m in a sweet spot. I can very well be wrong.

I store the user ID in a JWT token stored as a cookie. Not local storage, as that’s problematic. Not the whole state, as I don’t need that may lead to problems (pointed out in the linked articles). In fact, I don’t have any session state apart from the user data, which I think is a good practice.

What I want to avoid in my setup is sharing sessions across nodes. And this is a very compelling reason to not use the session mechanism of your web server/framework. No, you don’t need to have millions of users in order to need your application to run on more than one node. In fact, it should almost always run on (at least) two nodes, because nodes die and you don’t want downtime. Sticky sessions at the load balancer are a solution to that problem but you are just outsourcing the centralized session storage to the load balancer (and some load balancers might not support it). Shared session cache (e.g. memcached, elasticache, hazelcast) is also an option, and many web servers (at least in Java) support pluggable session replication mechanisms, but that introduces another component to the archtecture, another part of the stack to be supported and that can possibly break. It is not necessarily bad, but if there’s a simple way to avoid it, I’d go for it.

In order to avoid shared session storage, you need either the whole session state to be passed in the request/response cycle (as cookie, request parameter, header), or to receive a userId and load the user from the database or a cache. As we’ve learned, the former might be a bad choice. Despite that fact that frameworks like ASP.NET and JSF dump the whole state in the HTML of the page, it doesn’t intuitively sound good.

As for the latter – you may say “ok, if you are going to load the user from the database on every request this is going to be slow and if you use a cache, then why not use the cache for the sessions themselves?”. Well, the cache can be local. Remember we have just a few application nodes. Each node can have a local, in-memory cache for the currently active users. The fact that all nodes will have the same user loaded (after a few requests are routed to them by the load balancer in a round-robin fashion) is not important, as that cache is small. But you won’t have to take any care for replicating it across nodes, taking care of new nodes coming and going from the cluster, dealing with network issues between the nodes, etc. Each application node will be an island not caring about any other application node.

So here goes my first objection to the linked articles – just storing the user identifier in a JWT token is not pointless, as it saves you from session replication.

What about the criticism for the JWT standard and the security implications of its cryptography? Entirely correct, it’s easy to shoot yourself in the foot. That’s why I’m using JWT only with MAC, and only with a particular algorithm that I verify upon receiving the token, thus (allegedly) avoiding all the pitfalls. In all fairness, I’m willing to use the alternative proposed in one of the articles – PASETO – but it doesn’t have a Java library and it will take some time implementing one (might do in the future). To summarize – if there was another easy to use way for authenticated encryption of cookies, I’d use it.

So I’m basically using JWT in “PASETO-mode”, with only one operation and only one algorithm. And that should be fine as a general approach – the article doesn’t criticize the idea of having a user identifier in a token (and a stateless application node), it criticizes the complexity and vulnerabilities of the standard. This is sort of my second objection – “Don’t use JWT” is widely understood to mean “Don’t use tokens”, where that is not the case.

Have I introduced some vulnerability in my strive for architectural simplicity and lack of shared state? I hope not.

The post Using JWT For Sessions appeared first on Bozho's tech blog.

Grafana v5.0 Released

Post Syndicated from Blogs on Grafana Labs Blog original https://grafana.com/blog/2018/03/01/grafana-v5.0-released/

v5.0 Stable Released

We have been working on Grafana v5 for most of 2017 and it’s finally ready! This release is important
in a different way than previous releases as main focus has been on improving the core Grafana features and attributes.
That means vastly improved UX and page design, easier and more flexible dashboard building enabled by a
new grid layout system. Better support for large installations with the addition of Dashboard Folders, Teams and Permissions.
Improvements to provisioning/cloud-native setups by making datasources & dashboards configurable from files.

This is the most substantial update that Grafana has ever seen.

Download Grafana 5.0 Now

What’s New in Grafana v5.0

Video showing new features


New Dashboard Layout Engine

The new dashboard layout engine allows for much easier movement and sizing of panels, as other panels now move out of the way in
a very intuitive way. Panels are sized independently, so rows are no longer necessary to create layouts. This opens
up many new types of layouts where panels of different heights can be aligned easily. Checkout the new grid in the video
above or on the play site. All your existing dashboards will automatically migrate to the
new position system and look close to identical. The new panel position makes dashboards saved in v5.0 incompatible
with older versions of Grafana.

New UX

Almost every page has seen significant UX improvements. All pages (except dashboard pages) have a new tab-based layout that improves navigation between pages. The side menu has also changed quite a bit. You can still hide the side menu completely if you click on the Grafana logo.

Dashboard Settings

Dashboard pages have a new header toolbar where buttons and actions are now all moved to the right. All the dashboard
settings views have been combined with a side nav which allows you to easily move between different setting categories.

New Light Theme

This theme has not seen a lot of love in recent years and we felt it was time to give it a major overhaul. We are very happy with the result.

Dashboard Folders

The big new feature that comes with Grafana v5.0 is dashboard folders. Now you can organize your dashboards in folders,
which is very useful if you have a lot of dashboards or multiple teams.

  • New search design adds expandable sections for each folder, starred and recently viewed dashboards.
  • New manage dashboard pages enable batch actions and views for folder settings and permissions.
  • Set permissions on folders and have dashboards inherit the permissions.

Teams

A team is a new concept in Grafana v5. They are simply a group of users that can be used in the new permission system for dashboards and folders. Only an admin can create teams.
We hope to do more with teams in future releases like integration with LDAP and a team landing page.

Permissions

You can assign permissions to folders and dashboards. The default user role-based permissions can be removed and
replaced with specific teams or users enabling more control over what a user can see and edit.

Dashboard permissions only limits what dashboards & folders a user can view & edit not which
data sources a user can access nor what queries a user can issue.

Provisioning from configuration

In previous versions of Grafana, you could only use the API for provisioning data sources and dashboards.
But that required the service to be running before you started creating dashboards and you also needed to
set up credentials for the HTTP API. In v5.0 we decided to improve this experience by adding a new active
provisioning system that uses config files. This will make GitOps more natural as data sources and dashboards can
be defined via files that can be version controlled. We hope to extend this system to later add support for users, orgs
and alerts as well.

Data sources

Data sources can now be setup using config files. These data sources are by default not editable from the Grafana GUI.
It’s also possible to update and delete data sources from the config file. More info in the data source provisioning docs.

Dashboards

We also deprecated the [dashboard.json] in favor of our new dashboard provisioner that keeps dashboards on disk
in sync with dashboards in Grafana’s database. The dashboard provisioner has multiple advantages over the old
[dashboard.json] feature. Instead of storing the dashboard in memory we now insert the dashboard into the database,
which makes it possible to star them, use one as the home dashboard, set permissions and other features in Grafana that
expects the dashboards to exist in the database. More info in the dashboard provisioning docs

Graphite Tags & Integrated Function Docs

The Graphite query editor has been updated to support the latest Graphite version (v1.1) that adds
many new functions and support for querying by tags. You can now also view function documentation right in the query editor!

Read more on Graphite Tag Support.

Changelog

Checkout the CHANGELOG.md file for a complete list
of new features, changes, and bug fixes.

Download

Head to download page for download links & instructions.

Thanks

A big thanks to all the Grafana users who contribute by submitting PRs, bug reports & feedback!

Troubleshooting event publishing issues in Amazon SES

Post Syndicated from Dustin Taylor original https://aws.amazon.com/blogs/ses/troubleshooting-event-publishing-issues-in-amazon-ses/

Over the past year, we’ve released several features that make it easier to track the metrics that are associated with your Amazon SES account. The first of these features, launched in November of last year, was event publishing.

Initially, event publishing let you capture basic metrics related to your email sending and publish them to other AWS services, such as Amazon CloudWatch and Amazon Kinesis Data Firehose. Some examples of these basic metrics include the number of emails that were sent and delivered, as well as the number that bounced or received complaints. A few months ago, we expanded this feature by adding engagement metrics—specifically, information about the number of emails that your customers opened or engaged with by clicking links.

As a former Cloud Support Engineer, I’ve seen Amazon SES customers do some amazing things with event publishing, but I’ve also seen some common issues. In this article, we look at some of these issues, and discuss the steps you can take to resolve them.

Before we begin

This post assumes that your Amazon SES account is already out of the sandbox, that you’ve verified an identity (such as an email address or domain), and that you have the necessary permissions to use Amazon SES and the service that you’ll publish event data to (such as Amazon SNS, CloudWatch, or Kinesis Data Firehose).

We also assume that you’re familiar with the process of creating configuration sets and specifying event destinations for those configuration sets. For more information, see Using Amazon SES Configuration Sets in the Amazon SES Developer Guide.

Amazon SNS event destinations

If you want to receive notifications when events occur—such as when recipients click a link in an email, or when they report an email as spam—you can use Amazon SNS as an event destination.

Occasionally, customers ask us why they’re not receiving notifications when they use an Amazon SNS topic as an event destination. One of the most common reasons for this issue is that they haven’t configured subscriptions for their Amazon SNS topic yet.

A single topic in Amazon SNS can have one or more subscriptions. When you subscribe to a topic, you tell that topic which endpoints (such as email addresses or mobile phone numbers) to contact when it receives a notification. If you haven’t set up any subscriptions, nothing will happen when an email event occurs.

For more information about setting up topics and subscriptions, see Getting Started in the Amazon SNS Developer Guide. For information about publishing Amazon SES events to Amazon SNS topics, see Set Up an Amazon SNS Event Destination for Amazon SES Event Publishing in the Amazon SES Developer Guide.

Kinesis Data Firehose event destinations

If you want to store your Amazon SES event data for the long term, choose Amazon Kinesis Data Firehose as a destination for Amazon SES events. With Kinesis Data Firehose, you can stream data to Amazon S3 or Amazon Redshift for storage and analysis.

The process of setting up Kinesis Data Firehose as an event destination is similar to the process for setting up Amazon SNS: you choose the types of events (such as deliveries, opens, clicks, or bounces) that you want to export, and the name of the Kinesis Data Firehose stream that you want to export to. However, there’s one important difference. When you set up a Kinesis Data Firehose event destination, you must also choose the IAM role that Amazon SES uses to send event data to Kinesis Data Firehose.

When you set up the Kinesis Data Firehose event destination, you can choose to have Amazon SES create the IAM role for you automatically. For many users, this is the best solution—it ensures that the IAM role has the appropriate permissions to move event data from Amazon SES to Kinesis Data Firehose.

Customers occasionally run into issues with the Kinesis Data Firehose event destination when they use an existing IAM role. If you use an existing IAM role, or create a new role for this purpose, make sure that the role includes the firehose:PutRecord and firehose:PutRecordBatch permissions. If the role doesn’t include these permissions, then the Amazon SES event data isn’t published to Kinesis Data Firehose. For more information, see Controlling Access with Amazon Kinesis Data Firehose in the Amazon Kinesis Data Firehose Developer Guide.

CloudWatch event destinations

By publishing your Amazon SES event data to Amazon CloudWatch, you can create dashboards that track your sending statistics in real time, as well as alarms that notify you when your event metrics reach certain thresholds.

The amount that you’re charged for using CloudWatch is based on several factors, including the number of metrics you use. In order to give you more control over the specific metrics you send to CloudWatch—and to help you avoid unexpected charges—you can limit the email sending events that are sent to CloudWatch.

When you choose CloudWatch as an event destination, you must choose a value source. The value source can be one of three options: a message tag, a link tag, or an email header. After you choose a value source, you then specify a name and a value. When you send an email using a configuration set that refers to a CloudWatch event destination, it only sends the metrics for that email to CloudWatch if the email contains the name and value that you specified as the value source. This requirement is commonly overlooked.

For example, assume that you chose Message Tag as the value source, and specified “CategoryId” as the dimension name and “31415” as the dimension value. When you want to send events for an email to CloudWatch, you must specify the name of the configuration set that uses the CloudWatch destination. You must also include a tag in your message. The name of the tag must be “CategoryId” and the value must be “31415”.

For more information about adding tags and email headers to your messages, see Send Email Using Amazon SES Event Publishing in the Amazon SES Developer Guide. For more information about adding tags to links, see Amazon SES Email Sending Metrics FAQs in the Amazon SES Developer Guide.

Troubleshooting event publishing for open and click data

Occasionally, customers ask why they’re not seeing open and click data for their emails. This issue most often occurs when the customer only sends text versions of their emails. Because of the way Amazon SES tracks open and click events, you can only see open and click data for emails that are sent as HTML. For more information about how Amazon SES modifies your emails when you enable open and click tracking, see Amazon SES Email Sending Metrics FAQs in the Amazon SES Developer Guide.

The process that you use to send HTML emails varies based on the email sending method you use. The Code Examples section of the Amazon SES Developer Guide contains examples of several methods of sending email by using the Amazon SES SMTP interface or an AWS SDK. All of the examples in this section include methods for sending HTML (as well as text-only) emails.

If you encounter any issues that weren’t covered in this post, please open a case in the Support Center and we’d be more than happy to assist.

Integration With Zapier

Post Syndicated from Bozho original https://techblog.bozho.net/integration-with-zapier/

Integration is boring. And also inevitable. But I won’t be writing about enterprise integration patterns. Instead, I’ll explain how to create an app for integration with Zapier.

What is Zapier? It is a service that allows you tо connect two (or more) otherwise unconnected services via their APIs (or protocols). You can do stuff like “Create a Trello task from an Evernote note”, “publish new RSS items to Facebook”, “append new emails to a spreadsheet”, “post approaching calendar meeting to Slack”, “Save big email attachments to Dropbox”, “tweet all instagrams above a certain likes threshold”, and so on. In fact, it looks to cover mostly the same usecases as another famous service that I really like – IFTTT (if this then that), with my favourite use-case “Get a notification when the international space station passes over your house”. And all of those interactions can be configured via a UI.

Now that’s good for end users but what does it have to do with software development and integration? Zapier (unlike IFTTT, unfortunately), allows custom 3rd party services to be included. So if you have a service of your own, you can create an “app” and allow users to integrate your service with all the other 3rd party services. IFTTT offers a way to invoke web endpoints (including RESTful services), but it doesn’t allow setting headers, so that makes it quite limited for actual APIs.

In this post I’ll briefly explain how to write a custom Zapier app and then will discuss where services like Zapier stand from an architecture perspective.

The thing that I needed it for – to be able to integrate LogSentinel with any of the third parties available through Zapier, i.e. to store audit logs for events that happen in all those 3rd party systems. So how do I do that? There’s a tutorial that makes it look simple. And it is, with a few catches.

First, there are two tutorials – one in GitHub and one on Zapier’s website. And they differ slightly, which becomes tricky in some cases.

I initially followed the GitHub tutorial and had my build fail. It claimed the zapier platform dependency is missing. After I compared it with the example apps, I found out there’s a caret in front of the zapier platform dependency. Removing it just yielded another error – that my node version should be exactly 6.10.2. Why?

The Zapier CLI requires you have exactly version 6.10.2 installed. You’ll see errors and will be unable to proceed otherwise.

It appears that they are using AWS Lambda which is stuck on Node 6.10.2 (actually – it’s 6.10.3 when you check). The current major release is 8, so minus points for choosing … javascript for a command-line tool and for building sandboxed apps. Maybe other decisions had their downsides as well, I won’t be speculating. Maybe it’s just my dislike for dynamic languages.

So, after you make sure you have the correct old version on node, you call zapier init and make sure there are no carets, npm install and then zapier test. So far so good, you have a dummy app. Now how do you make a RESTful call to your service?

Zapier splits the programmable entities in two – “triggers” and “creates”. A trigger is the event that triggers the whole app, an a “create” is what happens as a result. In my case, my app doesn’t publish any triggers, it only accepts input, so I won’t be mentioning triggers (though they seem easy). You configure all of the elements in index.js (e.g. this one):

const log = require('./creates/log');
....
creates: {
    [log.key]: log,
}

The log.js file itself is the interesting bit – there you specify all the parameters that should be passed to your API call, as well as making the API call itself:

const log = (z, bundle) => {
  const responsePromise = z.request({
    method: 'POST',
    url: `https://api.logsentinel.com/api/log/${bundle.inputData.actorId}/${bundle.inputData.action}`,
    body: bundle.inputData.details,
	headers: {
		'Accept': 'application/json'
	}
  });
  return responsePromise
    .then(response => JSON.parse(response.content));
};

module.exports = {
  key: 'log-entry',
  noun: 'Log entry',

  display: {
    label: 'Log',
    description: 'Log an audit trail entry'
  },

  operation: {
    inputFields: [
      {key: 'actorId', label:'ActorID', required: true},
      {key: 'action', label:'Action', required: true},
      {key: 'details', label:'Details', required: false}
    ],
    perform: log
  }
};

You can pass the input parameters to your API call, and it’s as simple as that. The user can then specify which parameters from the source (“trigger”) should be mapped to each of your parameters. In an example zap, I used an email trigger and passed the sender as actorId, the sibject as “action” and the body of the email as details.

There’s one more thing – authentication. Authentication can be done in many ways. Some services offer OAuth, others – HTTP Basic or other custom forms of authentication. There is a section in the documentation about all the options. In my case it was (almost) an HTTP Basic auth. My initial thought was to just supply the credentials as parameters (which you just hardcode rather than map to trigger parameters). That may work, but it’s not the canonical way. You should configure “authentication”, as it triggers a friendly UI for the user.

You include authentication.js (which has the fields your authentication requires) and then pre-process requests by adding a header (in index.js):

const authentication = require('./authentication');

const includeAuthHeaders = (request, z, bundle) => {
  if (bundle.authData.organizationId) {
	request.headers = request.headers || {};
	request.headers['Application-Id'] = bundle.authData.applicationId
	const basicHash = Buffer(`${bundle.authData.organizationId}:${bundle.authData.apiSecret}`).toString('base64');
	request.headers['Authorization'] = `Basic ${basicHash}`;
  }
  return request;
};

const App = {
  // This is just shorthand to reference the installed dependencies you have. Zapier will
  // need to know these before we can upload
  version: require('./package.json').version,
  platformVersion: require('zapier-platform-core').version,
  authentication: authentication,
  
  // beforeRequest & afterResponse are optional hooks into the provided HTTP client
  beforeRequest: [
	includeAuthHeaders
  ]
...
}

And then you zapier push your app and you can test it. It doesn’t automatically go live, as you have to invite people to try it and use it first, but in many cases that’s sufficient (i.e. using Zapier when doing integration with a particular client)

Can Zapier can be used for any integration problem? Unlikely – it’s pretty limited and simple, but that’s also a strength. You can, in half a day, make your service integrate with thousands of others for the most typical use-cases. And not that although it’s meant for integrating public services rather than for enterprise integration (where you make multiple internal systems talk to each other), as an increasing number of systems rely on 3rd party services, it could find home in an enterprise system, replacing some functions of an ESB.

Effectively, such services (Zapier, IFTTT) are “Simple ESB-as-a-service”. You go to a UI, fill a bunch of fields, and you get systems talking to each other without touching the systems themselves. I’m not a big fan of ESBs, mostly because they become harder to support with time. But minimalist, external ones might be applicable in certain situations. And while such services are primarily aimed at end users, they could be a useful bit in an enterprise architecture that relies on 3rd party services.

Whether it could process the required load, whether an organization is willing to let its data flow through a 3rd party provider (which may store the intermediate parameters), is a question that should be answered in a case by cases basis. I wouldn’t recommend it as a general solution, but it’s certainly an option to consider.

The post Integration With Zapier appeared first on Bozho's tech blog.

Invoking AWS Lambda from Amazon MQ

Post Syndicated from Tara Van Unen original https://aws.amazon.com/blogs/compute/invoking-aws-lambda-from-amazon-mq/

Contributed by Josh Kahn, AWS Solutions Architect

Message brokers can be used to solve a number of needs in enterprise architectures, including managing workload queues and broadcasting messages to a number of subscribers. Amazon MQ is a managed message broker service for Apache ActiveMQ that makes it easy to set up and operate message brokers in the cloud.

In this post, I discuss one approach to invoking AWS Lambda from queues and topics managed by Amazon MQ brokers. This and other similar patterns can be useful in integrating legacy systems with serverless architectures. You could also integrate systems already migrated to the cloud that use common APIs such as JMS.

For example, imagine that you work for a company that produces training videos and which recently migrated its video management system to AWS. The on-premises system used to publish a message to an ActiveMQ broker when a video was ready for processing by an on-premises transcoder. However, on AWS, your company uses Amazon Elastic Transcoder. Instead of modifying the management system, Lambda polls the broker for new messages and starts a new Elastic Transcoder job. This approach avoids changes to the existing application while refactoring the workload to leverage cloud-native components.

This solution uses Amazon CloudWatch Events to trigger a Lambda function that polls the Amazon MQ broker for messages. Instead of starting an Elastic Transcoder job, the sample writes the received message to an Amazon DynamoDB table with a time stamp indicating the time received.

Getting started

To start, navigate to the Amazon MQ console. Next, launch a new Amazon MQ instance, selecting Single-instance Broker and supplying a broker name, user name, and password. Be sure to document the user name and password for later.

For the purposes of this sample, choose the default options in the Advanced settings section. Your new broker is deployed to the default VPC in the selected AWS Region with the default security group. For this post, you update the security group to allow access for your sample Lambda function. In a production scenario, I recommend deploying both the Lambda function and your Amazon MQ broker in your own VPC.

After several minutes, your instance changes status from “Creation Pending” to “Available.” You can then visit the Details page of your broker to retrieve connection information, including a link to the ActiveMQ web console where you can monitor the status of your broker, publish test messages, and so on. In this example, use the Stomp protocol to connect to your broker. Be sure to capture the broker host name, for example:

<BROKER_ID>.mq.us-east-1.amazonaws.com

You should also modify the Security Group for the broker by clicking on its Security Group ID. Click the Edit button and then click Add Rule to allow inbound traffic on port 8162 for your IP address.

Deploying and scheduling the Lambda function

To simplify the deployment of this example, I’ve provided an AWS Serverless Application Model (SAM) template that deploys the sample function and DynamoDB table, and schedules the function to be invoked every five minutes. Detailed instructions can be found with sample code on GitHub in the amazonmq-invoke-aws-lambda repository, with sample code. I discuss a few key aspects in this post.

First, SAM makes it easy to deploy and schedule invocation of our function:

SubscriberFunction:
	Type: AWS::Serverless::Function
	Properties:
		CodeUri: subscriber/
		Handler: index.handler
		Runtime: nodejs6.10
		Role: !GetAtt SubscriberFunctionRole.Arn
		Timeout: 15
		Environment:
			Variables:
				HOST: !Ref AmazonMQHost
				LOGIN: !Ref AmazonMQLogin
				PASSWORD: !Ref AmazonMQPassword
				QUEUE_NAME: !Ref AmazonMQQueueName
				WORKER_FUNCTIOn: !Ref WorkerFunction
		Events:
			Timer:
				Type: Schedule
				Properties:
					Schedule: rate(5 minutes)

WorkerFunction:
Type: AWS::Serverless::Function
	Properties:
		CodeUri: worker/
		Handler: index.handler
		Runtime: nodejs6.10
Role: !GetAtt WorkerFunctionRole.Arn
		Environment:
			Variables:
				TABLE_NAME: !Ref MessagesTable

In the code, you include the URI, user name, and password for your newly created Amazon MQ broker. These allow the function to poll the broker for new messages on the sample queue.

The sample Lambda function is written in Node.js, but clients exist for a number of programming languages.

stomp.connect(options, (error, client) => {
	if (error) { /* do something */ }

	let headers = {
		destination: ‘/queue/SAMPLE_QUEUE’,
		ack: ‘auto’
	}

	client.subscribe(headers, (error, message) => {
		if (error) { /* do something */ }

		message.readString(‘utf-8’, (error, body) => {
			if (error) { /* do something */ }

			let params = {
				FunctionName: MyWorkerFunction,
				Payload: JSON.stringify({
					message: body,
					timestamp: Date.now()
				})
			}

			let lambda = new AWS.Lambda()
			lambda.invoke(params, (error, data) => {
				if (error) { /* do something */ }
			})
		}
})
})

Sending a sample message

For the purpose of this example, use the Amazon MQ console to send a test message. Navigate to the details page for your broker.

About midway down the page, choose ActiveMQ Web Console. Next, choose Manage ActiveMQ Broker to launch the admin console. When you are prompted for a user name and password, use the credentials created earlier.

At the top of the page, choose Send. From here, you can send a sample message from the broker to subscribers. For this example, this is how you generate traffic to test the end-to-end system. Be sure to set the Destination value to “SAMPLE_QUEUE.” The message body can contain any text. Choose Send.

You now have a Lambda function polling for messages on the broker. To verify that your function is working, you can confirm in the DynamoDB console that the message was successfully received and processed by the sample Lambda function.

First, choose Tables on the left and select the table name “amazonmq-messages” in the middle section. With the table detail in view, choose Items. If the function was successful, you’ll find a new entry similar to the following:

If there is no message in DynamoDB, check again in a few minutes or review the CloudWatch Logs group for Lambda functions that contain debug messages.

Alternative approaches

Beyond the approach described here, you may consider other approaches as well. For example, you could use an intermediary system such as Apache Flume to pass messages from the broker to Lambda or deploy Apache Camel to trigger Lambda via a POST to API Gateway. There are trade-offs to each of these approaches. My goal in using CloudWatch Events was to introduce an easily repeatable pattern familiar to many Lambda developers.

Summary

I hope that you have found this example of how to integrate AWS Lambda with Amazon MQ useful. If you have expertise or legacy systems that leverage APIs such as JMS, you may find this useful as you incorporate serverless concepts in your enterprise architectures.

To learn more, see the Amazon MQ website and Developer Guide. You can try Amazon MQ for free with the AWS Free Tier, which includes up to 750 hours of a single-instance mq.t2.micro broker and up to 1 GB of storage per month for one year.

Raspberry Pi Spy’s Alexa Skill

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/pi-spy-alexa-skill/

With Raspberry Pi projects using home assistant services such as Amazon Alexa and Google Home becoming more and more popular, we invited Raspberry Pi maker Matt ‘Raspberry Pi Spy‘ Hawkins to write a guest post about his latest project, the Pi Spy Alexa Skill.

Pi Spy Alexa Skill Raspberry Pi

Pi Spy Skill

The Alexa system uses Skills to provide voice-activated functionality, and it allows you to create new Skills to add extra features. With the Pi Spy Skill, you can ask Alexa what function each pin on the Raspberry Pi’s GPIO header provides, for example by using the phrase “Alexa, ask Pi Spy what is Pin 2.” In response to a phrase such as “Alexa, ask Pi Spy where is GPIO 8”, Alexa can now also tell you on which pin you can find a specific GPIO reference number.

This information is already available in various forms, but I thought it would be useful to retrieve it when I was busy soldering or building circuits and had no hands free.

Creating an Alexa Skill

There is a learning curve to creating a new Skill, and in some regards it was similar to mobile app development.

A Skill consists of two parts: the first is created within the Amazon Developer Console and defines the structure of the voice commands Alexa should recognise. The second part is a webservice that can receive data extracted from the voice commands and provide a response back to the device. You can create the webservice on a webserver, internet-connected device, or cloud service.

I decided to use Amazon’s AWS Lambda service. Once set up, this allows you to write code without having to worry about the server it is running on. It also supports Python, so it fit in nicely with most of my other projects.

To get started, I logged into the Amazon Developer Console with my personal Amazon account and navigated to the Alexa section. I created a new Skill named Pi Spy. Within a Skill, you define an Intent Schema and some Sample Utterances. The schema defines individual intents, and the utterances define how these are invoked by the user.

Here is how my ExaminePin intent is defined in the schema:

Pi Spy Alexa Skill Raspberry Pi

Example utterances then attempt to capture the different phrases the user might speak to their device.

Pi Spy Alexa Skill Raspberry Pi

Whenever Alexa matches a spoken phrase to an utterance, it passes the name of the intent and the variable PinID to the webservice.

In the test section, you can check what JSON data will be generated and passed to your webservice in response to specific phrases. This allows you to verify that the webservices’ responses are correct.

Pi Spy Alexa Skill Raspberry Pi

Over on the AWS Services site, I created a Lambda function based on one of the provided examples to receive the incoming requests. Here is the section of that code which deals with the ExaminePin intent:

Pi Spy Alexa Skill Raspberry Pi

For this intent, I used a Python dictionary to match the incoming pin number to its description. Another Python function deals with the GPIO queries. A URL to this Lambda function was added to the Skill as its ‘endpoint’.

As with the Skill, the Python code can be tested to iron out any syntax errors or logic problems.

With suitable configuration, it would be possible to create the webservice on a Pi, and that is something I’m currently working on. This approach is particularly interesting, as the Pi can then be used to control local hardware devices such as cameras, lights, or pet feeders.

Note

My Alexa Skill is currently only available to UK users. I’m hoping Amazon will choose to copy it to the US service, but I think that is down to its perceived popularity, or it may be done in bulk based on release date. In the next update, I’ll be adding an American English version to help speed up this process.

The post Raspberry Pi Spy’s Alexa Skill appeared first on Raspberry Pi.

Zero WH: pre-soldered headers and what to do with them

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/zero-wh/

If you head over to the website of your favourite Raspberry Pi Approved Reseller today, you may find the new Zero WH available to purchase. But what it is? Why is it different, and what can you do with it?

Raspberry Pi Zero WH

“If you like pre-soldered headers, and getting caught in the rain…”

Raspberry Pi Zero WH

Imagine a Raspberry Pi Zero W. Now add a professionally soldered header. Boom, that’s the Raspberry Pi Zero WH! It’s your same great-tasting Pi, with a brand-new…crust? It’s perfect for everyone who doesn’t own a soldering iron or who wants the soldering legwork done for them.

What you can do with the Zero WH

What can’t you do? Am I right?! The small size of the Zero W makes it perfect for projects with minimal wiggle-room. In such projects, some people have no need for GPIO pins — they simply solder directly to the board. However, there are many instances where you do want a header on your Zero W, for example in order to easily take advantage of the GPIO expander tool for Debian Stretch on a PC or Mac.

GPIO expander in clubs and classrooms

As Ben Nuttall explains in his blog post on the topic:

[The GPIO expander tool] is a real game-changer for Raspberry Jams, Code Clubs, CoderDojos, and schools. You can live boot the Raspberry Pi Desktop OS from a USB stick, use Linux PCs, or even install [the Pi OS] on old computers. Then you have really simple access to physical computing without full Raspberry Pi setups, and with no SD cards to configure.

Using the GPIO expander with the Raspberry Pi Zero WH decreases the setup cost for anyone interested in trying out physical computing in the classroom or at home. (And once you’ve stuck your toes in, you’ll obviously fall in love and will soon find yourself with multiple Raspberry Pi models, HATs aplenty, and an area in your home dedicated to your new adventure in Raspberry Pi. Don’t say I didn’t warn you.)

Other uses for a Zero W with a header

The GPIO expander setup is just one of a multitude of uses for a Raspberry Pi Zero W with a header. You may want the header for prototyping before you commit to soldering wires directly to a board. Or you may have a temporary build in mind for your Zero W, in which case you won’t want to commit to soldering wires to the board at all.

Raspberry Pi Zero WH

Your use case may be something else entirely — tell us in the comments below how you’d utilise a pre-soldered Raspberry Pi Zero WH in your project. The best project idea will receive ten imaginary house points of absolutely no practical use, but immense emotional value. Decide amongst yourselves who you believe should win them — I’m going to go waste a few more hours playing SLUG!

The post Zero WH: pre-soldered headers and what to do with them appeared first on Raspberry Pi.