Tag Archives: HIPPA

Happy birthday to us!

Post Syndicated from Eben Upton original https://www.raspberrypi.org/blog/happy-birthday-2018/

The eagle-eyed among you may have noticed that today is 28 February, which is as close as you’re going to get to our sixth birthday, given that we launched on a leap day. For the last three years, we’ve launched products on or around our birthday: Raspberry Pi 2 in 2015; Raspberry Pi 3 in 2016; and Raspberry Pi Zero W in 2017. But today is a snow day here at Pi Towers, so rather than launching something, we’re taking a photo tour of the last six years of Raspberry Pi products before we don our party hats for the Raspberry Jam Big Birthday Weekend this Saturday and Sunday.

Prehistory

Before there was Raspberry Pi, there was the Broadcom BCM2763 ‘micro DB’, designed, as it happens, by our very own Roger Thornton. This was the first thing we demoed as a Raspberry Pi in May 2011, shown here running an ARMv6 build of Ubuntu 9.04.

BCM2763 micro DB

Ubuntu on Raspberry Pi, 2011-style

A few months later, along came the first batch of 50 “alpha boards”, designed for us by Broadcom. I used to have a spreadsheet that told me where in the world each one of these lived. These are the first “real” Raspberry Pis, built around the BCM2835 application processor and LAN9512 USB hub and Ethernet adapter; remarkably, a software image taken from the download page today will still run on them.

Raspberry Pi alpha board, top view

Raspberry Pi alpha board

We shot some great demos with this board, including this video of Quake III:

Raspberry Pi – Quake 3 demo

A little something for the weekend: here’s Eben showing the Raspberry Pi running Quake 3, and chatting a bit about the performance of the board. Thanks to Rob Bishop and Dave Emett for getting the demo running.

Pete spent the second half of 2011 turning the alpha board into a shippable product, and just before Christmas we produced the first 20 “beta boards”, 10 of which were sold at auction, raising over £10000 for the Foundation.

The beginnings of a Bramble

Beta boards on parade

Here’s Dom, demoing both the board and his excellent taste in movie trailers:

Raspberry Pi Beta Board Bring up

See http://www.raspberrypi.org/ for more details, FAQ and forum.

Launch

Rather to Pete’s surprise, I took his beta board design (with a manually-added polygon in the Gerbers taking the place of Paul Grant’s infamous red wire), and ordered 2000 units from Egoman in China. After a few hiccups, units started to arrive in Cambridge, and on 29 February 2012, Raspberry Pi went on sale for the first time via our partners element14 and RS Components.

Pallet of pis

The first 2000 Raspberry Pis

Unboxing continues

The first Raspberry Pi from the first box from the first pallet

We took over 100000 orders on the first day: something of a shock for an organisation that had imagined in its wildest dreams that it might see lifetime sales of 10000 units. Some people who ordered that day had to wait until the summer to finally receive their units.

Evolution

Even as we struggled to catch up with demand, we were working on ways to improve the design. We quickly replaced the USB polyfuses in the top right-hand corner of the board with zero-ohm links to reduce IR drop. If you have a board with polyfuses, it’s a real limited edition; even more so if it also has Hynix memory. Pete’s “rev 2” design made this change permanent, tweaked the GPIO pin-out, and added one much-requested feature: mounting holes.

Revision 1 versus revision 2

If you look carefully, you’ll notice something else about the revision 2 board: it’s made in the UK. 2012 marked the start of our relationship with the Sony UK Technology Centre in Pencoed, South Wales. In the five years since, they’ve built every product we offer, including more than 12 million “big” Raspberry Pis and more than one million Zeros.

Celebrating 500,000 Welsh units, back when that seemed like a lot

Economies of scale, and the decline in the price of SDRAM, allowed us to double the memory capacity of the Model B to 512MB in the autumn of 2012. And as supply of Model B finally caught up with demand, we were able to launch the Model A, delivering on our original promise of a $25 computer.

A UK-built Raspberry Pi Model A

In 2014, James took all the lessons we’d learned from two-and-a-bit years in the market, and designed the Model B+, and its baby brother the Model A+. The Model B+ established the form factor for all our future products, with a 40-pin extended GPIO connector, four USB ports, and four mounting holes.

The Raspberry Pi 1 Model B+ — entering the era of proper product photography with a bang.

New toys

While James was working on the Model B+, Broadcom was busy behind the scenes developing a follow-on to the BCM2835 application processor. BCM2836 samples arrived in Cambridge at 18:00 one evening in April 2014 (chips never arrive at 09:00 — it’s always early evening, usually just before a public holiday), and within a few hours Dom had Raspbian, and the usual set of VideoCore multimedia demos, up and running.

We launched Raspberry Pi 2 at the start of 2015, pairing BCM2836 with 1GB of memory. With a quad-core Arm Cortex-A7 clocked at 900MHz, we’d increased performance sixfold, and memory fourfold, in just three years.

Nobody mention the xenon death flash.

And of course, while James was working on Raspberry Pi 2, Broadcom was developing BCM2837, with a quad-core 64-bit Arm Cortex-A53 clocked at 1.2GHz. Raspberry Pi 3 launched barely a year after Raspberry Pi 2, providing a further doubling of performance and, for the first time, wireless LAN and Bluetooth.

All our recent products are just the same board shot from different angles

Zero to hero

Where the PC industry has historically used Moore’s Law to “fill up” a given price point with more performance each year, the original Raspberry Pi used Moore’s law to deliver early-2000s PC performance at a lower price. But with Raspberry Pi 2 and 3, we’d gone back to filling up our original $35 price point. After the launch of Raspberry Pi 2, we started to wonder whether we could pull the same trick again, taking the original Raspberry Pi platform to a radically lower price point.

The result was Raspberry Pi Zero. Priced at just $5, with a 1GHz BCM2835 and 512MB of RAM, it was cheap enough to bundle on the front of The MagPi, making us the first computer magazine to give away a computer as a cover gift.

Cheap thrills

MagPi issue 40 in all its glory

We followed up with the $10 Raspberry Pi Zero W, launched exactly a year ago. This adds the wireless LAN and Bluetooth functionality from Raspberry Pi 3, using a rather improbable-looking PCB antenna designed by our buddies at Proant in Sweden.

Up to our old tricks again

Other things

Of course, this isn’t all. There has been a veritable blizzard of point releases; RAM changes; Chinese red units; promotional blue units; Brazilian blue-ish units; not to mention two Camera Modules, in two flavours each; a touchscreen; the Sense HAT (now aboard the ISS); three compute modules; and cases for the Raspberry Pi 3 and the Zero (the former just won a Design Effectiveness Award from the DBA). And on top of that, we publish three magazines (The MagPi, Hello World, and HackSpace magazine) and a whole host of Project Books and Essentials Guides.

Chinese Raspberry Pi 1 Model B

RS Components limited-edition blue Raspberry Pi 1 Model B

Brazilian-market Raspberry Pi 3 Model B

Visible-light Camera Module v2

Learning about injection moulding the hard way

250 pages of content each month, every month

Essential reading

Forward the Foundation

Why does all this matter? Because we’re providing everyone, everywhere, with the chance to own a general-purpose programmable computer for the price of a cup of coffee; because we’re giving people access to tools to let them learn new skills, build businesses, and bring their ideas to life; and because when you buy a Raspberry Pi product, every penny of profit goes to support the Raspberry Pi Foundation in its mission to change the face of computing education.

We’ve had an amazing six years, and they’ve been amazing in large part because of the community that’s grown up alongside us. This weekend, more than 150 Raspberry Jams will take place around the world, comprising the Raspberry Jam Big Birthday Weekend.

Raspberry Pi Big Birthday Weekend 2018. GIF with confetti and bopping JAM balloons

If you want to know more about the Raspberry Pi community, go ahead and find your nearest Jam on our interactive map — maybe we’ll see you there.

The post Happy birthday to us! appeared first on Raspberry Pi.

Preserving the Music of Austin City Limits

Post Syndicated from Andy Klein original https://www.backblaze.com/blog/preserving-the-music-of-austin-city-limits/

Austin City Limits

KLRU-TV, Austin PBS created Austin City Limits 42 years ago and has produced it ever since. Austin City Limits is the longest-running music series in television history. Over the years, KLRU accumulated over 550 episodes and thousands of hours of unaired footage stored on videotape. When KLRU decided to preserve their collection they turned to Backblaze for help with uploading and storing this unparalleled musical anthology in the Backblaze B2 cloud.

Upload: Backblaze B2 Fireball

KLRU started their preservation efforts by digitizing their collection of videotapes. After some internal processing, they were ready to upload the files to Backblaze, but there was a problem – one facing many organizations with a stash of historical digital data – their network connection was “slow”. It was fine for daily work, but uploading terabytes of data was not going to work.

“We would not have been able to get this project off the ground without the B2 Fireball.” – James Cole, KLRU

Backblaze B2 Fireball to the rescue. The B2 Fireball is a secure, shippable, data ingest system capable of transporting up to 40 terabytes of data from your location to Backblaze where the data is ingested into your B2 account. Designed for those organizations that have large amounts of data locally that they want to store in the cloud, the Backblaze B2 Fireball was just what KLRU needed to get the project started.

Preserve: Live Archive with B2

The KLRU staff is working hard to digitize and restore their entire musical archive and they are committed to preserving their data by having both a local copy and a cloud copy of their files. By choosing Backblaze B2 Cloud Storage versus a near-line or off-line storage solution KLRU now has an affordable live archive of their data they can access without delay anytime they need.

You can download and read the entire Austin City Limits case study for more details on how KLRU used B2 as part of their strategy to preserve their entire catalog of Austin City Limits content for future generations.

Dave Grohl Austin City Limits performance

The post Preserving the Music of Austin City Limits appeared first on Backblaze Blog | Cloud Storage & Cloud Backup.

Subversion SHA1 collision problem statement

Post Syndicated from corbet original https://lwn.net/Articles/715873/rss

Users of the Subversion source-code management system may want to take a
look at this
post from Mark Phippard
. He explains how hash collisions can corrupt a
repository and a couple of short-term workarounds. “The quick
summary if you do not want to read this entire post is that the problem is
really not that bad. If you run into it there are solutions to resolve it
and you are not going to run into it in normal usage. There will also
likely be some future updates to Subversion that avoid it entirely so if
you regularly update your server and client when new releases come out you
are probably safe not doing anything and just waiting for an update to
happen.

Powerful AWS Platform Features, Now for Containers

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/powerful-aws-platform-features-now-for-containers/

Containers are great but they come with their own management challenges. Our customers have been using containers on AWS for quite some time to run workloads ranging from microservices to batch jobs. They told us that managing a cluster, including the state of the EC2 instances and containers, can be tricky, especially as the environment grows. They also told us that integrating the capabilities you get with the AWS platform, such as load balancing, scaling, security, monitoring, and more, with containers is a key requirement. Amazon ECS was designed to meet all of these needs and more.

We created Amazon ECS  to make it easy for customers to run containerized applications in production. There is no container management software to install and operate because it is all provided to you as a service. You just add the EC2 capacity you need to your cluster and upload your container images. Amazon ECS takes care of the rest, deploying your containers across a cluster of EC2 instances and monitoring their health. Customers such as Expedia and Remind have built Amazon ECS into their development workflow, creating PaaS platforms on top of it. Others, such as Prezi and Shippable, are leveraging ECS to eliminate operational complexities of running containers, allowing them to spend more time delivering features for their apps.

AWS has highly reliable and scalable fully-managed services for load balancing, auto scaling, identity and access management, logging, and monitoring. Over the past year, we have continued to natively integrate the capabilities of the AWS platform with your containers through ECS, giving you the same capabilities you are used to on EC2 instances.

Amazon ECS recently delivered container support for application load balancing (Today), IAM roles (July), and Auto Scaling (May). We look forward to bringing more of the AWS platform to containers over time.

Let’s take a look at the new capabilities!

Application Load Balancing
Load balancing and service discovery are essential parts of any microservices architecture. Because Amazon ECS uses Elastic Load Balancing, you don’t need to manage and scale your own load balancing layer. You also get direct access to other AWS services that support ELB such as AWS Certificate Manager (ACM) to automatically manage your service’s certificates and Amazon API Gateway to authenticate callers, among other features.

Today, I am happy to announce that ECS supports the new application load balancer, a high-performance load balancing option that operates at the application layer and allows you to define content-based routing rules. The application load balancer includes two features that simplify running microservices on ECS: dynamic ports and the ability for multiple services to share a single load balancer.

Dynamic ports makes it easier to start tasks in your cluster without having to worry about port conflicts. Previously, to use Elastic Load Balancing to route traffic to your applications, you had to define a fixed host port in the ECS task. This added operational complexity, as you had to track the ports each application used, and it reduced cluster efficiency, as only one task could be placed per instance. Now, you can specify a dynamic port in the ECS task definition, which gives the container an unused port when it is scheduled on the EC2 instance. The ECS scheduler automatically adds the task to the application load balancer’s target group using this port. To get started, you can create an application load balancer from the EC2 Console or using the AWS Command Line Interface (CLI). Create a task definition in the ECS console with a container that sets the host port to 0. This container automatically receives a port in the ephemeral port range when it is scheduled.

Previously, there was a one-to-one mapping between ECS services and load balancers. Now, a load balancer can be shared with multiple services, using path-based routing. Each service can define its own URI, which can be used to route traffic to that service. In addition, you can create an environment variable with the service’s DNS name, supporting basic service discovery. For example, a stock service could be http://example.com/stock and a weather service could be http://example.com/weather, both served from the same load balancer. A news portal could then use the load balancer to access both the stock and weather services.

IAM Roles for ECS Tasks
In Amazon ECS, you have always been able to use IAM roles for your Amazon EC2 container instances to simplify the process of making API requests from your containers. This also allows you to follow AWS best practices by not storing your AWS credentials in your code or configuration files, as well as providing benefits such as automatic key rotation.

With the introduction of the recently launched IAM roles for ECS tasks, you can secure your infrastructure by assigning an IAM role directly to the ECS task rather than to the EC2 container instance. This way, you can have one task that uses a specific IAM role for access to, let’s say, S3 and another task that uses an IAM role to access a DynamoDB table, both running on the same EC2 instance.

Service Auto Scaling
The third feature I want to highlight is Service Auto Scaling. With Service Auto Scaling and Amazon CloudWatch alarms, you can define scaling policies to scale your ECS services in the same way that you scale your EC2 instances up and down. With Service Auto Scaling, you can achieve high availability by scaling up when demand is high, and optimize costs by scaling down your service and the cluster, when demand is lower, all automatically and in real-time.

You simply choose the desired, minimum and maximum number of tasks, create one or more scaling policies, and Service Auto Scaling handles the rest. The service scheduler is also Availability Zone–aware, so you don’t have to worry about distributing your ECS tasks across multiple zones.

Available Now
These features are available now and you can start using them today!


Jeff;