Tag Archives: interaction

Randomly generated, thermal-printed comics

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/random-comic-strip-generation-vomit-comic-robot/

Python code creates curious, wordless comic strips at random, spewing them from the thermal printer mouth of a laser-cut body reminiscent of Disney Pixar’s WALL-E: meet the Vomit Comic Robot!

The age of the thermal printer!

Thermal printers allow you to instantly print photos, data, and text using a few lines of code, with no need for ink. More and more makers are using this handy, low-maintenance bit of kit for truly creative projects, from Pierre Muth’s tiny PolaPi-Zero camera to the sound-printing Waves project by Eunice Lee, Matthew Zhang, and Bomani McClendon (and our own Secret Santa Babbage).

Vomiting robots

Interaction designer and developer Cadin Batrack, whose background is in game design and interactivity, has built the Vomit Comic Robot, which creates “one-of-a-kind comics on demand by processing hand-drawn images through a custom software algorithm.”

The robot is made up of a Raspberry Pi 3, a USB thermal printer, and a handful of LEDs.

Comic Vomit Robot Cadin Batrack's Raspberry Pi comic-generating thermal printer machine

At the press of a button, Processing code selects one of a set of Cadin’s hand-drawn empty comic grids and then randomly picks images from a library to fill in the gaps.

Vomit Comic Robot Cadin Batrack's Raspberry Pi comic-generating thermal printer machine

Each image is associated with data that allows the code to fit it correctly into the available panels. Cadin says about the concept behing his build:

Although images are selected and placed randomly, the comic panel format suggests relationships between elements. Our minds create a story where there is none in an attempt to explain visuals created by a non-intelligent machine.

The Raspberry Pi saves the final image as a high-resolution PNG file (so that Cadin can sell prints on thick paper via Etsy), and a Python script sends it to be vomited up by the thermal printer.

Comic Vomit Robot Cadin Batrack's Raspberry Pi comic-generating thermal printer machine

For more about the Vomit Comic Robot, check out Cadin’s blog. If you want to recreate it, you can find the info you need in the Imgur album he has put together.

We ❤ cute robots

We have a soft spot for cute robots here at Pi Towers, and of course we make no exception for the Vomit Comic Robot. If, like us, you’re a fan of adorable bots, check out Mira, the tiny interactive robot by Alonso Martinez, and Peeqo, the GIF bot by Abhishek Singh.

Mira Alfonso Martinez Raspberry Pi

The post Randomly generated, thermal-printed comics appeared first on Raspberry Pi.

Security and Human Behavior (SHB 2018)

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2018/05/security_and_hu_7.html

I’m at Carnegie Mellon University, at the eleventh Workshop on Security and Human Behavior.

SHB is a small invitational gathering of people studying various aspects of the human side of security, organized each year by Alessandro Acquisti, Ross Anderson, and myself. The 50 or so people in the room include psychologists, economists, computer security researchers, sociologists, political scientists, neuroscientists, designers, lawyers, philosophers, anthropologists, business school professors, and a smattering of others. It’s not just an interdisciplinary event; most of the people here are individually interdisciplinary.

The goal is to maximize discussion and interaction. We do that by putting everyone on panels, and limiting talks to 7-10 minutes. The rest of the time is left to open discussion. Four hour-and-a-half panels per day over two days equals eight panels; six people per panel means that 48 people get to speak. We also have lunches, dinners, and receptions — all designed so people from different disciplines talk to each other.

I invariably find this to be the most intellectually stimulating conference of my year. It influences my thinking in many different, and sometimes surprising, ways.

This year’s program is here. This page lists the participants and includes links to some of their work. As he does every year, Ross Anderson is liveblogging the talks. (Ross also maintains a good webpage of psychology and security resources.)

Here are my posts on the first, second, third, fourth, fifth, sixth, seventh, eighth, ninth, and tenth SHB workshops. Follow those links to find summaries, papers, and occasionally audio recordings of the various workshops.

Next year, I’ll be hosting the event at Harvard.

[$] Easier container security with entitlements

Post Syndicated from corbet original https://lwn.net/Articles/755238/rss

During KubeCon
+ CloudNativeCon Europe 2018
, Justin Cormack and Nassim Eddequiouaq presented
a proposal to simplify the setting of security parameters for containerized
applications.
Containers depend on a large set of intricate security primitives that can
have weird interactions. Because they are so hard to use, people often just
turn the whole thing off. The goal of the proposal is to make those
controls easier to understand and use; it is partly inspired by mobile apps
on iOS and Android platforms, an idea that trickled back into Microsoft and
Apple desktops. The time seems ripe to improve the field of
container security, which is in desperate need of simpler controls.

The Benefits of Side Projects

Post Syndicated from Bozho original https://techblog.bozho.net/the-benefits-of-side-projects/

Side projects are the things you do at home, after work, for your own “entertainment”, or to satisfy your desire to learn new stuff, in case your workplace doesn’t give you that opportunity (or at least not enough of it). Side projects are also a way to build stuff that you think is valuable but not necessarily “commercialisable”. Many side projects are open-sourced sooner or later and some of them contribute to the pool of tools at other people’s disposal.

I’ve outlined one recommendation about side projects before – do them with technologies that are new to you, so that you learn important things that will keep you better positioned in the software world.

But there are more benefits than that – serendipitous benefits, for example. And I’d like to tell some personal stories about that. I’ll focus on a few examples from my list of side projects to show how, through a sort-of butterfly effect, they helped shape my career.

The computoser project, no matter how cool algorithmic music composition, didn’t manage to have much of a long term impact. But it did teach me something apart from niche musical theory – how to read a bulk of scientific papers (mostly computer science) and understand them without being formally trained in the particular field. We’ll see how that was useful later.

Then there was the “State alerts” project – a website that scraped content from public institutions in my country (legislation, legislation proposals, decisions by regulators, new tenders, etc.), made them searchable, and “subscribable” – so that you get notified when a keyword of interest is mentioned in newly proposed legislation, for example. (I obviously subscribed for “information technologies” and “electronic”).

And that project turned out to have a significant impact on the following years. First, I chose a new technology to write it with – Scala. Which turned out to be of great use when I started working at TomTom, and on the 3rd day I was transferred to a Scala project, which was way cooler and much more complex than the original one I was hired for. It was a bit ironic, as my colleagues had just read that “I don’t like Scala” a few weeks earlier, but nevertheless, that was one of the most interesting projects I’ve worked on, and it went on for two years. Had I not known Scala, I’d probably be gone from TomTom much earlier (as the other project was restructured a few times), and I would not have learned many of the scalability, architecture and AWS lessons that I did learn there.

But the very same project had an even more important follow-up. Because if its “civic hacking” flavour, I was invited to join an informal group of developers (later officiated as an NGO) who create tools that are useful for society (something like MySociety.org). That group gathered regularly, discussed both tools and policies, and at some point we put up a list of policy priorities that we wanted to lobby policy makers. One of them was open source for the government, the other one was open data. As a result of our interaction with an interim government, we donated the official open data portal of my country, functioning to this day.

As a result of that, a few months later we got a proposal from the deputy prime minister’s office to “elect” one of the group for an advisor to the cabinet. And we decided that could be me. So I went for it and became advisor to the deputy prime minister. The job has nothing to do with anything one could imagine, and it was challenging and fascinating. We managed to pass legislation, including one that requires open source for custom projects, eID and open data. And all of that would not have been possible without my little side project.

As for my latest side project, LogSentinel – it became my current startup company. And not without help from the previous two mentioned above – the computer science paper reading was of great use when I was navigating the crypto papers landscape, and from the government job I not only gained invaluable legal knowledge, but I also “got” a co-founder.

Some other side projects died without much fanfare, and that’s fine. But the ones above shaped my “story” in a way that would not have been possible otherwise.

And I agree that such serendipitous chain of events could have happened without side projects – I could’ve gotten these opportunities by meeting someone at a bar (unlikely, but who knows). But we, as software engineers, are capable of tilting chance towards us by utilizing our skills. Side projects are our “extracurricular activities”, and they often lead to unpredictable, but rather positive chains of events. They would rarely be the only factor, but they are certainly great at unlocking potential.

The post The Benefits of Side Projects appeared first on Bozho's tech blog.

Despite US Criticism, Ukraine Cybercrime Chief Receives Few Piracy Complaints

Post Syndicated from Andy original https://torrentfreak.com/despite-us-criticism-ukraine-cybercrime-chief-receives-few-piracy-complaints-180522/

On a large number of occasions over the past decade, Ukraine has played host to some of the world’s largest pirate sites.

At various points over the years, The Pirate Bay, KickassTorrents, ExtraTorrent, Demonoid and raft of streaming portals could be found housed in the country’s data centers, reportedly taking advantage of laws more favorable than those in the US and EU.

As a result, Ukraine has been regularly criticized for not doing enough to combat piracy but when placed under pressure, it does take action. In 2010, for example, the local government expressed concerns about the hosting of KickassTorrents in the country and in August the same year, the site was kicked out by its host.

“Kickasstorrents.com main web server was shut down by the hosting provider after it was contacted by local authorities. One way or another I’m afraid we must say goodbye to Ukraine and move the servers to other countries,” the site’s founder told TF at the time.

In the years since, Ukraine has launched sporadic action against pirate sites and has taken steps to tighten up copyright law. The Law on State Support of Cinematography came into force during April 2017 and gave copyright owners new tools to combat infringement by forcing (in theory, at least) site operators and web hosts to respond to takedown requests.

But according to the United States and Europe, not enough is being done. After the EU Commission warned that Ukraine risked damaging relations with the EU, last September US companies followed up with another scathing attack.

In a recommendation to the U.S. Government, the IIPA, which counts the MPAA, RIAA, and ESA among its members, asked U.S. authorities to suspend or withdraw Ukraine’s trade benefits until the online piracy situation improves.

“Legislation is needed to institute proper notice and takedown provisions, including a requirement that service providers terminate access to individuals (or entities) that have repeatedly engaged in infringement, and the retention of information for law enforcement, as well as to provide clear third party liability regarding ISPs,” the IIPA wrote.

But amid all the criticism, Ukraine cyber police chief Sergey Demedyuk says that while his department is committed to tackling piracy, it can only do so when complaints are filed with him.

“Yes, we are engaged in piracy very closely. The problem is that piracy is a crime of private accusation. So here we deal with them only in cases where we are contacted,” Demedyuk said in an Interfax interview published yesterday.

Surprisingly, given the number of dissenting voices, it appears that complaints about these matters aren’t exactly prevalent. So are there many at all?

“Unfortunately, no. In the media, many companies claim that their rights are being violated by pirates. But if you count the applications that come to us, they are one,” Demedyuk reveals.

“In general, we are handling Ukrainian media companies, who produce their own product and are worried about its fate. Also on foreign films, the ‘Anti-Piracy Agency’ refers to us, but not as intensively as before.”

Why complaints are going down, Demedyuk does not know, but when his unit is asked to take action it does so, he claims. Indeed, Demedyuk cites two particularly significant historical operations against a pair of large ‘pirate’ sites.

In 2012, Ukraine shut down EX.ua, a massive cyberlocker site following a six-month investigation initiated by international tech companies including Microsoft, Graphisoft and Adobe. Around 200 servers were seized, together hosting around 6,000 terabytes of data.

Then in November 2016, following a complaint from the MPAA, police raided FS.to, one of Ukraine’s most popular pirate sites. Initial reports indicated that 60 servers were seized and 19 people were arrested.

“To see the effect of combating piracy, this should not be done at the level of cyberpolicy, but at the state level,” Demedyuk advises.

“This requires constant close interaction between law enforcement agencies and rights holders. Only by using all these tools will we be able to effectively counteract copyright infringements.”

Meanwhile, the Office of the United States Trade Representative has maintained Ukraine’s position on the Priority Watchlist of its latest Special 301 Report and there a no signs it will be leaving anytime soon.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and more. We also have VPN reviews, discounts, offers and coupons.

Amazon Sumerian – Now Generally Available

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/amazon-sumerian-now-generally-available/

We announced Amazon Sumerian at AWS re:Invent 2017. As you can see from Tara‘s blog post (Presenting Amazon Sumerian: An Easy Way to Create VR, AR, and 3D Experiences), Sumerian does not require any specialized programming or 3D graphics expertise. You can build VR, AR, and 3D experiences for a wide variety of popular hardware platforms including mobile devices, head-mounted displays, digital signs, and web browsers.

I’m happy to announce that Sumerian is now generally available. You can create realistic virtual environments and scenes without having to acquire or master specialized tools for 3D modeling, animation, lighting, audio editing, or programming. Once built, you can deploy your finished creation across multiple platforms without having to write custom code or deal with specialized deployment systems and processes.

Sumerian gives you a web-based editor that you can use to quickly and easily create realistic, professional-quality scenes. There’s a visual scripting tool that lets you build logic to control how objects and characters (Sumerian Hosts) respond to user actions. Sumerian also lets you create rich, natural interactions powered by AWS services such as Amazon Lex, Polly, AWS Lambda, AWS IoT, and Amazon DynamoDB.

Sumerian was designed to work on multiple platforms. The VR and AR apps that you create in Sumerian will run in browsers that supports WebGL or WebVR and on popular devices such as the Oculus Rift, HTC Vive, and those powered by iOS or Android.

During the preview period, we have been working with a broad spectrum of customers to put Sumerian to the test and to create proof of concept (PoC) projects designed to highlight an equally broad spectrum of use cases, including employee education, training simulations, field service productivity, virtual concierge, design and creative, and brand engagement. Fidelity Labs (the internal R&D unit of Fidelity Investments), was the first to use a Sumerian host to create an engaging VR experience. Cora (the host) lives within a virtual chart room. She can display stock quotes, pull up company charts, and answer questions about a company’s performance. This PoC uses Amazon Polly to implement text to speech and Amazon Lex for conversational chatbot functionality. Read their blog post and watch the video inside to see Cora in action:

Now that Sumerian is generally available, you have the power to create engaging AR, VR, and 3D experiences of your own. To learn more, visit the Amazon Sumerian home page and then spend some quality time with our extensive collection of Sumerian Tutorials.

Jeff;

 

What’s new in HiveMQ 3.4

Post Syndicated from The HiveMQ Team original https://www.hivemq.com/whats-new-in-hivemq-3-4

We are pleased to announce the release of HiveMQ 3.4. This version of HiveMQ is the most resilient and advanced version of HiveMQ ever. The main focus in this release was directed towards addressing the needs for the most ambitious MQTT deployments in the world for maximum performance and resilience for millions of concurrent MQTT clients. Of course, deployments of all sizes can profit from the improvements in the latest and greatest HiveMQ.

This version is a drop-in replacement for HiveMQ 3.3 and of course supports rolling upgrades with zero-downtime.

HiveMQ 3.4 brings many features that your users, administrators and plugin developers are going to love. These are the highlights:

 

New HiveMQ 3.4 features at a glance

Cluster

HiveMQ 3.4 brings various improvements in terms of scalability, availability, resilience and observability for the cluster mechanism. Many of the new features remain under the hood, but several additions stand out:

Cluster Overload Protection

The new version has a first-of-its-kind Cluster Overload Protection. The whole cluster is able to spot MQTT clients that cause overload on nodes or the cluster as a whole and protects itself from the overload. This mechanism also protects the deployment from cascading failures due to slow or failing underlying hardware (as sometimes seen on cloud providers). This feature is enabled by default and you can learn more about the mechanism in our documentation.

Dynamic Replicates

HiveMQ’s sophisticated cluster mechanism is able to scale in a linear fashion due to extremely efficient and true data distribution mechanics based on a configured replication factor. The most important aspect of every cluster is availability, which is achieved by having eventual consistency functions in place for edge cases. The 3.4 version adds dynamic replicates to the cluster so even the most challenging edge cases involving network splits don’t lead to the sacrifice of consistency for the most important MQTT operations.

Node Stress Level Metrics

All MQTT cluster nodes are now aware of their own stress level and the stress levels of other cluster members. While all stress mitigation is handled internally by HiveMQ, experienced operators may want to monitor the individual node’s stress level (e.g with Grafana) in order to start investigating what caused the increase of load.

WebUI

Operators worldwide love the HiveMQ WebUI introduced with HiveMQ 3.3. We gathered all the fantastic feedback from our users and polished the WebUI, so it’s even more useful for day-to-day broker operations and remote debugging of MQTT clients. The most important changes and additions are:

Trace Recording Download

The unique Trace Recordings functionality is without doubt a lifesaver when the behavior of individual MQTT clients needs further investigation as all interactions with the broker can be traced — at runtime and at scale! Huge production deployments may accumulate multiple gigabytes of trace recordings. HiveMQ now offers a convenient way to collect all trace recordings from all nodes, zips them and allows the download via a simple button on the WebUI. Remote debugging was never easier!

Additional Client Detail Information in WebUI

The mission of the HiveMQ WebUI is to provide easy insights to the whole production MQTT cluster for operators and administrators. Individual MQTT client investigations are a piece of cake, as all available information about clients can be viewed in detail. We further added the ability to view the restrictions a concrete client has:

  • Maximum Inflight Queue Size
  • Client Offline Queue Messages Size
  • Client Offline Message Drop Strategy

Session Invalidation

MQTT persistent sessions are one of the outstanding features of the MQTT protocol specification. Sessions which do not expire but are never reused unnecessarily consume disk space and memory. Administrators can now invalidate individual session directly in the HiveMQ WebUI for client sessions, which can be deleted safely. HiveMQ 3.4 will take care and release the resources on all cluster nodes after a session was invalidated

Web UI Polishing

Most texts on the WebUI were revisited and are now clearer and crisper. The help texts also received a major overhaul and should now be more, well, helpful. In addition, many small improvements were added, which are most of the time invisible but are here to help when you need them most. For example, the WebUI now displays a warning if cluster nodes with old versions are in the cluster (which may happen if a rolling upgrade was not finished properly)

Plugin System

One of the most popular features of HiveMQ is the extensive Plugin System, which virtually enables the integration of HiveMQ to any system and allows hooking into all aspects of the MQTT lifecycle. We listened to the feedback and are pleased to announce many improvements, big and small, for the Plugin System:

Client Session Time-to-live for individual clients

HiveMQ 3.3 offered a global configuration for setting the Time-To-Live for MQTT sessions. With the advent of HiveMQ 3.4, users can now programmatically set Time-To-Live values for individual MQTT clients and can discard a MQTT session immediately.

Individual Inflight Queues

While the Inflight Queue configuration is typically sufficient in the HiveMQ default configuration, there are some use cases that require the adjustment of this configuration. It’s now possible to change the Inflight Queue size for individual clients via the Plugin System.
 
 

Plugin Service Overload Protection

The HiveMQ Plugin System is a power-user tool and it’s possible to do unbelievably useful modifications as well as putting major stress on the system as a whole if the programmer is not careful. In order to protect the HiveMQ instances from accidental overload, a Plugin Service Overload Protection can be configured. This rate limits the Plugin Service usage and gives feedback to the application programmer in case the rate limit is exceeded. This feature is disabled by default but we strongly recommend updating your plugins to profit from this feature.

Session Attribute Store putIfNewer

This is one of the small bits you almost never need but when you do, you’re ecstatic for being able to use it. The Session Attribute Store now offers methods to put values, if the values you want to put are newer or fresher than the values already written. This is extremely useful, if multiple cluster nodes want to write to the Session Attribute Store simultaneously, as this guarantees that outdated values can no longer overwrite newer values.
 
 
 
 

Disconnection Timestamp for OnDisconnectCallback

As the OnDisconnectCallback is executed asynchronously, the client might already be gone when the callback is executed. It’s now easy to obtain the exact timestamp when a MQTT client disconnected, even if the callback is executed later on. This feature might be very interesting for many plugin developers in conjunction with the Session Attribute Store putIfNewer functionality.

Operations

We ❤️ Operators and we strive to provide all the tools needed for operating and administrating a MQTT broker cluster at scale in any environment. A key strategy for successful operations of any system is monitoring. We added some interesting new metrics you might find useful.

System Metrics

In addition to JVM Metrics, HiveMQ now also gathers Operating System Metrics for Linux Systems. So HiveMQ is able to see for itself how the operating system views the process, including native memory, the real CPU usage, and open file usage. These metrics are particularly useful, if you don’t have a monitoring agent for Linux systems setup. All metrics can be found here.

Client Disconnection Metrics

The reality of many MQTT scenarios is that not all clients are able to disconnect gracefully by sending MQTT DISCONNECT messages. HiveMQ now also exposes metrics about clients that disconnected by closing the TCP connection instead of sending a DISCONNECT packet first. This is especially useful for monitoring, if you regularly deal with clients that don’t have a stable connection to the MQTT brokers.

 

JMX enabled by default

JMX, the Java Monitoring Extension, is now enabled by default. Many HiveMQ operators use Application Performance Monitoring tools, which are able to hook into the metrics via JMX or use plain JMX for on-the-fly debugging. While we recommend to use official off-the-shelf plugins for monitoring, it’s now easier than ever to just use JMX if other solutions are not available to you.

Other notable improvements

The 3.4 release of HiveMQ is full of hidden gems and improvements. While it would be too much to highlight all small improvements, these notable changes stand out and contribute to the best HiveMQ release ever.

Topic Level Distribution Configuration

Our recommendation for all huge deployments with millions of devices is: Start with separate topic prefixes by bringing the dynamic topic parts directly to the beginning. The reality is that many customers have topics that are constructed like the following: “devices/{deviceId}/status”. So what happens is that all topics in this example start with a common prefix, “devices”, which is the first topic level. Unfortunately the first topic level doesn’t include a dynamic topic part. In order to guarantee the best scalability of the cluster and the best performance of the topic tree, customers can now configure how many topic levels are used for distribution. In the example outlined here, a topic level distribution of 2 would be perfect and guarantees the best scalability.

Mass disconnect performance improvements

Mass disconnections of MQTT clients can happen. This might be the case when e.g. a load balancer in front of the MQTT broker cluster drops the connections or if a mobile carrier experiences connectivity problems. Prior to HiveMQ 3.4, mass disconnect events caused stress on the cluster. Mass disconnect events are now massively optimized and even tens of millions of connection losses at the same time won’t bring the cluster into stress situations.

 
 
 
 
 
 

Replication Performance Improvements

Due to the distributed nature of a HiveMQ, data needs to be replicated across the cluster in certain events, e.g. when cluster topology changes occur. There are various internal improvements in HiveMQ version 3.4, which increase the replication performance significantly. Our engineers put special love into the replication of Queued Messages, which is now faster than ever, even for multiple millions of Queued Messages that need to be transferred across the cluster.

Updated Native SSL Libraries

The Native SSL Integration of HiveMQ was updated to the newest BoringSSL version. This results in better performance and increased security. In case you’re using SSL and you are not yet using the native SSL integration, we strongly recommend to give it a try, more than 40% performance improvement can be observed for most deployments.

 
 

Improvements for Java 9

While Java 9 was already supported for older HiveMQ versions, HiveMQ 3.4 has full-blown Java 9 support. The minimum Java version still remains Java 7, although we strongly recommend to use Java 8 or newer for the best performance of HiveMQ.

Analyze data in Amazon DynamoDB using Amazon SageMaker for real-time prediction

Post Syndicated from YongSeong Lee original https://aws.amazon.com/blogs/big-data/analyze-data-in-amazon-dynamodb-using-amazon-sagemaker-for-real-time-prediction/

Many companies across the globe use Amazon DynamoDB to store and query historical user-interaction data. DynamoDB is a fast NoSQL database used by applications that need consistent, single-digit millisecond latency.

Often, customers want to turn their valuable data in DynamoDB into insights by analyzing a copy of their table stored in Amazon S3. Doing this separates their analytical queries from their low-latency critical paths. This data can be the primary source for understanding customers’ past behavior, predicting future behavior, and generating downstream business value. Customers often turn to DynamoDB because of its great scalability and high availability. After a successful launch, many customers want to use the data in DynamoDB to predict future behaviors or provide personalized recommendations.

DynamoDB is a good fit for low-latency reads and writes, but it’s not practical to scan all data in a DynamoDB database to train a model. In this post, I demonstrate how you can use DynamoDB table data copied to Amazon S3 by AWS Data Pipeline to predict customer behavior. I also demonstrate how you can use this data to provide personalized recommendations for customers using Amazon SageMaker. You can also run ad hoc queries using Amazon Athena against the data. DynamoDB recently released on-demand backups to create full table backups with no performance impact. However, it’s not suitable for our purposes in this post, so I chose AWS Data Pipeline instead to create managed backups are accessible from other services.

To do this, I describe how to read the DynamoDB backup file format in Data Pipeline. I also describe how to convert the objects in S3 to a CSV format that Amazon SageMaker can read. In addition, I show how to schedule regular exports and transformations using Data Pipeline. The sample data used in this post is from Bank Marketing Data Set of UCI.

The solution that I describe provides the following benefits:

  • Separates analytical queries from production traffic on your DynamoDB table, preserving your DynamoDB read capacity units (RCUs) for important production requests
  • Automatically updates your model to get real-time predictions
  • Optimizes for performance (so it doesn’t compete with DynamoDB RCUs after the export) and for cost (using data you already have)
  • Makes it easier for developers of all skill levels to use Amazon SageMaker

All code and data set in this post are available in this .zip file.

Solution architecture

The following diagram shows the overall architecture of the solution.

The steps that data follows through the architecture are as follows:

  1. Data Pipeline regularly copies the full contents of a DynamoDB table as JSON into an S3
  2. Exported JSON files are converted to comma-separated value (CSV) format to use as a data source for Amazon SageMaker.
  3. Amazon SageMaker renews the model artifact and update the endpoint.
  4. The converted CSV is available for ad hoc queries with Amazon Athena.
  5. Data Pipeline controls this flow and repeats the cycle based on the schedule defined by customer requirements.

Building the auto-updating model

This section discusses details about how to read the DynamoDB exported data in Data Pipeline and build automated workflows for real-time prediction with a regularly updated model.

Download sample scripts and data

Before you begin, take the following steps:

  1. Download sample scripts in this .zip file.
  2. Unzip the src.zip file.
  3. Find the automation_script.sh file and edit it for your environment. For example, you need to replace 's3://<your bucket>/<datasource path>/' with your own S3 path to the data source for Amazon ML. In the script, the text enclosed by angle brackets—< and >—should be replaced with your own path.
  4. Upload the json-serde-1.3.6-SNAPSHOT-jar-with-dependencies.jar file to your S3 path so that the ADD jar command in Apache Hive can refer to it.

For this solution, the banking.csv  should be imported into a DynamoDB table.

Export a DynamoDB table

To export the DynamoDB table to S3, open the Data Pipeline console and choose the Export DynamoDB table to S3 template. In this template, Data Pipeline creates an Amazon EMR cluster and performs an export in the EMRActivity activity. Set proper intervals for backups according to your business requirements.

One core node(m3.xlarge) provides the default capacity for the EMR cluster and should be suitable for the solution in this post. Leave the option to resize the cluster before running enabled in the TableBackupActivity activity to let Data Pipeline scale the cluster to match the table size. The process of converting to CSV format and renewing models happens in this EMR cluster.

For a more in-depth look at how to export data from DynamoDB, see Export Data from DynamoDB in the Data Pipeline documentation.

Add the script to an existing pipeline

After you export your DynamoDB table, you add an additional EMR step to EMRActivity by following these steps:

  1. Open the Data Pipeline console and choose the ID for the pipeline that you want to add the script to.
  2. For Actions, choose Edit.
  3. In the editing console, choose the Activities category and add an EMR step using the custom script downloaded in the previous section, as shown below.

Paste the following command into the new step after the data ­­upload step:

s3://#{myDDBRegion}.elasticmapreduce/libs/script-runner/script-runner.jar,s3://<your bucket name>/automation_script.sh,#{output.directoryPath},#{myDDBRegion}

The element #{output.directoryPath} references the S3 path where the data pipeline exports DynamoDB data as JSON. The path should be passed to the script as an argument.

The bash script has two goals, converting data formats and renewing the Amazon SageMaker model. Subsequent sections discuss the contents of the automation script.

Automation script: Convert JSON data to CSV with Hive

We use Apache Hive to transform the data into a new format. The Hive QL script to create an external table and transform the data is included in the custom script that you added to the Data Pipeline definition.

When you run the Hive scripts, do so with the -e option. Also, define the Hive table with the 'org.openx.data.jsonserde.JsonSerDe' row format to parse and read JSON format. The SQL creates a Hive EXTERNAL table, and it reads the DynamoDB backup data on the S3 path passed to it by Data Pipeline.

Note: You should create the table with the “EXTERNAL” keyword to avoid the backup data being accidentally deleted from S3 if you drop the table.

The full automation script for converting follows. Add your own bucket name and data source path in the highlighted areas.

#!/bin/bash
hive -e "
ADD jar s3://<your bucket name>/json-serde-1.3.6-SNAPSHOT-jar-with-dependencies.jar ; 
DROP TABLE IF EXISTS blog_backup_data ;
CREATE EXTERNAL TABLE blog_backup_data (
 customer_id map<string,string>,
 age map<string,string>, job map<string,string>, 
 marital map<string,string>,education map<string,string>, 
 default map<string,string>, housing map<string,string>,
 loan map<string,string>, contact map<string,string>, 
 month map<string,string>, day_of_week map<string,string>, 
 duration map<string,string>, campaign map<string,string>,
 pdays map<string,string>, previous map<string,string>, 
 poutcome map<string,string>, emp_var_rate map<string,string>, 
 cons_price_idx map<string,string>, cons_conf_idx map<string,string>,
 euribor3m map<string,string>, nr_employed map<string,string>, 
 y map<string,string> ) 
ROW FORMAT SERDE 'org.openx.data.jsonserde.JsonSerDe' 
LOCATION '$1/';

INSERT OVERWRITE DIRECTORY 's3://<your bucket name>/<datasource path>/' 
SELECT concat( customer_id['s'],',', 
 age['n'],',', job['s'],',', 
 marital['s'],',', education['s'],',', default['s'],',', 
 housing['s'],',', loan['s'],',', contact['s'],',', 
 month['s'],',', day_of_week['s'],',', duration['n'],',', 
 campaign['n'],',',pdays['n'],',',previous['n'],',', 
 poutcome['s'],',', emp_var_rate['n'],',', cons_price_idx['n'],',',
 cons_conf_idx['n'],',', euribor3m['n'],',', nr_employed['n'],',', y['n'] ) 
FROM blog_backup_data
WHERE customer_id['s'] > 0 ; 

After creating an external table, you need to read data. You then use the INSERT OVERWRITE DIRECTORY ~ SELECT command to write CSV data to the S3 path that you designated as the data source for Amazon SageMaker.

Depending on your requirements, you can eliminate or process the columns in the SELECT clause in this step to optimize data analysis. For example, you might remove some columns that have unpredictable correlations with the target value because keeping the wrong columns might expose your model to “overfitting” during the training. In this post, customer_id  columns is removed. Overfitting can make your prediction weak. More information about overfitting can be found in the topic Model Fit: Underfitting vs. Overfitting in the Amazon ML documentation.

Automation script: Renew the Amazon SageMaker model

After the CSV data is replaced and ready to use, create a new model artifact for Amazon SageMaker with the updated dataset on S3.  For renewing model artifact, you must create a new training job.  Training jobs can be run using the AWS SDK ( for example, Amazon SageMaker boto3 ) or the Amazon SageMaker Python SDK that can be installed with “pip install sagemaker” command as well as the AWS CLI for Amazon SageMaker described in this post.

In addition, consider how to smoothly renew your existing model without service impact, because your model is called by applications in real time. To do this, you need to create a new endpoint configuration first and update a current endpoint with the endpoint configuration that is just created.

#!/bin/bash
## Define variable 
REGION=$2
DTTIME=`date +%Y-%m-%d-%H-%M-%S`
ROLE="<your AmazonSageMaker-ExecutionRole>" 


# Select containers image based on region.  
case "$REGION" in
"us-west-2" )
    IMAGE="174872318107.dkr.ecr.us-west-2.amazonaws.com/linear-learner:latest"
    ;;
"us-east-1" )
    IMAGE="382416733822.dkr.ecr.us-east-1.amazonaws.com/linear-learner:latest" 
    ;;
"us-east-2" )
    IMAGE="404615174143.dkr.ecr.us-east-2.amazonaws.com/linear-learner:latest" 
    ;;
"eu-west-1" )
    IMAGE="438346466558.dkr.ecr.eu-west-1.amazonaws.com/linear-learner:latest" 
    ;;
 *)
    echo "Invalid Region Name"
    exit 1 ;  
esac

# Start training job and creating model artifact 
TRAINING_JOB_NAME=TRAIN-${DTTIME} 
S3OUTPUT="s3://<your bucket name>/model/" 
INSTANCETYPE="ml.m4.xlarge"
INSTANCECOUNT=1
VOLUMESIZE=5 
aws sagemaker create-training-job --training-job-name ${TRAINING_JOB_NAME} --region ${REGION}  --algorithm-specification TrainingImage=${IMAGE},TrainingInputMode=File --role-arn ${ROLE}  --input-data-config '[{ "ChannelName": "train", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": "s3://<your bucket name>/<datasource path>/", "S3DataDistributionType": "FullyReplicated" } }, "ContentType": "text/csv", "CompressionType": "None" , "RecordWrapperType": "None"  }]'  --output-data-config S3OutputPath=${S3OUTPUT} --resource-config  InstanceType=${INSTANCETYPE},InstanceCount=${INSTANCECOUNT},VolumeSizeInGB=${VOLUMESIZE} --stopping-condition MaxRuntimeInSeconds=120 --hyper-parameters feature_dim=20,predictor_type=binary_classifier  

# Wait until job completed 
aws sagemaker wait training-job-completed-or-stopped --training-job-name ${TRAINING_JOB_NAME}  --region ${REGION}

# Get newly created model artifact and create model
MODELARTIFACT=`aws sagemaker describe-training-job --training-job-name ${TRAINING_JOB_NAME} --region ${REGION}  --query 'ModelArtifacts.S3ModelArtifacts' --output text `
MODELNAME=MODEL-${DTTIME}
aws sagemaker create-model --region ${REGION} --model-name ${MODELNAME}  --primary-container Image=${IMAGE},ModelDataUrl=${MODELARTIFACT}  --execution-role-arn ${ROLE}

# create a new endpoint configuration 
CONFIGNAME=CONFIG-${DTTIME}
aws sagemaker  create-endpoint-config --region ${REGION} --endpoint-config-name ${CONFIGNAME}  --production-variants  VariantName=Users,ModelName=${MODELNAME},InitialInstanceCount=1,InstanceType=ml.m4.xlarge

# create or update the endpoint
STATUS=`aws sagemaker describe-endpoint --endpoint-name  ServiceEndpoint --query 'EndpointStatus' --output text --region ${REGION} `
if [[ $STATUS -ne "InService" ]] ;
then
    aws sagemaker  create-endpoint --endpoint-name  ServiceEndpoint  --endpoint-config-name ${CONFIGNAME} --region ${REGION}    
else
    aws sagemaker  update-endpoint --endpoint-name  ServiceEndpoint  --endpoint-config-name ${CONFIGNAME} --region ${REGION}
fi

Grant permission

Before you execute the script, you must grant proper permission to Data Pipeline. Data Pipeline uses the DataPipelineDefaultResourceRole role by default. I added the following policy to DataPipelineDefaultResourceRole to allow Data Pipeline to create, delete, and update the Amazon SageMaker model and data source in the script.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "sagemaker:CreateTrainingJob",
 "sagemaker:DescribeTrainingJob",
 "sagemaker:CreateModel",
 "sagemaker:CreateEndpointConfig",
 "sagemaker:DescribeEndpoint",
 "sagemaker:CreateEndpoint",
 "sagemaker:UpdateEndpoint",
 "iam:PassRole"
 ],
 "Resource": "*"
 }
 ]
}

Use real-time prediction

After you deploy a model into production using Amazon SageMaker hosting services, your client applications use this API to get inferences from the model hosted at the specified endpoint. This approach is useful for interactive web, mobile, or desktop applications.

Following, I provide a simple Python code example that queries against Amazon SageMaker endpoint URL with its name (“ServiceEndpoint”) and then uses them for real-time prediction.

=== Python sample for real-time prediction ===

#!/usr/bin/env python
import boto3
import json 

client = boto3.client('sagemaker-runtime', region_name ='<your region>' )
new_customer_info = '34,10,2,4,1,2,1,1,6,3,190,1,3,4,3,-1.7,94.055,-39.8,0.715,4991.6'
response = client.invoke_endpoint(
    EndpointName='ServiceEndpoint',
    Body=new_customer_info, 
    ContentType='text/csv'
)
result = json.loads(response['Body'].read().decode())
print(result)
--- output(response) ---
{u'predictions': [{u'score': 0.7528127431869507, u'predicted_label': 1.0}]}

Solution summary

The solution takes the following steps:

  1. Data Pipeline exports DynamoDB table data into S3. The original JSON data should be kept to recover the table in the rare event that this is needed. Data Pipeline then converts JSON to CSV so that Amazon SageMaker can read the data.Note: You should select only meaningful attributes when you convert CSV. For example, if you judge that the “campaign” attribute is not correlated, you can eliminate this attribute from the CSV.
  2. Train the Amazon SageMaker model with the new data source.
  3. When a new customer comes to your site, you can judge how likely it is for this customer to subscribe to your new product based on “predictedScores” provided by Amazon SageMaker.
  4. If the new user subscribes your new product, your application must update the attribute “y” to the value 1 (for yes). This updated data is provided for the next model renewal as a new data source. It serves to improve the accuracy of your prediction. With each new entry, your application can become smarter and deliver better predictions.

Running ad hoc queries using Amazon Athena

Amazon Athena is a serverless query service that makes it easy to analyze large amounts of data stored in Amazon S3 using standard SQL. Athena is useful for examining data and collecting statistics or informative summaries about data. You can also use the powerful analytic functions of Presto, as described in the topic Aggregate Functions of Presto in the Presto documentation.

With the Data Pipeline scheduled activity, recent CSV data is always located in S3 so that you can run ad hoc queries against the data using Amazon Athena. I show this with example SQL statements following. For an in-depth description of this process, see the post Interactive SQL Queries for Data in Amazon S3 on the AWS News Blog. 

Creating an Amazon Athena table and running it

Simply, you can create an EXTERNAL table for the CSV data on S3 in Amazon Athena Management Console.

=== Table Creation ===
CREATE EXTERNAL TABLE datasource (
 age int, 
 job string, 
 marital string , 
 education string, 
 default string, 
 housing string, 
 loan string, 
 contact string, 
 month string, 
 day_of_week string, 
 duration int, 
 campaign int, 
 pdays int , 
 previous int , 
 poutcome string, 
 emp_var_rate double, 
 cons_price_idx double,
 cons_conf_idx double, 
 euribor3m double, 
 nr_employed double, 
 y int 
)
ROW FORMAT DELIMITED 
FIELDS TERMINATED BY ',' ESCAPED BY '\\' LINES TERMINATED BY '\n' 
LOCATION 's3://<your bucket name>/<datasource path>/';

The following query calculates the correlation coefficient between the target attribute and other attributes using Amazon Athena.

=== Sample Query ===

SELECT corr(age,y) AS correlation_age_and_target, 
 corr(duration,y) AS correlation_duration_and_target, 
 corr(campaign,y) AS correlation_campaign_and_target,
 corr(contact,y) AS correlation_contact_and_target
FROM ( SELECT age , duration , campaign , y , 
 CASE WHEN contact = 'telephone' THEN 1 ELSE 0 END AS contact 
 FROM datasource 
 ) datasource ;

Conclusion

In this post, I introduce an example of how to analyze data in DynamoDB by using table data in Amazon S3 to optimize DynamoDB table read capacity. You can then use the analyzed data as a new data source to train an Amazon SageMaker model for accurate real-time prediction. In addition, you can run ad hoc queries against the data on S3 using Amazon Athena. I also present how to automate these procedures by using Data Pipeline.

You can adapt this example to your specific use case at hand, and hopefully this post helps you accelerate your development. You can find more examples and use cases for Amazon SageMaker in the video AWS 2017: Introducing Amazon SageMaker on the AWS website.

 


Additional Reading

If you found this post useful, be sure to check out Serving Real-Time Machine Learning Predictions on Amazon EMR and Analyzing Data in S3 using Amazon Athena.

 


About the Author

Yong Seong Lee is a Cloud Support Engineer for AWS Big Data Services. He is interested in every technology related to data/databases and helping customers who have difficulties in using AWS services. His motto is “Enjoy life, be curious and have maximum experience.”

 

 

Continued: the answers to your questions for Eben Upton

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/eben-q-a-2/

Last week, we shared the first half of our Q&A with Raspberry Pi Trading CEO and Raspberry Pi creator Eben Upton. Today we follow up with all your other questions, including your expectations for a Raspberry Pi 4, Eben’s dream add-ons, and whether we really could go smaller than the Zero.

Live Q&A with Eben Upton, creator of the Raspberry Pi

Get your questions to us now using #AskRaspberryPi on Twitter

With internet security becoming more necessary, will there be automated versions of VPN on an SD card?

There are already third-party tools which turn your Raspberry Pi into a VPN endpoint. Would we do it ourselves? Like the power button, it’s one of those cases where there are a million things we could do and so it’s more efficient to let the community get on with it.

Just to give a counterexample, while we don’t generally invest in optimising for particular use cases, we did invest a bunch of money into optimising Kodi to run well on Raspberry Pi, because we found that very large numbers of people were using it. So, if we find that we get half a million people a year using a Raspberry Pi as a VPN endpoint, then we’ll probably invest money into optimising it and feature it on the website as we’ve done with Kodi. But I don’t think we’re there today.

Have you ever seen any Pis running and doing important jobs in the wild, and if so, how does it feel?

It’s amazing how often you see them driving displays, for example in radio and TV studios. Of course, it feels great. There’s something wonderful about the geographic spread as well. The Raspberry Pi desktop is quite distinctive, both in its previous incarnation with the grey background and logo, and the current one where we have Greg Annandale’s road picture.

The PIXEL desktop on Raspberry Pi

And so it’s funny when you see it in places. Somebody sent me a video of them teaching in a classroom in rural Pakistan and in the background was Greg’s picture.

Raspberry Pi 4!?!

There will be a Raspberry Pi 4, obviously. We get asked about it a lot. I’m sticking to the guidance that I gave people that they shouldn’t expect to see a Raspberry Pi 4 this year. To some extent, the opportunity to do the 3B+ was a surprise: we were surprised that we’ve been able to get 200MHz more clock speed, triple the wireless and wired throughput, and better thermals, and still stick to the $35 price point.

We’re up against the wall from a silicon perspective; we’re at the end of what you can do with the 40nm process. It’s not that you couldn’t clock the processor faster, or put a larger processor which can execute more instructions per clock in there, it’s simply about the energy consumption and the fact that you can’t dissipate the heat. So we’ve got to go to a smaller process node and that’s an order of magnitude more challenging from an engineering perspective. There’s more effort, more risk, more cost, and all of those things are challenging.

With 3B+ out of the way, we’re going to start looking at this now. For the first six months or so we’re going to be figuring out exactly what people want from a Raspberry Pi 4. We’re listening to people’s comments about what they’d like to see in a new Raspberry Pi, and I’m hoping by early autumn we should have an idea of what we want to put in it and a strategy for how we might achieve that.

Could you go smaller than the Zero?

The challenge with Zero as that we’re periphery-limited. If you run your hand around the unit, there is no edge of that board that doesn’t have something there. So the question is: “If you want to go smaller than Zero, what feature are you willing to throw out?”

It’s a single-sided board, so you could certainly halve the PCB area if you fold the circuitry and use both sides, though you’d have to lose something. You could give up some GPIO and go back to 26 pins like the first Raspberry Pi. You could give up the camera connector, you could go to micro HDMI from mini HDMI. You could remove the SD card and just do USB boot. I’m inventing a product live on air! But really, you could get down to two thirds and lose a bunch of GPIO – it’s hard to imagine you could get to half the size.

What’s the one feature that you wish you could outfit on the Raspberry Pi that isn’t cost effective at this time? Your dream feature.

Well, more memory. There are obviously technical reasons why we don’t have more memory on there, but there are also market reasons. People ask “why doesn’t the Raspberry Pi have more memory?”, and my response is typically “go and Google ‘DRAM price’”. We’re used to the price of memory going down. And currently, we’re going through a phase where this has turned around and memory is getting more expensive again.

Machine learning would be interesting. There are machine learning accelerators which would be interesting to put on a piece of hardware. But again, they are not going to be used by everyone, so according to our method of pricing what we might add to a board, machine learning gets treated like a $50 chip. But that would be lovely to do.

Which citizen science projects using the Pi have most caught your attention?

I like the wildlife camera projects. We live out in the countryside in a little village, and we’re conscious of being surrounded by nature but we don’t see a lot of it on a day-to-day basis. So I like the nature cam projects, though, to my everlasting shame, I haven’t set one up yet. There’s a range of them, from very professional products to people taking a Raspberry Pi and a camera and putting them in a plastic box. So those are good fun.

Raspberry Shake seismometer

The Raspberry Shake seismometer

And there’s Meteor Pi from the Cambridge Science Centre, that’s a lot of fun. And the seismometer Raspberry Shake – that sort of thing is really nice. We missed the recent South Wales earthquake; perhaps we should set one up at our Californian office.

How does it feel to go to bed every day knowing you’ve changed the world for the better in such a massive way?

What feels really good is that when we started this in 2006 nobody else was talking about it, but now we’re part of a very broad movement.

We were in a really bad way: we’d seen a collapse in the number of applicants applying to study Computer Science at Cambridge and elsewhere. In our view, this reflected a move away from seeing technology as ‘a thing you do’ to seeing it as a ‘thing that you have done to you’. It is problematic from the point of view of the economy, industry, and academia, but most importantly it damages the life prospects of individual children, particularly those from disadvantaged backgrounds. The great thing about STEM subjects is that you can’t fake being good at them. There are a lot of industries where your Dad can get you a job based on who he knows and then you can kind of muddle along. But if your dad gets you a job building bridges and you suck at it, after the first or second bridge falls down, then you probably aren’t going to be building bridges anymore. So access to STEM education can be a great driver of social mobility.

By the time we were launching the Raspberry Pi in 2012, there was this wonderful movement going on. Code Club, for example, and CoderDojo came along. Lots of different ways of trying to solve the same problem. What feels really, really good is that we’ve been able to do this as part of an enormous community. And some parts of that community became part of the Raspberry Pi Foundation – we merged with Code Club, we merged with CoderDojo, and we continue to work alongside a lot of these other organisations. So in the two seconds it takes me to fall asleep after my face hits the pillow, that’s what I think about.

We’re currently advertising a Programme Manager role in New Delhi, India. Did you ever think that Raspberry Pi would be advertising a role like this when you were bringing together the Foundation?

No, I didn’t.

But if you told me we were going to be hiring somewhere, India probably would have been top of my list because there’s a massive IT industry in India. When we think about our interaction with emerging markets, India, in a lot of ways, is the poster child for how we would like it to work. There have already been some wonderful deployments of Raspberry Pi, for example in Kerala, without our direct involvement. And we think we’ve got something that’s useful for the Indian market. We have a product, we have clubs, we have teacher training. And we have a body of experience in how to teach people, so we have a physical commercial product as well as a charitable offering that we think are a good fit.

It’s going to be massive.

What is your favourite BBC type-in listing?

There was a game called Codename: Druid. There is a famous game called Codename: Droid which was the sequel to Stryker’s Run, which was an awesome, awesome game. And there was a type-in game called Codename: Druid, which was at the bottom end of what you would consider a commercial game.

codename druid

And I remember typing that in. And what was really cool about it was that the next month, the guy who wrote it did another article that talks about the memory map and which operating system functions used which bits of memory. So if you weren’t going to do disc access, which bits of memory could you trample on and know the operating system would survive.

babbage versus bugs Raspberry Pi annual

See the full listing for Babbage versus Bugs in the Raspberry Pi 2018 Annual

I still like type-in listings. The Raspberry Pi 2018 Annual has a type-in listing that I wrote for a Babbage versus Bugs game. I will say that’s not the last type-in listing you will see from me in the next twelve months. And if you download the PDF, you could probably copy and paste it into your favourite text editor to save yourself some time.

The post Continued: the answers to your questions for Eben Upton appeared first on Raspberry Pi.

Tips for Success: GDPR Lessons Learned

Post Syndicated from Chad Woolf original https://aws.amazon.com/blogs/security/tips-for-success-gdpr-lessons-learned/

Security is our top priority at AWS, and from the beginning we have built security into the fabric of our services. With the introduction of GDPR (which becomes enforceable on May 25 of 2018), privacy and data protection have become even more ingrained into our security-centered culture. Three weeks ago, well ahead of the deadline, we announced that all AWS services are compliant with GDPR, meaning you can use AWS as a data processor as a way to help solve your GDPR challenges (be sure to visit our GDPR Center for additional information).

When it comes to GDPR compliance, many customers are progressing nicely and much of the initial trepidation is gone. In my interactions with customers on this topic, a few themes have emerged as universal:

  • GDPR is important. You need to have a plan in place if you process personal data of EU data subjects, not only because it’s good governance, but because GDPR does carry significant penalties for non-compliance.
  • Solving this can be complex, potentially involving a lot of personnel and multiple tools. Your GDPR process will also likely span across disciplines – impacting people, processes, and technology.
  • Each customer is unique, and there are many methodologies around assessing your compliance with GDPR. It’s important to be aware of your own individual business attributes.

I thought it might be helpful to share some of our own lessons learned. In our experience in solving the GDPR challenge, the following were keys to our success:

  1. Get your senior leadership involved. We have a regular cadence of detailed status conversations about GDPR with our CEO, Andy Jassy. GDPR is high stakes, and the AWS leadership team knows it. If GDPR doesn’t have the attention it needs with the visibility of top management today, it’s time to escalate.
  2. Centralize the GDPR efforts. Driving all work streams centrally is key. This may sound obvious, but managing this in a distributed manner may result in duplicative effort and/or team members moving in a different direction.
  3. The most important single partner in solving GDPR is your legal team. Having non-legal people make assumptions about how to interpret GDPR for your unique environment is both risky and a potential waste of time and resources. You want to avoid analysis paralysis by getting proper legal advice, collaborating on a direction, and then moving forward with the proper urgency.
  4. Collaborate closely with tech leadership. The “process” people in your organization, the ones who already know how to approach governance problems, are typically comfortable jumping right in to GDPR. But technical teams, including data owners, have set up their software for business application. They may not even know what kind of data they are storing, processing, or transferring to other parts of the business. In the GDPR exercise they need to be aware of (or at least help facilitate) the tracking of data and data elements between systems. This isn’t a typical ask for technical teams, so be prepared to educate and to fully understand data flow.
  5. Don’t live by the established checklists. There are multiple methodologies to solving the compliance challenges of GDPR. At AWS, we ended up establishing core requirements, mapped out by data controller and data processor functions and then, in partnership with legal, decided upon a group of projects based on our known current state. Be careful about using a set methodology, tool or questionnaire to govern your efforts. These generic assessments can help educate, but letting them drive or limit your work could lead to missing something that is key to your own compliance. In this sense, a generic, “one size fits all” solution might not be helpful.
  6. Don’t be afraid to challenge prior orthodoxy. Many times we changed course based on new information. You shouldn’t be afraid to scrap an effort if you determine it’s not working. You should also not be afraid to escalate issues to senior leadership when needed. This is an executive issue.
  7. Look for ways to leverage your work beyond this compliance activity. GDPR requires serious effort, but are the results limited to GDPR compliance? Certainly not. You can use GDPR workflows as a way to ensure better governance moving forward. Privacy and security will require work for the foreseeable future, so make your governance program scalable and usable for other purposes.

One last tip that has made all the difference: think about protecting data subjects and work backwards from there. Customer focus drives us to ask, “what would customers and data subjects want and expect us to do?” Taking GDPR from a pure legal or compliance standpoint may be technically sufficient, but we believe the objectives of security and personal data protection require a more comprehensive view, and you can most effectively shape that view by starting with the individuals GDPR was meant to protect.

If you would like to find out more about our experiences, as well as how we can help you in your efforts, please reach out to us today.

-Chad Woolf

Vice President, AWS Security Assurance

Interested in additional AWS Security news? Follow the AWS Security Blog on Twitter.

AIY Projects 2: Google’s AIY Projects Kits get an upgrade

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/google-aiy-projects-2/

After the outstanding success of their AIY Projects Voice and Vision Kits, Google has announced the release of upgraded kits, complete with Raspberry Pi Zero WH, Camera Module, and preloaded SD card.

Google AIY Projects Vision Kit 2 Raspberry Pi

Google’s AIY Projects Kits

Google launched the AIY Projects Voice Kit last year, first as a cover gift with The MagPi magazine and later as a standalone product.

Makers needed to provide their own Raspberry Pi for the original kit. The new kits include everything you need, from Pi to SD card.

Within a DIY cardboard box, makers were able to assemble their own voice-activated AI assistant akin to the Amazon Alexa, Apple’s Siri, and Google’s own Google Home Assistant. The Voice Kit was an instant hit that spurred no end of maker videos and tutorials, including our own free tutorial for controlling a robot using voice commands.

Later in the year, the team followed up the success of the Voice Kit with the AIY Projects Vision Kit — the same cardboard box hosting a camera perfect for some pretty nifty image recognition projects.

For more on the AIY Voice Kit, here’s our release video hosted by the rather delightful Rob Zwetsloot.

AIY Projects adds natural human interaction to your Raspberry Pi

Check out the exclusive Google AIY Projects Kit that comes free with The MagPi 57! Grab yourself a copy in stores or online now: http://magpi.cc/2pI6IiQ This first AIY Projects kit taps into the Google Assistant SDK and Cloud Speech API using the AIY Projects Voice HAT (Hardware Accessory on Top) board, stereo microphone, and speaker (included free with the magazine).

AIY Projects 2

So what’s new with version 2 of the AIY Projects Voice Kit? The kit now includes the recently released Raspberry Pi Zero WH, our Zero W with added pre-soldered header pins for instant digital making accessibility. Purchasers of the kits will also get a micro SD card with preloaded OS to help them get started without having to set the card up themselves.

Google AIY Projects Vision Kit 2 Raspberry Pi

Everything you need to build your own Raspberry Pi-powered Google voice assistant

In the newly upgraded AIY Projects Vision Kit v1.2, makers are also treated to an official Raspberry Pi Camera Module v2, the latest model of our add-on camera.

Google AIY Projects Vision Kit 2 Raspberry Pi

“Everything you need to get started is right there in the box,” explains Billy Rutledge, Google’s Director of AIY Projects. “We knew from our research that even though makers are interested in AI, many felt that adding it to their projects was too difficult or required expensive hardware.”

Google AIY Projects Vision Kit 2 Raspberry Pi
Google AIY Projects Vision Kit 2 Raspberry Pi
Google AIY Projects Vision Kit 2 Raspberry Pi

Google is also hard at work producing AIY Projects companion apps for Android, iOS, and Chrome. The Android app is available now to coincide with the launch of the upgraded kits, with the other two due for release soon. The app supports wireless setup of the AIY Kit, though avid coders will still be able to hack theirs to better suit their projects.

Google has also updated the AIY Projects website with an AIY Models section highlighting a range of neural network projects for the kits.

Get your kit

The updated Voice and Vision Kits were announced last night, and in the US they are available now from Target. UK-based makers should be able to get their hands on them this summer — keep an eye on our social channels for updates and links.

The post AIY Projects 2: Google’s AIY Projects Kits get an upgrade appeared first on Raspberry Pi.

Using AWS Lambda and Amazon Comprehend for sentiment analysis

Post Syndicated from Chris Munns original https://aws.amazon.com/blogs/compute/using-aws-lambda-and-amazon-comprehend-for-sentiment-analysis/

This post courtesy of Giedrius Praspaliauskas, AWS Solutions Architect

Even with best IVR systems, customers get frustrated. What if you knew that 10 callers in your Amazon Connect contact flow were likely to say “Agent!” in frustration in the next 30 seconds? Would you like to get to them before that happens? What if your bot was smart enough to admit, “I’m sorry this isn’t helping. Let me find someone for you.”?

In this post, I show you how to use AWS Lambda and Amazon Comprehend for sentiment analysis to make your Amazon Lex bots in Amazon Connect more sympathetic.

Setting up a Lambda function for sentiment analysis

There are multiple natural language and text processing frameworks or services available to use with Lambda, including but not limited to Amazon Comprehend, TextBlob, Pattern, and NLTK. Pick one based on the nature of your system:  the type of interaction, languages supported, and so on. For this post, I picked Amazon Comprehend, which uses natural language processing (NLP) to extract insights and relationships in text.

The walkthrough in this post is just an example. In a full-scale implementation, you would likely implement a more nuanced approach. For example, you could keep the overall sentiment score through the conversation and act only when it reaches a certain threshold. It is worth noting that this Lambda function is not called for missed utterances, so there may be a gap between what is being analyzed and what was actually said.

The Lambda function is straightforward. It analyses the input transcript field of the Amazon Lex event. Based on the overall sentiment value, it generates a response message with next step instructions. When the sentiment is neutral, positive, or mixed, the response leaves it to Amazon Lex to decide what the next steps should be. It adds to the response overall sentiment value as an additional session attribute, along with slots’ values received as an input.

When the overall sentiment is negative, the function returns the dialog action, pointing to an escalation intent (specified in the environment variable ESCALATION_INTENT_NAME) or returns the fulfillment closure action with a failure state when the intent is not specified. In addition to actions or intents, the function returns a message, or prompt, to be provided to the customer before taking the next step. Based on the returned action, Amazon Connect can select the appropriate next step in a contact flow.

For this walkthrough, you create a Lambda function using the AWS Management Console:

  1. Open the Lambda console.
  2. Choose Create Function.
  3. Choose Author from scratch (no blueprint).
  4. For Runtime, choose Python 3.6.
  5. For Role, choose Create a custom role. The custom execution role allows the function to detect sentiments, create a log group, stream log events, and store the log events.
  6. Enter the following values:
    • For Role Description, enter Lambda execution role permissions.
    • For IAM Role, choose Create an IAM role.
    • For Role Name, enter LexSentimentAnalysisLambdaRole.
    • For Policy, use the following policy:
{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Effect": "Allow",
            "Action": [
                "logs:CreateLogGroup",
                "logs:CreateLogStream",
                "logs:PutLogEvents"
            ],
            "Resource": "arn:aws:logs:*:*:*"
        },
        {
            "Action": [
                "comprehend:DetectDominantLanguage",
                "comprehend:DetectSentiment"
            ],
            "Effect": "Allow",
            "Resource": "*"
        }
    ]
}
    1. Choose Create function.
    2. Copy/paste the following code to the editor window
import os, boto3

ESCALATION_INTENT_MESSAGE="Seems that you are having troubles with our service. Would you like to be transferred to the associate?"
FULFILMENT_CLOSURE_MESSAGE="Seems that you are having troubles with our service. Let me transfer you to the associate."

escalation_intent_name = os.getenv('ESACALATION_INTENT_NAME', None)

client = boto3.client('comprehend')

def lambda_handler(event, context):
    sentiment=client.detect_sentiment(Text=event['inputTranscript'],LanguageCode='en')['Sentiment']
    if sentiment=='NEGATIVE':
        if escalation_intent_name:
            result = {
                "sessionAttributes": {
                    "sentiment": sentiment
                    },
                    "dialogAction": {
                        "type": "ConfirmIntent", 
                        "message": {
                            "contentType": "PlainText", 
                            "content": ESCALATION_INTENT_MESSAGE
                        }, 
                    "intentName": escalation_intent_name
                    }
            }
        else:
            result = {
                "sessionAttributes": {
                    "sentiment": sentiment
                },
                "dialogAction": {
                    "type": "Close",
                    "fulfillmentState": "Failed",
                    "message": {
                            "contentType": "PlainText",
                            "content": FULFILMENT_CLOSURE_MESSAGE
                    }
                }
            }

    else:
        result ={
            "sessionAttributes": {
                "sentiment": sentiment
            },
            "dialogAction": {
                "type": "Delegate",
                "slots" : event["currentIntent"]["slots"]
            }
        }
    return result
  1. Below the code editor specify the environment variable ESCALATION_INTENT_NAME with a value of Escalate.

  1. Click on Save in the top right of the console.

Now you can test your function.

  1. Click Test at the top of the console.
  2. Configure a new test event using the following test event JSON:
{
  "messageVersion": "1.0",
  "invocationSource": "DialogCodeHook",
  "userId": "1234567890",
  "sessionAttributes": {},
  "bot": {
    "name": "BookSomething",
    "alias": "None",
    "version": "$LATEST"
  },
  "outputDialogMode": "Text",
  "currentIntent": {
    "name": "BookSomething",
    "slots": {
      "slot1": "None",
      "slot2": "None"
    },
    "confirmationStatus": "None"
  },
  "inputTranscript": "I want something"
}
  1. Click Create
  2. Click Test on the console

This message should return a response from Lambda with a sentiment session attribute of NEUTRAL.

However, if you change the input to “This is garbage!”, Lambda changes the dialog action to the escalation intent specified in the environment variable ESCALATION_INTENT_NAME.

Setting up Amazon Lex

Now that you have your Lambda function running, it is time to create the Amazon Lex bot. Use the BookTrip sample bot and call it BookSomething. The IAM role is automatically created on your behalf. Indicate that this bot is not subject to the COPPA, and choose Create. A few minutes later, the bot is ready.

Make the following changes to the default configuration of the bot:

  1. Add an intent with no associated slots. Name it Escalate.
  2. Specify the Lambda function for initialization and validation in the existing two intents (“BookCar” and “BookHotel”), at the same time giving Amazon Lex permission to invoke it.
  3. Leave the other configuration settings as they are and save the intents.

You are ready to build and publish this bot. Set a new alias, BookSomethingWithSentimentAnalysis. When the build finishes, test it.

As you see, sentiment analysis works!

Setting up Amazon Connect

Next, provision an Amazon Connect instance.

After the instance is created, you need to integrate the Amazon Lex bot created in the previous step. For more information, see the Amazon Lex section in the Configuring Your Amazon Connect Instance topic.  You may also want to look at the excellent post by Randall Hunt, New – Amazon Connect and Amazon Lex Integration.

Create a new contact flow, “Sentiment analysis walkthrough”:

  1. Log in into the Amazon Connect instance.
  2. Choose Create contact flow, Create transfer to agent flow.
  3. Add a Get customer input block, open the icon in the top left corner, and specify your Amazon Lex bot and its intents.
  4. Select the Text to speech audio prompt type and enter text for Amazon Connect to play at the beginning of the dialog.
  5. Choose Amazon Lex, enter your Amazon Lex bot name and the alias.
  6. Specify the intents to be used as dialog branches that a customer can choose: BookHotel, BookTrip, or Escalate.
  7. Add two Play prompt blocks and connect them to the customer input block.
    • If booking hotel or car intent is returned from the bot flow, play the corresponding prompt (“OK, will book it for you”) and initiate booking (in this walkthrough, just hang up after the prompt).
    • However, if escalation intent is returned (caused by the sentiment analysis results in the bot), play the prompt (“OK, transferring to an agent”) and initiate the transfer.
  8. Save and publish the contact flow.

As a result, you have a contact flow with a single customer input step and a text-to-speech prompt that uses the Amazon Lex bot. You expect one of the three intents returned:

Edit the phone number to associate the contact flow that you just created. It is now ready for testing. Call the phone number and check how your contact flow works.

Cleanup

Don’t forget to delete all the resources created during this walkthrough to avoid incurring any more costs:

  • Amazon Connect instance
  • Amazon Lex bot
  • Lambda function
  • IAM role LexSentimentAnalysisLambdaRole

Summary

In this walkthrough, you implemented sentiment analysis with a Lambda function. The function can be integrated into Amazon Lex and, as a result, into Amazon Connect. This approach gives you the flexibility to analyze user input and then act. You may find the following potential use cases of this approach to be of interest:

  • Extend the Lambda function to identify “hot” topics in the user input even if the sentiment is not negative and take action proactively. For example, switch to an escalation intent if a user mentioned “where is my order,” which may signal potential frustration.
  • Use Amazon Connect Streams to provide agent sentiment analysis results along with call transfer. Enable service tailored towards particular customer needs and sentiments.
  • Route calls to agents based on both skill set and sentiment.
  • Prioritize calls based on sentiment using multiple Amazon Connect queues instead of transferring directly to an agent.
  • Monitor quality and flag for review contact flows that result in high overall negative sentiment.
  • Implement sentiment and AI/ML based call analysis, such as a real-time recommendation engine. For more details, see Machine Learning on AWS.

If you have questions or suggestions, please comment below.

Obscure E-Mail Vulnerability

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2018/04/obscure_e-mail_.html

This vulnerability is a result of an interaction between two different ways of handling e-mail addresses. Gmail ignores dots in addresses, so [email protected] is the same as [email protected] is the same as [email protected] (Note: I do not own any of those email addresses — if they’re even valid.) Netflix doesn’t ignore dots, so those are all unique e-mail addresses and can each be used to register an account. This difference can be exploited.

I was almost fooled into perpetually paying for Eve’s Netflix access, and only paused because I didn’t recognize the declined card. More generally, the phishing scam here is:

  1. Hammer the Netflix signup form until you find a gmail.com address which is “already registered”. Let’s say you find the victim jameshfisher.
  2. Create a Netflix account with address james.hfisher.
  3. Sign up for free trial with a throwaway card number.
  4. After Netflix applies the “active card check”, cancel the card.
  5. Wait for Netflix to bill the cancelled card. Then Netflix emails james.hfisher asking for a valid card.
  6. Hope Jim reads the email to james.hfisher, assumes it’s for his Netflix account backed by jameshfisher, then enters his card **** 1234.
  7. Change the email for the Netflix account to [email protected], kicking Jim’s access to this account.
  8. Use Netflix free forever with Jim’s card **** 1234!

Obscure, yes? A problem, yes?

James Fisher, who wrote the post, argues that it’s Google’s fault. Ignoring dots might give people an enormous number of different email addresses, but it’s not a feature that people actually want. And as long as other sites don’t follow Google’s lead, these sorts of problems are possible.

I think the problem is more subtle. It’s an example of two systems without a security vulnerability coming together to create a security vulnerability. As we connect more systems directly to each other, we’re going to see a lot more of these. And like this Google/Netflix interaction, it’s going to be hard to figure out who to blame and who — if anyone — has the responsibility of fixing it.

Simplicity is a Feature for Cloud Backup

Post Syndicated from Roderick Bauer original https://www.backblaze.com/blog/distributed-cloud-backup-for-businesses/

cloud on a blue background
For Joel Wagener, Director of IT at AIBS, simplicity is an important feature he looks for in software applications to use in his organization. So maybe it’s not unexpected that Joel chose Backblaze for Business to back up AIBS’s staff computers. According to Joel, “It just works.”American Institute of Biological Sciences

AIBS (The American Institute of Biological Sciences) is a non-profit scientific association dedicated to advancing biological research and education. Founded in 1947 as part of the National Academy of Sciences, AIBS later became independent and now has over 100 member organizations. AIBS works to ensure that the public, legislators, funders, and the community of biologists have access to and use information that will guide them in making informed decisions about matters that require biological knowledge.

AIBS started using Backblaze for Business Cloud Backup several years ago to make sure that the organization’s data was backed up and protected from accidental loss or computer failure. AIBS is based in Washington, D.C., but is a virtual organization, with staff dispersed around the United States. AIBS needed a backup solution that worked anywhere a staff member was located, and was easy to use, as well. Joel has made Backblaze a default part of the configuration management for all the AIBS endpoints, which in their case are exclusively Macintosh.

AIBS biological images

“We started using Backblaze on a single computer in 2014, then not too long after that decided to deploy it to all our endpoints,” explains Joel. “We use Groups to oversee backups and for central billing, but we let each user manage their own computer and restore files on their own if they need to.”

“Backblaze stays out of the way until we need it. It’s fairly lightweight, and I appreciate that it’s simple,” says Joel. “It doesn’t throttle backups and the price point is good. I have family members who use Backblaze, as well.”

Backblaze’s Groups feature permits an organization to oversee and manage the user accounts, including restores, or let users handle that themselves. This flexibility fits a variety of organizations, where various degrees of oversight or independence are desirable. The finance and HR departments could manage their own data, for example, while the rest of the organization could be managed by IT. All groups can be billed centrally no matter how other functionality is set up.

“If we have a computer that needs repair, we can put a loaner computer in that person’s hands and they can immediately get the data they need directly from the Backblaze cloud backup, which is really helpful. When we get the original computer back from repair we can do a complete restore and return it to the user all ready to go again. When we’ve needed restores, Backblaze has been reliable.”

Joel also likes that the memory footprint of Backblaze is light — the clients for both Macintosh and Windows are native, and designed to use minimum system resources and not impact any applications used on the computer. He also likes that updates to the client software are pushed out when necessary.

Backblaze for Business

Backblaze for Business also helps IT maintain archives of users’ computers after they leave the organization.

“We like that we have a ready-made archive of a computer when someone leaves,” said Joel. The Backblaze backup is there if we need to retrieve anything that person was working on.”

There are other capabilities in Backblaze that Joel likes, but hasn’t had a chance to use yet.

“We’ve used Casper (Jamf) to deploy and manage software on endpoints without needing any interaction from the user. We haven’t used it yet for Backblaze, but we know that Backblaze supports it. It’s a handy feature to have.”

”It just works.”
— Joel Wagener, AIBS Director of IT

Perhaps the best thing about Backblaze for Business isn’t a specific feature that can be found on a product data sheet.

“When files have been lost, Backblaze has provided us access to multiple prior versions, and this feature has been important and worked well several times,” says Joel.

“That provides needed peace of mind to our users, and our IT department, as well.”

The post Simplicity is a Feature for Cloud Backup appeared first on Backblaze Blog | Cloud Storage & Cloud Backup.

Alice’s Day Off demo

Post Syndicated from Eevee original https://eev.ee/release/2018/03/02/alices-day-off-demo/

🔗 Alice’s Day Off demo on itch

🚨🔞 HEADS UP: This game is super duper NSFW. It contains explicit cartoon porn. You have been warned! 🔞🚨

This is the game glip and I (and a co-writer) made for my horny game jam, Strawberry Jam 2. It’s a goofy visual novel about, well… sex, mostly. A few folks with no interest in the subject matter have played it and still enjoyed it, which seems like a great sign.

(Oh, right, and the jam is over, and has 63 entries! Like last year, they run the gamut from “highly abstract and thoughtful” to “let’s put porn in a game”.)

Some lingering thoughts about the process itself:


Visual novels combine narrative prose with the interaction of games, but the two forces are somewhat at odds: the more interaction you add, the more prose you have to write, with the worst case being a combinatoric explosion (which won’t even be appreciated by players who run through only once). And there’s a subtle tension between the design of those decisions and replay value, which… I maybe ought to go on about some other time.

Anyway, this is all really a distilled form of the problem of offering narrative choice in games in general, which I find fascinating, so I really wanted to play around with it. I have a few ideas for experimenting with what player choice even looks like in a visual novel, and we have thoughts about narrative variety at all levels so there’s something to appreciate no matter how much or little you replay the game.

Alas! We had to drastically cut down what we wanted to do due to time constraints, hence calling this a “demo”; it’s a sample of ten (mostly linear) routes. It’s good stuff, I’m happy with how it came out, and there’s a pretty decent chunk of it — I think a straight read in one sitting takes about an hour — but I naturally compare it to everything I know isn’t there.


This was my first time using Ren’Py, and it defied my assumptions so utterly that I have to go write a separate post about it now. I think it came out pretty well, considering I’d never touched the engine before three weeks ago.

The touch I like the most is the custom title screen, seen above. I think it’s fairly important to hide obvious traces of the engine you’re using, when feasible; otherwise the end result is covered in someone else’s (generic) fingerprints, not yours. So we added a splash, added a title screen, and completely changed the in-game interface. (The in-game menu is basically the same, but it’s general-purpose enough that I’m not sure it’s really worth changing. Maybe?)


Part of the point of this exercise was to force me to actually sit down and write a story, an activity I often attempt to do and then awkwardly shy away from. It feels like pushing against a river of molasses: it takes me so long just to get started at all, and if I stumble even slightly, I lose my momentum completely and have to start all over. It’s my ADD final boss.

Suffice to say, I spent a good chunk of the month mostly not-writing, which was frustrating and didn’t get us very far. It wasn’t until the final week that I felt like I really hit my stride and started churning out big chunks of prose at a time. I don’t have any inspirational tale about how this happened; I just kept trying to do it and failing to do it until I finally did it. Hopefully it’ll be easier to get into from now on!

I did half the writing, and it’s endlessly hilarious to me that my co-writer and I both looked at each other’s prose and came away thinking “damn, I need to do it more like that!” Probably a good sign.

That’s all I’ve got; back to work!

Petoi: a Pi-powered kitty cat

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/petoi-a-pi-powered-kitty-cat/

A robot pet is the dream of many a child, thanks to creatures such as K9, Doctor Who’s trusted companion, and the Tamagotchi, bleeping nightmare of parents worldwide. But both of these pale in comparison (sorry, K9) to Petoi, the walking, meowing, live-streaming cat from maker Rongzhong Li.

Petoi: OpenCat Demo

Mentioned on IEEE Spectrum: https://spectrum.ieee.org/automaton/robotics/humanoids/video-friday-boston-dynamics-spotmini-opencat-robot-engineered-arts-mesmer-uncanny-valley More reads on Hackster: https://www.hackster.io/petoi/opencat-845129 优酷: http://v.youku.com/v_show/id_XMzQxMzA1NjM0OA==.html?spm=a2h3j.8428770.3416059.1 We are developing programmable and highly maneuverable quadruped robots for STEM education and AI-enhanced services. Its compact and bionic design makes it the only affordable consumer robot that mimics various mammal gaits and reacts to surroundings.

Petoi

Not only have cats conquered the internet, they also have a paw firmly in the door of many makerspaces and spare rooms — rooms such as the one belonging to Petoi’s owner/maker, Rongzhong Li, who has been working on this feline creation since he bought his first Raspberry Pi.

Petoi Raspberry Pi Robot Cat

Petoi in its current state – apple for scale in lieu of banana

Petoi is just like any other housecat: it walks, it plays, its ribcage doubles as a digital xylophone — but what makes Petoi so special is Li’s use of the project as a platform for study.

I bought my first Raspberry Pi in June 2016 to learn coding hardware. This robot Petoi served as a playground for learning all the components in a regular Raspberry Pi beginner kit. I started with craft sticks, then switched to 3D-printed frames for optimized performance and morphology.

Various iterations of Petoi have housed various bits of tech, 3D-printed parts, and software, so while it’s impossible to list the exact ingredients you’d need to create your own version of Petoi, a few components remain at its core.

Petoi Raspberry Pi Robot Cat — skeleton prototype

An early version of Petoi, housed inside a plastic toy helicopter frame

A Raspberry Pi lives within Petoi and acts as its brain, relaying commands to an Arduino that controls movement. Li explains:

The Pi takes no responsibility for controlling detailed limb movements. It focuses on more serious questions, such as “Who am I? Where do I come from? Where am I going?” It generates mind and sends string commands to the Arduino slave.

Li is currently working on two functional prototypes: a mini version for STEM education, and a larger version for use within the field of AI research.

A cat and a robot cat walking upstairs Petoi Raspberry Pi Robot Cat

You can read more about the project, including details on the various interactions of Petoi, on the hackster.io project page.

Not quite ready to commit to a fully grown robot pet for your home? Why not code your own pixel pet with our free learning resource? And while you’re looking through our projects, check out our other pet-themed tutorials such as the Hamster party cam, the Infrared bird box, and the Cat meme generator.

The post Petoi: a Pi-powered kitty cat appeared first on Raspberry Pi.

AskRob: Does Tor let government peek at vuln info?

Post Syndicated from Robert Graham original http://blog.erratasec.com/2018/03/askrob-does-tor-let-government-peek-at.html

On Twitter, somebody asked this question:

The question is about a blog post that claims Tor privately tips off the government about vulnerabilities, using as proof a “vulnerability” from October 2007 that wasn’t made public until 2011.
The tl;dr is that it’s bunk. There was no vulnerability, it was a feature request. The details were already public. There was no spy agency involved, but the agency that does Voice of America, and which tries to protect activists under foreign repressive regimes.

Discussion

The issue is that Tor traffic looks like Tor traffic, making it easy to block/censor, or worse, identify users. Over the years, Tor has added features to make it look more and more like normal traffic, like the encrypted traffic used by Facebook, Google, and Apple. Tors improves this bit-by-bit over time, but short of actually piggybacking on website traffic, it will always leave some telltale signature.
An example showing how we can distinguish Tor traffic is the packet below, from the latest version of the Tor server:
Had this been Google or Facebook, the names would be something like “www.google.com” or “facebook.com”. Or, had this been a normal “self-signed” certificate, the names would still be recognizable. But Tor creates randomized names, with letters and numbers, making it distinctive. It’s hard to automate detection of this, because it’s only probably Tor (other self-signed certificates look like this, too), which means you’ll have occasional “false-positives”. But still, if you compare this to the pattern of traffic, you can reliably detect that Tor is happening on your network.
This has always been a known issue, since the earliest days. Google the search term “detect tor traffic”, and set your advanced search dates to before 2007, and you’ll see lots of discussion about this, such as this post for writing intrusion-detection signatures for Tor.
Among the things you’ll find is this presentation from 2006 where its creator (Roger Dingledine) talks about how Tor can be identified on the network with its unique network fingerprint. For a “vulnerability” they supposedly kept private until 2011, they were awfully darn public about it.
The above blogpost claims Tor kept this vulnerability secret until 2011 by citing this message. It’s because Levine doesn’t understand the terminology and is just blindly searching for an exact match for “TLS normalization”. Here’s an earlier proposed change for the long term goal of to “make our connection handshake look closer to a regular HTTPS [TLS] connection”, from February 2007. Here is another proposal from October 2007 on changing TLS certificates, from days after the email discussion (after they shipped the feature, presumably).
What we see here is here is a known problem from the very beginning of the project, a long term effort to fix that problem, and a slow dribble of features added over time to preserve backwards compatibility.
Now let’s talk about the original train of emails cited in the blogpost. It’s hard to see the full context here, but it sounds like BBG made a feature request to make Tor look even more like normal TLS, which is hinted with the phrase “make our funders happy”. Of course the people giving Tor money are going to ask for improvements, and of course Tor would in turn discuss those improvements with the donor before implementing them. It’s common in project management: somebody sends you a feature request, you then send the proposal back to them to verify what you are building is what they asked for.
As for the subsequent salacious paragraph about “secrecy”, that too is normal. When improving a problem, you don’t want to talk about the details until after you have a fix. But note that this is largely more for PR than anything else. The details on how to detect Tor are available to anybody who looks for them — they just aren’t readily accessible to the layman. For example, Tenable Networks announced the previous month exactly this ability to detect Tor’s traffic, because any techy wanting to would’ve found the secrets how to. Indeed, Teneble’s announcement may have been the impetus for BBG’s request to Tor: “can you fix it so that this new Tenable feature no longer works”.
To be clear, there are zero secret “vulnerability details” here that some secret spy agency could use to detect Tor. They were already known, and in the Teneble product, and within the grasp of any techy who wanted to discover them. A spy agency could just buy Teneble, or copy it, instead of going through this intricate conspiracy.

Conclusion

The issue isn’t a “vulnerability”. Tor traffic is recognizable on the network, and over time, they make it less and less recognizable. Eventually they’ll just piggyback on true HTTPS and convince CloudFlare to host ingress nodes, or something, making it completely undetectable. In the meanwhile, it leaves behind fingerprints, as I showed above.
What we see in the email exchanges is the normal interaction of a donor asking for a feature, not a private “tip off”. It’s likely the donor is the one who tipped off Tor, pointing out Tenable’s product to detect Tor.
Whatever secrets Tor could have tipped off to the “secret spy agency” were no more than what Tenable was already doing in a shipping product.

Update: People are trying to make it look like Voice of America is some sort of intelligence agency. That’s a conspiracy theory. It’s not a member of the American intelligence community. You’d have to come up with a solid reason explaining why the United States is hiding VoA’s membership in the intelligence community, or you’d have to believe that everything in the U.S. government is really just some arm of the C.I.A.