Tag Archives: interaction

Integration With Zapier

Post Syndicated from Bozho original https://techblog.bozho.net/integration-with-zapier/

Integration is boring. And also inevitable. But I won’t be writing about enterprise integration patterns. Instead, I’ll explain how to create an app for integration with Zapier.

What is Zapier? It is a service that allows you tо connect two (or more) otherwise unconnected services via their APIs (or protocols). You can do stuff like “Create a Trello task from an Evernote note”, “publish new RSS items to Facebook”, “append new emails to a spreadsheet”, “post approaching calendar meeting to Slack”, “Save big email attachments to Dropbox”, “tweet all instagrams above a certain likes threshold”, and so on. In fact, it looks to cover mostly the same usecases as another famous service that I really like – IFTTT (if this then that), with my favourite use-case “Get a notification when the international space station passes over your house”. And all of those interactions can be configured via a UI.

Now that’s good for end users but what does it have to do with software development and integration? Zapier (unlike IFTTT, unfortunately), allows custom 3rd party services to be included. So if you have a service of your own, you can create an “app” and allow users to integrate your service with all the other 3rd party services. IFTTT offers a way to invoke web endpoints (including RESTful services), but it doesn’t allow setting headers, so that makes it quite limited for actual APIs.

In this post I’ll briefly explain how to write a custom Zapier app and then will discuss where services like Zapier stand from an architecture perspective.

The thing that I needed it for – to be able to integrate LogSentinel with any of the third parties available through Zapier, i.e. to store audit logs for events that happen in all those 3rd party systems. So how do I do that? There’s a tutorial that makes it look simple. And it is, with a few catches.

First, there are two tutorials – one in GitHub and one on Zapier’s website. And they differ slightly, which becomes tricky in some cases.

I initially followed the GitHub tutorial and had my build fail. It claimed the zapier platform dependency is missing. After I compared it with the example apps, I found out there’s a caret in front of the zapier platform dependency. Removing it just yielded another error – that my node version should be exactly 6.10.2. Why?

The Zapier CLI requires you have exactly version 6.10.2 installed. You’ll see errors and will be unable to proceed otherwise.

It appears that they are using AWS Lambda which is stuck on Node 6.10.2 (actually – it’s 6.10.3 when you check). The current major release is 8, so minus points for choosing … javascript for a command-line tool and for building sandboxed apps. Maybe other decisions had their downsides as well, I won’t be speculating. Maybe it’s just my dislike for dynamic languages.

So, after you make sure you have the correct old version on node, you call zapier init and make sure there are no carets, npm install and then zapier test. So far so good, you have a dummy app. Now how do you make a RESTful call to your service?

Zapier splits the programmable entities in two – “triggers” and “creates”. A trigger is the event that triggers the whole app, an a “create” is what happens as a result. In my case, my app doesn’t publish any triggers, it only accepts input, so I won’t be mentioning triggers (though they seem easy). You configure all of the elements in index.js (e.g. this one):

const log = require('./creates/log');
....
creates: {
    [log.key]: log,
}

The log.js file itself is the interesting bit – there you specify all the parameters that should be passed to your API call, as well as making the API call itself:

const log = (z, bundle) => {
  const responsePromise = z.request({
    method: 'POST',
    url: `https://api.logsentinel.com/api/log/${bundle.inputData.actorId}/${bundle.inputData.action}`,
    body: bundle.inputData.details,
	headers: {
		'Accept': 'application/json'
	}
  });
  return responsePromise
    .then(response => JSON.parse(response.content));
};

module.exports = {
  key: 'log-entry',
  noun: 'Log entry',

  display: {
    label: 'Log',
    description: 'Log an audit trail entry'
  },

  operation: {
    inputFields: [
      {key: 'actorId', label:'ActorID', required: true},
      {key: 'action', label:'Action', required: true},
      {key: 'details', label:'Details', required: false}
    ],
    perform: log
  }
};

You can pass the input parameters to your API call, and it’s as simple as that. The user can then specify which parameters from the source (“trigger”) should be mapped to each of your parameters. In an example zap, I used an email trigger and passed the sender as actorId, the sibject as “action” and the body of the email as details.

There’s one more thing – authentication. Authentication can be done in many ways. Some services offer OAuth, others – HTTP Basic or other custom forms of authentication. There is a section in the documentation about all the options. In my case it was (almost) an HTTP Basic auth. My initial thought was to just supply the credentials as parameters (which you just hardcode rather than map to trigger parameters). That may work, but it’s not the canonical way. You should configure “authentication”, as it triggers a friendly UI for the user.

You include authentication.js (which has the fields your authentication requires) and then pre-process requests by adding a header (in index.js):

const authentication = require('./authentication');

const includeAuthHeaders = (request, z, bundle) => {
  if (bundle.authData.organizationId) {
	request.headers = request.headers || {};
	request.headers['Application-Id'] = bundle.authData.applicationId
	const basicHash = Buffer(`${bundle.authData.organizationId}:${bundle.authData.apiSecret}`).toString('base64');
	request.headers['Authorization'] = `Basic ${basicHash}`;
  }
  return request;
};

const App = {
  // This is just shorthand to reference the installed dependencies you have. Zapier will
  // need to know these before we can upload
  version: require('./package.json').version,
  platformVersion: require('zapier-platform-core').version,
  authentication: authentication,
  
  // beforeRequest & afterResponse are optional hooks into the provided HTTP client
  beforeRequest: [
	includeAuthHeaders
  ]
...
}

And then you zapier push your app and you can test it. It doesn’t automatically go live, as you have to invite people to try it and use it first, but in many cases that’s sufficient (i.e. using Zapier when doing integration with a particular client)

Can Zapier can be used for any integration problem? Unlikely – it’s pretty limited and simple, but that’s also a strength. You can, in half a day, make your service integrate with thousands of others for the most typical use-cases. And not that although it’s meant for integrating public services rather than for enterprise integration (where you make multiple internal systems talk to each other), as an increasing number of systems rely on 3rd party services, it could find home in an enterprise system, replacing some functions of an ESB.

Effectively, such services (Zapier, IFTTT) are “Simple ESB-as-a-service”. You go to a UI, fill a bunch of fields, and you get systems talking to each other without touching the systems themselves. I’m not a big fan of ESBs, mostly because they become harder to support with time. But minimalist, external ones might be applicable in certain situations. And while such services are primarily aimed at end users, they could be a useful bit in an enterprise architecture that relies on 3rd party services.

Whether it could process the required load, whether an organization is willing to let its data flow through a 3rd party provider (which may store the intermediate parameters), is a question that should be answered in a case by cases basis. I wouldn’t recommend it as a general solution, but it’s certainly an option to consider.

The post Integration With Zapier appeared first on Bozho's tech blog.

Server vs Endpoint Backup — Which is Best?

Post Syndicated from Roderick Bauer original https://www.backblaze.com/blog/endpoint-backup-for-distributed-computing/

server and computer backup to the cloud

How common are these statements in your organization?

  • I know I saved that file. The application must have put it somewhere outside of my documents folder.” — Mike in Marketing
  • I was on the road and couldn’t get a reliable VPN connection. I guess that’s why my laptop wasn’t backed up.” — Sally in Sales
  • I try to follow file policies, but I had a deadline this week and didn’t have time to copy my files to the server.” — Felicia in Finance
  • I just did a commit of my code changes and that was when the coffee mug was knocked over onto the laptop.” — Erin in Engineering
  • If you need a file restored from backup, contact the help desk at [email protected] The IT department will get back to you.” — XYZ corporate intranet
  • Why don’t employees save files on the network drive like they’re supposed to?” — Isaac in IT

If these statements are familiar, most likely you rely on file server backups to safeguard your valuable endpoint data.

The problem is, the workplace has changed. Where server backups might have fit how offices worked at one time in the past, relying solely on server backups today means you could be missing valuable endpoint data from your backups. On top of that, you likely are unnecessarily expending valuable user and IT time in attempting to secure and restore endpoint data.

Times Have Changed, and so have Effective Enterprise Backup Strategies

The ways we use computers and handle files today are vastly different from just five or ten years ago. Employees are mobile, and we no longer are limited to monolithic PC and Mac-based office suites. Cloud applications are everywhere. Company-mandated network drive policies are difficult to enforce as office practices change, devices proliferate, and organizational culture evolves. Besides, your IT staff has other things to do than babysit your employees to make sure they follow your organization’s policies for managing files.

Server Backup has its Place, but Does it Support How People Work Today?

Many organizations still rely on server backup. If your organization works primarily in centralized offices with all endpoints — likely desktops — connected directly to your network, and you maintain tight control of how employees manage their files, it still might work for you.

Your IT department probably has set network drive policies that require employees to save files in standard places that are regularly backed up to your file server. Turns out, though, that even standard applications don’t always save files where IT would like them to be. They could be in a directory or folder that’s not regularly backed up.

As employees have become more mobile, they have adopted practices that enable them to access files from different places, but these practices might not fit in with your organization’s server policies. An employee saving a file to Dropbox might be planning to copy it to an “official” location later, but whether that ever happens could be doubtful. Often people don’t realize until it’s too late that accidentally deleting a file in one sync service directory means that all copies in all locations — even the cloud — are also deleted.

Employees are under increasing demands to produce, which means that network drive policies aren’t always followed; time constraints and deadlines can cause best practices to go out the window. Users will attempt to comply with policies as best they can — and you might get 70% or even 75% effective compliance — but getting even to that level requires training, monitoring, and repeatedly reminding employees of policies they need to follow — none of which leads to a good work environment.

Even if you get to 75% compliance with network file policies, what happens if the critical file needed to close out an end-of-year financial summary isn’t one of the files backed up? The effort required for IT to get from 70% to 80% or 90% of an endpoint’s files effectively backed up could require multiple hours from your IT department, and you still might not have backed up the one critical file you need later.

Your Organization Operates on its Data — And Today That Data Exists in Multiple Locations

Users are no longer tied to one endpoint, and may use different computers in the office, at home, or traveling. The greater the number of endpoints used, the greater the chance of an accidental or malicious device loss or data corruption. The loss of the Sales VP’s laptop at the airport on her way back from meeting with major customers can affect an entire organization and require weeks to resolve.

Even with the best intentions and efforts, following policies when out of the office can be difficult or impossible. Connecting to your private network when remote most likely requires a VPN, and VPN connectivity can be challenging from the lobby Wi-Fi at the Radisson. Server restores require time from the IT staff, which can mean taking resources away from other IT priorities and a growing backlog of requests from users to need their files as soon as possible. When users are dependent on IT to get back files critical to their work, employee productivity and often deadlines are affected.

Managing Finite Server Storage Is an Ongoing Challenge

Network drive backup usually requires on-premises data storage for endpoint backups. Since it is a finite resource, allocating that storage is another burden on your IT staff. To make sure that storage isn’t exceeded, IT departments often ration storage by department and/or user — another oversight duty for IT, and even more choices required by your IT department and department heads who have to decide which files to prioritize for backing up.

Adding Backblaze Endpoint Backup Improves Business Continuity and Productivity

Having an endpoint backup strategy in place can mitigate these problems and improve user productivity, as well. A good endpoint backup service, such as Backblaze Cloud Backup, will ensure that all devices are backed up securely, automatically, without requiring any action by the user or by your IT department.

For 99% of users, no configuration is required for Backblaze Backup. Everything on the endpoint is encrypted and securely backed up to the cloud, including program configuration files and files outside of standard document folders. Even temp files are backed up, which can prove invaluable when recovering a file after a crash or other program interruption. Cloud storage is unlimited with Backblaze Backup, so there are no worries about running out of storage or rationing file backups.

The Backblaze client can be silently and remotely installed to both Macintosh and Windows clients with no user interaction. And, with Backblaze Groups, your IT staff has complete visibility into when files were last backed up. IT staff can recover any backed up file, folder, or entire computer from the admin panel, and even give file restore capability to the user, if desired, which reduces dependency on IT and time spent waiting for restores.

With over 500 petabytes of customer data stored and one million files restored every hour of every day by Backblaze customers, you know that Backblaze Backup works for its users.

You Need Data Security That Matches the Way People Work Today

Both file server and endpoint backup have their places in an organization’s data security plan, but their use and value differ. If you already are using file server backup, adding endpoint backup will make a valuable contribution to your organization by reducing workload, improving productivity, and increasing confidence that all critical files are backed up.

By guaranteeing fast and automatic backup of all endpoint data, and matching the current way organizations and people work with data, Backblaze Backup will enable you to effectively and affordably meet the data security demands of your organization.

The post Server vs Endpoint Backup — Which is Best? appeared first on Backblaze Blog | Cloud Storage & Cloud Backup.

[$] Jupyter: notebooks for education and collaboration

Post Syndicated from jake original https://lwn.net/Articles/746386/rss

The popular interpreted language Python shares a mode of interaction
with many other languages, from Lisp to APL to Julia: the REPL (read-eval-print-loop)
allows the user to experiment with and explore their code, while maintaining a
workspace of global variables and functions. This is in contrast with
languages such as Fortran and C, which must be compiled and run as complete
programs (a mode of operation available to the REPL-enabled languages as
well). But using a REPL is a solitary task; one can write a program to
share based on their explorations, but the REPL session itself not easily
shareable. So REPLs have gotten more sophisticated over time, evolving
into shareable notebooks, such as what IPython, and its more recent
descendant, Jupyter, have. Here we look at Jupyter: its history,
notebooks, and how it enables better collaboration in languages well beyond
its Python roots.

Success at Apache: A Newbie’s Narrative

Post Syndicated from mikesefanov original https://yahooeng.tumblr.com/post/170536010891

yahoodevelopers:

Kuhu Shukla (bottom center) and team at the 2017 DataWorks Summit


By Kuhu Shukla

This post first appeared here on the Apache Software Foundation blog as part of ASF’s “Success at Apache” monthly blog series.

As I sit at my desk on a rather frosty morning with my coffee, looking up new JIRAs from the previous day in the Apache Tez project, I feel rather pleased. The latest community release vote is complete, the bug fixes that we so badly needed are in and the new release that we tested out internally on our many thousand strong cluster is looking good. Today I am looking at a new stack trace from a different Apache project process and it is hard to miss how much of the exceptional code I get to look at every day comes from people all around the globe. A contributor leaves a JIRA comment before he goes on to pick up his kid from soccer practice while someone else wakes up to find that her effort on a bug fix for the past two months has finally come to fruition through a binding +1.

Yahoo – which joined AOL, HuffPost, Tumblr, Engadget, and many more brands to form the Verizon subsidiary Oath last year – has been at the frontier of open source adoption and contribution since before I was in high school. So while I have no historical trajectories to share, I do have a story on how I found myself in an epic journey of migrating all of Yahoo jobs from Apache MapReduce to Apache Tez, a then-new DAG based execution engine.

Oath grid infrastructure is through and through driven by Apache technologies be it storage through HDFS, resource management through YARN, job execution frameworks with Tez and user interface engines such as Hive, Hue, Pig, Sqoop, Spark, Storm. Our grid solution is specifically tailored to Oath’s business-critical data pipeline needs using the polymorphic technologies hosted, developed and maintained by the Apache community.

On the third day of my job at Yahoo in 2015, I received a YouTube link on An Introduction to Apache Tez. I watched it carefully trying to keep up with all the questions I had and recognized a few names from my academic readings of Yarn ACM papers. I continued to ramp up on YARN and HDFS, the foundational Apache technologies Oath heavily contributes to even today. For the first few weeks I spent time picking out my favorite (necessary) mailing lists to subscribe to and getting started on setting up on a pseudo-distributed Hadoop cluster. I continued to find my footing with newbie contributions and being ever more careful with whitespaces in my patches. One thing was clear – Tez was the next big thing for us. By the time I could truly call myself a contributor in the Hadoop community nearly 80-90% of the Yahoo jobs were now running with Tez. But just like hiking up the Grand Canyon, the last 20% is where all the pain was. Being a part of the solution to this challenge was a happy prospect and thankfully contributing to Tez became a goal in my next quarter.

The next sprint planning meeting ended with me getting my first major Tez assignment – progress reporting. The progress reporting in Tez was non-existent – “Just needs an API fix,”  I thought. Like almost all bugs in this ecosystem, it was not easy. How do you define progress? How is it different for different kinds of outputs in a graph? The questions were many.

I, however, did not have to go far to get answers. The Tez community actively came to a newbie’s rescue, finding answers and posing important questions. I started attending the bi-weekly Tez community sync up calls and asking existing contributors and committers for course correction. Suddenly the team was much bigger, the goals much more chiseled. This was new to anyone like me who came from the networking industry, where the most open part of the code are the RFCs and the implementation details are often hidden. These meetings served as a clean room for our coding ideas and experiments. Ideas were shared, to the extent of which data structure we should pick and what a future user of Tez would take from it. In between the usual status updates and extensive knowledge transfers were made.

Oath uses Apache Pig and Apache Hive extensively and most of the urgent requirements and requests came from Pig and Hive developers and users. Each issue led to a community JIRA and as we started running Tez at Oath scale, new feature ideas and bugs around performance and resource utilization materialized. Every year most of the Hadoop team at Oath travels to the Hadoop Summit where we meet our cohorts from the Apache community and we stand for hours discussing the state of the art and what is next for the project. One such discussion set the course for the next year and a half for me.

We needed an innovative way to shuffle data. Frameworks like MapReduce and Tez have a shuffle phase in their processing lifecycle wherein the data from upstream producers is made available to downstream consumers. Even though Apache Tez was designed with a feature set corresponding to optimization requirements in Pig and Hive, the Shuffle Handler Service was retrofitted from MapReduce at the time of the project’s inception. With several thousands of jobs on our clusters leveraging these features in Tez, the Shuffle Handler Service became a clear performance bottleneck. So as we stood talking about our experience with Tez with our friends from the community, we decided to implement a new Shuffle Handler for Tez. All the conversation points were tracked now through an umbrella JIRA TEZ-3334 and the to-do list was long. I picked a few JIRAs and as I started reading through I realized, this is all new code I get to contribute to and review. There might be a better way to put this, but to be honest it was just a lot of fun! All the whiteboards were full, the team took walks post lunch and discussed how to go about defining the API. Countless hours were spent debugging hangs while fetching data and looking at stack traces and Wireshark captures from our test runs. Six months in and we had the feature on our sandbox clusters. There were moments ranging from sheer frustration to absolute exhilaration with high fives as we continued to address review comments and fixing big and small issues with this evolving feature.

As much as owning your code is valued everywhere in the software community, I would never go on to say “I did this!” In fact, “we did!” It is this strong sense of shared ownership and fluid team structure that makes the open source experience at Apache truly rewarding. This is just one example. A lot of the work that was done in Tez was leveraged by the Hive and Pig community and cross Apache product community interaction made the work ever more interesting and challenging. Triaging and fixing issues with the Tez rollout led us to hit a 100% migration score last year and we also rolled the Tez Shuffle Handler Service out to our research clusters. As of last year we have run around 100 million Tez DAGs with a total of 50 billion tasks over almost 38,000 nodes.

In 2018 as I move on to explore Hadoop 3.0 as our future release, I hope that if someone outside the Apache community is reading this, it will inspire and intrigue them to contribute to a project of their choice. As an astronomy aficionado, going from a newbie Apache contributor to a newbie Apache committer was very much like looking through my telescope - it has endless possibilities and challenges you to be your best.

About the Author:

Kuhu Shukla is a software engineer at Oath and did her Masters in Computer Science at North Carolina State University. She works on the Big Data Platforms team on Apache Tez, YARN and HDFS with a lot of talented Apache PMCs and Committers in Champaign, Illinois. A recent Apache Tez Committer herself she continues to contribute to YARN and HDFS and spoke at the 2017 Dataworks Hadoop Summit on “Tez Shuffle Handler: Shuffling At Scale With Apache Hadoop”. Prior to that she worked on Juniper Networks’ router and switch configuration APIs. She likes to participate in open source conferences and women in tech events. In her spare time she loves singing Indian classical and jazz, laughing, whale watching, hiking and peering through her Dobsonian telescope.

Strawberry Jam 2 🍓

Post Syndicated from Eevee original https://eev.ee/release/2018/01/24/strawberry-jam-2/

🔗 Strawberry Jam 2 on itch

I’m running a game jam, and this announcement is before the jam starts! What a concept!

The idea is simple: you have all of February to make a horny game.

(This jam is, as you may have guessed, NSFW. 🔞)


I think there’s a lot of interesting potential at the intersection of sex and games, but we see very little exploration of it — in large part because mega-platforms like Steam (and its predecessor, Walmart) have historically been really squeamish about anything sexual. Unless it’s scantily-clad women draped over everything, that’s fine. But un-clad women are right out. Also gratuitous high-definition gore is cool. But no nipples!!

The result is a paltry cultural volume of games about sex, but as boundaries continue to be pushed without really being broken, we get more and more blockbuster games with sex awkwardly tacked on top as lazy titillation. “Ah, it’s a story-driven role-playing shooter, but in this one part you can have sex, which will affect nothing and never come up again, but you can see a butt!” Truly revolutionary.

The opposite end of the spectrum also exists, in the form of porn games where the game part is tacked on to make something interactive — you know, click really fast to make clothes fall off or whatever. It’s not especially engaging, but it’s more compelling than staring at a JPEG.

So my secret motive here is to encourage people to explore the vast gulf in the middle — to make games that are interesting as games and that feature sexuality as a fundamental part of the game. Something where both parts could stand alone, yet are so intertwined as to be inseparable.

The one genre that is seeing a lot of experimentation is the raunchy visual novel, which is a great example: they tend to tell stories where sexuality plays a heavy part, but they’re still compelling interactive stories and hold up on those grounds just as well. What, I wonder, would this same sort of harmony look like for other genres, other kinds of interaction? What does a horny racing game look like, or a horny inventory-horror game, or a horny brawler? Hell, why are there no horny co-op games to speak of? That seems obvious, right?

I haven’t said all this on the jam page because it would add half a dozen paragraphs to what is already a lengthy document. I also suspect that I’ll sound like I’m suggesting “a racing game but all the cars are dicks,” which isn’t quite right, and I’d need to blather even more to clarify. Anyway, it seems vaguely improper as the jam organizer to be telling people what kind of games not to make; last year I just tried to lead by example by making fox flux.


If exploring this design space seems interesting to you, please do join in! If you’ve never made a game before, this might be a great opportunity to give it a try — everything is going to be embarrassing and personal regardless. Maybe hop on Discord if you need help or want a teammate. Feel free to flip through last year’s entries, too, or my (super nsfw) thread where I played some and talked about them. Some of them are even open source, cough, cough.

Previously:

SUPER game night 3: GAMES MADE QUICK??? 2.0

Post Syndicated from Eevee original https://eev.ee/blog/2018/01/23/super-game-night-3-games-made-quick-2-0/

Game night continues with a smorgasbord of games from my recent game jam, GAMES MADE QUICK??? 2.0!

The idea was to make a game in only a week while watching AGDQ, as an alternative to doing absolutely nothing for a week while watching AGDQ. (I didn’t submit a game myself; I was chugging along on my Anise game, which isn’t finished yet.)

I can’t very well run a game jam and not play any of the games, so here’s some of them in no particular order! Enjoy!

These are impressions, not reviews. I try to avoid major/ending spoilers, but big plot points do tend to leave impressions.

Weather Quest, by timlmul

short · rpg · jan 2017 · (lin)/mac/win · free on itch · jam entry

Weather Quest is its author’s first shipped game, written completely from scratch (the only vendored code is a micro OO base). It’s very short, but as someone who has also written LÖVE games completely from scratch, I can attest that producing something this game-like in a week is a fucking miracle. Bravo!

For reference, a week into my first foray, I think I was probably still writing my own Tiled importer like an idiot.

Only Mac and Windows builds are on itch, but it’s a LÖVE game, so Linux folks can just grab a zip from GitHub and throw that at love.

FINAL SCORE: ⛅☔☀

Pancake Numbers Simulator, by AnorakThePrimordial

short · sim · jan 2017 · lin/mac/win · free on itch · jam entry

Given a stack of N pancakes (of all different sizes and in no particular order), the Nth pancake number is the most flips you could possibly need to sort the pancakes in order with the smallest on top. A “flip” is sticking a spatula under one of the pancakes and flipping the whole sub-stack over. There’s, ah, a video embedded on the game page with some visuals.

Anyway, this game lets you simulate sorting a stack via pancake flipping, which is surprisingly satisfying! I enjoy cleaning up little simulated messes, such as… incorrectly-sorted pancakes, I guess?

This probably doesn’t work too well as a simulator for solving the general problem — you’d have to find an optimal solution for every permutation of N pancakes to be sure you were right. But it’s a nice interactive illustration of the problem, and if you know the pancake number for your stack size of choice (which I wish the game told you — for seven pancakes, it’s 8), then trying to restore a stack in that many moves makes for a nice quick puzzle.

FINAL SCORE: \(\frac{18}{11}\)

Framed Animals, by chridd

short · metroidvania · jan 2017 · web/win · free on itch · jam entry

The concept here was to kill the frames, save the animals, which is a delightfully literal riff on a long-running AGDQ/SGDQ donation incentive — people vote with their dollars to decide whether Super Metroid speedrunners go out of their way to free the critters who show you how to walljump and shinespark. Super Metroid didn’t have a showing at this year’s AGDQ, and so we have this game instead.

It’s rough, but clever, and I got really into it pretty quickly — each animal you save gives you a new ability (in true Metroid style), and you get to test that ability out by playing as the animal, with only that ability and no others, to get yourself back to the most recent save point.

I did, tragically, manage to get myself stuck near what I think was about to be the end of the game, so some of the animals will remain framed forever. What an unsatisfying conclusion.

Gravity feels a little high given the size of the screen, and like most tile-less platformers, there’s not really any way to gauge how high or long your jump is before you leap. But I’m only even nitpicking because I think this is a great idea and I hope the author really does keep working on it.

FINAL SCORE: $136,596.69

Battle 4 Glory, by Storyteller Games

short · fighter · jan 2017 · win · free on itch · jam entry

This is a Smash Bros-style brawler, complete with the four players, the 2D play area in a 3D world, and the random stage obstacles showing up. I do like the Smash style, despite not otherwise being a fan of fighting games, so it’s nice to see another game chase that aesthetic.

Alas, that’s about as far as it got — which is pretty far for a week of work! I don’t know what more to say, though. The environments are neat, but unless I’m missing something, the only actions at your disposal are jumping and very weak melee attacks. I did have a good few minutes of fun fruitlessly mashing myself against the bumbling bots, as you can see.

FINAL SCORE: 300%

Icnaluferu Guild, Year Sixteen, by CHz

short · adventure · jan 2017 · web · free on itch · jam entry

Here we have the first of several games made with bitsy, a micro game making tool that basically only supports walking around, talking to people, and picking up items.

I tell you this because I think half of my appreciation for this game is in the ways it wriggled against those limits to emulate a Zelda-like dungeon crawler. Everything in here is totally fake, and you can’t really understand just how fake unless you’ve tried to make something complicated with bitsy.

It’s pretty good. The dialogue is entertaining (the rest of your party develops distinct personalities solely through oneliners, somehow), the riffs on standard dungeon fare are charming, and the Link’s Awakening-esque perspective walls around the edges of each room are fucking glorious.

FINAL SCORE: 2 bits

The Lonely Tapes, by JTHomeslice

short · rpg · jan 2017 · web · free on itch · jam entry

Another bitsy entry, this one sees you play as a Wal— sorry, a JogDawg, which has lost its cassette tapes and needs to go recover them!

(A cassette tape is like a VHS, but for music.)

(A VHS is—)

I have the sneaking suspicion that I missed out on some musical in-jokes, due to being uncultured swine. I still enjoyed the game — it’s always clear when someone is passionate about the thing they’re writing about, and I could tell I was awash in that aura even if some of it went over my head. You know you’ve done good if someone from way outside your sphere shows up and still has a good time.

FINAL SCORE: Nine… Inch Nails? They’re a band, right? God I don’t know write your own damn joke

Pirate Kitty-Quest, by TheKoolestKid

short · adventure · jan 2017 · win · free on itch · jam entry

I completely forgot I’d even given “my birthday” and “my cat” as mostly-joking jam themes until I stumbled upon this incredible gem. I don’t think — let me just check here and — yeah no this person doesn’t even follow me on Twitter. I have no idea who they are?

BUT THEY MADE A GAME ABOUT ANISE AS A PIRATE, LOOKING FOR TREASURE

PIRATE. ANISE

PIRATE ANISE!!!

This game wins the jam, hands down. 🏆

FINAL SCORE: Yarr, eight pieces o’ eight

CHIPS Mario, by NovaSquirrel

short · platformer · jan 2017 · (lin/mac)/win · free on itch · jam entry

You see this? This is fucking witchcraft.

This game is made with MegaZeux. MegaZeux games look like THIS. Text-mode, bound to a grid, with two colors per cell. That’s all you get.

Until now, apparently?? The game is a tech demo of “unbound” sprites, which can be drawn on top of the character grid without being aligned to it. And apparently have looser color restrictions.

The collision is a little glitchy, which isn’t surprising for a MegaZeux platformer; I had some fun interactions with platforms a couple times. But hey, goddamn, it’s free-moving Mario, in MegaZeux, what the hell.

(I’m looking at the most recently added games on DigitalMZX now, and I notice that not only is this game in the first slot, but NovaSquirrel’s MegaZeux entry for Strawberry Jam last February is still in the seventh slot. RIP, MegaZeux. I’m surprised a major feature like this was even added if the community has largely evaporated?)

FINAL SCORE: n/a, disqualified for being probably summoned from the depths of Hell

d!¢< pic, by 573 Games

short · story · jan 2017 · web · free on itch · jam entry

This is a short story about not sending dick pics. It’s very short, so I can’t say much without spoiling it, but: you are generally prompted to either text something reasonable, or send a dick pic. You should not send a dick pic.

It’s a fascinating artifact, not because of the work itself, but because it’s so terse that I genuinely can’t tell what the author was even going for. And this is the kind of subject where the author was, surely, going for something. Right? But was it genuinely intended to be educational, or was it tongue-in-cheek about how some dudes still don’t get it? Or is it side-eying the player who clicks the obviously wrong option just for kicks, which is the same reason people do it for real? Or is it commentary on how “send a dick pic” is a literal option for every response in a real conversation, too, and it’s not that hard to just not do it — unless you are one of the kinds of people who just feels a compulsion to try everything, anything, just because you can? Or is it just a quick Twine and I am way too deep in this? God, just play the thing, it’s shorter than this paragraph.

I’m also left wondering when it is appropriate to send a dick pic. Presumably there is a correct time? Hopefully the author will enter Strawberry Jam 2 to expound upon this.

FINAL SCORE: 3½” 😉

Marble maze, by Shtille

short · arcade · jan 2017 · win · free on itch · jam entry

Ah, hm. So this is a maze navigated by rolling a marble around. You use WASD to move the marble, and you can also turn the camera with the arrow keys.

The trouble is… the marble’s movement is always relative to the world, not the camera. That means if you turn the camera 30° and then try to move the marble, it’ll move at a 30° angle from your point of view.

That makes navigating a maze, er, difficult.

Camera-relative movement is the kind of thing I take so much for granted that I wouldn’t even think to do otherwise, and I think it’s valuable to look at surprising choices that violate fundamental conventions, so I’m trying to take this as a nudge out of my comfort zone. What could you design in an interesting way that used world-relative movement? Probably not the player, but maybe something else in the world, as long as you had strong landmarks? Hmm.

FINAL SCORE: ᘔ

Refactor: flight, by fluffy

short · arcade · jan 2017 · lin/mac/win · free on itch · jam entry

Refactor is a game album, which is rather a lot what it sounds like, and Flight is one of the tracks. Which makes this a single, I suppose.

It’s one of those games where you move down an oddly-shaped tunnel trying not to hit the walls, but with some cute twists. Coins and gems hop up from the bottom of the screen in time with the music, and collecting them gives you points. Hitting a wall costs you some points and kills your momentum, but I don’t think outright losing is possible, which is great for me!

Also, the monk cycles through several animal faces. I don’t know why, and it’s very good. One of those odd but memorable details that sits squarely on the intersection of abstract, mysterious, and a bit weird, and refuses to budge from that spot.

The music is great too? Really chill all around.

FINAL SCORE: 🎵🎵🎵🎵

The Adventures of Klyde

short · adventure · jan 2017 · web · free on itch · jam entry

Another bitsy game, this one starring a pig (humorously symbolized by a giant pig nose with ears) who must collect fruit and solve some puzzles.

This is charmingly nostalgic for me — it reminds me of some standard fare in engines like MegaZeux, where the obvious things to do when presented with tiles and pickups were to make mazes. I don’t mean that in a bad way; the maze is the fundamental environmental obstacle.

A couple places in here felt like invisible teleport mazes I had to brute-force, but I might have been missing a hint somewhere. I did make it through with only a little trouble, but alas — I stepped in a bad warp somewhere and got sent to the upper left corner of the starting screen, which is surrounded by walls. So Klyde’s new life is being trapped eternally in a nowhere space.

FINAL SCORE: 19/20 apples

And more

That was only a third of the games, and I don’t think even half of the ones I’ve played. I’ll have to do a second post covering the rest of them? Maybe a third?

Or maybe this is a ludicrous format for commenting on several dozen games and I should try to narrow it down to the ones that resonated the most for Strawberry Jam 2? Maybe??

Privacy expectations and the connected home

Post Syndicated from Matthew Garrett original https://mjg59.dreamwidth.org/50229.html

Traditionally, devices that were tied to logins tended to indicate that in some way – turn on someone’s xbox and it’ll show you their account name, run Netflix and it’ll ask which profile you want to use. The increasing prevalence of smart devices in the home changes that, in ways that may not be immediately obvious to the majority of people. You can configure a Philips Hue with wall-mounted dimmers, meaning that someone unfamiliar with the system may not recognise that it’s a smart lighting system at all. Without any actively malicious intent, you end up with a situation where the account holder is able to infer whether someone is home without that person necessarily having any idea that that’s possible. A visitor who uses an Amazon Echo is not necessarily going to know that it’s tied to somebody’s Amazon account, and even if they do they may not know that the log (and recorded audio!) of all interactions is available to the account holder. And someone grabbing an egg out of your fridge is almost certainly not going to think that your smart egg tray will trigger an immediate notification on the account owner’s phone that they need to buy new eggs.

Things get even more complicated when there’s multiple account support. Google Home supports multiple users on a single device, using voice recognition to determine which queries should be associated with which account. But the account that was used to initially configure the device remains as the fallback, with unrecognised voices ended up being logged to it. If a voice is misidentified, the query may end up being logged to an unexpected account.

There’s some interesting questions about consent and expectations of privacy here. If someone sets up a smart device in their home then at some point they’ll agree to the manufacturer’s privacy policy. But if someone else makes use of the system (by pressing a lightswitch, making a spoken query or, uh, picking up an egg), have they consented? Who has the social obligation to explain to them that the information they’re producing may be stored elsewhere and visible to someone else? If I use an Echo in a hotel room, who has access to the Amazon account it’s associated with? How do you explain to a teenager that there’s a chance that when they asked their Home for contact details for an abortion clinic, it ended up in their parent’s activity log? Who’s going to be the first person divorced for claiming that they were vegan but having been the only person home when an egg was taken out of the fridge?

To be clear, I’m not arguing against the design choices involved in the implementation of these devices. In many cases it’s hard to see how the desired functionality could be implemented without this sort of issue arising. But we’re gradually shifting to a place where the data we generate is not only available to corporations who probably don’t care about us as individuals, it’s also becoming available to people who own the more private spaces we inhabit. We have social norms against bugging our houseguests, but we have no social norms that require us to explain to them that there’ll be a record of every light that they turn on or off. This feels like it’s going to end badly.

(Thanks to Nikki Everett for conversations that inspired this post)

(Disclaimer: while I work for Google, I am not involved in any of the products or teams described in this post and my opinions are my own rather than those of my employer’s)

comment count unavailable comments

I am Beemo, a little living boy: Adventure Time prop build

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/adventure-time-bmo/

Bob Herzberg, BMO builder and blogger at BYOBMO.com, fills us in on the whys and hows and even the Pen Wards of creating interactive Adventure Time BMO props with the Raspberry Pi.

A Conversation With BMO

A conversation with BMO showing off some voice recognition capabilities. There is no interaction for BMO’s responses other than voice commands. There is a small microphone inside BMO (right behind the blue dot) and the voice commands are processed by Google voice API over WiFi.

Finding BMO

My first BMO began as a cosplay prop for my daughter. She and her friends are huge fans of Adventure Time and made their costumes for Princess Bubblegum, Marceline, and Finn. It was my job to come up with a BMO.

Raspberry Pi BMO Laura Herzberg Bob Herzberg

Bob as Banana Guard, daughter Laura as Princess Bubblegum, and son Steven as Finn

I wanted something electronic, and also interactive if possible. And it had to run on battery power. There was only one option that I found that would work: the Raspberry Pi.

Building a living little boy

BMO’s basic internals consist of the Raspberry Pi, an 8” HDMI monitor, and a USB battery pack. The body is made from laser-cut MDF wood, which I sanded, sealed, and painted. I added 3D-printed arms and legs along with some vinyl lettering to complete the look. There is also a small wireless keyboard that works as a remote control.

Adventure Time BMO prop
Adventure Time BMO prop
Adventure Time BMO prop
Adventure Time BMO prop

To make the front panel button function, I created a custom PCB, mounted laser-cut acrylic buttons on it, and connected it to the Pi’s IO header.

Inside BMO - Raspberry Pi BMO Laura Herzberg Bob Herzberg

Custom-made PCBs control BMO’s gaming buttons and USB input.

The USB jack is extended with another custom PCB, which gives BMO USB ports on the front panel. His battery life is an impressive 8 hours of continuous use.

The main brain game frame

Most of BMO’s personality comes from custom animations that my daughter created and that were then turned into MP4 video files. The animations are triggered by the remote keyboard. Some versions of BMO have an internal microphone, and the Google Voice API is used to translate the user’s voice and map it to an appropriate response, so it’s possible to have a conversation with BMO.

The final components of Raspberry Pi BMO Laura Herzberg Bob Herzberg

The Raspberry Pi Camera Module was also put to use. Some BMOs have a servo that can pop up a camera, called GoMO, which takes pictures. Although some people mistake it for ghost detecting equipment, BMO just likes taking nice pictures.

Who wants to play video games?

Playing games on BMO is as simple as loading one of the emulators supported by Raspbian.

BMO connected to SNES controllers - Raspberry Pi BMO Laura Herzberg Bob Herzberg

I’m partial to the Atari 800 emulator, since I used to write games for that platform when I was just starting to learn programming. The front-panel USB ports are used for connecting gamepads, or his front-panel buttons and D-Pad can be used.

Adventure time

BMO has been a lot of fun to bring to conventions. He makes it to ComicCon San Diego each year and has been as far away as DragonCon in Atlanta, where he finally got to meet the voice of BMO, Niki Yang.

BMO's back panel - Raspberry Pi BMO Laura Herzberg Bob Herzberg

BMO’s back panel, autographed by Niki Yang

One day, I received an email from the producer of Adventure Time, Kelly Crews, with a very special request. Kelly was looking for a birthday present for the show’s creator, Pendleton Ward. It was either luck or coincidence that I just was finishing up the latest version of BMO. Niki Yang added some custom greetings just for Pen.

BMO Wishes Pendleton Ward a Happy Birthday!

Happy birthday to Pendleton Ward, the creator of, well, you know what. We were asked to build Pen his very own BMO and with help from Niki Yang and the Adventure Time crew here is the result.

We added a few more items inside, including a 3D-printed heart, a medal, and a certificate which come from the famous Be More episode that explains BMO’s origins.

Back of Adventure Time BMO prop
Adventure Time BMO prop
Adventure Time BMO prop
Adventure Time BMO prop

BMO was quite a challenge to create. Fabricating the enclosure required several different techniques and materials. Fortunately, bringing him to life was quite simple once he had a Raspberry Pi inside!

Find out more

Be sure to follow Bob’s adventures with BMO at the Build Your Own BMO blog. And if you’ve built your own prop from television or film using a Raspberry Pi, be sure to share it with us in the comments below or on our social media channels.

 

All images c/o Bob and Laura Herzberg

The post I am Beemo, a little living boy: Adventure Time prop build appeared first on Raspberry Pi.

Instrumenting Web Apps Using AWS X-Ray

Post Syndicated from Bharath Kumar original https://aws.amazon.com/blogs/devops/instrumenting-web-apps-using-aws-x-ray/

This post was written by James Bowman, Software Development Engineer, AWS X-Ray

AWS X-Ray helps developers analyze and debug distributed applications and underlying services in production. You can identify and analyze root-causes of performance issues and errors, understand customer impact, and extract statistical aggregations (such as histograms) for optimization.

In this blog post, I will provide a step-by-step walkthrough for enabling X-Ray tracing in the Go programming language. You can use these steps to add X-Ray tracing to any distributed application.

Revel: A web framework for the Go language

This section will assist you with designing a guestbook application. Skip to “Instrumenting with AWS X-Ray” section below if you already have a Go language application.

Revel is a web framework for the Go language. It facilitates the rapid development of web applications by providing a predefined framework for controllers, views, routes, filters, and more.

To get started with Revel, run revel new github.com/jamesdbowman/guestbook. A project base is then copied to $GOPATH/src/github.com/jamesdbowman/guestbook.

$ tree -L 2
.
├── README.md
├── app
│ ├── controllers
│ ├── init.go
│ ├── routes
│ ├── tmp
│ └── views
├── conf
│ ├── app.conf
│ └── routes
├── messages
│ └── sample.en
├── public
│ ├── css
│ ├── fonts
│ ├── img
│ └── js
└── tests
└── apptest.go

Writing a guestbook application

A basic guestbook application can consist of just two routes: one to sign the guestbook and another to list all entries.
Let’s set up these routes by adding a Book controller, which can be routed to by modifying ./conf/routes.

./app/controllers/book.go:
package controllers

import (
    "math/rand"
    "time"

    "github.com/aws/aws-sdk-go/aws"
    "github.com/aws/aws-sdk-go/aws/endpoints"
    "github.com/aws/aws-sdk-go/aws/session"
    "github.com/aws/aws-sdk-go/service/dynamodb"
    "github.com/aws/aws-sdk-go/service/dynamodb/dynamodbattribute"
    "github.com/revel/revel"
)

const TABLE_NAME = "guestbook"
const SUCCESS = "Success.\n"
const DAY = 86400

var letters = []rune("ABCDEFGHIJKLMNOPQRSTUVWXYZ")

func init() {
    rand.Seed(time.Now().UnixNano())
}

// randString returns a random string of len n, used for DynamoDB Hash key.
func randString(n int) string {
    b := make([]rune, n)
    for i := range b {
        b[i] = letters[rand.Intn(len(letters))]
    }
    return string(b)
}

// Book controls interactions with the guestbook.
type Book struct {
    *revel.Controller
    ddbClient *dynamodb.DynamoDB
}

// Signature represents a user's signature.
type Signature struct {
    Message string
    Epoch   int64
    ID      string
}

// ddb returns the controller's DynamoDB client, instatiating a new client if necessary.
func (c Book) ddb() *dynamodb.DynamoDB {
    if c.ddbClient == nil {
        sess := session.Must(session.NewSession(&aws.Config{
            Region: aws.String(endpoints.UsWest2RegionID),
        }))
        c.ddbClient = dynamodb.New(sess)
    }
    return c.ddbClient
}

// Sign allows users to sign the book.
// The message is to be passed as application/json typed content, listed under the "message" top level key.
func (c Book) Sign() revel.Result {
    var s Signature

    err := c.Params.BindJSON(&s)
    if err != nil {
        return c.RenderError(err)
    }
    now := time.Now()
    s.Epoch = now.Unix()
    s.ID = randString(20)

    item, err := dynamodbattribute.MarshalMap(s)
    if err != nil {
        return c.RenderError(err)
    }

    putItemInput := &dynamodb.PutItemInput{
        TableName: aws.String(TABLE_NAME),
        Item:      item,
    }
    _, err = c.ddb().PutItem(putItemInput)
    if err != nil {
        return c.RenderError(err)
    }

    return c.RenderText(SUCCESS)
}

// List allows users to list all signatures in the book.
func (c Book) List() revel.Result {
    scanInput := &dynamodb.ScanInput{
        TableName: aws.String(TABLE_NAME),
        Limit:     aws.Int64(100),
    }
    res, err := c.ddb().Scan(scanInput)
    if err != nil {
        return c.RenderError(err)
    }

    messages := make([]string, 0)
    for _, v := range res.Items {
        messages = append(messages, *(v["Message"].S))
    }
    return c.RenderJSON(messages)
}

./conf/routes:
POST /sign Book.Sign
GET /list Book.List

Creating the resources and testing

For the purposes of this blog post, the application will be run and tested locally. We will store and retrieve messages from an Amazon DynamoDB table. Use the following AWS CLI command to create the guestbook table:

aws dynamodb create-table --region us-west-2 --table-name "guestbook" --attribute-definitions AttributeName=ID,AttributeType=S AttributeName=Epoch,AttributeType=N --key-schema AttributeName=ID,KeyType=HASH AttributeName=Epoch,KeyType=RANGE --provisioned-throughput ReadCapacityUnits=5,WriteCapacityUnits=5

Now, let’s test our sign and list routes. If everything is working correctly, the following result appears:

$ curl -d '{"message":"Hello from cURL!"}' -H "Content-Type: application/json" http://localhost:9000/book/sign
Success.
$ curl http://localhost:9000/book/list
[
  "Hello from cURL!"
]%

Integrating with AWS X-Ray

Download and run the AWS X-Ray daemon

The AWS SDKs emit trace segments over UDP on port 2000. (This port can be configured.) In order for the trace segments to make it to the X-Ray service, the daemon must listen on this port and batch the segments in calls to the PutTraceSegments API.
For information about downloading and running the X-Ray daemon, see the AWS X-Ray Developer Guide.

Installing the AWS X-Ray SDK for Go

To download the SDK from GitHub, run go get -u github.com/aws/aws-xray-sdk-go/... The SDK will appear in the $GOPATH.

Enabling the incoming request filter

The first step to instrumenting an application with AWS X-Ray is to enable the generation of trace segments on incoming requests. The SDK conveniently provides an implementation of http.Handler which does exactly that. To ensure incoming web requests travel through this handler, we can modify app/init.go, adding a custom function to be run on application start.

import (
    "github.com/aws/aws-xray-sdk-go/xray"
    "github.com/revel/revel"
)

...

func init() {
  ...
    revel.OnAppStart(installXRayHandler)
}

func installXRayHandler() {
    revel.Server.Handler = xray.Handler(xray.NewFixedSegmentNamer("GuestbookApp"), revel.Server.Handler)
}

The application will now emit a segment for each incoming web request. The service graph appears:

You can customize the name of the segment to make it more descriptive by providing an alternate implementation of SegmentNamer to xray.Handler. For example, you can use xray.NewDynamicSegmentNamer(fallback, pattern) in place of the fixed namer. This namer will use the host name from the incoming web request (if it matches pattern) as the segment name. This is often useful when you are trying to separate different instances of the same application.

In addition, HTTP-centric information such as method and URL is collected in the segment’s http subsection:

"http": {
    "request": {
        "url": "/book/list",
        "method": "GET",
        "user_agent": "curl/7.54.0",
        "client_ip": "::1"
    },
    "response": {
        "status": 200
    }
},

Instrumenting outbound calls

To provide detailed performance metrics for distributed applications, the AWS X-Ray SDK needs to measure the time it takes to make outbound requests. Trace context is passed to downstream services using the X-Amzn-Trace-Id header. To draw a detailed and accurate representation of a distributed application, outbound call instrumentation is required.

AWS SDK calls

The AWS X-Ray SDK for Go provides a one-line AWS client wrapper that enables the collection of detailed per-call metrics for any AWS client. We can modify the DynamoDB client instantiation to include this line:

// ddb returns the controller's DynamoDB client, instatiating a new client if necessary.
func (c Book) ddb() *dynamodb.DynamoDB {
    if c.ddbClient == nil {
        sess := session.Must(session.NewSession(&aws.Config{
            Region: aws.String(endpoints.UsWest2RegionID),
        }))
        c.ddbClient = dynamodb.New(sess)
        xray.AWS(c.ddbClient.Client) // add subsegment-generating X-Ray handlers to this client
    }
    return c.ddbClient
}

We also need to ensure that the segment generated by our xray.Handler is passed to these AWS calls so that the X-Ray SDK knows to which segment these generated subsegments belong. In Go, the context.Context object is passed throughout the call path to achieve this goal. (In most other languages, some variant of ThreadLocal is used.) AWS clients provide a *WithContext method variant for each AWS operation, which we need to switch to:

_, err = c.ddb().PutItemWithContext(c.Request.Context(), putItemInput)
    res, err := c.ddb().ScanWithContext(c.Request.Context(), scanInput)

We now see much more detail in the Timeline view of the trace for the sign and list operations:

We can use this detail to help diagnose throttling on our DynamoDB table. In the following screenshot, the purple in the DynamoDB service graph node indicates that our table is underprovisioned. The red in the GuestbookApp node indicates that the application is throwing faults due to this throttling.

HTTP calls

Although the guestbook application does not make any non-AWS outbound HTTP calls in its current state, there is a similar one-liner to wrap HTTP clients that make outbound requests. xray.Client(c *http.Client) wraps an existing http.Client (or nil if you want to use a default HTTP client). For example:

resp, err := ctxhttp.Get(ctx, xray.Client(nil), "https://aws.amazon.com/")

Instrumenting local operations

X-Ray can also assist in measuring the performance of local compute operations. To see this in action, let’s create a custom subsegment inside the randString method:


// randString returns a random string of len n, used for DynamoDB Hash key.
func randString(ctx context.Context, n int) string {
    xray.Capture(ctx, "randString", func(innerCtx context.Context) {
        b := make([]rune, n)
        for i := range b {
            b[i] = letters[rand.Intn(len(letters))]
        }
        s := string(b)
    })
    return s
}

// we'll also need to change the callsite

s.ID = randString(c.Request.Context(), 20)

Summary

By now, you are an expert on how to instrument X-Ray for your Go applications. Instrumenting X-Ray with your applications is an easy way to analyze and debug performance issues and understand customer impact. Please feel free to give any feedback or comments below.

For more information about advanced configuration of the AWS X-Ray SDK for Go, see the AWS X-Ray SDK for Go in the AWS X-Ray Developer Guide and the aws/aws-xray-sdk-go GitHub repository.

For more information about some of the advanced X-Ray features such as histograms, annotations, and filter expressions, see the Analyzing Performance for Amazon Rekognition Apps Written on AWS Lambda Using AWS X-Ray blog post.

Power Tips for Backblaze Backup

Post Syndicated from Roderick Bauer original https://www.backblaze.com/blog/data-backup-tips/

Backup Power Tips

2017 has been a busy year for Backblaze. We’ve reached a total of over 400 petabytes of data stored for our customers — that’s a lot!, released a major upgrade to our backup product — Backblaze Cloud Backup 5.0, added Groups to our consumer and business backup products, further enhanced account security, and welcomed a whole lot of new customers to Backblaze.

For all of our new users (and maybe some of you more experienced ones, too), we’d like to share some power tips that will help you get the most out of Backblaze Backup for home and business.

Blazing Power Tips for Backblaze Backup

Back Up All of Your Valuable Data

Backblaze logo

Include Directly-Attached External Drives in Your Backup

Backblaze can back up external drives attached via USB, Thunderbolt, or Firewire.

Backblaze logo

Back Up Virtual Machines Installed on Your Computer

Virtual machines, such as those created by Parallels, VMware Fusion, VirtualBox, Hyper-V, or other programs, can be backed up with Backblaze.

Backblaze logo

You Can Back Up Your Mobile Phone to Backblaze

Gain extra peace-of-mind by backing up your iPhone or Android phone to your computer and including that in your computer backup.

Backblaze logo

Bring on Your Big Files

By default, Backblaze has no restrictions on the size of the files you are backing up, even that large high school reunion video you want to be sure to keep.

Backblaze logo

Rescan Your Hard Drive to Check for Changes

Backblaze works quietly and continuously in the background to keep you backed up, but you can ask Backblaze to immediately check whether anything needs backing up by holding down the Alt key and clicking on the Restore Options button in the Backblaze client.

Manage and Restore Your Backed Up Files

Backblaze logo

You Can Share Files You’ve Backed Up

You can share files with anyone directly from your Backblaze account.

Backblaze logo

Select and Restore Individual Files

You can restore a single file without zipping it using the Backblaze web interface.

Backblaze logo

Receive Your Restores from Backblaze by Mail

You have a choice of how to receive your data from Backblaze. You can download individual files, download a ZIP of the files you choose, or request that your data be shipped to you anywhere in the world via FedEx.

Backblaze logo

Put Your Account on Hold for Six Months

As long as your account is current, all the data you’ve backed up is maintained for up to six months if you’re traveling or not using your computer and don’t connect to our servers. (For active accounts, data is maintained up to 30 days.)

Backblaze logo

Groups Make Managing Business or Family Members Easy

For businesses, families, or organizations, our Groups feature makes it easy to manage billing, group membership, and individual user access to files and accounts — all at no incremental charge.

Backblaze logo

You Can Browse and Restore Previous Versions of a File

Visit the View/Restore Files page to go back in time to earlier or deleted versions of your files.

Backblaze logo

Mass Deploy Backblaze Remotely to Many Computers

Companies, organizations, schools, non-profits, and others can deploy Backblaze computer backup remotely across all their computers without any end-user interaction.

Backblaze logo

Move Your Account and Preserve Backups on a New or Restored Computer

You can move your Backblaze account to a new or restored computer with the same data — and preserve the backups you have already completed — using the Inherit Backup State feature.

Backblaze logo

Reinstall Backblaze under a Different Account

Backblaze remembers the account information when it is uninstalled and reinstalled. To install Backblaze under a different account, hold down the ALT key and click the Install Now button.

Keep Your Data Secure

Backblaze logo

Protect Your Account with Two-Factor Verification

You can (and should) protect your Backblaze account with two-factor verification. You can use backup codes and SMS verification in case you lose access to your smartphone and the authentication app. Sign in to your account to set that up.

Backblaze logo

Add Additional Security to Your Data

All transmissions of your data between your system and our servers is encrypted. For extra account security, you can add an optional private encryption key (PEK) to the data on our servers. Just be sure to remember your encryption key because it’s required to restore your data.

Get the Best Data Transfer Speeds

Backblaze logo

How Fast is your Connection to Backblaze?

You can check the speed and latency of your internet connection between your location and Backblaze’s data centers at https://www.backblaze.com/speedtest/.

Backblaze logo

Fine-Tune Your Upload Speed with Multiple Threads

Our auto-threading feature adjusts Backblaze’s CPU usage to give you the best upload speeds, but for those of you who like to tinker, the Backblaze client on Windows and Macintosh lets you fine-tune the number of threads our client is using to upload your files to our data centers.

Backblaze logo

Use the Backblaze Downloader To Get Your Restores Faster

If you are downloading a large ZIP restore, we recommend that you use the Backblaze Downloader application for Macintosh or Windows for maximum speed.

Want to Learn More About Backblaze Backup?

You can find more information on Backblaze Backup (including a free trial) on our website, and more tips about backing up in our help pages and in our Backup Guide.

Do you have a friend who should be backing up, but doesn’t? Why not give the gift of Backblaze?

The post Power Tips for Backblaze Backup appeared first on Backblaze Blog | Cloud Storage & Cloud Backup.

What is HAMR and How Does It Enable the High-Capacity Needs of the Future?

Post Syndicated from Andy Klein original https://www.backblaze.com/blog/hamr-hard-drives/

HAMR drive illustration

During Q4, Backblaze deployed 100 petabytes worth of Seagate hard drives to our data centers. The newly deployed Seagate 10 and 12 TB drives are doing well and will help us meet our near term storage needs, but we know we’re going to need more drives — with higher capacities. That’s why the success of new hard drive technologies like Heat-Assisted Magnetic Recording (HAMR) from Seagate are very relevant to us here at Backblaze and to the storage industry in general. In today’s guest post we are pleased to have Mark Re, CTO at Seagate, give us an insider’s look behind the hard drive curtain to tell us how Seagate engineers are developing the HAMR technology and making it market ready starting in late 2018.

What is HAMR and How Does It Enable the High-Capacity Needs of the Future?

Guest Blog Post by Mark Re, Seagate Senior Vice President and Chief Technology Officer

Earlier this year Seagate announced plans to make the first hard drives using Heat-Assisted Magnetic Recording, or HAMR, available by the end of 2018 in pilot volumes. Even as today’s market has embraced 10TB+ drives, the need for 20TB+ drives remains imperative in the relative near term. HAMR is the Seagate research team’s next major advance in hard drive technology.

HAMR is a technology that over time will enable a big increase in the amount of data that can be stored on a disk. A small laser is attached to a recording head, designed to heat a tiny spot on the disk where the data will be written. This allows a smaller bit cell to be written as either a 0 or a 1. The smaller bit cell size enables more bits to be crammed into a given surface area — increasing the areal density of data, and increasing drive capacity.

It sounds almost simple, but the science and engineering expertise required, the research, experimentation, lab development and product development to perfect this technology has been enormous. Below is an overview of the HAMR technology and you can dig into the details in our technical brief that provides a point-by-point rundown describing several key advances enabling the HAMR design.

As much time and resources as have been committed to developing HAMR, the need for its increased data density is indisputable. Demand for data storage keeps increasing. Businesses’ ability to manage and leverage more capacity is a competitive necessity, and IT spending on capacity continues to increase.

History of Increasing Storage Capacity

For the last 50 years areal density in the hard disk drive has been growing faster than Moore’s law, which is a very good thing. After all, customers from data centers and cloud service providers to creative professionals and game enthusiasts rarely go shopping looking for a hard drive just like the one they bought two years ago. The demands of increasing data on storage capacities inevitably increase, thus the technology constantly evolves.

According to the Advanced Storage Technology Consortium, HAMR will be the next significant storage technology innovation to increase the amount of storage in the area available to store data, also called the disk’s “areal density.” We believe this boost in areal density will help fuel hard drive product development and growth through the next decade.

Why do we Need to Develop Higher-Capacity Hard Drives? Can’t Current Technologies do the Job?

Why is HAMR’s increased data density so important?

Data has become critical to all aspects of human life, changing how we’re educated and entertained. It affects and informs the ways we experience each other and interact with businesses and the wider world. IDC research shows the datasphere — all the data generated by the world’s businesses and billions of consumer endpoints — will continue to double in size every two years. IDC forecasts that by 2025 the global datasphere will grow to 163 zettabytes (that is a trillion gigabytes). That’s ten times the 16.1 ZB of data generated in 2016. IDC cites five key trends intensifying the role of data in changing our world: embedded systems and the Internet of Things (IoT), instantly available mobile and real-time data, cognitive artificial intelligence (AI) systems, increased security data requirements, and critically, the evolution of data from playing a business background to playing a life-critical role.

Consumers use the cloud to manage everything from family photos and videos to data about their health and exercise routines. Real-time data created by connected devices — everything from Fitbit, Alexa and smart phones to home security systems, solar systems and autonomous cars — are fueling the emerging Data Age. On top of the obvious business and consumer data growth, our critical infrastructure like power grids, water systems, hospitals, road infrastructure and public transportation all demand and add to the growth of real-time data. Data is now a vital element in the smooth operation of all aspects of daily life.

All of this entails a significant infrastructure cost behind the scenes with the insatiable, global appetite for data storage. While a variety of storage technologies will continue to advance in data density (Seagate announced the first 60TB 3.5-inch SSD unit for example), high-capacity hard drives serve as the primary foundational core of our interconnected, cloud and IoT-based dependence on data.

HAMR Hard Drive Technology

Seagate has been working on heat assisted magnetic recording (HAMR) in one form or another since the late 1990s. During this time we’ve made many breakthroughs in making reliable near field transducers, special high capacity HAMR media, and figuring out a way to put a laser on each and every head that is no larger than a grain of salt.

The development of HAMR has required Seagate to consider and overcome a myriad of scientific and technical challenges including new kinds of magnetic media, nano-plasmonic device design and fabrication, laser integration, high-temperature head-disk interactions, and thermal regulation.

A typical hard drive inside any computer or server contains one or more rigid disks coated with a magnetically sensitive film consisting of tiny magnetic grains. Data is recorded when a magnetic write-head flies just above the spinning disk; the write head rapidly flips the magnetization of one magnetic region of grains so that its magnetic pole points up or down, to encode a 1 or a 0 in binary code.

Increasing the amount of data you can store on a disk requires cramming magnetic regions closer together, which means the grains need to be smaller so they won’t interfere with each other.

Heat Assisted Magnetic Recording (HAMR) is the next step to enable us to increase the density of grains — or bit density. Current projections are that HAMR can achieve 5 Tbpsi (Terabits per square inch) on conventional HAMR media, and in the future will be able to achieve 10 Tbpsi or higher with bit patterned media (in which discrete dots are predefined on the media in regular, efficient, very dense patterns). These technologies will enable hard drives with capacities higher than 100 TB before 2030.

The major problem with packing bits so closely together is that if you do that on conventional magnetic media, the bits (and the data they represent) become thermally unstable, and may flip. So, to make the grains maintain their stability — their ability to store bits over a long period of time — we need to develop a recording media that has higher coercivity. That means it’s magnetically more stable during storage, but it is more difficult to change the magnetic characteristics of the media when writing (harder to flip a grain from a 0 to a 1 or vice versa).

That’s why HAMR’s first key hardware advance required developing a new recording media that keeps bits stable — using high anisotropy (or “hard”) magnetic materials such as iron-platinum alloy (FePt), which resist magnetic change at normal temperatures. Over years of HAMR development, Seagate researchers have tested and proven out a variety of FePt granular media films, with varying alloy composition and chemical ordering.

In fact the new media is so “hard” that conventional recording heads won’t be able to flip the bits, or write new data, under normal temperatures. If you add heat to the tiny spot on which you want to write data, you can make the media’s coercive field lower than the magnetic field provided by the recording head — in other words, enable the write head to flip that bit.

So, a challenge with HAMR has been to replace conventional perpendicular magnetic recording (PMR), in which the write head operates at room temperature, with a write technology that heats the thin film recording medium on the disk platter to temperatures above 400 °C. The basic principle is to heat a tiny region of several magnetic grains for a very short time (~1 nanoseconds) to a temperature high enough to make the media’s coercive field lower than the write head’s magnetic field. Immediately after the heat pulse, the region quickly cools down and the bit’s magnetic orientation is frozen in place.

Applying this dynamic nano-heating is where HAMR’s famous “laser” comes in. A plasmonic near-field transducer (NFT) has been integrated into the recording head, to heat the media and enable magnetic change at a specific point. Plasmonic NFTs are used to focus and confine light energy to regions smaller than the wavelength of light. This enables us to heat an extremely small region, measured in nanometers, on the disk media to reduce its magnetic coercivity,

Moving HAMR Forward

HAMR write head

As always in advanced engineering, the devil — or many devils — is in the details. As noted earlier, our technical brief provides a point-by-point short illustrated summary of HAMR’s key changes.

Although hard work remains, we believe this technology is nearly ready for commercialization. Seagate has the best engineers in the world working towards a goal of a 20 Terabyte drive by 2019. We hope we’ve given you a glimpse into the amount of engineering that goes into a hard drive. Keeping up with the world’s insatiable appetite to create, capture, store, secure, manage, analyze, rapidly access and share data is a challenge we work on every day.

With thousands of HAMR drives already being made in our manufacturing facilities, our internal and external supply chain is solidly in place, and volume manufacturing tools are online. This year we began shipping initial units for customer tests, and production units will ship to key customers by the end of 2018. Prepare for breakthrough capacities.

The post What is HAMR and How Does It Enable the High-Capacity Needs of the Future? appeared first on Backblaze Blog | Cloud Storage & Cloud Backup.

Game night 1: Lisa, Lisa, MOOP

Post Syndicated from Eevee original https://eev.ee/blog/2017/12/05/game-night-1-lisa-lisa-moop/

For the last few weeks, glip (my partner) and I have spent a couple hours most nights playing indie games together. We started out intending to play a short list of games that had been recommended to glip, but this turns out to be a nice way to wind down, so we’ve been keeping it up and clicking on whatever looks interesting in the itch app.

Most of the games are small and made by one or two people, so they tend to be pretty tightly scoped and focus on a few particular kinds of details. I’ve found myself having brain thoughts about all that, so I thought I’d write some of them down.

I also know that some people (cough) tend not to play games they’ve never heard of, even if they want something new to play. If that’s you, feel free to play some of these, now that you’ve heard of them!

Also, I’m still figuring the format out here, so let me know if this is interesting or if you hope I never do it again!

First up:

  • Lisa: The Painful
  • Lisa: The Joyful
  • MOOP

These are impressions, not reviews. I try to avoid major/ending spoilers, but big plot points do tend to leave impressions.

Lisa: The Painful

long · classic rpg · dec 2014 · lin/mac/win · $10 on itch or steam · website

(cw: basically everything??)

Lisa: The Painful is true to its name. I hesitate to describe it as fun, exactly, but I’m glad we played it.

Everything about the game is dark. It’s a (somewhat loose) sequel to another game called Lisa, whose titular character ultimately commits suicide; her body hanging from a noose is the title screen for this game.

Ah, but don’t worry, it gets worse. This game takes place in a post-apocalyptic wasteland, where every female human — women, children, babies — is dead. You play as Brad (Lisa’s brother), who has discovered the lone exception: a baby girl he names Buddy and raises like a daughter. Now, Buddy has been kidnapped, and you have to go rescue her, presumably from being raped.

Ah, but don’t worry, it gets worse.


I’ve had a hard time putting my thoughts in order here, because so much of what stuck with me is the way the game entangles the plot with the mechanics.

I love that kind of thing, but it’s so hard to do well. I can’t really explain why, but I feel like most attempts to do it fall flat — they have a glimmer of an idea, but they don’t integrate it well enough, or they don’t run nearly as far as they could have. I often get the same feeling as, say, a hyped-up big moral choice that turns out to be picking “yes” or “no” from a menu. The idea is there, but the execution is so flimsy that it leaves no impact on me at all.

An obvious recent success here is Undertale, where the entire story is about violence and whether you choose to engage or avoid it (and whether you can do that). If you choose to eschew violence, not only does the game become more difficult, it arguably becomes a different game entirely. Granted, the contrast is lost if you (like me) tried to play as a pacifist from the very beginning. I do feel that you could go further with the idea than Undertale, but Undertale itself doesn’t feel incomplete.

Christ, I’m not even talking about the right game any more.

Okay, so: this game is a “classic” RPG, by which I mean, it was made with RPG Maker. (It’s kinda funny that RPG Maker was designed to emulate a very popular battle style, and now the only games that use that style are… made with RPG Maker.) The main loop, on the surface, is standard RPG fare: you walk around various places, talk to people, solve puzzles, recruit party members, and get into turn-based fights.

Now, Brad is addicted to a drug called Joy. He will regularly go into withdrawal, which manifests in the game as a status effect that cuts his stats (even his max HP!) dramatically.

It is really, really, incredibly inconvenient. And therein lies the genius here. The game could have simply told me that Brad is an addict, and I don’t think I would’ve cared too much. An addiction to a fantasy drug in a wasteland doesn’t mean anything to me, especially about this tiny sprite man I just met, so I would’ve filed this away as a sterile fact and forgotten about it. By making his addiction affect me, I’m now invested in it. I wish Brad weren’t addicted, even if only because it’s annoying. I found a party member once who turned out to have the same addiction, and I felt dread just from seeing the icon for the status effect. I’ve been looped into the events of this story through the medium I use to interact with it: the game.

It’s a really good use of games as a medium. Even before I’m invested in the characters, I’m invested in what’s happening to them, because it impacts the game!

Incidentally, you can get Joy as an item, which will temporarily cure your withdrawal… but you mostly find it by looting the corpses of grotesque mutant flesh horrors you encounter. I don’t think the game would have the player abruptly mutate out of nowhere, but I wasn’t about to find out, either. We never took any.


Virtually every staple of the RPG genre has been played with in some way to tie it into the theme/setting. I love it, and I think it works so well precisely because it plays with expectations of how RPGs usually work.

Most obviously, the game is a sidescroller, not top-down. You can’t jump freely, but you can hop onto one-tile-high boxes and climb ropes. You can also drop off off ledges… but your entire party will take fall damage, which gets rapidly more severe the further you fall.

This wouldn’t be too much of a problem, except that healing is hard to come by for most of the game. Several hub areas have campfires you can sleep next to to restore all your health and MP, but when you wake up, something will have happened to you. Maybe just a weird cutscene, or maybe one of your party members has decided to leave permanently.

Okay, so use healing items instead? Good luck; money is also hard to come by, and honestly so are shops, and many of the healing items are woefully underpowered.

Grind for money? Good luck there, too! While the game has plenty of battles, virtually every enemy is a unique overworld human who only appears once, and then is dead, because you killed him. Only a handful of places have unlimited random encounters, and grinding is not especially pleasant.

The “best” way to get a reliable heal is to savescum — save the game, sleep by the campfire, and reload if you don’t like what you wake up to.

In a similar vein, there’s a part of the game where you’re forced to play Russian Roulette. You choose a party member; he and an opponent will take turns shooting themselves in the head until someone finds a loaded chamber. If your party member loses, he is dead. And you have to keep playing until you win three times, so there’s no upper limit on how many people you might lose. I couldn’t find any way to influence who won, so I just had to savescum for a good half hour until I made it through with minimal losses.

It was maddening, but also a really good idea. Games don’t often incorporate the existence of saves into the gameplay, and when they do, they usually break the fourth wall and get all meta about it. Saves are never acknowledged in-universe here (aside from the existence of save points), but surely these parts of the game were designed knowing that the best way through them is by reloading. It’s rarely done, it can easily feel unfair, and it drove me up the wall — but it was certainly painful, as intended, and I kinda love that.

(Naturally, I’m told there’s a hard mode, where you can only use each save point once.)

The game also drives home the finality of death much better than most. It’s not hard to overlook the death of a redshirt, a character with a bit part who simply doesn’t appear any more. This game permanently kills your party members. Russian Roulette isn’t even the only way you can lose them! Multiple cutscenes force you to choose between losing a life or some other drastic consequence. (Even better, you can try to fight the person forcing this choice on you, and he will decimate you.) As the game progresses, you start to encounter enemies who can simply one-shot murder your party members.

It’s such a great angle. Just like with Brad’s withdrawal, you don’t want to avoid their deaths because it’d be emotional — there are dozens of party members you can recruit (though we only found a fraction of them), and most of them you only know a paragraph about — but because it would inconvenience you personally. Chances are, you have your strongest dudes in your party at any given time, so losing one of them sucks. And with few random encounters, you can’t just grind someone else up to an appropriate level; it feels like there’s a finite amount of XP in the game, and if someone high-level dies, you’ve lost all the XP that went into them.


The battles themselves are fairly straightforward. You can attack normally or use a special move that costs MP. SP? Some kind of points.

Two things in particular stand out. One I mentioned above: the vast majority of the encounters are one-time affairs against distinct named NPCs, who you then never see again, because they are dead, because you killed them.

The other is the somewhat unusual set of status effects. The staples like poison and sleep are here, but don’t show up all that often; more frequent are statuses like weird, drunk, stink, or cool. If you do take Joy (which also cures depression), you become joyed for a short time.

The game plays with these in a few neat ways, besides just Brad’s withdrawal. Some party members have a status like stink or cool permanently. Some battles are against people who don’t want to fight at all — and so they’ll spend most of the battle crying, purely for flavor impact. Seeing that for the first time hit me pretty hard; until then we’d only seen crying as a mechanical side effect of having sand kicked in one’s face.


The game does drag on a bit. I think we poured 10 in-game hours into it, which doesn’t count time spent reloading. It doesn’t help that you walk not super fast.

My biggest problem was with getting my bearings; I’m sure we spent a lot of that time wandering around accomplishing nothing. Most of the world is focused around one of a few hub areas, and once you’ve completed one hub, you can move onto the next one. That’s fine. Trouble is, you can go any of a dozen different directions from each hub, and most of those directions will lead you to very similar-looking hills built out of the same tiny handful of tiles. The connections between places are mostly cave entrances, which also largely look the same. Combine that with needing to backtrack for puzzle or progression reasons, and it’s incredibly difficult to keep track of where you’ve been, what you’ve done, and where you need to go next.

I don’t know that the game is wrong here; the aesthetic and world layout are fantastic at conveying a desolate wasteland. I wouldn’t even be surprised if the navigation were deliberately designed this way. (On the other hand, assuming every annoyance in a despair-ridden game is deliberate might be giving it too much credit.) But damn it’s still frustrating.

I felt a little lost in the battle system, too. Towards the end of the game, Brad in particular had over a dozen skills he could use, but I still couldn’t confidently tell you which were the strongest. New skills sometimes appear in the middle of the list or cost less than previous skills, and the game doesn’t outright tell you how much damage any of them do. I know this is the “classic RPG” style, and I don’t think it was hugely inconvenient, but it feels weird to barely know how my own skills work. I think this puts me off getting into new RPGs, just generally; there’s a whole new set of things I have to learn about, and games in this style often won’t just tell me anything, so there’s this whole separate meta-puzzle to figure out before I can play the actual game effectively.

Also, the sound could use a little bit of… mastering? Some music and sound effects are significantly louder and screechier than others. Painful, you could say.


The world is full of side characters with their own stuff going on, which is also something I love seeing in games; too often, the whole world feels like an obstacle course specifically designed for you.

Also, many of those characters are, well, not great people. Really, most of the game is kinda fucked up. Consider: the weird status effect is most commonly inflicted by the “Grope” skill. It makes you feel weird, you see. Oh, and the currency is porn magazines.

And then there are the gangs, the various spins on sex clubs, the forceful drug kingpins, and the overall violence that permeates everything (you stumble upon an alarming number of corpses). The game neither condones nor condemns any of this; it simply offers some ideas of how people might behave at the end of the world. It’s certainly the grittiest interpretation I’ve seen.

I don’t usually like post-apocalypses, because they try to have these very hopeful stories, but then at the end the world is still a blighted hellscape so what was the point of any of that? I like this game much better for being a blighted hellscape throughout. The story is worth following to see where it goes, not just because you expect everything wrapped up neatly at the end.

…I realize I’ve made this game sound monumentally depressing throughout, but it manages to pack in a lot of funny moments as well, from the subtle to the overt. In retrospect, it’s actually really good at balancing the mood so it doesn’t get too depressing. If nothing else, it’s hilarious to watch this gruff, solemn, battle-scarred, middle-aged man pedal around on a kid’s bike he found.


An obvious theme of the game is despair, but the more I think about it, the more I wonder if ambiguity is a theme as well. It certainly fits the confusing geography.

Even the premise is a little ambiguous. Is/was Olathe a city, a country, a whole planet? Did the apocalypse affect only Olathe, or the whole world? Does it matter in an RPG, where the only world that exists is the one mapped out within the game?

Towards the end of the game, you catch up with Buddy, but she rejects you, apparently resentful that you kept her hidden away for her entire life. Brad presses on anyway, insisting on protecting her.

At that point I wasn’t sure I was still on Brad’s side. But he’s not wrong, either. Is he? Maybe it depends on how old Buddy is — but the game never tells us. Her sprite is a bit smaller than the men’s, but it’s hard to gauge much from small exaggerated sprites, and she might just be shorter. In the beginning of the game, she was doing kid-like drawings, but we don’t know how much time passed after that. Everyone seems to take for granted that she’s capable of bearing children, and she talks like an adult. So is she old enough to be making this decision, or young enough for parent figure Brad to overrule her? What is the appropriate age of agency, anyway, when you’re the last girl/woman left more than a decade after the end of the world?

Can you repopulate a species with only one woman, anyway?


Well, that went on a bit longer than I intended. This game has a lot of small touches that stood out to me, and they all wove together very well.

Should you play it? I have absolutely no idea.

FINAL SCORE: 1 out of 6 chambers

Lisa: The Joyful

fairly short · classic rpg · aug 2015 · lin/mac/win · $5 on itch or steam

Surprise! There’s a third game to round out this trilogy.

Lisa: The Joyful is much shorter, maybe three hours long — enough to be played in a night rather than over the better part of a week.

This one picks up immediately after the end of Painful, with you now playing as Buddy. It takes a drastic turn early on: Buddy decides that, rather than hide from the world, she must conquer it. She sets out to murder all the big bosses and become queen.

The battle system has been inherited from the previous game, but battles are much more straightforward this time around. You can’t recruit any party members; for much of the game, it’s just you and a sword.

There is a catch! Of course.

The catch is that you do not have enough health to survive most boss battles without healing. With no party members, you cannot heal via skills. I don’t think you could buy healing items anywhere, either. You have a few when the game begins, but once you run out, that’s it.

Except… you also have… some Joy. Which restores you to full health and also makes you crit with every hit. And drops off of several enemies.

We didn’t even recognize Joy as a healing item at first, since we never used it in Painful; it’s description simply says that it makes you feel nothing, and we’d assumed the whole point of it was to stave off withdrawal, which Buddy doesn’t experience. Luckily, the game provided a hint in the form of an NPC who offers to switch on easy mode:

What’s that? Bad guys too tough? Not enough jerky? You don’t want to take Joy!? Say no more, you’ve come to the right place!

So the game is aware that it’s unfairly difficult, and it’s deliberately forcing you to take Joy, and it is in fact entirely constructed around this concept. I guess the title is a pretty good hint, too.

I don’t feel quite as strongly about Joyful as I do about Painful. (Admittedly, I was really tired and starting to doze off towards the end of Joyful.) Once you get that the gimmick is to force you to use Joy, the game basically reduces to a moderate-difficulty boss rush. Other than that, the only thing that stood out to me mechanically was that Buddy learns a skill where she lifts her shirt to inflict flustered as a status effect — kind of a lingering echo of how outrageous the previous game could be.

You do get a healthy serving of plot, which is nice and ties a few things together. I wouldn’t say it exactly wraps up the story, but it doesn’t feel like it’s missing anything either; it’s exactly as murky as you’d expect.

I think it’s worth playing Joyful if you’ve played Painful. It just didn’t have the same impact on me. It probably doesn’t help that I don’t like Buddy as a person. She seems cold, violent, and cruel. Appropriate for the world and a product of her environment, I suppose.

FINAL SCORE: 300 Mags

MOOP

fairly short · inventory game · nov 2017 · win · free on itch

Finally, as something of a palate cleanser, we have MOOP: a delightful and charming little inventory game.

I don’t think “inventory game” is a real genre, but I mean the kind of game where you go around collecting items and using them in the right place. Puzzle-driven, but with “puzzles” that can largely be solved by simply trying everything everywhere. I’d put a lot of point and click adventures in the same category, despite having a radically different interface. Is that fair? Yes, because it’s my blog.

MOOP was almost certainly also made in RPG Maker, but it breaks the mold in a very different way by not being an RPG. There are no battles whatsoever, only interactions on the overworld; you progress solely via dialogue and puzzle-solving. Examining something gives you a short menu of verbs — use, talk, get — reminiscent of interactive fiction, or perhaps the graphical “adventure” games that took inspiration from interactive fiction. (God, “adventure game” is the worst phrase. Every game is an adventure! It doesn’t mean anything!)

Everything about the game is extremely chill. I love the monochrome aesthetic combined with a large screen resolution; it feels like I’m peeking into an alternate universe where the Game Boy got bigger but never gained color. I played halfway through the game before realizing that the protagonist (Moop) doesn’t have a walk animation; they simply slide around. Somehow, it works.

The puzzles are a little clever, yet low-pressure; the world is small enough that you can examine everything again if you get stuck, and there’s no way to lose or be set back. The music is lovely, too. It just feels good to wander around in a world that manages to make sepia look very pretty.

The story manages to pack a lot into a very short time. It’s… gosh, I don’t know. It has a very distinct texture to it that I’m not sure I’ve seen before. The plot weaves through several major events that each have very different moods, and it moves very quickly — but it’s well-written and doesn’t feel rushed or disjoint. It’s lighthearted, but takes itself seriously enough for me to get invested. It’s fucking witchcraft.

I think there was even a non-binary character! Just kinda nonchalantly in there. Awesome.

What a happy, charming game. Play if you would like to be happy and charmed.

FINAL SCORE: 1 waxing moon

Glenn’s Take on re:Invent 2017 Part 1

Post Syndicated from Glenn Gore original https://aws.amazon.com/blogs/architecture/glenns-take-on-reinvent-2017-part-1/

GREETINGS FROM LAS VEGAS

Glenn Gore here, Chief Architect for AWS. I’m in Las Vegas this week — with 43K others — for re:Invent 2017. We have a lot of exciting announcements this week. I’m going to post to the AWS Architecture blog each day with my take on what’s interesting about some of the announcements from a cloud architectural perspective.

Why not start at the beginning? At the Midnight Madness launch on Sunday night, we announced Amazon Sumerian, our platform for VR, AR, and mixed reality. The hype around VR/AR has existed for many years, though for me, it is a perfect example of how a working end-to-end solution often requires innovation from multiple sources. For AR/VR to be successful, we need many components to come together in a coherent manner to provide a great experience.

First, we need lightweight, high-definition goggles with motion tracking that are comfortable to wear. Second, we need to track movement of our body and hands in a 3-D space so that we can interact with virtual objects in the virtual world. Third, we need to build the virtual world itself and populate it with assets and define how the interactions will work and connect with various other systems.

There has been rapid development of the physical devices for AR/VR, ranging from iOS devices to Oculus Rift and HTC Vive, which provide excellent capabilities for the first and second components defined above. With the launch of Amazon Sumerian we are solving for the third area, which will help developers easily build their own virtual worlds and start experimenting and innovating with how to apply AR/VR in new ways.

Already, within 48 hours of Amazon Sumerian being announced, I have had multiple discussions with customers and partners around some cool use cases where VR can help in training simulations, remote-operator controls, or with new ideas around interacting with complex visual data sets, which starts bringing concepts straight out of sci-fi movies into the real (virtual) world. I am really excited to see how Sumerian will unlock the creative potential of developers and where this will lead.

Amazon MQ
I am a huge fan of distributed architectures where asynchronous messaging is the backbone of connecting the discrete components together. Amazon Simple Queue Service (Amazon SQS) is one of my favorite services due to its simplicity, scalability, performance, and the incredible flexibility of how you can use Amazon SQS in so many different ways to solve complex queuing scenarios.

While Amazon SQS is easy to use when building cloud-native applications on AWS, many of our customers running existing applications on-premises required support for different messaging protocols such as: Java Message Service (JMS), .Net Messaging Service (NMS), Advanced Message Queuing Protocol (AMQP), MQ Telemetry Transport (MQTT), Simple (or Streaming) Text Orientated Messaging Protocol (STOMP), and WebSockets. One of the most popular applications for on-premise message brokers is Apache ActiveMQ. With the release of Amazon MQ, you can now run Apache ActiveMQ on AWS as a managed service similar to what we did with Amazon ElastiCache back in 2012. For me, there are two compelling, major benefits that Amazon MQ provides:

  • Integrate existing applications with cloud-native applications without having to change a line of application code if using one of the supported messaging protocols. This removes one of the biggest blockers for integration between the old and the new.
  • Remove the complexity of configuring Multi-AZ resilient message broker services as Amazon MQ provides out-of-the-box redundancy by always storing messages redundantly across Availability Zones. Protection is provided against failure of a broker through to complete failure of an Availability Zone.

I believe that Amazon MQ is a major component in the tools required to help you migrate your existing applications to AWS. Having set up cross-data center Apache ActiveMQ clusters in the past myself and then testing to ensure they work as expected during critical failure scenarios, technical staff working on migrations to AWS benefit from the ease of deploying a fully redundant, managed Apache ActiveMQ cluster within minutes.

Who would have thought I would have been so excited to revisit Apache ActiveMQ in 2017 after using SQS for many, many years? Choice is a wonderful thing.

Amazon GuardDuty
Maintaining application and information security in the modern world is increasingly complex and is constantly evolving and changing as new threats emerge. This is due to the scale, variety, and distribution of services required in a competitive online world.

At Amazon, security is our number one priority. Thus, we are always looking at how we can increase security detection and protection while simplifying the implementation of advanced security practices for our customers. As a result, we released Amazon GuardDuty, which provides intelligent threat detection by using a combination of multiple information sources, transactional telemetry, and the application of machine learning models developed by AWS. One of the biggest benefits of Amazon GuardDuty that I appreciate is that enabling this service requires zero software, agents, sensors, or network choke points. which can all impact performance or reliability of the service you are trying to protect. Amazon GuardDuty works by monitoring your VPC flow logs, AWS CloudTrail events, DNS logs, as well as combing other sources of security threats that AWS is aggregating from our own internal and external sources.

The use of machine learning in Amazon GuardDuty allows it to identify changes in behavior, which could be suspicious and require additional investigation. Amazon GuardDuty works across all of your AWS accounts allowing for an aggregated analysis and ensuring centralized management of detected threats across accounts. This is important for our larger customers who can be running many hundreds of AWS accounts across their organization, as providing a single common threat detection of their organizational use of AWS is critical to ensuring they are protecting themselves.

Detection, though, is only the beginning of what Amazon GuardDuty enables. When a threat is identified in Amazon GuardDuty, you can configure remediation scripts or trigger Lambda functions where you have custom responses that enable you to start building automated responses to a variety of different common threats. Speed of response is required when a security incident may be taking place. For example, Amazon GuardDuty detects that an Amazon Elastic Compute Cloud (Amazon EC2) instance might be compromised due to traffic from a known set of malicious IP addresses. Upon detection of a compromised EC2 instance, we could apply an access control entry restricting outbound traffic for that instance, which stops loss of data until a security engineer can assess what has occurred.

Whether you are a customer running a single service in a single account, or a global customer with hundreds of accounts with thousands of applications, or a startup with hundreds of micro-services with hourly release cycle in a devops world, I recommend enabling Amazon GuardDuty. We have a 30-day free trial available for all new customers of this service. As it is a monitor of events, there is no change required to your architecture within AWS.

Stay tuned for tomorrow’s post on AWS Media Services and Amazon Neptune.

 

Glenn during the Tour du Mont Blanc

Uber Data Hack

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2017/11/uber_data_hack.html

Uber was hacked, losing data on 57 million driver and rider accounts. The company kept it quiet for over a year. The details are particularly damning:

The two hackers stole data about the company’s riders and drivers ­– including phone numbers, email addresses and names — from a third-party server and then approached Uber and demanded $100,000 to delete their copy of the data, the employees said.

Uber acquiesced to the demands, and then went further. The company tracked down the hackers and pushed them to sign nondisclosure agreements, according to the people familiar with the matter. To further conceal the damage, Uber executives also made it appear as if the payout had been part of a “bug bounty” — a common practice among technology companies in which they pay hackers to attack their software to test for soft spots.

And almost certainly illegal:

While it is not illegal to pay money to hackers, Uber may have violated several laws in its interaction with them.

By demanding that the hackers destroy the stolen data, Uber may have violated a Federal Trade Commission rule on breach disclosure that prohibits companies from destroying any forensic evidence in the course of their investigation.

The company may have also violated state breach disclosure laws by not disclosing the theft of Uber drivers’ stolen data. If the data stolen was not encrypted, Uber would have been required by California state law to disclose that driver’s license data from its drivers had been stolen in the course of the hacking.

Uber was hacked, losing data on 57 million driver and rider accounts. They kept it quiet for over a year. The details are particularly damning:

The two hackers stole data about the company’s riders and drivers ­- including phone numbers, email addresses and names -­ from a third-party server and then approached Uber and demanded $100,000 to delete their copy of the data, the employees said.

Uber acquiesced to the demands, and then went further. The company tracked down the hackers and pushed them to sign nondisclosure agreements, according to the people familiar with the matter. To further conceal the damage, Uber executives also made it appear as if the payout had been part of a “bug bounty” ­- a common practice among technology companies in which they pay hackers to attack their software to test for soft spots.

And almost certainly illegal:

While it is not illegal to pay money to hackers, Uber may have violated several laws in its interaction with them.

By demanding that the hackers destroy the stolen data, Uber may have violated a Federal Trade Commission rule on breach disclosure that prohibits companies from destroying any forensic evidence in the course of their investigation.

The company may have also violated state breach disclosure laws by not disclosing the theft of Uber drivers’ stolen data. If the data stolen was not encrypted, Uber would have been required by California state law to disclose that driver’s license data from its drivers had been stolen in the course of the hacking.

Presenting Amazon Sumerian: An easy way to create VR, AR, and 3D experiences

Post Syndicated from Tara Walker original https://aws.amazon.com/blogs/aws/launch-presenting-amazon-sumerian/

If you have had an opportunity to read any of my blog posts or attended any session I’ve conducted at various conferences, you are probably aware that I am definitively a geek girl. I am absolutely enamored with all of the latest advancements that have been made in technology areas like cloud, artificial intelligence, internet of things and the maker space, as well as, with virtual reality and augmented reality. In my opinion, it is a wonderful time to be a geek. All the things that we dreamed about building while we sweated through our algorithms and discrete mathematics classes or the technology we marveled at when watching Star Wars and Star Trek are now coming to fruition.  So hopefully this means it will only be a matter of time before I can hyperdrive to other galaxies in space, but until then I can at least build the 3D virtual reality and augmented reality characters and images like those featured in some of my favorite shows.

Amazon Sumerian provides tools and resources that allows anyone to create and run augmented reality (AR), virtual reality (VR), and 3D applications with ease.  With Sumerian, you can build multi-platform experiences that run on hardware like the Oculus, HTC Vive, and iOS devices using WebVR compatible browsers and with support for ARCore on Android devices coming soon.

This exciting new service, currently in preview, delivers features to allow you to design highly immersive and interactive 3D experiences from your browser. Some of these features are:

  • Editor: A web-based editor for constructing 3D scenes, importing assets, scripting interactions and special effects, with cross-platform publishing.
  • Object Library: a library of pre-built objects and templates.
  • Asset Import: Upload 3D assets to use in your scene. Sumerian supports importing FBX, OBJ, and coming soon Unity projects.
  • Scripting Library: provides a JavaScript scripting library via its 3D engine for advanced scripting capabilities.
  • Hosts: animated, lifelike 3D characters that can be customized for gender, voice, and language.
  • AWS Services Integration: baked in integration with Amazon Polly and Amazon Lex to add speech and natural language to into Sumerian hosts. Additionally, the scripting library can be used with AWS Lambda allowing use of the full range of AWS services.

Since Amazon Sumerian doesn’t require you to have 3D graphics or programming experience to build rich, interactive VR and AR scenes, let’s take a quick run to the Sumerian Dashboard and check it out.

From the Sumerian Dashboard, I can easily create a new scene with a push of a button.

A default view of the new scene opens and is displayed in the Sumerian Editor. With the Tara Blog Scene opened in the editor, I can easily import assets into my scene.

I’ll click the Import Asset button and pick an asset, View Room, to import into the scene. With the desired asset selected, I’ll click the Add button to import it.

Excellent, my asset was successfully imported into the Sumerian Editor and is shown in the Asset panel.  Now, I have the option to add the View Room object into my scene by selecting it in the Asset panel and then dragging it onto the editor’s canvas.

I’ll repeat the import asset process and this time I will add the Mannequin asset to the scene.

Additionally, with Sumerian, I can add scripting to Entity assets to make my scene even more exciting by adding a ScriptComponent to an entity and creating a script.  I can use the provided built-in scripts or create my own custom scripts. If I create a new custom script, I will get a blank script with some base JavaScript code that looks similar to the code below.

'use strict';
/* global sumerian */
//This is Me-- trying out the custom scripts - Tara

var setup = function (args, ctx) {
// Called when play mode starts.
};
var fixedUpdate = function (args, ctx) {
// Called on every physics update, after setup().
};
var update = function (args, ctx) {
// Called on every render frame, after setup().
};
var lateUpdate = function (args, ctx) {
// Called after all script "update" methods in the scene has been called.
};
var cleanup = function (args, ctx) {
// Called when play mode stops.
};
var parameters = [];

Very cool, I just created a 3D scene using Amazon Sumerian in a matter of minutes and I have only scratched the surface.

Summary

The Amazon Sumerian service enables you to create, build, and run virtual reality (VR), augmented reality (AR), and 3D applications with ease.  You don’t need any 3D graphics or specialized programming knowledge to get started building scenes and immersive experiences.  You can import FBX, OBJ, and Unity projects in Sumerian, as well as upload your own 3D assets for use in your scene. In addition, you can create digital characters to narrate your scene and with these digital assets, you have choices for the character’s appearance, speech and behavior.

You can learn more about Amazon Sumerian and sign up for the preview to get started with the new service on the product page.  I can’t wait to see what rich experiences you all will build.

Tara

 

Using taxies to monitor air quality in Peru

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/air-quality-peru/

When James Puderer moved to Lima, Peru, his roadside runs left a rather nasty taste in his mouth. Hit by the pollution from old diesel cars in the area, he decided to monitor the air quality in his new city using Raspberry Pis and the abundant taxies as his tech carriers.

Taxi Datalogger – Assembly

How to assemble the enclosure for my Taxi Datalogger project: https://www.hackster.io/james-puderer/distributed-air-quality-monitoring-using-taxis-69647e

Sensing air quality in Lima

Luckily for James, almost all taxies in Lima are equipped with the standard hollow vinyl roof sign seen in the video above, which makes them ideal for hacking.

Using a Raspberry Pi alongside various Adafuit tech including the BME280 Temperature/Humidity/Pressure Sensor and GPS Antenna, James created a battery-powered retrofit setup that fits snugly into the vinyl sign.

The schematic of the air quality monitor tech inside the taxi sign

With the onboard tech, the device collects data on longitude, latitude, humidity, temperature, pressure, and airborne particle count, feeding it back to an Android Things datalogger. This data is then pushed to Google IoT Core, where it can be remotely accessed.

Next, the data is processed by Google Dataflow and turned into a BigQuery table. Users can then visualize the collected measurements. And while James uses Google Maps to analyse his data, there are many tools online that will allow you to organise and study your figures depending on what final result you’re hoping to achieve.

A heat map of James' local area showing air quality

James hopped in a taxi and took his monitor on the road, collecting results throughout the journey

James has provided the complete build process, including all tech ingredients and code, on his Hackster.io project page, and urges makers to create their own air quality monitor for their local area. He also plans on building upon the existing design by adding a 12V power hookup for connecting to the taxi, functioning lights within the sign, and companion apps for drivers.

Sensing the world around you

We’ve seen a wide variety of Raspberry Pi projects using sensors to track the world around us, such as Kasia Molga’s Human Sensor costume series, which reacts to air pollution by lighting up, and Clodagh O’Mahony’s Social Interaction Dress, which she created to judge how conversation and physical human interaction can be scored and studied.

Human Sensor

Kasia Molga’s Human Sensor — a collection of hi-tech costumes that react to air pollution within the wearer’s environment.

Many people also build their own Pi-powered weather stations, or use the Raspberry Pi Oracle Weather Station, to measure and record conditions in their towns and cities from the roofs of schools, offices, and homes.

Have you incorporated sensors into your Raspberry Pi projects? Share your builds in the comments below or via social media by tagging us.

The post Using taxies to monitor air quality in Peru appeared first on Raspberry Pi.

Using AWS Step Functions State Machines to Handle Workflow-Driven AWS CodePipeline Actions

Post Syndicated from Marcilio Mendonca original https://aws.amazon.com/blogs/devops/using-aws-step-functions-state-machines-to-handle-workflow-driven-aws-codepipeline-actions/

AWS CodePipeline is a continuous integration and continuous delivery service for fast and reliable application and infrastructure updates. It offers powerful integration with other AWS services, such as AWS CodeBuildAWS CodeDeployAWS CodeCommit, AWS CloudFormation and with third-party tools such as Jenkins and GitHub. These services make it possible for AWS customers to successfully automate various tasks, including infrastructure provisioning, blue/green deployments, serverless deployments, AMI baking, database provisioning, and release management.

Developers have been able to use CodePipeline to build sophisticated automation pipelines that often require a single CodePipeline action to perform multiple tasks, fork into different execution paths, and deal with asynchronous behavior. For example, to deploy a Lambda function, a CodePipeline action might first inspect the changes pushed to the code repository. If only the Lambda code has changed, the action can simply update the Lambda code package, create a new version, and point the Lambda alias to the new version. If the changes also affect infrastructure resources managed by AWS CloudFormation, the pipeline action might have to create a stack or update an existing one through the use of a change set. In addition, if an update is required, the pipeline action might enforce a safety policy to infrastructure resources that prevents the deletion and replacement of resources. You can do this by creating a change set and having the pipeline action inspect its changes before updating the stack. Change sets that do not conform to the policy are deleted.

This use case is a good illustration of workflow-driven pipeline actions. These are actions that run multiple tasks, deal with async behavior and loops, need to maintain and propagate state, and fork into different execution paths. Implementing workflow-driven actions directly in CodePipeline can lead to complex pipelines that are hard for developers to understand and maintain. Ideally, a pipeline action should perform a single task and delegate the complexity of dealing with workflow-driven behavior associated with that task to a state machine engine. This would make it possible for developers to build simpler, more intuitive pipelines and allow them to use state machine execution logs to visualize and troubleshoot their pipeline actions.

In this blog post, we discuss how AWS Step Functions state machines can be used to handle workflow-driven actions. We show how a CodePipeline action can trigger a Step Functions state machine and how the pipeline and the state machine are kept decoupled through a Lambda function. The advantages of using state machines include:

  • Simplified logic (complex tasks are broken into multiple smaller tasks).
  • Ease of handling asynchronous behavior (through state machine wait states).
  • Built-in support for choices and processing different execution paths (through state machine choices).
  • Built-in visualization and logging of the state machine execution.

The source code for the sample pipeline, pipeline actions, and state machine used in this post is available at https://github.com/awslabs/aws-codepipeline-stepfunctions.

Overview

This figure shows the components in the CodePipeline-Step Functions integration that will be described in this post. The pipeline contains two stages: a Source stage represented by a CodeCommit Git repository and a Prod stage with a single Deploy action that represents the workflow-driven action.

This action invokes a Lambda function (1) called the State Machine Trigger Lambda, which, in turn, triggers a Step Function state machine to process the request (2). The Lambda function sends a continuation token back to the pipeline (3) to continue its execution later and terminates. Seconds later, the pipeline invokes the Lambda function again (4), passing the continuation token received. The Lambda function checks the execution state of the state machine (5,6) and communicates the status to the pipeline. The process is repeated until the state machine execution is complete. Then the Lambda function notifies the pipeline that the corresponding pipeline action is complete (7). If the state machine has failed, the Lambda function will then fail the pipeline action and stop its execution (7). While running, the state machine triggers various Lambda functions to perform different tasks. The state machine and the pipeline are fully decoupled. Their interaction is handled by the Lambda function.

The Deploy State Machine

The sample state machine used in this post is a simplified version of the use case, with emphasis on infrastructure deployment. The state machine will follow distinct execution paths and thus have different outcomes, depending on:

  • The current state of the AWS CloudFormation stack.
  • The nature of the code changes made to the AWS CloudFormation template and pushed into the pipeline.

If the stack does not exist, it will be created. If the stack exists, a change set will be created and its resources inspected by the state machine. The inspection consists of parsing the change set results and detecting whether any resources will be deleted or replaced. If no resources are being deleted or replaced, the change set is allowed to be executed and the state machine completes successfully. Otherwise, the change set is deleted and the state machine completes execution with a failure as the terminal state.

Let’s dive into each of these execution paths.

Path 1: Create a Stack and Succeed Deployment

The Deploy state machine is shown here. It is triggered by the Lambda function using the following input parameters stored in an S3 bucket.

Create New Stack Execution Path

{
    "environmentName": "prod",
    "stackName": "sample-lambda-app",
    "templatePath": "infra/Lambda-template.yaml",
    "revisionS3Bucket": "codepipeline-us-east-1-418586629775",
    "revisionS3Key": "StepFunctionsDrivenD/CodeCommit/sjcmExZ"
}

Note that some values used here are for the use case example only. Account-specific parameters like revisionS3Bucket and revisionS3Key will be different when you deploy this use case in your account.

These input parameters are used by various states in the state machine and passed to the corresponding Lambda functions to perform different tasks. For example, stackName is used to create a stack, check the status of stack creation, and create a change set. The environmentName represents the environment (for example, dev, test, prod) to which the code is being deployed. It is used to prefix the name of stacks and change sets.

With the exception of built-in states such as wait and choice, each state in the state machine invokes a specific Lambda function.  The results received from the Lambda invocations are appended to the state machine’s original input. When the state machine finishes its execution, several parameters will have been added to its original input.

The first stage in the state machine is “Check Stack Existence”. It checks whether a stack with the input name specified in the stackName input parameter already exists. The output of the state adds a Boolean value called doesStackExist to the original state machine input as follows:

{
  "doesStackExist": true,
  "environmentName": "prod",
  "stackName": "sample-lambda-app",
  "templatePath": "infra/lambda-template.yaml",
  "revisionS3Bucket": "codepipeline-us-east-1-418586629775",
  "revisionS3Key": "StepFunctionsDrivenD/CodeCommit/sjcmExZ",
}

The following stage, “Does Stack Exist?”, is represented by Step Functions built-in choice state. It checks the value of doesStackExist to determine whether a new stack needs to be created (doesStackExist=true) or a change set needs to be created and inspected (doesStackExist=false).

If the stack does not exist, the states illustrated in green in the preceding figure are executed. This execution path creates the stack, waits until the stack is created, checks the status of the stack’s creation, and marks the deployment successful after the stack has been created. Except for “Stack Created?” and “Wait Stack Creation,” each of these stages invokes a Lambda function. “Stack Created?” and “Wait Stack Creation” are implemented by using the built-in choice state (to decide which path to follow) and the wait state (to wait a few seconds before proceeding), respectively. Each stage adds the results of their Lambda function executions to the initial input of the state machine, allowing future stages to process them.

Path 2: Safely Update a Stack and Mark Deployment as Successful

Safely Update a Stack and Mark Deployment as Successful Execution Path

If the stack indicated by the stackName parameter already exists, a different path is executed. (See the green states in the figure.) This path will create a change set and use wait and choice states to wait until the change set is created. Afterwards, a stage in the execution path will inspect  the resources affected before the change set is executed.

The inspection procedure represented by the “Inspect Change Set Changes” stage consists of parsing the resources affected by the change set and checking whether any of the existing resources are being deleted or replaced. The following is an excerpt of the algorithm, where changeSetChanges.Changes is the object representing the change set changes:

...
var RESOURCES_BEING_DELETED_OR_REPLACED = "RESOURCES-BEING-DELETED-OR-REPLACED";
var CAN_SAFELY_UPDATE_EXISTING_STACK = "CAN-SAFELY-UPDATE-EXISTING-STACK";
for (var i = 0; i < changeSetChanges.Changes.length; i++) {
    var change = changeSetChanges.Changes[i];
    if (change.Type == "Resource") {
        if (change.ResourceChange.Action == "Delete") {
            return RESOURCES_BEING_DELETED_OR_REPLACED;
        }
        if (change.ResourceChange.Action == "Modify") {
            if (change.ResourceChange.Replacement == "True") {
                return RESOURCES_BEING_DELETED_OR_REPLACED;
            }
        }
    }
}
return CAN_SAFELY_UPDATE_EXISTING_STACK;

The algorithm returns different values to indicate whether the change set can be safely executed (CAN_SAFELY_UPDATE_EXISTING_STACK or RESOURCES_BEING_DELETED_OR_REPLACED). This value is used later by the state machine to decide whether to execute the change set and update the stack or interrupt the deployment.

The output of the “Inspect Change Set” stage is shown here.

{
  "environmentName": "prod",
  "stackName": "sample-lambda-app",
  "templatePath": "infra/lambda-template.yaml",
  "revisionS3Bucket": "codepipeline-us-east-1-418586629775",
  "revisionS3Key": "StepFunctionsDrivenD/CodeCommit/sjcmExZ",
  "doesStackExist": true,
  "changeSetName": "prod-sample-lambda-app-change-set-545",
  "changeSetCreationStatus": "complete",
  "changeSetAction": "CAN-SAFELY-UPDATE-EXISTING-STACK"
}

At this point, these parameters have been added to the state machine’s original input:

  • changeSetName, which is added by the “Create Change Set” state.
  • changeSetCreationStatus, which is added by the “Get Change Set Creation Status” state.
  • changeSetAction, which is added by the “Inspect Change Set Changes” state.

The “Safe to Update Infra?” step is a choice state (its JSON spec follows) that simply checks the value of the changeSetAction parameter. If the value is equal to “CAN-SAFELY-UPDATE-EXISTING-STACK“, meaning that no resources will be deleted or replaced, the step will execute the change set by proceeding to the “Execute Change Set” state. The deployment is successful (the state machine completes its execution successfully).

"Safe to Update Infra?": {
      "Type": "Choice",
      "Choices": [
        {
          "Variable": "$.taskParams.changeSetAction",
          "StringEquals": "CAN-SAFELY-UPDATE-EXISTING-STACK",
          "Next": "Execute Change Set"
        }
      ],
      "Default": "Deployment Failed"
 }

Path 3: Reject Stack Update and Fail Deployment

Reject Stack Update and Fail Deployment Execution Path

If the changeSetAction parameter is different from “CAN-SAFELY-UPDATE-EXISTING-STACK“, the state machine will interrupt the deployment by deleting the change set and proceeding to the “Deployment Fail” step, which is a built-in Fail state. (Its JSON spec follows.) This state causes the state machine to stop in a failed state and serves to indicate to the Lambda function that the pipeline deployment should be interrupted in a fail state as well.

 "Deployment Failed": {
      "Type": "Fail",
      "Cause": "Deployment Failed",
      "Error": "Deployment Failed"
    }

In all three scenarios, there’s a state machine’s visual representation available in the AWS Step Functions console that makes it very easy for developers to identify what tasks have been executed or why a deployment has failed. Developers can also inspect the inputs and outputs of each state and look at the state machine Lambda function’s logs for details. Meanwhile, the corresponding CodePipeline action remains very simple and intuitive for developers who only need to know whether the deployment was successful or failed.

The State Machine Trigger Lambda Function

The Trigger Lambda function is invoked directly by the Deploy action in CodePipeline. The CodePipeline action must pass a JSON structure to the trigger function through the UserParameters attribute, as follows:

{
  "s3Bucket": "codepipeline-StepFunctions-sample",
  "stateMachineFile": "state_machine_input.json"
}

The s3Bucket parameter specifies the S3 bucket location for the state machine input parameters file. The stateMachineFile parameter specifies the file holding the input parameters. By being able to specify different input parameters to the state machine, we make the Trigger Lambda function and the state machine reusable across environments. For example, the same state machine could be called from a test and prod pipeline action by specifying a different S3 bucket or state machine input file for each environment.

The Trigger Lambda function performs two main tasks: triggering the state machine and checking the execution state of the state machine. Its core logic is shown here:

exports.index = function (event, context, callback) {
    try {
        console.log("Event: " + JSON.stringify(event));
        console.log("Context: " + JSON.stringify(context));
        console.log("Environment Variables: " + JSON.stringify(process.env));
        if (Util.isContinuingPipelineTask(event)) {
            monitorStateMachineExecution(event, context, callback);
        }
        else {
            triggerStateMachine(event, context, callback);
        }
    }
    catch (err) {
        failure(Util.jobId(event), callback, context.invokeid, err.message);
    }
}

Util.isContinuingPipelineTask(event) is a utility function that checks if the Trigger Lambda function is being called for the first time (that is, no continuation token is passed by CodePipeline) or as a continuation of a previous call. In its first execution, the Lambda function will trigger the state machine and send a continuation token to CodePipeline that contains the state machine execution ARN. The state machine ARN is exposed to the Lambda function through a Lambda environment variable called stateMachineArn. Here is the code that triggers the state machine:

function triggerStateMachine(event, context, callback) {
    var stateMachineArn = process.env.stateMachineArn;
    var s3Bucket = Util.actionUserParameter(event, "s3Bucket");
    var stateMachineFile = Util.actionUserParameter(event, "stateMachineFile");
    getStateMachineInputData(s3Bucket, stateMachineFile)
        .then(function (data) {
            var initialParameters = data.Body.toString();
            var stateMachineInputJSON = createStateMachineInitialInput(initialParameters, event);
            console.log("State machine input JSON: " + JSON.stringify(stateMachineInputJSON));
            return stateMachineInputJSON;
        })
        .then(function (stateMachineInputJSON) {
            return triggerStateMachineExecution(stateMachineArn, stateMachineInputJSON);
        })
        .then(function (triggerStateMachineOutput) {
            var continuationToken = { "stateMachineExecutionArn": triggerStateMachineOutput.executionArn };
            var message = "State machine has been triggered: " + JSON.stringify(triggerStateMachineOutput) + ", continuationToken: " + JSON.stringify(continuationToken);
            return continueExecution(Util.jobId(event), continuationToken, callback, message);
        })
        .catch(function (err) {
            console.log("Error triggering state machine: " + stateMachineArn + ", Error: " + err.message);
            failure(Util.jobId(event), callback, context.invokeid, err.message);
        })
}

The Trigger Lambda function fetches the state machine input parameters from an S3 file, triggers the execution of the state machine using the input parameters and the stateMachineArn environment variable, and signals to CodePipeline that the execution should continue later by passing a continuation token that contains the state machine execution ARN. In case any of these operations fail and an exception is thrown, the Trigger Lambda function will fail the pipeline immediately by signaling a pipeline failure through the putJobFailureResult CodePipeline API.

If the Lambda function is continuing a previous execution, it will extract the state machine execution ARN from the continuation token and check the status of the state machine, as shown here.

function monitorStateMachineExecution(event, context, callback) {
    var stateMachineArn = process.env.stateMachineArn;
    var continuationToken = JSON.parse(Util.continuationToken(event));
    var stateMachineExecutionArn = continuationToken.stateMachineExecutionArn;
    getStateMachineExecutionStatus(stateMachineExecutionArn)
        .then(function (response) {
            if (response.status === "RUNNING") {
                var message = "Execution: " + stateMachineExecutionArn + " of state machine: " + stateMachineArn + " is still " + response.status;
                return continueExecution(Util.jobId(event), continuationToken, callback, message);
            }
            if (response.status === "SUCCEEDED") {
                var message = "Execution: " + stateMachineExecutionArn + " of state machine: " + stateMachineArn + " has: " + response.status;
                return success(Util.jobId(event), callback, message);
            }
            // FAILED, TIMED_OUT, ABORTED
            var message = "Execution: " + stateMachineExecutionArn + " of state machine: " + stateMachineArn + " has: " + response.status;
            return failure(Util.jobId(event), callback, context.invokeid, message);
        })
        .catch(function (err) {
            var message = "Error monitoring execution: " + stateMachineExecutionArn + " of state machine: " + stateMachineArn + ", Error: " + err.message;
            failure(Util.jobId(event), callback, context.invokeid, message);
        });
}

If the state machine is in the RUNNING state, the Lambda function will send the continuation token back to the CodePipeline action. This will cause CodePipeline to call the Lambda function again a few seconds later. If the state machine has SUCCEEDED, then the Lambda function will notify the CodePipeline action that the action has succeeded. In any other case (FAILURE, TIMED-OUT, or ABORT), the Lambda function will fail the pipeline action.

This behavior is especially useful for developers who are building and debugging a new state machine because a bug in the state machine can potentially leave the pipeline action hanging for long periods of time until it times out. The Trigger Lambda function prevents this.

Also, by having the Trigger Lambda function as a means to decouple the pipeline and state machine, we make the state machine more reusable. It can be triggered from anywhere, not just from a CodePipeline action.

The Pipeline in CodePipeline

Our sample pipeline contains two simple stages: the Source stage represented by a CodeCommit Git repository and the Prod stage, which contains the Deploy action that invokes the Trigger Lambda function. When the state machine decides that the change set created must be rejected (because it replaces or deletes some the existing production resources), it fails the pipeline without performing any updates to the existing infrastructure. (See the failed Deploy action in red.) Otherwise, the pipeline action succeeds, indicating that the existing provisioned infrastructure was either created (first run) or updated without impacting any resources. (See the green Deploy stage in the pipeline on the left.)

The Pipeline in CodePipeline

The JSON spec for the pipeline’s Prod stage is shown here. We use the UserParameters attribute to pass the S3 bucket and state machine input file to the Lambda function. These parameters are action-specific, which means that we can reuse the state machine in another pipeline action.

{
  "name": "Prod",
  "actions": [
      {
          "inputArtifacts": [
              {
                  "name": "CodeCommitOutput"
              }
          ],
          "name": "Deploy",
          "actionTypeId": {
              "category": "Invoke",
              "owner": "AWS",
              "version": "1",
              "provider": "Lambda"
          },
          "outputArtifacts": [],
          "configuration": {
              "FunctionName": "StateMachineTriggerLambda",
              "UserParameters": "{\"s3Bucket\": \"codepipeline-StepFunctions-sample\", \"stateMachineFile\": \"state_machine_input.json\"}"
          },
          "runOrder": 1
      }
  ]
}

Conclusion

In this blog post, we discussed how state machines in AWS Step Functions can be used to handle workflow-driven actions. We showed how a Lambda function can be used to fully decouple the pipeline and the state machine and manage their interaction. The use of a state machine greatly simplified the associated CodePipeline action, allowing us to build a much simpler and cleaner pipeline while drilling down into the state machine’s execution for troubleshooting or debugging.

Here are two exercises you can complete by using the source code.

Exercise #1: Do not fail the state machine and pipeline action after inspecting a change set that deletes or replaces resources. Instead, create a stack with a different name (think of blue/green deployments). You can do this by creating a state machine transition between the “Safe to Update Infra?” and “Create Stack” stages and passing a new stack name as input to the “Create Stack” stage.

Exercise #2: Add wait logic to the state machine to wait until the change set completes its execution before allowing the state machine to proceed to the “Deployment Succeeded” stage. Use the stack creation case as an example. You’ll have to create a Lambda function (similar to the Lambda function that checks the creation status of a stack) to get the creation status of the change set.

Have fun and share your thoughts!

About the Author

Marcilio Mendonca is a Sr. Consultant in the Canadian Professional Services Team at Amazon Web Services. He has helped AWS customers design, build, and deploy best-in-class, cloud-native AWS applications using VMs, containers, and serverless architectures. Before he joined AWS, Marcilio was a Software Development Engineer at Amazon. Marcilio also holds a Ph.D. in Computer Science. In his spare time, he enjoys playing drums, riding his motorcycle in the Toronto GTA area, and spending quality time with his family.

How to Compete with Giants

Post Syndicated from Gleb Budman original https://www.backblaze.com/blog/how-to-compete-with-giants/

How to Compete with Giants

This post by Backblaze’s CEO and co-founder Gleb Budman is the sixth in a series about entrepreneurship. You can choose posts in the series from the list below:

  1. How Backblaze got Started: The Problem, The Solution, and the Stuff In-Between
  2. Building a Competitive Moat: Turning Challenges Into Advantages
  3. From Idea to Launch: Getting Your First Customers
  4. How to Get Your First 1,000 Customers
  5. Surviving Your First Year
  6. How to Compete with Giants

Use the Join button above to receive notification of new posts in this series.

Perhaps your business is competing in a brand new space free from established competitors. Most of us, though, start companies that compete with existing offerings from large, established companies. You need to come up with a better mousetrap — not the first mousetrap.

That’s the challenge Backblaze faced. In this post, I’d like to share some of the lessons I learned from that experience.

Backblaze vs. Giants

Competing with established companies that are orders of magnitude larger can be daunting. How can you succeed?

I’ll set the stage by offering a few sets of giants we compete with:

  • When we started Backblaze, we offered online backup in a market where companies had been offering “online backup” for at least a decade, and even the newer entrants had raised tens of millions of dollars.
  • When we built our storage servers, the alternatives were EMC, NetApp, and Dell — each of which had a market cap of over $10 billion.
  • When we introduced our cloud storage offering, B2, our direct competitors were Amazon, Google, and Microsoft. You might have heard of them.

What did we learn by competing with these giants on a bootstrapped budget? Let’s take a look.

Determine What Success Means

For a long time Apple considered Apple TV to be a hobby, not a real product worth focusing on, because it did not generate a billion in revenue. For a $10 billion per year revenue company, a new business that generates $50 million won’t move the needle and often isn’t worth putting focus on. However, for a startup, getting to $50 million in revenue can be the start of a wildly successful business.

Lesson Learned: Don’t let the giants set your success metrics.

The Advantages Startups Have

The giants have a lot of advantages: more money, people, scale, resources, access, etc. Following their playbook and attacking head-on means you’re simply outgunned. Common paths to failure are trying to build more features, enter more markets, outspend on marketing, and other similar approaches where scale and resources are the primary determinants of success.

But being a startup affords many advantages most giants would salivate over. As a nimble startup you can leverage those to succeed. Let’s breakdown nine competitive advantages we’ve used that you can too.

1. Drive Focus

It’s hard to build a $10 billion revenue business doing just one thing, and most giants have a broad portfolio of businesses, numerous products for each, and targeting a variety of customer segments in multiple markets. That adds complexity and distributes management attention.

Startups get the benefit of having everyone in the company be extremely focused, often on a singular mission, product, customer segment, and market. While our competitors sell everything from advertising to Zantac, and are investing in groceries and shipping, Backblaze has focused exclusively on cloud storage. This means all of our best people (i.e. everyone) is focused on our cloud storage business. Where is all of your focus going?

Lesson Learned: Align everyone in your company to a singular focus to dramatically out-perform larger teams.

2. Use Lack-of-Scale as an Advantage

You may have heard Paul Graham say “Do things that don’t scale.” There are a host of things you can do specifically because you don’t have the same scale as the giants. Use that as an advantage.

When we look for data center space, we have more options than our largest competitors because there are simply more spaces available with room for 100 cabinets than for 1,000 cabinets. With some searching, we can find data center space that is better/cheaper.

When a flood in Thailand destroyed factories, causing the world’s supply of hard drives to plummet and prices to triple, we started drive farming. The giants certainly couldn’t. It was a bit crazy, but it let us keep prices unchanged for our customers.

Our Chief Cloud Officer, Tim, used to work at Adobe. Because of their size, any new product needed to always launch in a multitude of languages and in global markets. Once launched, they had scale. But getting any new product launched was incredibly challenging.

Lesson Learned: Use lack-of-scale to exploit opportunities that are closed to giants.

3. Build a Better Product

This one is probably obvious. If you’re going to provide the same product, at the same price, to the same customers — why do it? Remember that better does not always mean more features. Here’s one way we built a better product that didn’t require being a bigger company.

All online backup services required customers to choose what to include in their backup. We found that this was complicated for users since they often didn’t know what needed to be backed up. We flipped the model to back up everything and allow users to exclude if they wanted to, but it was not required. This reduced the number of features/options, while making it easier and better for the user.

This didn’t require the resources of a huge company; it just required understanding customers a bit deeper and thinking about the solution differently. Building a better product is the most classic startup competitive advantage.

Lesson Learned: Dig deep with your customers to understand and deliver a better mousetrap.

4. Provide Better Service

How can you provide better service? Use your advantages. Escalations from your customer care folks to engineering can go through fewer hoops. Fixing an issue and shipping can be quicker. Access to real answers on Twitter or Facebook can be more effective.

A strategic decision we made was to have all customer support people as full-time employees in our headquarters. This ensures they are in close contact to the whole company for feedback to quickly go both ways.

Having a smaller team and fewer layers enables faster internal communication, which increases customer happiness. And the option to do things that don’t scale — such as help a customer in a unique situation — can go a long way in building customer loyalty.

Lesson Learned: Service your customers better by establishing clear internal communications.

5. Remove The Unnecessary

After determining that the industry standard EMC/NetApp/Dell storage servers would be too expensive to build our own cloud storage upon, we decided to build our own infrastructure. Many said we were crazy to compete with these multi-billion dollar companies and that it would be impossible to build a lower cost storage server. However, not only did it prove to not be impossible — it wasn’t even that hard.

One key trick? Remove the unnecessary. While EMC and others built servers to sell to other companies for a wide variety of use cases, Backblaze needed servers that only Backblaze would run, and for a single use case. As a result we could tailor the servers for our needs by removing redundancy from each server (since we would run redundant servers), and using lower-performance components (since we would get high-performance by running parallel servers).

What do your customers and use cases not need? This can trim costs and complexity while often improving the product for your use case.

Lesson Learned: Don’t think “what can we add” to what the giants offer — think “what can we remove.”

6. Be Easy

How many times have you visited a large company website, particularly one that’s not consumer-focused, only to leave saying, “Huh? I don’t understand what you do.” Keeping your website clear, and your product and pricing simple, will dramatically increase conversion and customer satisfaction. If you’re able to make it 2x easier and thus increasing your conversion by 2x, you’ve just allowed yourself to spend ½ as much acquiring a customer.

Providing unlimited data backup wasn’t specifically about providing more storage — it was about making it easier. Since users didn’t know how much data they needed to back up, charging per gigabyte meant they wouldn’t know the cost. Providing unlimited data backup meant they could just relax.

Customers love easy — and being smaller makes easy easier to deliver. Use that as an advantage in your website, marketing materials, pricing, product, and in every other customer interaction.

Lesson Learned: Ease-of-use isn’t a slogan: it’s a competitive advantage. Treat it as seriously as any other feature of your product

7. Don’t Be Afraid of Risk

Obviously unnecessary risks are unnecessary, and some risks aren’t worth taking. However, large companies that have given guidance to Wall Street with a $0.01 range on their earning-per-share are inherently going to be very risk-averse. Use risk-tolerance to open up opportunities, and adjust your tolerance level as you scale. In your first year, there are likely an infinite number of ways your business may vaporize; don’t be too worried about taking a risk that might have a 20% downside when the upside is hockey stick growth.

Using consumer-grade hard drives in our servers may have caused pain and suffering for us years down-the-line, but they were priced at approximately 50% of enterprise drives. Giants wouldn’t have considered the option. Turns out, the consumer drives performed great for us.

Lesson Learned: Use calculated risks as an advantage.

8. Be Open

The larger a company grows, the more it wants to hide information. Some of this is driven by regulatory requirements as a public company. But most of this is cultural. Sharing something might cause a problem, so let’s not. All external communication is treated as a critical press release, with rounds and rounds of editing by multiple teams and approvals. However, customers are often desperate for information. Moreover, sharing information builds trust, understanding, and advocates.

I started blogging at Backblaze before we launched. When we blogged about our Storage Pod and open-sourced the design, many thought we were crazy to share this information. But it was transformative for us, establishing Backblaze as a tech thought leader in storage and giving people a sense of how we were able to provide our service at such a low cost.

Over the years we’ve developed a culture of being open internally and externally, on our blog and with the press, and in communities such as Hacker News and Reddit. Often we’ve been asked, “why would you share that!?” — but it’s the continual openness that builds trust. And that culture of openness is incredibly challenging for the giants.

Lesson Learned: Overshare to build trust and brand where giants won’t.

9. Be Human

As companies scale, typically a smaller percent of founders and executives interact with customers. The people who build the company become more hidden, the language feels “corporate,” and customers start to feel they’re interacting with the cliche “faceless, nameless corporation.” Use your humanity to your advantage. From day one the Backblaze About page listed all the founders, and my email address. While contacting us shouldn’t be the first path for a customer support question, I wanted it to be clear that we stand behind the service we offer; if we’re doing something wrong — I want to know it.

To scale it’s important to have processes and procedures, but sometimes a situation falls outside of a well-established process. While we want our employees to follow processes, they’re still encouraged to be human and “try to do the right thing.” How to you strike this balance? Simon Sinek gives a good talk about it: make your employees feel safe. If employees feel safe they’ll be human.

If your customer is a consumer, they’ll appreciate being treated as a human. Even if your customer is a corporation, the purchasing decision-makers are still people.

Lesson Learned: Being human is the ultimate antithesis to the faceless corporation.

Build Culture to Sustain Your Advantages at Scale

Presumably the goal is not to always be competing with giants, but to one day become a giant. Does this mean you’ll lose all of these advantages? Some, yes — but not all. Some of these advantages are cultural, and if you build these into the culture from the beginning, and fight to keep them as you scale, you can keep them as you become a giant.

Tesla still comes across as human, with Elon Musk frequently interacting with people on Twitter. Apple continues to provide great service through their Genius Bar. And, worst case, if you lose these at scale, you’ll still have the other advantages of being a giant such as money, people, scale, resources, and access.

Of course, some new startup will be gunning for you with grand ambitions, so just be sure not to get complacent. 😉

The post How to Compete with Giants appeared first on Backblaze Blog | Cloud Storage & Cloud Backup.

New KRACK Attack Against Wi-Fi Encryption

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2017/10/new_krack_attac.html

Mathy Vanhoef has just published a devastating attack against WPA2, the 14-year-old encryption protocol used by pretty much all wi-fi systems. Its an interesting attack, where the attacker forces the protocol to reuse a key. The authors call this attack KRACK, for Key Reinstallation Attacks

This is yet another of a series of marketed attacks; with a cool name, a website, and a logo. The Q&A on the website answers a lot of questions about the attack and its implications. And lots of good information in this ArsTechnica article.

There is an academic paper, too:

“Key Reinstallation Attacks: Forcing Nonce Reuse in WPA2,” by Mathy Vanhoef and Frank Piessens.

Abstract: We introduce the key reinstallation attack. This attack abuses design or implementation flaws in cryptographic protocols to reinstall an already-in-use key. This resets the key’s associated parameters such as transmit nonces and receive replay counters. Several types of cryptographic Wi-Fi handshakes are affected by the attack. All protected Wi-Fi networks use the 4-way handshake to generate a fresh session key. So far, this 14-year-old handshake has remained free from attacks, and is even proven secure. However, we show that the 4-way handshake is vulnerable to a key reinstallation attack. Here, the adversary tricks a victim into reinstalling an already-in-use key. This is achieved by manipulating and replaying handshake messages. When reinstalling the key, associated parameters such as the incremental transmit packet number (nonce) and receive packet number (replay counter) are reset to their initial value. Our key reinstallation attack also breaks the PeerKey, group key, and Fast BSS Transition (FT) handshake. The impact depends on the handshake being attacked, and the data-confidentiality protocol in use. Simplified, against AES-CCMP an adversary can replay and decrypt (but not forge) packets. This makes it possible to hijack TCP streams and inject malicious data into them. Against WPA-TKIP and GCMP the impact is catastrophic: packets can be replayed, decrypted, and forged. Because GCMP uses the same authentication key in both communication directions, it is especially affected.

Finally, we confirmed our findings in practice, and found that every Wi-Fi device is vulnerable to some variant of our attacks. Notably, our attack is exceptionally devastating against Android 6.0: it forces the client into using a predictable all-zero encryption key.

I’m just reading about this now, and will post more information
as I learn it.

EDITED TO ADD: More news.

EDITED TO ADD: This meets my definition of brilliant. The attack is blindingly obvious once it’s pointed out, but for over a decade no one noticed it.

EDITED TO ADD: Matthew Green has a blog post on what went wrong. The vulnerability is in the interaction between two protocols. At a meta level, he blames the opaque IEEE standards process:

One of the problems with IEEE is that the standards are highly complex and get made via a closed-door process of private meetings. More importantly, even after the fact, they’re hard for ordinary security researchers to access. Go ahead and google for the IETF TLS or IPSec specifications — you’ll find detailed protocol documentation at the top of your Google results. Now go try to Google for the 802.11i standards. I wish you luck.

The IEEE has been making a few small steps to ease this problem, but they’re hyper-timid incrementalist bullshit. There’s an IEEE program called GET that allows researchers to access certain standards (including 802.11) for free, but only after they’ve been public for six months — coincidentally, about the same time it takes for vendors to bake them irrevocably into their hardware and software.

This whole process is dumb and — in this specific case — probably just cost industry tens of millions of dollars. It should stop.

Nicholas Weaver explains why most people shouldn’t worry about this:

So unless your Wi-Fi password looks something like a cat’s hairball (e.g. “:SNEIufeli7rc” — which is not guessable with a few million tries by a computer), a local attacker had the capability to determine the password, decrypt all the traffic, and join the network before KRACK.

KRACK is, however, relevant for enterprise Wi-Fi networks: networks where you needed to accept a cryptographic certificate to join initially and have to provide both a username and password. KRACK represents a new vulnerability for these networks. Depending on some esoteric details, the attacker can decrypt encrypted traffic and, in some cases, inject traffic onto the network.

But in none of these cases can the attacker join the network completely. And the most significant of these attacks affects Linux devices and Android phones, they don’t affect Macs, iPhones, or Windows systems. Even when feasible, these attacks require physical proximity: An attacker on the other side of the planet can’t exploit KRACK, only an attacker in the parking lot can.