Tag Archives: ip address

Protecting your API using Amazon API Gateway and AWS WAF — Part I

Post Syndicated from Chris Munns original https://aws.amazon.com/blogs/compute/protecting-your-api-using-amazon-api-gateway-and-aws-waf-part-i/

This post courtesy of Thiago Morais, AWS Solutions Architect

When you build web applications or expose any data externally, you probably look for a platform where you can build highly scalable, secure, and robust REST APIs. As APIs are publicly exposed, there are a number of best practices for providing a secure mechanism to consumers using your API.

Amazon API Gateway handles all the tasks involved in accepting and processing up to hundreds of thousands of concurrent API calls, including traffic management, authorization and access control, monitoring, and API version management.

In this post, I show you how to take advantage of the regional API endpoint feature in API Gateway, so that you can create your own Amazon CloudFront distribution and secure your API using AWS WAF.

AWS WAF is a web application firewall that helps protect your web applications from common web exploits that could affect application availability, compromise security, or consume excessive resources.

As you make your APIs publicly available, you are exposed to attackers trying to exploit your services in several ways. The AWS security team published a whitepaper solution using AWS WAF, How to Mitigate OWASP’s Top 10 Web Application Vulnerabilities.

Regional API endpoints

Edge-optimized APIs are endpoints that are accessed through a CloudFront distribution created and managed by API Gateway. Before the launch of regional API endpoints, this was the default option when creating APIs using API Gateway. It primarily helped to reduce latency for API consumers that were located in different geographical locations than your API.

When API requests predominantly originate from an Amazon EC2 instance or other services within the same AWS Region as the API is deployed, a regional API endpoint typically lowers the latency of connections. It is recommended for such scenarios.

For better control around caching strategies, customers can use their own CloudFront distribution for regional APIs. They also have the ability to use AWS WAF protection, as I describe in this post.

Edge-optimized API endpoint

The following diagram is an illustrated example of the edge-optimized API endpoint where your API clients access your API through a CloudFront distribution created and managed by API Gateway.

Regional API endpoint

For the regional API endpoint, your customers access your API from the same Region in which your REST API is deployed. This helps you to reduce request latency and particularly allows you to add your own content delivery network, as needed.

Walkthrough

In this section, you implement the following steps:

  • Create a regional API using the PetStore sample API.
  • Create a CloudFront distribution for the API.
  • Test the CloudFront distribution.
  • Set up AWS WAF and create a web ACL.
  • Attach the web ACL to the CloudFront distribution.
  • Test AWS WAF protection.

Create the regional API

For this walkthrough, use an existing PetStore API. All new APIs launch by default as the regional endpoint type. To change the endpoint type for your existing API, choose the cog icon on the top right corner:

After you have created the PetStore API on your account, deploy a stage called “prod” for the PetStore API.

On the API Gateway console, select the PetStore API and choose Actions, Deploy API.

For Stage name, type prod and add a stage description.

Choose Deploy and the new API stage is created.

Use the following AWS CLI command to update your API from edge-optimized to regional:

aws apigateway update-rest-api \
--rest-api-id {rest-api-id} \
--patch-operations op=replace,path=/endpointConfiguration/types/EDGE,value=REGIONAL

A successful response looks like the following:

{
    "description": "Your first API with Amazon API Gateway. This is a sample API that integrates via HTTP with your demo Pet Store endpoints", 
    "createdDate": 1511525626, 
    "endpointConfiguration": {
        "types": [
            "REGIONAL"
        ]
    }, 
    "id": "{api-id}", 
    "name": "PetStore"
}

After you change your API endpoint to regional, you can now assign your own CloudFront distribution to this API.

Create a CloudFront distribution

To make things easier, I have provided an AWS CloudFormation template to deploy a CloudFront distribution pointing to the API that you just created. Click the button to deploy the template in the us-east-1 Region.

For Stack name, enter RegionalAPI. For APIGWEndpoint, enter your API FQDN in the following format:

{api-id}.execute-api.us-east-1.amazonaws.com

After you fill out the parameters, choose Next to continue the stack deployment. It takes a couple of minutes to finish the deployment. After it finishes, the Output tab lists the following items:

  • A CloudFront domain URL
  • An S3 bucket for CloudFront access logs
Output from CloudFormation

Output from CloudFormation

Test the CloudFront distribution

To see if the CloudFront distribution was configured correctly, use a web browser and enter the URL from your distribution, with the following parameters:

https://{your-distribution-url}.cloudfront.net/{api-stage}/pets

You should get the following output:

[
  {
    "id": 1,
    "type": "dog",
    "price": 249.99
  },
  {
    "id": 2,
    "type": "cat",
    "price": 124.99
  },
  {
    "id": 3,
    "type": "fish",
    "price": 0.99
  }
]

Set up AWS WAF and create a web ACL

With the new CloudFront distribution in place, you can now start setting up AWS WAF to protect your API.

For this demo, you deploy the AWS WAF Security Automations solution, which provides fine-grained control over the requests attempting to access your API.

For more information about deployment, see Automated Deployment. If you prefer, you can launch the solution directly into your account using the following button.

For CloudFront Access Log Bucket Name, add the name of the bucket created during the deployment of the CloudFormation stack for your CloudFront distribution.

The solution allows you to adjust thresholds and also choose which automations to enable to protect your API. After you finish configuring these settings, choose Next.

To start the deployment process in your account, follow the creation wizard and choose Create. It takes a few minutes do finish the deployment. You can follow the creation process through the CloudFormation console.

After the deployment finishes, you can see the new web ACL deployed on the AWS WAF console, AWSWAFSecurityAutomations.

Attach the AWS WAF web ACL to the CloudFront distribution

With the solution deployed, you can now attach the AWS WAF web ACL to the CloudFront distribution that you created earlier.

To assign the newly created AWS WAF web ACL, go back to your CloudFront distribution. After you open your distribution for editing, choose General, Edit.

Select the new AWS WAF web ACL that you created earlier, AWSWAFSecurityAutomations.

Save the changes to your CloudFront distribution and wait for the deployment to finish.

Test AWS WAF protection

To validate the AWS WAF Web ACL setup, use Artillery to load test your API and see AWS WAF in action.

To install Artillery on your machine, run the following command:

$ npm install -g artillery

After the installation completes, you can check if Artillery installed successfully by running the following command:

$ artillery -V
$ 1.6.0-12

As the time of publication, Artillery is on version 1.6.0-12.

One of the WAF web ACL rules that you have set up is a rate-based rule. By default, it is set up to block any requesters that exceed 2000 requests under 5 minutes. Try this out.

First, use cURL to query your distribution and see the API output:

$ curl -s https://{distribution-name}.cloudfront.net/prod/pets
[
  {
    "id": 1,
    "type": "dog",
    "price": 249.99
  },
  {
    "id": 2,
    "type": "cat",
    "price": 124.99
  },
  {
    "id": 3,
    "type": "fish",
    "price": 0.99
  }
]

Based on the test above, the result looks good. But what if you max out the 2000 requests in under 5 minutes?

Run the following Artillery command:

artillery quick -n 2000 --count 10  https://{distribution-name}.cloudfront.net/prod/pets

What you are doing is firing 2000 requests to your API from 10 concurrent users. For brevity, I am not posting the Artillery output here.

After Artillery finishes its execution, try to run the cURL request again and see what happens:

 

$ curl -s https://{distribution-name}.cloudfront.net/prod/pets

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<HTML><HEAD><META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-8859-1">
<TITLE>ERROR: The request could not be satisfied</TITLE>
</HEAD><BODY>
<H1>ERROR</H1>
<H2>The request could not be satisfied.</H2>
<HR noshade size="1px">
Request blocked.
<BR clear="all">
<HR noshade size="1px">
<PRE>
Generated by cloudfront (CloudFront)
Request ID: [removed]
</PRE>
<ADDRESS>
</ADDRESS>
</BODY></HTML>

As you can see from the output above, the request was blocked by AWS WAF. Your IP address is removed from the blocked list after it falls below the request limit rate.

Conclusion

In this first part, you saw how to use the new API Gateway regional API endpoint together with Amazon CloudFront and AWS WAF to secure your API from a series of attacks.

In the second part, I will demonstrate some other techniques to protect your API using API keys and Amazon CloudFront custom headers.

MyEtherWallet DNS Hack Causes 17 Million USD User Loss

Post Syndicated from Darknet original https://www.darknet.org.uk/2018/04/myetherwallet-dns-hack-causes-17-million-usd-user-loss/?utm_source=rss&utm_medium=social&utm_campaign=darknetfeed

MyEtherWallet DNS Hack Causes 17 Million USD User Loss

Big news in the crypto scene this week was that the MyEtherWallet DNS Hack that occured managed to collect about $17 Million USD worth of Ethereum in just a few hours.

The hack itself could have been MUCH bigger as it actually involved compromising 1300 Amazon AWS Route 53 DNS IP addresses, fortunately though only MEW was targetted resulting in the damage being contained in the cryptosphere (as far as we know anyway).

Read the rest of MyEtherWallet DNS Hack Causes 17 Million USD User Loss now! Only available at Darknet.

Enhanced Domain Protections for Amazon CloudFront Requests

Post Syndicated from Colm MacCarthaigh original https://aws.amazon.com/blogs/security/enhanced-domain-protections-for-amazon-cloudfront-requests/

Over the coming weeks, we’ll be adding enhanced domain protections to Amazon CloudFront. The short version is this: the new measures are designed to ensure that requests handled by CloudFront are handled on behalf of legitimate domain owners.

Using CloudFront to receive traffic for a domain you aren’t authorized to use is already a violation of our AWS Terms of Service. When we become aware of this type of activity, we deal with it behind the scenes by disabling abusive accounts. Now we’re integrating checks directly into the CloudFront API and Content Distribution service, as well.

Enhanced Protection against Dangling DNS entries
To use CloudFront with your domain, you must configure your domain to point at CloudFront. You may use a traditional CNAME, or an Amazon Route 53 “ALIAS” record.

A problem can arise if you delete your CloudFront distribution, but leave your DNS still pointing at CloudFront, popularly known as a “dangling” DNS entry. Thankfully, this is very rare, as the domain will no longer work, but we occasionally see customers who leave their old domains dormant. This can also happen if you leave this kind of “dangling” DNS entry pointing at other infrastructure you no longer control. For example, if you leave a domain pointing at an IP address that you don’t control, then there is a risk that someone may come along and “claim” traffic destined for your domain.

In an even more rare set of circumstances, an abuser can exploit a subdomain of a domain that you are actively using. For example, if a customer left “images.example.com” dangling and pointing to a deleted CloudFront distribution which is no longer in use, but they still actively use the parent domain “example.com”, then an abuser could come along and register “images.example.com” as an alternative name on their own distribution and claim traffic that they aren’t entitled to. This also means that cookies may be set and intercepted for HTTP traffic potentially including the parent domain. HTTPS traffic remains protected if you’ve removed the certificate associated with the original CloudFront distribution.

Of course, the best fix for this kind of risk is not to leave dangling DNS entries in the first place. Earlier in February, 2018, we added a new warning to our systems. With this warning, if you remove an alternate domain name from a distribution, you are reminded to delete any DNS entries that may still be pointing at CloudFront.

We also have long-standing checks in the CloudFront API that ensure this kind of domain claiming can’t occur when you are using wildcard domains. If you attempt to add *.example.com to your CloudFront distribution, but another account has already registered www.example.com, then the attempt will fail.

With the new enhanced domain protection, CloudFront will now also check your DNS whenever you remove an alternate domain. If we determine that the domain is still pointing at your CloudFront distribution, the API call will fail and no other accounts will be able to claim this traffic in the future.

Enhanced Protection against Domain Fronting
CloudFront will also be soon be implementing enhanced protections against so-called “Domain Fronting”. Domain Fronting is when a non-standard client makes a TLS/SSL connection to a certain name, but then makes a HTTPS request for an unrelated name. For example, the TLS connection may connect to “www.example.com” but then issue a request for “www.example.org”.

In certain circumstances this is normal and expected. For example, browsers can re-use persistent connections for any domain that is listed in the same SSL Certificate, and these are considered related domains. But in other cases, tools including malware can use this technique between completely unrelated domains to evade restrictions and blocks that can be imposed at the TLS/SSL layer.

To be clear, this technique can’t be used to impersonate domains. The clients are non-standard and are working around the usual TLS/SSL checks that ordinary clients impose. But clearly, no customer ever wants to find that someone else is masquerading as their innocent, ordinary domain. Although these cases are also already handled as a breach of our AWS Terms of Service, in the coming weeks we will be checking that the account that owns the certificate we serve for a particular connection always matches the account that owns the request we handle on that connection. As ever, the security of our customers is our top priority, and we will continue to provide enhanced protection against misconfigurations and abuse from unrelated parties.

Interested in additional AWS Security news? Follow the AWS Security Blog on Twitter.

How to centralize DNS management in a multi-account environment

Post Syndicated from Mahmoud Matouk original https://aws.amazon.com/blogs/security/how-to-centralize-dns-management-in-a-multi-account-environment/

In a multi-account environment where you require connectivity between accounts, and perhaps connectivity between cloud and on-premises workloads, the demand for a robust Domain Name Service (DNS) that’s capable of name resolution across all connected environments will be high.

The most common solution is to implement local DNS in each account and use conditional forwarders for DNS resolutions outside of this account. While this solution might be efficient for a single-account environment, it becomes complex in a multi-account environment.

In this post, I will provide a solution to implement central DNS for multiple accounts. This solution reduces the number of DNS servers and forwarders needed to implement cross-account domain resolution. I will show you how to configure this solution in four steps:

  1. Set up your Central DNS account.
  2. Set up each participating account.
  3. Create Route53 associations.
  4. Configure on-premises DNS (if applicable).

Solution overview

In this solution, you use AWS Directory Service for Microsoft Active Directory (AWS Managed Microsoft AD) as a DNS service in a dedicated account in a Virtual Private Cloud (DNS-VPC).

The DNS service included in AWS Managed Microsoft AD uses conditional forwarders to forward domain resolution to either Amazon Route 53 (for domains in the awscloud.com zone) or to on-premises DNS servers (for domains in the example.com zone). You’ll use AWS Managed Microsoft AD as the primary DNS server for other application accounts in the multi-account environment (participating accounts).

A participating account is any application account that hosts a VPC and uses the centralized AWS Managed Microsoft AD as the primary DNS server for that VPC. Each participating account has a private, hosted zone with a unique zone name to represent this account (for example, business_unit.awscloud.com).

You associate the DNS-VPC with the unique hosted zone in each of the participating accounts, this allows AWS Managed Microsoft AD to use Route 53 to resolve all registered domains in private, hosted zones in participating accounts.

The following diagram shows how the various services work together:
 

Diagram showing the relationship between all the various services

Figure 1: Diagram showing the relationship between all the various services

 

In this diagram, all VPCs in participating accounts use Dynamic Host Configuration Protocol (DHCP) option sets. The option sets configure EC2 instances to use the centralized AWS Managed Microsoft AD in DNS-VPC as their default DNS Server. You also configure AWS Managed Microsoft AD to use conditional forwarders to send domain queries to Route53 or on-premises DNS servers based on query zone. For domain resolution across accounts to work, we associate DNS-VPC with each hosted zone in participating accounts.

If, for example, server.pa1.awscloud.com needs to resolve addresses in the pa3.awscloud.com domain, the sequence shown in the following diagram happens:
 

How domain resolution across accounts works

Figure 2: How domain resolution across accounts works

 

  • 1.1: server.pa1.awscloud.com sends domain name lookup to default DNS server for the name server.pa3.awscloud.com. The request is forwarded to the DNS server defined in the DHCP option set (AWS Managed Microsoft AD in DNS-VPC).
  • 1.2: AWS Managed Microsoft AD forwards name resolution to Route53 because it’s in the awscloud.com zone.
  • 1.3: Route53 resolves the name to the IP address of server.pa3.awscloud.com because DNS-VPC is associated with the private hosted zone pa3.awscloud.com.

Similarly, if server.example.com needs to resolve server.pa3.awscloud.com, the following happens:

  • 2.1: server.example.com sends domain name lookup to on-premise DNS server for the name server.pa3.awscloud.com.
  • 2.2: on-premise DNS server using conditional forwarder forwards domain lookup to AWS Managed Microsoft AD in DNS-VPC.
  • 1.2: AWS Managed Microsoft AD forwards name resolution to Route53 because it’s in the awscloud.com zone.
  • 1.3: Route53 resolves the name to the IP address of server.pa3.awscloud.com because DNS-VPC is associated with the private hosted zone pa3.awscloud.com.

Step 1: Set up a centralized DNS account

In previous AWS Security Blog posts, Drew Dennis covered a couple of options for establishing DNS resolution between on-premises networks and Amazon VPC. In this post, he showed how you can use AWS Managed Microsoft AD (provisioned with AWS Directory Service) to provide DNS resolution with forwarding capabilities.

To set up a centralized DNS account, you can follow the same steps in Drew’s post to create AWS Managed Microsoft AD and configure the forwarders to send DNS queries for awscloud.com to default, VPC-provided DNS and to forward example.com queries to the on-premise DNS server.

Here are a few considerations while setting up central DNS:

  • The VPC that hosts AWS Managed Microsoft AD (DNS-VPC) will be associated with all private hosted zones in participating accounts.
  • To be able to resolve domain names across AWS and on-premises, connectivity through Direct Connect or VPN must be in place.

Step 2: Set up participating accounts

The steps I suggest in this section should be applied individually in each application account that’s participating in central DNS resolution.

  1. Create the VPC(s) that will host your resources in participating account.
  2. Create VPC Peering between local VPC(s) in each participating account and DNS-VPC.
  3. Create a private hosted zone in Route 53. Hosted zone domain names must be unique across all accounts. In the diagram above, we used pa1.awscloud.com / pa2.awscloud.com / pa3.awscloud.com. You could also use a combination of environment and business unit: for example, you could use pa1.dev.awscloud.com to achieve uniqueness.
  4. Associate VPC(s) in each participating account with the local private hosted zone.

The next step is to change the default DNS servers on each VPC using DHCP option set:

  1. Follow these steps to create a new DHCP option set. Make sure in the DNS Servers to put the private IP addresses of the two AWS Managed Microsoft AD servers that were created in DNS-VPC:
     
    The "Create DHCP options set" dialog box

    Figure 3: The “Create DHCP options set” dialog box

     

  2. Follow these steps to assign the DHCP option set to your VPC(s) in participating account.

Step 3: Associate DNS-VPC with private hosted zones in each participating account

The next steps will associate DNS-VPC with the private, hosted zone in each participating account. This allows instances in DNS-VPC to resolve domain records created in these hosted zones. If you need them, here are more details on associating a private, hosted zone with VPC on a different account.

  1. In each participating account, create the authorization using the private hosted zone ID from the previous step, the region, and the VPC ID that you want to associate (DNS-VPC).
     
    aws route53 create-vpc-association-authorization –hosted-zone-id <hosted-zone-id> –vpc VPCRegion=<region>,VPCId=<vpc-id>
     
  2. In the centralized DNS account, associate DNS-VPC with the hosted zone in each participating account.
     
    aws route53 associate-vpc-with-hosted-zone –hosted-zone-id <hosted-zone-id> –vpc VPCRegion=<region>,VPCId=<vpc-id>
     

After completing these steps, AWS Managed Microsoft AD in the centralized DNS account should be able to resolve domain records in the private, hosted zone in each participating account.

Step 4: Setting up on-premises DNS servers

This step is necessary if you would like to resolve AWS private domains from on-premises servers and this task comes down to configuring forwarders on-premise to forward DNS queries to AWS Managed Microsoft AD in DNS-VPC for all domains in the awscloud.com zone.

The steps to implement conditional forwarders vary by DNS product. Follow your product’s documentation to complete this configuration.

Summary

I introduced a simplified solution to implement central DNS resolution in a multi-account environment that could be also extended to support DNS resolution between on-premise resources and AWS. This can help reduce operations effort and the number of resources needed to implement cross-account domain resolution.

If you have feedback about this post, submit comments in the Comments section below. If you have questions about this post, start a new thread on the AWS Directory Service forum or contact AWS Support.

Want more AWS Security news? Follow us on Twitter.

Russia is Banning Telegram

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2018/04/russia_is_banni.html

Russia has banned the secure messaging app Telegram. It’s making an absolute mess of the ban — blocking 16 million IP addresses, many belonging to the Amazon and Google clouds — and it’s not even clear that it’s working. But, more importantly, I’m not convinced Telegram is secure in the first place.

Such a weird story. If you want secure messaging, use Signal. If you’re concerned that having Signal on your phone will itself arouse suspicion, use WhatsApp.

Securing messages published to Amazon SNS with AWS PrivateLink

Post Syndicated from Otavio Ferreira original https://aws.amazon.com/blogs/security/securing-messages-published-to-amazon-sns-with-aws-privatelink/

Amazon Simple Notification Service (SNS) now supports VPC Endpoints (VPCE) via AWS PrivateLink. You can use VPC Endpoints to privately publish messages to SNS topics, from an Amazon Virtual Private Cloud (VPC), without traversing the public internet. When you use AWS PrivateLink, you don’t need to set up an Internet Gateway (IGW), Network Address Translation (NAT) device, or Virtual Private Network (VPN) connection. You don’t need to use public IP addresses, either.

VPC Endpoints doesn’t require code changes and can bring additional security to Pub/Sub Messaging use cases that rely on SNS. VPC Endpoints helps promote data privacy and is aligned with assurance programs, including the Health Insurance Portability and Accountability Act (HIPAA), FedRAMP, and others discussed below.

VPC Endpoints for SNS in action

Here’s how VPC Endpoints for SNS works. The following example is based on a banking system that processes mortgage applications. This banking system, which has been deployed to a VPC, publishes each mortgage application to an SNS topic. The SNS topic then fans out the mortgage application message to two subscribing AWS Lambda functions:

  • Save-Mortgage-Application stores the application in an Amazon DynamoDB table. As the mortgage application contains personally identifiable information (PII), the message must not traverse the public internet.
  • Save-Credit-Report checks the applicant’s credit history against an external Credit Reporting Agency (CRA), then stores the final credit report in an Amazon S3 bucket.

The following diagram depicts the underlying architecture for this banking system:
 
Diagram depicting the architecture for the example banking system
 
To protect applicants’ data, the financial institution responsible for developing this banking system needed a mechanism to prevent PII data from traversing the internet when publishing mortgage applications from their VPC to the SNS topic. Therefore, they created a VPC endpoint to enable their publisher Amazon EC2 instance to privately connect to the SNS API. As shown in the diagram, when the VPC endpoint is created, an Elastic Network Interface (ENI) is automatically placed in the same VPC subnet as the publisher EC2 instance. This ENI exposes a private IP address that is used as the entry point for traffic destined to SNS. This ensures that traffic between the VPC and SNS doesn’t leave the Amazon network.

Set up VPC Endpoints for SNS

The process for creating a VPC endpoint to privately connect to SNS doesn’t require code changes: access the VPC Management Console, navigate to the Endpoints section, and create a new Endpoint. Three attributes are required:

  • The SNS service name.
  • The VPC and Availability Zones (AZs) from which you’ll publish your messages.
  • The Security Group (SG) to be associated with the endpoint network interface. The Security Group controls the traffic to the endpoint network interface from resources in your VPC. If you don’t specify a Security Group, the default Security Group for your VPC will be associated.

Help ensure your security and compliance

SNS can support messaging use cases in regulated market segments, such as healthcare provider systems subject to the Health Insurance Portability and Accountability Act (HIPAA) and financial systems subject to the Payment Card Industry Data Security Standard (PCI DSS), and is also in-scope with the following Assurance Programs:

The SNS API is served through HTTP Secure (HTTPS), and encrypts all messages in transit with Transport Layer Security (TLS) certificates issued by Amazon Trust Services (ATS). The certificates verify the identity of the SNS API server when encrypted connections are established. The certificates help establish proof that your SNS API client (SDK, CLI) is communicating securely with the SNS API server. A Certificate Authority (CA) issues the certificate to a specific domain. Hence, when a domain presents a certificate that’s issued by a trusted CA, the SNS API client knows it’s safe to make the connection.

Summary

VPC Endpoints can increase the security of your pub/sub messaging use cases by allowing you to publish messages to SNS topics, from instances in your VPC, without traversing the internet. Setting up VPC Endpoints for SNS doesn’t require any code changes because the SNS API address remains the same.

VPC Endpoints for SNS is now available in all AWS Regions where AWS PrivateLink is available. For information on pricing and regional availability, visit the VPC pricing page.
For more information and on-boarding, see Publishing to Amazon SNS Topics from Amazon Virtual Private Cloud in the SNS documentation.

If you have comments about this post, submit them in the Comments section below. If you have questions about anything in this post, start a new thread on the Amazon SNS forum or contact AWS Support.

Want more AWS Security news? Follow us on Twitter.

Some notes on memcached DDoS

Post Syndicated from Robert Graham original http://blog.erratasec.com/2018/03/some-notes-on-memcached-ddos.html

I thought I’d write up some notes on the memcached DDoS. Specifically, I describe how many I found scanning the Internet with masscan, and how to use masscan as a killswitch to neuter the worst of the attacks.

Test your servers

I added code to my port scanner for this, then scanned the Internet:
masscan 0.0.0.0/0 -pU:11211 –banners | grep memcached
This example scans the entire Internet (/0). Replaced 0.0.0.0/0 with your address range (or ranges).
This produces output that looks like this:
Banner on port 11211/udp on 172.246.132.226: [memcached] uptime=230130 time=1520485357 version=1.4.13
Banner on port 11211/udp on 89.110.149.218: [memcached] uptime=3935192 time=1520485363 version=1.4.17
Banner on port 11211/udp on 172.246.132.226: [memcached] uptime=230130 time=1520485357 version=1.4.13
Banner on port 11211/udp on 84.200.45.2: [memcached] uptime=399858 time=1520485362 version=1.4.20
Banner on port 11211/udp on 5.1.66.2: [memcached] uptime=29429482 time=1520485363 version=1.4.20
Banner on port 11211/udp on 103.248.253.112: [memcached] uptime=2879363 time=1520485366 version=1.2.6
Banner on port 11211/udp on 193.240.236.171: [memcached] uptime=42083736 time=1520485365 version=1.4.13
The “banners” check filters out those with valid memcached responses, so you don’t get other stuff that isn’t memcached. To filter this output further, use  the ‘cut’ to grab just column 6:
… | cut -d ‘ ‘ -f 6 | cut -d: -f1
You often get multiple responses to just one query, so you’ll want to sort/uniq the list:
… | sort | uniq

My results from an Internet wide scan

I got 15181 results (or roughly 15,000).
People are using Shodan to find a list of memcached servers. They might be getting a lot results back that response to TCP instead of UDP. Only UDP can be used for the attack.

Other researchers scanned the Internet a few days ago and found ~31k. I don’t know if this means people have been removing these from the Internet.

Masscan as exploit script

BTW, you can not only use masscan to find amplifiers, you can also use it to carry out the DDoS. Simply import the list of amplifier IP addresses, then spoof the source address as that of the target. All the responses will go back to the source address.
masscan -iL amplifiers.txt -pU:11211 –spoof-ip –rate 100000
I point this out to show how there’s no magic in exploiting this. Numerous exploit scripts have been released, because it’s so easy.

Why memcached servers are vulnerable

Like many servers, memcached listens to local IP address 127.0.0.1 for local administration. By listening only on the local IP address, remote people cannot talk to the server.
However, this process is often buggy, and you end up listening on either 0.0.0.0 (all interfaces) or on one of the external interfaces. There’s a common Linux network stack issue where this keeps happening, like trying to get VMs connected to the network. I forget the exact details, but the point is that lots of servers that intend to listen only on 127.0.0.1 end up listening on external interfaces instead. It’s not a good security barrier.
Thus, there are lots of memcached servers listening on their control port (11211) on external interfaces.

How the protocol works

The protocol is documented here. It’s pretty straightforward.
The easiest amplification attacks is to send the “stats” command. This is 15 byte UDP packet that causes the server to send back either a large response full of useful statistics about the server.  You often see around 10 kilobytes of response across several packets.
A harder, but more effect attack uses a two step process. You first use the “add” or “set” commands to put chunks of data into the server, then send a “get” command to retrieve it. You can easily put 100-megabytes of data into the server this way, and causes a retrieval with a single “get” command.
That’s why this has been the largest amplification ever, because a single 100-byte packet can in theory cause a 100-megabytes response.
Doing the math, the 1.3 terabit/second DDoS divided across the 15,000 servers I found vulnerable on the Internet leads to an average of 100-megabits/second per server. This is fairly minor, and is indeed something even small servers (like Raspberry Pis) can generate.

Neutering the attack (“kill switch”)

If they are using the more powerful attack against you, you can neuter it: you can send a “flush_all” command back at the servers who are flooding you, causing them to drop all those large chunks of data from the cache.
I’m going to describe how I would do this.
First, get a list of attackers, meaning, the amplifiers that are flooding you. The way to do this is grab a packet sniffer and capture all packets with a source port of 11211. Here is an example using tcpdump.
tcpdump -i -w attackers.pcap src port 11221
Let that run for a while, then hit [ctrl-c] to stop, then extract the list of IP addresses in the capture file. The way I do this is with tshark (comes with Wireshark):
tshark -r attackers.pcap -Tfields -eip.src | sort | uniq > amplifiers.txt
Now, craft a flush_all payload. There are many ways of doing this. For example, if you are using nmap or masscan, you can add the bytes to the nmap-payloads.txt file. Also, masscan can read this directly from a packet capture file. To do this, first craft a packet, such as with the following command line foo:
echo -en “\x00\x00\x00\x00\x00\x01\x00\x00flush_all\r\n” | nc -q1 -u 11211
Capture this packet using tcpdump or something, and save into a file “flush_all.pcap”. If you want to skip this step, I’ve already done this for you, go grab the file from GitHub:
Now that we have our list of attackers (amplifiers.txt) and a payload to blast at them (flush_all.pcap), use masscan to send it:
masscan -iL amplifiers.txt -pU:112211 –pcap-payload flush_all.pcap

Reportedly, “shutdown” may also work to completely shutdown the amplifiers. I’ll leave that as an exercise for the reader, since of course you’ll be adversely affecting the servers.

Some notes

Here are some good reading on this attack:

Best Practices for Running Apache Kafka on AWS

Post Syndicated from Prasad Alle original https://aws.amazon.com/blogs/big-data/best-practices-for-running-apache-kafka-on-aws/

This post was written in partnership with Intuit to share learnings, best practices, and recommendations for running an Apache Kafka cluster on AWS. Thanks to Vaishak Suresh and his colleagues at Intuit for their contribution and support.

Intuit, in their own words: Intuit, a leading enterprise customer for AWS, is a creator of business and financial management solutions. For more information on how Intuit partners with AWS, see our previous blog post, Real-time Stream Processing Using Apache Spark Streaming and Apache Kafka on AWS. Apache Kafka is an open-source, distributed streaming platform that enables you to build real-time streaming applications.

The best practices described in this post are based on our experience in running and operating large-scale Kafka clusters on AWS for more than two years. Our intent for this post is to help AWS customers who are currently running Kafka on AWS, and also customers who are considering migrating on-premises Kafka deployments to AWS.

AWS offers Amazon Kinesis Data Streams, a Kafka alternative that is fully managed.

Running your Kafka deployment on Amazon EC2 provides a high performance, scalable solution for ingesting streaming data. AWS offers many different instance types and storage option combinations for Kafka deployments. However, given the number of possible deployment topologies, it’s not always trivial to select the most appropriate strategy suitable for your use case.

In this blog post, we cover the following aspects of running Kafka clusters on AWS:

  • Deployment considerations and patterns
  • Storage options
  • Instance types
  • Networking
  • Upgrades
  • Performance tuning
  • Monitoring
  • Security
  • Backup and restore

Note: While implementing Kafka clusters in a production environment, make sure also to consider factors like your number of messages, message size, monitoring, failure handling, and any operational issues.

Deployment considerations and patterns

In this section, we discuss various deployment options available for Kafka on AWS, along with pros and cons of each option. A successful deployment starts with thoughtful consideration of these options. Considering availability, consistency, and operational overhead of the deployment helps when choosing the right option.

Single AWS Region, Three Availability Zones, All Active

One typical deployment pattern (all active) is in a single AWS Region with three Availability Zones (AZs). One Kafka cluster is deployed in each AZ along with Apache ZooKeeper and Kafka producer and consumer instances as shown in the illustration following.

In this pattern, this is the Kafka cluster deployment:

  • Kafka producers and Kafka cluster are deployed on each AZ.
  • Data is distributed evenly across three Kafka clusters by using Elastic Load Balancer.
  • Kafka consumers aggregate data from all three Kafka clusters.

Kafka cluster failover occurs this way:

  • Mark down all Kafka producers
  • Stop consumers
  • Debug and restack Kafka
  • Restart consumers
  • Restart Kafka producers

Following are the pros and cons of this pattern.

ProsCons
  • Highly available
  • Can sustain the failure of two AZs
  • No message loss during failover
  • Simple deployment

 

  • Very high operational overhead:
    • All changes need to be deployed three times, one for each Kafka cluster
    • Maintaining and monitoring three Kafka clusters
    • Maintaining and monitoring three consumer clusters

A restart is required for patching and upgrading brokers in a Kafka cluster. In this approach, a rolling upgrade is done separately for each cluster.

Single Region, Three Availability Zones, Active-Standby

Another typical deployment pattern (active-standby) is in a single AWS Region with a single Kafka cluster and Kafka brokers and Zookeepers distributed across three AZs. Another similar Kafka cluster acts as a standby as shown in the illustration following. You can use Kafka mirroring with MirrorMaker to replicate messages between any two clusters.

In this pattern, this is the Kafka cluster deployment:

  • Kafka producers are deployed on all three AZs.
  • Only one Kafka cluster is deployed across three AZs (active).
  • ZooKeeper instances are deployed on each AZ.
  • Brokers are spread evenly across all three AZs.
  • Kafka consumers can be deployed across all three AZs.
  • Standby Kafka producers and a Multi-AZ Kafka cluster are part of the deployment.

Kafka cluster failover occurs this way:

  • Switch traffic to standby Kafka producers cluster and Kafka cluster.
  • Restart consumers to consume from standby Kafka cluster.

Following are the pros and cons of this pattern.

ProsCons
  • Less operational overhead when compared to the first option
  • Only one Kafka cluster to manage and consume data from
  • Can handle single AZ failures without activating a standby Kafka cluster
  • Added latency due to cross-AZ data transfer among Kafka brokers
  • For Kafka versions before 0.10, replicas for topic partitions have to be assigned so they’re distributed to the brokers on different AZs (rack-awareness)
  • The cluster can become unavailable in case of a network glitch, where ZooKeeper does not see Kafka brokers
  • Possibility of in-transit message loss during failover

Intuit recommends using a single Kafka cluster in one AWS Region, with brokers distributing across three AZs (single region, three AZs). This approach offers stronger fault tolerance than otherwise, because a failed AZ won’t cause Kafka downtime.

Storage options

There are two storage options for file storage in Amazon EC2:

Ephemeral storage is local to the Amazon EC2 instance. It can provide high IOPS based on the instance type. On the other hand, Amazon EBS volumes offer higher resiliency and you can configure IOPS based on your storage needs. EBS volumes also offer some distinct advantages in terms of recovery time. Your choice of storage is closely related to the type of workload supported by your Kafka cluster.

Kafka provides built-in fault tolerance by replicating data partitions across a configurable number of instances. If a broker fails, you can recover it by fetching all the data from other brokers in the cluster that host the other replicas. Depending on the size of the data transfer, it can affect recovery process and network traffic. These in turn eventually affect the cluster’s performance.

The following table contrasts the benefits of using an instance store versus using EBS for storage.

Instance storeEBS
  • Instance storage is recommended for large- and medium-sized Kafka clusters. For a large cluster, read/write traffic is distributed across a high number of brokers, so the loss of a broker has less of an impact. However, for smaller clusters, a quick recovery for the failed node is important, but a failed broker takes longer and requires more network traffic for a smaller Kafka cluster.
  • Storage-optimized instances like h1, i3, and d2 are an ideal choice for distributed applications like Kafka.

 

  • The primary advantage of using EBS in a Kafka deployment is that it significantly reduces data-transfer traffic when a broker fails or must be replaced. The replacement broker joins the cluster much faster.
  • Data stored on EBS is persisted in case of an instance failure or termination. The broker’s data stored on an EBS volume remains intact, and you can mount the EBS volume to a new EC2 instance. Most of the replicated data for the replacement broker is already available in the EBS volume and need not be copied over the network from another broker. Only the changes made after the original broker failure need to be transferred across the network. That makes this process much faster.

 

 

Intuit chose EBS because of their frequent instance restacking requirements and also other benefits provided by EBS.

Generally, Kafka deployments use a replication factor of three. EBS offers replication within their service, so Intuit chose a replication factor of two instead of three.

Instance types

The choice of instance types is generally driven by the type of storage required for your streaming applications on a Kafka cluster. If your application requires ephemeral storage, h1, i3, and d2 instances are your best option.

Intuit used r3.xlarge instances for their brokers and r3.large for ZooKeeper, with ST1 (throughput optimized HDD) EBS for their Kafka cluster.

Here are sample benchmark numbers from Intuit tests.

ConfigurationBroker bytes (MB/s)
  • r3.xlarge
  • ST1 EBS
  • 12 brokers
  • 12 partitions

 

Aggregate 346.9

If you need EBS storage, then AWS has a newer-generation r4 instance. The r4 instance is superior to R3 in many ways:

  • It has a faster processor (Broadwell).
  • EBS is optimized by default.
  • It features networking based on Elastic Network Adapter (ENA), with up to 10 Gbps on smaller sizes.
  • It costs 20 percent less than R3.

Note: It’s always best practice to check for the latest changes in instance types.

Networking

The network plays a very important role in a distributed system like Kafka. A fast and reliable network ensures that nodes can communicate with each other easily. The available network throughput controls the maximum amount of traffic that Kafka can handle. Network throughput, combined with disk storage, is often the governing factor for cluster sizing.

If you expect your cluster to receive high read/write traffic, select an instance type that offers 10-Gb/s performance.

In addition, choose an option that keeps interbroker network traffic on the private subnet, because this approach allows clients to connect to the brokers. Communication between brokers and clients uses the same network interface and port. For more details, see the documentation about IP addressing for EC2 instances.

If you are deploying in more than one AWS Region, you can connect the two VPCs in the two AWS Regions using cross-region VPC peering. However, be aware of the networking costs associated with cross-AZ deployments.

Upgrades

Kafka has a history of not being backward compatible, but its support of backward compatibility is getting better. During a Kafka upgrade, you should keep your producer and consumer clients on a version equal to or lower than the version you are upgrading from. After the upgrade is finished, you can start using a new protocol version and any new features it supports. There are three upgrade approaches available, discussed following.

Rolling or in-place upgrade

In a rolling or in-place upgrade scenario, upgrade one Kafka broker at a time. Take into consideration the recommendations for doing rolling restarts to avoid downtime for end users.

Downtime upgrade

If you can afford the downtime, you can take your entire cluster down, upgrade each Kafka broker, and then restart the cluster.

Blue/green upgrade

Intuit followed the blue/green deployment model for their workloads, as described following.

If you can afford to create a separate Kafka cluster and upgrade it, we highly recommend the blue/green upgrade scenario. In this scenario, we recommend that you keep your clusters up-to-date with the latest Kafka version. For additional details on Kafka version upgrades or more details, see the Kafka upgrade documentation.

The following illustration shows a blue/green upgrade.

In this scenario, the upgrade plan works like this:

  • Create a new Kafka cluster on AWS.
  • Create a new Kafka producers stack to point to the new Kafka cluster.
  • Create topics on the new Kafka cluster.
  • Test the green deployment end to end (sanity check).
  • Using Amazon Route 53, change the new Kafka producers stack on AWS to point to the new green Kafka environment that you have created.

The roll-back plan works like this:

  • Switch Amazon Route 53 to the old Kafka producers stack on AWS to point to the old Kafka environment.

For additional details on blue/green deployment architecture using Kafka, see the re:Invent presentation Leveraging the Cloud with a Blue-Green Deployment Architecture.

Performance tuning

You can tune Kafka performance in multiple dimensions. Following are some best practices for performance tuning.

 These are some general performance tuning techniques:

  • If throughput is less than network capacity, try the following:
    • Add more threads
    • Increase batch size
    • Add more producer instances
    • Add more partitions
  • To improve latency when acks =-1, increase your num.replica.fetches value.
  • For cross-AZ data transfer, tune your buffer settings for sockets and for OS TCP.
  • Make sure that num.io.threads is greater than the number of disks dedicated for Kafka.
  • Adjust num.network.threads based on the number of producers plus the number of consumers plus the replication factor.
  • Your message size affects your network bandwidth. To get higher performance from a Kafka cluster, select an instance type that offers 10 Gb/s performance.

For Java and JVM tuning, try the following:

  • Minimize GC pauses by using the Oracle JDK, which uses the new G1 garbage-first collector.
  • Try to keep the Kafka heap size below 4 GB.

Monitoring

Knowing whether a Kafka cluster is working correctly in a production environment is critical. Sometimes, just knowing that the cluster is up is enough, but Kafka applications have many moving parts to monitor. In fact, it can easily become confusing to understand what’s important to watch and what you can set aside. Items to monitor range from simple metrics about the overall rate of traffic, to producers, consumers, brokers, controller, ZooKeeper, topics, partitions, messages, and so on.

For monitoring, Intuit used several tools, including Newrelec, Wavefront, Amazon CloudWatch, and AWS CloudTrail. Our recommended monitoring approach follows.

For system metrics, we recommend that you monitor:

  • CPU load
  • Network metrics
  • File handle usage
  • Disk space
  • Disk I/O performance
  • Garbage collection
  • ZooKeeper

For producers, we recommend that you monitor:

  • Batch-size-avg
  • Compression-rate-avg
  • Waiting-threads
  • Buffer-available-bytes
  • Record-queue-time-max
  • Record-send-rate
  • Records-per-request-avg

For consumers, we recommend that you monitor:

  • Batch-size-avg
  • Compression-rate-avg
  • Waiting-threads
  • Buffer-available-bytes
  • Record-queue-time-max
  • Record-send-rate
  • Records-per-request-avg

Security

Like most distributed systems, Kafka provides the mechanisms to transfer data with relatively high security across the components involved. Depending on your setup, security might involve different services such as encryption, Kerberos, Transport Layer Security (TLS) certificates, and advanced access control list (ACL) setup in brokers and ZooKeeper. The following tells you more about the Intuit approach. For details on Kafka security not covered in this section, see the Kafka documentation.

Encryption at rest

For EBS-backed EC2 instances, you can enable encryption at rest by using Amazon EBS volumes with encryption enabled. Amazon EBS uses AWS Key Management Service (AWS KMS) for encryption. For more details, see Amazon EBS Encryption in the EBS documentation. For instance store–backed EC2 instances, you can enable encryption at rest by using Amazon EC2 instance store encryption.

Encryption in transit

Kafka uses TLS for client and internode communications.

Authentication

Authentication of connections to brokers from clients (producers and consumers) to other brokers and tools uses either Secure Sockets Layer (SSL) or Simple Authentication and Security Layer (SASL).

Kafka supports Kerberos authentication. If you already have a Kerberos server, you can add Kafka to your current configuration.

Authorization

In Kafka, authorization is pluggable and integration with external authorization services is supported.

Backup and restore

The type of storage used in your deployment dictates your backup and restore strategy.

The best way to back up a Kafka cluster based on instance storage is to set up a second cluster and replicate messages using MirrorMaker. Kafka’s mirroring feature makes it possible to maintain a replica of an existing Kafka cluster. Depending on your setup and requirements, your backup cluster might be in the same AWS Region as your main cluster or in a different one.

For EBS-based deployments, you can enable automatic snapshots of EBS volumes to back up volumes. You can easily create new EBS volumes from these snapshots to restore. We recommend storing backup files in Amazon S3.

For more information on how to back up in Kafka, see the Kafka documentation.

Conclusion

In this post, we discussed several patterns for running Kafka in the AWS Cloud. AWS also provides an alternative managed solution with Amazon Kinesis Data Streams, there are no servers to manage or scaling cliffs to worry about, you can scale the size of your streaming pipeline in seconds without downtime, data replication across availability zones is automatic, you benefit from security out of the box, Kinesis Data Streams is tightly integrated with a wide variety of AWS services like Lambda, Redshift, Elasticsearch and it supports open source frameworks like Storm, Spark, Flink, and more. You may refer to kafka-kinesis connector.

If you have questions or suggestions, please comment below.


Additional Reading

If you found this post useful, be sure to check out Implement Serverless Log Analytics Using Amazon Kinesis Analytics and Real-time Clickstream Anomaly Detection with Amazon Kinesis Analytics.


About the Author

Prasad Alle is a Senior Big Data Consultant with AWS Professional Services. He spends his time leading and building scalable, reliable Big data, Machine learning, Artificial Intelligence and IoT solutions for AWS Enterprise and Strategic customers. His interests extend to various technologies such as Advanced Edge Computing, Machine learning at Edge. In his spare time, he enjoys spending time with his family.

 

 

Best Practices for Running Apache Cassandra on Amazon EC2

Post Syndicated from Prasad Alle original https://aws.amazon.com/blogs/big-data/best-practices-for-running-apache-cassandra-on-amazon-ec2/

Apache Cassandra is a commonly used, high performance NoSQL database. AWS customers that currently maintain Cassandra on-premises may want to take advantage of the scalability, reliability, security, and economic benefits of running Cassandra on Amazon EC2.

Amazon EC2 and Amazon Elastic Block Store (Amazon EBS) provide secure, resizable compute capacity and storage in the AWS Cloud. When combined, you can deploy Cassandra, allowing you to scale capacity according to your requirements. Given the number of possible deployment topologies, it’s not always trivial to select the most appropriate strategy suitable for your use case.

In this post, we outline three Cassandra deployment options, as well as provide guidance about determining the best practices for your use case in the following areas:

  • Cassandra resource overview
  • Deployment considerations
  • Storage options
  • Networking
  • High availability and resiliency
  • Maintenance
  • Security

Before we jump into best practices for running Cassandra on AWS, we should mention that we have many customers who decided to use DynamoDB instead of managing their own Cassandra cluster. DynamoDB is fully managed, serverless, and provides multi-master cross-region replication, encryption at rest, and managed backup and restore. Integration with AWS Identity and Access Management (IAM) enables DynamoDB customers to implement fine-grained access control for their data security needs.

Several customers who have been using large Cassandra clusters for many years have moved to DynamoDB to eliminate the complications of administering Cassandra clusters and maintaining high availability and durability themselves. Gumgum.com is one customer who migrated to DynamoDB and observed significant savings. For more information, see Moving to Amazon DynamoDB from Hosted Cassandra: A Leap Towards 60% Cost Saving per Year.

AWS provides options, so you’re covered whether you want to run your own NoSQL Cassandra database, or move to a fully managed, serverless DynamoDB database.

Cassandra resource overview

Here’s a short introduction to standard Cassandra resources and how they are implemented with AWS infrastructure. If you’re already familiar with Cassandra or AWS deployments, this can serve as a refresher.

ResourceCassandraAWS
Cluster

A single Cassandra deployment.

 

This typically consists of multiple physical locations, keyspaces, and physical servers.

A logical deployment construct in AWS that maps to an AWS CloudFormation StackSet, which consists of one or many CloudFormation stacks to deploy Cassandra.
DatacenterA group of nodes configured as a single replication group.

A logical deployment construct in AWS.

 

A datacenter is deployed with a single CloudFormation stack consisting of Amazon EC2 instances, networking, storage, and security resources.

Rack

A collection of servers.

 

A datacenter consists of at least one rack. Cassandra tries to place the replicas on different racks.

A single Availability Zone.
Server/nodeA physical virtual machine running Cassandra software.An EC2 instance.
TokenConceptually, the data managed by a cluster is represented as a ring. The ring is then divided into ranges equal to the number of nodes. Each node being responsible for one or more ranges of the data. Each node gets assigned with a token, which is essentially a random number from the range. The token value determines the node’s position in the ring and its range of data.Managed within Cassandra.
Virtual node (vnode)Responsible for storing a range of data. Each vnode receives one token in the ring. A cluster (by default) consists of 256 tokens, which are uniformly distributed across all servers in the Cassandra datacenter.Managed within Cassandra.
Replication factorThe total number of replicas across the cluster.Managed within Cassandra.

Deployment considerations

One of the many benefits of deploying Cassandra on Amazon EC2 is that you can automate many deployment tasks. In addition, AWS includes services, such as CloudFormation, that allow you to describe and provision all your infrastructure resources in your cloud environment.

We recommend orchestrating each Cassandra ring with one CloudFormation template. If you are deploying in multiple AWS Regions, you can use a CloudFormation StackSet to manage those stacks. All the maintenance actions (scaling, upgrading, and backing up) should be scripted with an AWS SDK. These may live as standalone AWS Lambda functions that can be invoked on demand during maintenance.

You can get started by following the Cassandra Quick Start deployment guide. Keep in mind that this guide does not address the requirements to operate a production deployment and should be used only for learning more about Cassandra.

Deployment patterns

In this section, we discuss various deployment options available for Cassandra in Amazon EC2. A successful deployment starts with thoughtful consideration of these options. Consider the amount of data, network environment, throughput, and availability.

  • Single AWS Region, 3 Availability Zones
  • Active-active, multi-Region
  • Active-standby, multi-Region

Single region, 3 Availability Zones

In this pattern, you deploy the Cassandra cluster in one AWS Region and three Availability Zones. There is only one ring in the cluster. By using EC2 instances in three zones, you ensure that the replicas are distributed uniformly in all zones.

To ensure the even distribution of data across all Availability Zones, we recommend that you distribute the EC2 instances evenly in all three Availability Zones. The number of EC2 instances in the cluster is a multiple of three (the replication factor).

This pattern is suitable in situations where the application is deployed in one Region or where deployments in different Regions should be constrained to the same Region because of data privacy or other legal requirements.

ProsCons

●     Highly available, can sustain failure of one Availability Zone.

●     Simple deployment

●     Does not protect in a situation when many of the resources in a Region are experiencing intermittent failure.

 

Active-active, multi-Region

In this pattern, you deploy two rings in two different Regions and link them. The VPCs in the two Regions are peered so that data can be replicated between two rings.

We recommend that the two rings in the two Regions be identical in nature, having the same number of nodes, instance types, and storage configuration.

This pattern is most suitable when the applications using the Cassandra cluster are deployed in more than one Region.

ProsCons

●     No data loss during failover.

●     Highly available, can sustain when many of the resources in a Region are experiencing intermittent failures.

●     Read/write traffic can be localized to the closest Region for the user for lower latency and higher performance.

●     High operational overhead

●     The second Region effectively doubles the cost

 

Active-standby, multi-region

In this pattern, you deploy two rings in two different Regions and link them. The VPCs in the two Regions are peered so that data can be replicated between two rings.

However, the second Region does not receive traffic from the applications. It only functions as a secondary location for disaster recovery reasons. If the primary Region is not available, the second Region receives traffic.

We recommend that the two rings in the two Regions be identical in nature, having the same number of nodes, instance types, and storage configuration.

This pattern is most suitable when the applications using the Cassandra cluster require low recovery point objective (RPO) and recovery time objective (RTO).

ProsCons

●     No data loss during failover.

●     Highly available, can sustain failure or partitioning of one whole Region.

●     High operational overhead.

●     High latency for writes for eventual consistency.

●     The second Region effectively doubles the cost.

Storage options

In on-premises deployments, Cassandra deployments use local disks to store data. There are two storage options for EC2 instances:

Your choice of storage is closely related to the type of workload supported by the Cassandra cluster. Instance store works best for most general purpose Cassandra deployments. However, in certain read-heavy clusters, Amazon EBS is a better choice.

The choice of instance type is generally driven by the type of storage:

  • If ephemeral storage is required for your application, a storage-optimized (I3) instance is the best option.
  • If your workload requires Amazon EBS, it is best to go with compute-optimized (C5) instances.
  • Burstable instance types (T2) don’t offer good performance for Cassandra deployments.

Instance store

Ephemeral storage is local to the EC2 instance. It may provide high input/output operations per second (IOPs) based on the instance type. An SSD-based instance store can support up to 3.3M IOPS in I3 instances. This high performance makes it an ideal choice for transactional or write-intensive applications such as Cassandra.

In general, instance storage is recommended for transactional, large, and medium-size Cassandra clusters. For a large cluster, read/write traffic is distributed across a higher number of nodes, so the loss of one node has less of an impact. However, for smaller clusters, a quick recovery for the failed node is important.

As an example, for a cluster with 100 nodes, the loss of 1 node is 3.33% loss (with a replication factor of 3). Similarly, for a cluster with 10 nodes, the loss of 1 node is 33% less capacity (with a replication factor of 3).

 Ephemeral storageAmazon EBSComments

IOPS

(translates to higher query performance)

Up to 3.3M on I3

80K/instance

10K/gp2/volume

32K/io1/volume

This results in a higher query performance on each host. However, Cassandra implicitly scales well in terms of horizontal scale. In general, we recommend scaling horizontally first. Then, scale vertically to mitigate specific issues.

 

Note: 3.3M IOPS is observed with 100% random read with a 4-KB block size on Amazon Linux.

AWS instance typesI3Compute optimized, C5Being able to choose between different instance types is an advantage in terms of CPU, memory, etc., for horizontal and vertical scaling.
Backup/ recoveryCustomBasic building blocks are available from AWS.

Amazon EBS offers distinct advantage here. It is small engineering effort to establish a backup/restore strategy.

a) In case of an instance failure, the EBS volumes from the failing instance are attached to a new instance.

b) In case of an EBS volume failure, the data is restored by creating a new EBS volume from last snapshot.

Amazon EBS

EBS volumes offer higher resiliency, and IOPs can be configured based on your storage needs. EBS volumes also offer some distinct advantages in terms of recovery time. EBS volumes can support up to 32K IOPS per volume and up to 80K IOPS per instance in RAID configuration. They have an annualized failure rate (AFR) of 0.1–0.2%, which makes EBS volumes 20 times more reliable than typical commodity disk drives.

The primary advantage of using Amazon EBS in a Cassandra deployment is that it reduces data-transfer traffic significantly when a node fails or must be replaced. The replacement node joins the cluster much faster. However, Amazon EBS could be more expensive, depending on your data storage needs.

Cassandra has built-in fault tolerance by replicating data to partitions across a configurable number of nodes. It can not only withstand node failures but if a node fails, it can also recover by copying data from other replicas into a new node. Depending on your application, this could mean copying tens of gigabytes of data. This adds additional delay to the recovery process, increases network traffic, and could possibly impact the performance of the Cassandra cluster during recovery.

Data stored on Amazon EBS is persisted in case of an instance failure or termination. The node’s data stored on an EBS volume remains intact and the EBS volume can be mounted to a new EC2 instance. Most of the replicated data for the replacement node is already available in the EBS volume and won’t need to be copied over the network from another node. Only the changes made after the original node failed need to be transferred across the network. That makes this process much faster.

EBS volumes are snapshotted periodically. So, if a volume fails, a new volume can be created from the last known good snapshot and be attached to a new instance. This is faster than creating a new volume and coping all the data to it.

Most Cassandra deployments use a replication factor of three. However, Amazon EBS does its own replication under the covers for fault tolerance. In practice, EBS volumes are about 20 times more reliable than typical disk drives. So, it is possible to go with a replication factor of two. This not only saves cost, but also enables deployments in a region that has two Availability Zones.

EBS volumes are recommended in case of read-heavy, small clusters (fewer nodes) that require storage of a large amount of data. Keep in mind that the Amazon EBS provisioned IOPS could get expensive. General purpose EBS volumes work best when sized for required performance.

Networking

If your cluster is expected to receive high read/write traffic, select an instance type that offers 10–Gb/s performance. As an example, i3.8xlarge and c5.9xlarge both offer 10–Gb/s networking performance. A smaller instance type in the same family leads to a relatively lower networking throughput.

Cassandra generates a universal unique identifier (UUID) for each node based on IP address for the instance. This UUID is used for distributing vnodes on the ring.

In the case of an AWS deployment, IP addresses are assigned automatically to the instance when an EC2 instance is created. With the new IP address, the data distribution changes and the whole ring has to be rebalanced. This is not desirable.

To preserve the assigned IP address, use a secondary elastic network interface with a fixed IP address. Before swapping an EC2 instance with a new one, detach the secondary network interface from the old instance and attach it to the new one. This way, the UUID remains same and there is no change in the way that data is distributed in the cluster.

If you are deploying in more than one region, you can connect the two VPCs in two regions using cross-region VPC peering.

High availability and resiliency

Cassandra is designed to be fault-tolerant and highly available during multiple node failures. In the patterns described earlier in this post, you deploy Cassandra to three Availability Zones with a replication factor of three. Even though it limits the AWS Region choices to the Regions with three or more Availability Zones, it offers protection for the cases of one-zone failure and network partitioning within a single Region. The multi-Region deployments described earlier in this post protect when many of the resources in a Region are experiencing intermittent failure.

Resiliency is ensured through infrastructure automation. The deployment patterns all require a quick replacement of the failing nodes. In the case of a regionwide failure, when you deploy with the multi-Region option, traffic can be directed to the other active Region while the infrastructure is recovering in the failing Region. In the case of unforeseen data corruption, the standby cluster can be restored with point-in-time backups stored in Amazon S3.

Maintenance

In this section, we look at ways to ensure that your Cassandra cluster is healthy:

  • Scaling
  • Upgrades
  • Backup and restore

Scaling

Cassandra is horizontally scaled by adding more instances to the ring. We recommend doubling the number of nodes in a cluster to scale up in one scale operation. This leaves the data homogeneously distributed across Availability Zones. Similarly, when scaling down, it’s best to halve the number of instances to keep the data homogeneously distributed.

Cassandra is vertically scaled by increasing the compute power of each node. Larger instance types have proportionally bigger memory. Use deployment automation to swap instances for bigger instances without downtime or data loss.

Upgrades

All three types of upgrades (Cassandra, operating system patching, and instance type changes) follow the same rolling upgrade pattern.

In this process, you start with a new EC2 instance and install software and patches on it. Thereafter, remove one node from the ring. For more information, see Cassandra cluster Rolling upgrade. Then, you detach the secondary network interface from one of the EC2 instances in the ring and attach it to the new EC2 instance. Restart the Cassandra service and wait for it to sync. Repeat this process for all nodes in the cluster.

Backup and restore

Your backup and restore strategy is dependent on the type of storage used in the deployment. Cassandra supports snapshots and incremental backups. When using instance store, a file-based backup tool works best. Customers use rsync or other third-party products to copy data backups from the instance to long-term storage. For more information, see Backing up and restoring data in the DataStax documentation. This process has to be repeated for all instances in the cluster for a complete backup. These backup files are copied back to new instances to restore. We recommend using S3 to durably store backup files for long-term storage.

For Amazon EBS based deployments, you can enable automated snapshots of EBS volumes to back up volumes. New EBS volumes can be easily created from these snapshots for restoration.

Security

We recommend that you think about security in all aspects of deployment. The first step is to ensure that the data is encrypted at rest and in transit. The second step is to restrict access to unauthorized users. For more information about security, see the Cassandra documentation.

Encryption at rest

Encryption at rest can be achieved by using EBS volumes with encryption enabled. Amazon EBS uses AWS KMS for encryption. For more information, see Amazon EBS Encryption.

Instance store–based deployments require using an encrypted file system or an AWS partner solution. If you are using DataStax Enterprise, it supports transparent data encryption.

Encryption in transit

Cassandra uses Transport Layer Security (TLS) for client and internode communications.

Authentication

The security mechanism is pluggable, which means that you can easily swap out one authentication method for another. You can also provide your own method of authenticating to Cassandra, such as a Kerberos ticket, or if you want to store passwords in a different location, such as an LDAP directory.

Authorization

The authorizer that’s plugged in by default is org.apache.cassandra.auth.Allow AllAuthorizer. Cassandra also provides a role-based access control (RBAC) capability, which allows you to create roles and assign permissions to these roles.

Conclusion

In this post, we discussed several patterns for running Cassandra in the AWS Cloud. This post describes how you can manage Cassandra databases running on Amazon EC2. AWS also provides managed offerings for a number of databases. To learn more, see Purpose-built databases for all your application needs.

If you have questions or suggestions, please comment below.


Additional Reading

If you found this post useful, be sure to check out Analyze Your Data on Amazon DynamoDB with Apache Spark and Analysis of Top-N DynamoDB Objects using Amazon Athena and Amazon QuickSight.


About the Authors

Prasad Alle is a Senior Big Data Consultant with AWS Professional Services. He spends his time leading and building scalable, reliable Big data, Machine learning, Artificial Intelligence and IoT solutions for AWS Enterprise and Strategic customers. His interests extend to various technologies such as Advanced Edge Computing, Machine learning at Edge. In his spare time, he enjoys spending time with his family.

 

 

 

Provanshu Dey is a Senior IoT Consultant with AWS Professional Services. He works on highly scalable and reliable IoT, data and machine learning solutions with our customers. In his spare time, he enjoys spending time with his family and tinkering with electronics & gadgets.