Tag Archives: ISP

Anti-Piracy Group Joins Internet Organization That Controls Top-Level Domain

Post Syndicated from Andy original https://torrentfreak.com/anti-piracy-group-joins-internet-organization-that-controls-top-level-domain-171019/

All around the world, content creators and rightsholders continue to protest against the unauthorized online distribution of copyrighted content.

While pirating end-users obviously share some of the burden, the main emphasis has traditionally been placed on the shuttering of illicit sites, whether torrent, streaming, or hosting based.

Over time, however, sites have become more prevalent and increasingly resilient, leaving the music, movie and publishing industries to play a frustrating game of whac-a-mole. With this in mind, their focus has increasingly shifted towards Internet gatekeepers, including ISPs and bodies with influence over domain availability.

While most of these efforts take place via cooperation or legal action, there’s regularly conflict when Hollywood, for example, wants a particular domain rendered inaccessible or the music industry wants pirates kicked off the Internet.

As a result, there’s nearly always a disconnect, with copyright holders on one side and Internet technology companies worried about mission creep on the other. In Denmark, however, those lines have just been blurred in the most intriguing way possible after an infamous anti-piracy outfit joined an organization with significant control over the Internet in the country.

RettighedsAlliancen (or Rights Alliance as it’s more commonly known) is an anti-piracy group which counts some of the most powerful local and international movie companies among its members. It also operates on behalf of IFPI and by extension, most of the world’s major recording labels.

The group has been involved in dozens of legal processes over the years against file-sharers and file-sharing sites, most recently fighting for and winning ISP blockades against most major pirate portals including The Pirate Bay, RARBG, Torrentz, and many more.

In a somewhat surprising new announcement, the group has revealed it’s become the latest member of DIFO, the Danish Internet Forum (DIFO) which “works for a secure and accessible Internet” under the top-level .DK domain. Indeed, DIFO has overall responsibility for Danish internet infrastructure.

“For DIFO it is important to have a strong link to the Danish internet community. Therefore, we are very pleased that the Alliance wishes to be part of the association,” DIFO said in a statement.

Rights Alliance will be DIFO’s third new member this year but uniquely it will get the opportunity to represent the interests of more than 100,000 Danish and international rightholders from inside an influential Internet-focused organization.

Looking at DIFO’s membership, Rights Alliance certainly stands out as unusual. The majority of the members are made up of IT-based organizations, such as the Internet Industry Association, The Association of Open Source Suppliers and DKRegistrar, the industry association for Danish domain registrars.

A meeting around a table with these players and their often conflicting interests is likely to be an experience for all involved. However, all parties seem more than happy with the new partnership.

“We want to help create a more secure internet for companies that invest in doing business online, and for users to be safe, so combating digital crime is a key and shared goal,” says Rights Alliance chief, Maria Fredenslund. “I am therefore looking forward to the future cooperation with DIFO.”

Only time will tell how this partnership will play out but if common ground can be found, it’s certainly possible that the anti-piracy scene in Denmark could step up a couple of gears in the future.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and ANONYMOUS VPN services.

[$] Achieving DisplayPort compliance

Post Syndicated from jake original https://lwn.net/Articles/736011/rss

At the X.Org Developers Conference, hosted by Google in Mountain View, CA
September 20-22, Manasi Navare gave a talk about her journey learning
about kernel graphics on the way to achieving DisplayPort (DP)
compliance for Intel graphics devices.
Making that work involved learning about DP, the kernel graphics subsystem,
and how to do
kernel development, as well. There were plenty of details to absorb,
including the relatively new atomic mode
setting support, the design of which was described in a twopart LWN
article.

Google Asked to Delist Pirate Movie Sites, ISPs Asked to Block Them

Post Syndicated from Andy original https://torrentfreak.com/google-asked-to-delist-pirate-movie-sites-isps-asked-to-block-them-171018/

After seizing several servers operated by popular private music tracker What.cd, last November French police went after a much bigger target.

Boasting millions of regular visitors, Zone-Telechargement (Zone-Download) was ranked the 11th most-visited website in the whole of the country. The site offered direct downloads of a wide variety of pirated content, including films, series, games, and music. Until the French Gendarmerie shut it down, that is.

After being founded in 2011 and enjoying huge growth following the 2012 raids against Megaupload, the Zone-Telechargement ‘brand’ was still popular with French users, despite the closure of the platform. It, therefore, came as no surprise that the site was quickly cloned by an unknown party and relaunched as Zone-Telechargement.ws.

The site has been doing extremely well following its makeover. To the annoyance of copyright holders, SimilarWeb reports the platform as France’s 37th most popular site with around 58 million visitors per month. That’s a huge achievement in less than 12 months.

Now, however, the site is receiving more unwanted attention. PCInpact says it has received information that several movie-focused organizations including the French National Film Center are requesting tough action against the site.

The National Federation of Film Distributors, the Video Publishing Union, the Association of Independent Producers and the Producers Union are all demanding the blocking of Zone-Telechargement by several local ISPs, alongside its delisting from search results.

The publication mentions four Internet service providers – Free, Numericable, Bouygues Telecom, and Orange – plus Google on the search engine front. At this stage, other search companies, such as Microsoft’s Bing, are not reported as part of the action.

In addition to Zone-Telechargement, several other ‘pirate’ sites (Papystreaming.org, Sokrostream.cc and Zonetelechargement.su, another site playing on the popular brand) are included in the legal process. All are described as “structurally infringing” by the complaining movie outfits, PCInpact notes.

The legal proceedings against the sites are based in Article 336-2 of the Intellectual Property Code. It’s ground already trodden by movie companies who following a 2011 complaint, achieved victory in 2013 against several Allostreaming-linked sites.

In that case, the High Court of Paris ordered ISPs, several of which appear in the current action, to “implement all appropriate means including blocking” to prevent access to the infringing sites.

The Court also ordered Google, Microsoft, and Yahoo to “take all necessary measures to prevent the occurrence on their services of any results referring to any of the sites” on their platforms.

Also of interest is that the action targets a service called DL-Protecte.com, which according to local anti-piracy agency HADOPI, makes it difficult for rightsholders to locate infringing content while at the same time generates more revenue for pirate sites.

A judgment is expected in “several months.”

Source: TF, for the latest info on copyright, file-sharing, torrent sites and ANONYMOUS VPN services.

PureVPN Explains How it Helped the FBI Catch a Cyberstalker

Post Syndicated from Andy original https://torrentfreak.com/purevpn-explains-how-it-helped-the-fbi-catch-a-cyberstalker-171016/

Early October, Ryan S. Lin, 24, of Newton, Massachusetts, was arrested on suspicion of conducting “an extensive cyberstalking campaign” against a 24-year-old Massachusetts woman, as well as her family members and friends.

The Department of Justice described Lin’s offenses as a “multi-faceted” computer hacking and cyberstalking campaign. Launched in April 2016 when he began hacking into the victim’s online accounts, Lin allegedly obtained personal photographs and sensitive information about her medical and sexual histories and distributed that information to hundreds of other people.

Details of what information the FBI compiled on Lin can be found in our earlier report but aside from his alleged crimes (which are both significant and repugnant), it was PureVPN’s involvement in the case that caused the most controversy.

In a report compiled by an FBI special agent, it was revealed that the Hong Kong-based company’s logs helped the authorities net the alleged criminal.

“Significantly, PureVPN was able to determine that their service was accessed by the same customer from two originating IP addresses: the RCN IP address from the home Lin was living in at the time, and the software company where Lin was employed at the time,” the agent’s affidavit reads.

Among many in the privacy community, this revelation was met with disappointment. On the PureVPN website the company claims to carry no logs and on a general basis, it’s expected that so-called “no-logging” VPN providers should provide people with some anonymity, at least as far as their service goes. Now, several days after the furor, the company has responded to its critics.

In a fairly lengthy statement, the company begins by confirming that it definitely doesn’t log what websites a user views or what content he or she downloads.

“PureVPN did not breach its Privacy Policy and certainly did not breach your trust. NO browsing logs, browsing habits or anything else was, or ever will be shared,” the company writes.

However, that’s only half the problem. While it doesn’t log user activity (what sites people visit or content they download), it does log the IP addresses that customers use to access the PureVPN service. These, given the right circumstances, can be matched to external activities thanks to logs carried by other web companies.

PureVPN talks about logs held by Google’s Gmail service to illustrate its point.

“A network log is automatically generated every time a user visits a website. For the sake of this example, let’s say a user logged into their Gmail account. Every time they accessed Gmail, the email provider created a network log,” the company explains.

“If you are using a VPN, Gmail’s network log would contain the IP provided by PureVPN. This is one half of the picture. Now, if someone asks Google who accessed the user’s account, Google would state that whoever was using this IP, accessed the account.

“If the user was connected to PureVPN, it would be a PureVPN IP. The inquirer [in the Lin case, the FBI] would then share timestamps and network logs acquired from Google and ask them to be compared with the network logs maintained by the VPN provider.”

Now, if PureVPN carried no logs – literally no logs – it would not be able to help with this kind of inquiry. That was the case last year when the FBI approached Private Internet Access for information and the company was unable to assist.

However, as is made pretty clear by PureVPN’s explanation, the company does log user IP addresses and timestamps which reveal when a user was logged on to the service. It doesn’t matter that PureVPN doesn’t log what the user allegedly did online, since the third-party service already knows that information to the precise second.

Following the example, GMail knows that a user sent an email at 10:22am on Monday October 16 from a PureVPN IP address. So, if PureVPN is approached by the FBI, the company can confirm that User X was using the same IP address at exactly the same time, and his home IP address was XXX.XX.XXX.XX. Effectively, the combined logs link one IP address to the other and the user is revealed. It’s that simple.

It is for this reason that in TorrentFreak’s annual summary of no-logging VPN providers, the very first question we ask every single company reads as follows:

Do you keep ANY logs which would allow you to match an IP-address and a time stamp to a user/users of your service? If so, what information do you hold and for how long?

Clearly, if a company says “yes we log incoming IP addresses and associated timestamps”, any claim to total user anonymity is ended right there and then.

While not completely useless (a logging service will still stop the prying eyes of ISPs and similar surveillance, while also defeating throttling and site-blocking), if you’re a whistle-blower with a job or even your life to protect, this level of protection is entirely inadequate.

The take-home points from this controversy are numerous, but perhaps the most important is for people to read and understand VPN provider logging policies.

Secondly, and just as importantly, VPN providers need to be extremely clear about the information they log. Not tracking browsing or downloading activities is all well and good, but if home IP addresses and timestamps are stored, this needs to be made clear to the customer.

Finally, VPN users should not be evil. There are plenty of good reasons to stay anonymous online but cyberstalking, death threats and ruining people’s lives are not included. Fortunately, the FBI have offline methods for catching this type of offender, and long may that continue.

PureVPN’s blog post is available here.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and ANONYMOUS VPN services.

‘Pirate’ EBook Site Refuses Point Blank to Cooperate With BREIN

Post Syndicated from Andy original https://torrentfreak.com/pirate-ebook-site-refuses-point-blank-to-cooperate-with-brein-171015/

Dutch anti-piracy group BREIN is probably best known for its legal action against The Pirate Bay but the outfit also tackles many other forms of piracy.

A prime example is the case it pursued against a seller of fully-loaded Kodi boxes in the Netherlands. The subsequent landmark ruling from the European Court of Justice will reverberate around Europe for years to come.

Behind the scenes, however, BREIN persistently tries to take much smaller operations offline, and not without success. Earlier this year it revealed it had taken down 231 illegal sites and services includes 84 linking sites, 63 streaming portals, and 34 torrent sites. Some of these shut down completely and others were forced to leave their hosting providers.

Much of this work flies under the radar but some current action, against an eBook site, is now being thrust into the public eye.

For more than five years, EBoek.info (eBook) has serviced Internet users looking to obtain comic books in Dutch. The site informs TorrentFreak it provides a legitimate service, targeted at people who have purchased a hard copy but also want their comics in digital format.

“EBoek.info is a site about comic books in the Dutch language. Besides some general information about the books, people who have legally obtained a hard copy of the books can find a link to an NZB file which enables them to download a digital version of the books they already have,” site representative ‘Zala’ says.

For those out of the loop, NZB files are a bit like Usenet’s version of .torrent files. They contain no copyrighted content themselves but do provide software clients with information on where to find specific content, so it can be downloaded to a user’s machine.

“BREIN claims that this is illegal as it is impossible for us to verify if our visitor is telling the truth [about having purchased a copy],” Zala reveals.

Speaking with TorrentFreak, BREIN chief Tim Kuik says there’s no question that offering downloads like this is illegal.

“It is plain and simple: the site makes links to unauthorized digital copies available to the general public and therefore is infringing copyright. It is distribution of the content without authorization of the rights holder,” Kuik says.

“The unauthorized copies are not private copies. The private copy exception does not apply to this kind of distribution. The private copy has not been made by the owner of the book himself for his own use. Someone else made the digital copy and is making it available to anyone who wants to download it provided he makes the unverified claim that he has a legal copy. This harms the normal exploitation of the
content.”

Zala says that BREIN has been trying to take his site offline for many years but more recently, the platform has utilized the services of Cloudflare, partly as a form of shield. As readers may be aware, a site behind Cloudflare has its originating IP addresses hidden from the public, not to mention BREIN, who values that kind of information. According to the operator, however, BREIN managed to obtain the information from the CDN provider.

“BREIN has tried for years to take our site offline. Recently, however, Cloudflare was so friendly to give them our IP address,” Zala notes.

A text copy of an email reportedly sent by BREIN to EBoek’s web host and seen by TF appears to confirm that Cloudflare handed over the information as suggested. Among other things, the email has BREIN informing the host that “The IP we got back from Cloudflare is XXX.XXX.XX.33.”

This means that BREIN was able to place direct pressure on EBoek.info’s web host, so only time will tell if that bears any fruit for the anti-piracy group. In the meantime, however, EBoek has decided to go public over its battle with BREIN.

“We have received a request from Stichting BREIN via our hosting provider to take EBoek.info offline,” the site informed its users yesterday.

Interestingly, it also appears that BREIN doesn’t appreciate that the operators of EBoek have failed to make their identities publicly known on their platform.

“The site operates anonymously which also is unlawful. Consumer protection requires that the owner/operator of a site identifies himself,” Kuik says.

According to EBoek, the anti-piracy outfit told the site’s web host that as a “commercial online service”, EBoek is required under EU law to display its “correct and complete business information” including names, addresses, and other information. But perhaps unsurprisingly, the site doesn’t want to play ball.

“In my opinion, you are confusing us with Facebook. They are a foreign commercial company with a European branch in Ireland, and therefore are subject to Irish legislation,” Zala says in an open letter to BREIN.

“Eboek.info, on the other hand, is a foreign hobby club with no commercial purpose, whose administrators have no connection with any country in the European Union. As administrators, we follow the laws of our country of residence which do not oblige us to disclose our identity through our website.

“The fact that Eboek is visible in the Netherlands does not just mean that we are going to adapt to Dutch rules, just as we don’t adapt the site to the rules of Saudi Arabia or China or wherever we are available.”

In a further snub to the anti-piracy group, EBoek says that all visitors to the site have to communicate with its operators via its guestbook, which is publicly visible.

“We see no reason to make an exception for Stichting BREIN,” the site notes.

What makes the situation more complex is that EBoek isn’t refusing dialog completely. The site says it doesn’t want to talk to BREIN but will speak to BREIN’s customers – the publishers of the comic books in question – noting that to date no complaints from publishers have ever been received.

While the parties argue about lines of communication, BREIN insists that following this year’s European Court of Justice decision in the GS Media case, a link to a known infringing work represents copyright infringement. In this case, an NZB file – which links to a location on Usenet – would generally fit the bill.

But despite focusing on the Dutch market, the operators of EBoek say the ruling doesn’t apply to them as they’re outside of the ECJ’s jurisdiction and aren’t commercially motivated. Refusing point blank to take their site offline, EBoek’s operators say that BREIN can do its worst, nothing will have much effect.

“[W]hat’s the worst thing that can happen? That our web host hands [BREIN] our address and IP data. In that case, it will turn out that…we are actually far away,” Zala says.

“[In the case the site goes offline], we’ll just put a backup on another server and, in this case, won’t make use of the ‘services’ of Cloudflare, the provider that apparently put BREIN on the right track.”

The question of jurisdiction is indeed an interesting one, particularly given BREIN’s focus in the Netherlands. But Kuik is clear – it is the area where the content is made available that matters.

“The law of the country where the content is made available applies. In this case the EU and amongst others the Netherlands,” Kuik concludes.

To be continued…..

Source: TF, for the latest info on copyright, file-sharing, torrent sites and ANONYMOUS VPN services.

Tech Giants Protest Looming US Pirate Site Blocking Order

Post Syndicated from Ernesto original https://torrentfreak.com/tech-giants-protest-looming-us-pirate-site-blocking-order-171013/

While domain seizures against pirate sites are relatively common in the United states, ISP and search engine blocking is not. This could change soon though.

In an ongoing case against Sci-Hub, regularly referred to as the “Pirate Bay of Science,” a magistrate judge in Virginia recently recommended a broad order which would require search engines and Internet providers to block the site.

The recommendation followed a request from the academic publisher American Chemical Society (ACS) that wants these third-party services to make the site in question inaccessible. While Sci-Hub has chosen not to defend itself, a group of tech giants has now stepped in to prevent the broad injunction from being issued.

This week the Computer & Communications Industry Association (CCIA), which includes members such as Cloudflare, Facebook, and Google, asked the court to limit the proposed measures. In an amicus curiae brief submitted to the Virginia District Court, they share their concerns.

“Here, Plaintiff is seeking—and the Magistrate Judge has recommended—a permanent injunction that would sweep in various Neutral Service Providers, despite their having violated no laws and having no connection to this case,” CCIA writes.

According to the tech companies, neutral service providers are not “in active concert or participation” with the defendant, and should, therefore, be excluded from the proposed order.

While search engines may index Sci-Hub and ISPs pass on packets from this site, they can’t be seen as “confederates” that are working together with them to violate the law, CCIA stresses.

“Plaintiff has failed to make a showing that any such provider had a contract with these Defendants or any direct contact with their activities—much less that all of the providers who would be swept up by the proposed injunction had such a connection.”

Even if one of the third party services could be found liable the matter should be resolved under the DMCA, which expressly prohibits such broad injunctions, the CCIA claims.

“The DMCA thus puts bedrock limits on the injunctions that can be imposed on qualifying providers if they are named as defendants and are held liable as infringers. Plaintiff here ignores that.

“What ACS seeks, in the posture of a permanent injunction against nonparties, goes beyond what Congress was willing to permit, even against service providers against whom an actual judgment of infringement has been entered.That request must be rejected.”

The tech companies hope the court will realize that the injunction recommended by the magistrate judge will set a dangerous precedent, which goes beyond what the law is intended for, so will impose limits in response to their concerns.

It will be interesting to see whether any copyright holder groups will also chime in, to argue the opposite.

CCIA’s full amicus curiae brief is available here (pdf).

Source: TF, for the latest info on copyright, file-sharing, torrent sites and ANONYMOUS VPN services.

Popcorn Time Creator Readies BitTorrent & Blockchain-Powered Video Platform

Post Syndicated from Andy original https://torrentfreak.com/popcorn-time-creator-readies-bittorrent-blockchain-powered-youtube-competitor-171012/

Without a doubt, YouTube is one of the most important websites available on the Internet today.

Its massive archive of videos brings pleasure to millions on a daily basis but its centralized nature means that owner Google always exercises control.

Over the years, people have looked to decentralize the YouTube concept and the latest project hoping to shake up the market has a particularly interesting player onboard.

Until 2015, only insiders knew that Argentinian designer Federico Abad was actually ‘Sebastian’, the shadowy figure behind notorious content sharing platform Popcorn Time.

Now he’s part of the team behind Flixxo, a BitTorrent and blockchain-powered startup hoping to wrestle a share of the video market from YouTube. Here’s how the team, which features blockchain startup RSK Labs, hope things will play out.

The Flixxo network will have no centralized storage of data, eliminating the need for expensive hosting along with associated costs. Instead, transfers will take place between peers using BitTorrent, meaning video content will be stored on the machines of Flixxo users. In practice, the content will be downloaded and uploaded in much the same way as users do on The Pirate Bay or indeed Abad’s baby, Popcorn Time.

However, there’s a twist to the system that envisions content creators, content consumers, and network participants (seeders) making revenue from their efforts.

At the heart of the Flixxo system are digital tokens (think virtual currency), called Flixx. These Flixx ‘coins’, which will go on sale in 12 days, can be used to buy access to content. Creators can also opt to pay consumers when those people help to distribute their content to others.

“Free from structural costs, producers can share the earnings from their content with the network that supports them,” the team explains.

“This way you get paid for helping us improve Flixxo, and you earn credits (in the form of digital tokens called Flixx) for watching higher quality content. Having no intermediaries means that the price you pay for watching the content that you actually want to watch is lower and fairer.”

The Flixxo team

In addition to earning tokens from helping to distribute content, people in the Flixxo ecosystem can also earn currency by watching sponsored content, i.e advertisements. While in a traditional system adverts are often considered a nuisance, Flixx tokens have real value, with a promise that users will be able to trade their Flixx not only for videos, but also for tangible and semi-tangible goods.

“Use your Flixx to reward the producers you follow, encouraging them to create more awesome content. Or keep your Flixx in your wallet and use them to buy a movie ticket, a pair of shoes from an online retailer, a chest of coins in your favourite game or even convert them to old-fashioned cash or up-and-coming digital assets, like Bitcoin,” the team explains.

The Flixxo team have big plans. After foundation in early 2016, the second quarter of 2017 saw the completion of a functional alpha release. In a little under two weeks, the project will begin its token generation event, with new offices in Los Angeles planned for the first half of 2018 alongside a premiere of the Flixxo platform.

“A total of 1,000,000,000 (one billion) Flixx tokens will be issued. A maximum of 300,000,000 (three hundred million) tokens will be sold. Some of these tokens (not more than 33% or 100,000,000 Flixx) may be sold with anticipation of the token allocation event to strategic investors,” Flixxo states.

Like all content platforms, Flixxo will live or die by the quality of the content it provides and whether, at least in the first instance, it can persuade people to part with their hard-earned cash. Only time will tell whether its content will be worth a premium over readily accessible YouTube content but with much-reduced costs, it may tempt creators seeking a bigger piece of the pie.

“Flixxo will also educate its community, teaching its users that in this new internet era value can be held and transferred online without intermediaries, a value that can be earned back by participating in a community, by contributing, being rewarded for every single social interaction,” the team explains.

Of course, the elephant in the room is what will happen when people begin sharing copyrighted content via Flixxo. Certainly, the fact that Popcorn Time’s founder is a key player and rival streaming platform Stremio is listed as a partner means that things could get a bit spicy later on.

Nevertheless, the team suggests that piracy and spam content distribution will be limited by mechanisms already built into the system.

“[A]uthors have to time-block tokens in a smart contract (set as a warranty) in order to upload content. This contract will also handle and block their earnings for a certain period of time, so that in the case of a dispute the unfair-uploader may lose those tokens,” they explain.

That being said, Flixxo also says that “there is no way” for third parties to censor content “which means that anyone has the chance of making any piece of media available on the network.” However, Flixxo says it will develop tools for filtering what it describes as “inappropriate content.”

At this point, things start to become a little unclear. On the one hand Flixxo says it could become a “revolutionary tool for uncensorable and untraceable media” yet on the other it says that it’s necessary to ensure that adult content, for example, isn’t seen by kids.

“We know there is a thin line between filtering or curating content and censorship, and it is a fact that we have an open network for everyone to upload any content. However, Flixxo as a platform will apply certain filtering based on clear rules – there should be a behavior-code for uploaders in order to offer the right content to the right user,” Flixxo explains.

To this end, Flixxo says it will deploy a centralized curation function, carried out by 101 delegates elected by the community, which will become progressively decentralized over time.

“This curation will have a cost, paid in Flixx, and will be collected from the warranty blocked by the content uploaders,” they add.

There can be little doubt that if Flixxo begins ‘curating’ unsuitable content, copyright holders will call on it to do the same for their content too. And, if the platform really takes off, 101 curators probably won’t scratch the surface. There’s also the not inconsiderable issue of what might happen to curators’ judgment when they’re incentivized to block curate content.

Finally, for those sick of “not available in your region” messages, there’s good and bad news. Flixxo insists there will be no geo-blocking of content on its part but individual creators will still have that feature available to them, should they choose.

The Flixx whitepaper can be downloaded here (pdf)

Source: TF, for the latest info on copyright, file-sharing, torrent sites and ANONYMOUS VPN services.

AWS Developer Tools Expands Integration to Include GitHub

Post Syndicated from Balaji Iyer original https://aws.amazon.com/blogs/devops/aws-developer-tools-expands-integration-to-include-github/

AWS Developer Tools is a set of services that include AWS CodeCommit, AWS CodePipeline, AWS CodeBuild, and AWS CodeDeploy. Together, these services help you securely store and maintain version control of your application’s source code and automatically build, test, and deploy your application to AWS or your on-premises environment. These services are designed to enable developers and IT professionals to rapidly and safely deliver software.

As part of our continued commitment to extend the AWS Developer Tools ecosystem to third-party tools and services, we’re pleased to announce AWS CodeStar and AWS CodeBuild now integrate with GitHub. This will make it easier for GitHub users to set up a continuous integration and continuous delivery toolchain as part of their release process using AWS Developer Tools.

In this post, I will walk through the following:

Prerequisites:

You’ll need an AWS account, a GitHub account, an Amazon EC2 key pair, and administrator-level permissions for AWS Identity and Access Management (IAM), AWS CodeStar, AWS CodeBuild, AWS CodePipeline, Amazon EC2, Amazon S3.

 

Integrating GitHub with AWS CodeStar

AWS CodeStar enables you to quickly develop, build, and deploy applications on AWS. Its unified user interface helps you easily manage your software development activities in one place. With AWS CodeStar, you can set up your entire continuous delivery toolchain in minutes, so you can start releasing code faster.

When AWS CodeStar launched in April of this year, it used AWS CodeCommit as the hosted source repository. You can now choose between AWS CodeCommit or GitHub as the source control service for your CodeStar projects. In addition, your CodeStar project dashboard lets you centrally track GitHub activities, including commits, issues, and pull requests. This makes it easy to manage project activity across the components of your CI/CD toolchain. Adding the GitHub dashboard view will simplify development of your AWS applications.

In this section, I will show you how to use GitHub as the source provider for your CodeStar projects. I’ll also show you how to work with recent commits, issues, and pull requests in the CodeStar dashboard.

Sign in to the AWS Management Console and from the Services menu, choose CodeStar. In the CodeStar console, choose Create a new project. You should see the Choose a project template page.

CodeStar Project

Choose an option by programming language, application category, or AWS service. I am going to choose the Ruby on Rails web application that will be running on Amazon EC2.

On the Project details page, you’ll now see the GitHub option. Type a name for your project, and then choose Connect to GitHub.

Project details

You’ll see a message requesting authorization to connect to your GitHub repository. When prompted, choose Authorize, and then type your GitHub account password.

Authorize

This connects your GitHub identity to AWS CodeStar through OAuth. You can always review your settings by navigating to your GitHub application settings.

Installed GitHub Apps

You’ll see AWS CodeStar is now connected to GitHub:

Create project

You can choose a public or private repository. GitHub offers free accounts for users and organizations working on public and open source projects and paid accounts that offer unlimited private repositories and optional user management and security features.

In this example, I am going to choose the public repository option. Edit the repository description, if you like, and then choose Next.

Review your CodeStar project details, and then choose Create Project. On Choose an Amazon EC2 Key Pair, choose Create Project.

Key Pair

On the Review project details page, you’ll see Edit Amazon EC2 configuration. Choose this link to configure instance type, VPC, and subnet options. AWS CodeStar requires a service role to create and manage AWS resources and IAM permissions. This role will be created for you when you select the AWS CodeStar would like permission to administer AWS resources on your behalf check box.

Choose Create Project. It might take a few minutes to create your project and resources.

Review project details

When you create a CodeStar project, you’re added to the project team as an owner. If this is the first time you’ve used AWS CodeStar, you’ll be asked to provide the following information, which will be shown to others:

  • Your display name.
  • Your email address.

This information is used in your AWS CodeStar user profile. User profiles are not project-specific, but they are limited to a single AWS region. If you are a team member in projects in more than one region, you’ll have to create a user profile in each region.

User settings

User settings

Choose Next. AWS CodeStar will create a GitHub repository with your configuration settings (for example, https://github.com/biyer/ruby-on-rails-service).

When you integrate your integrated development environment (IDE) with AWS CodeStar, you can continue to write and develop code in your preferred environment. The changes you make will be included in the AWS CodeStar project each time you commit and push your code.

IDE

After setting up your IDE, choose Next to go to the CodeStar dashboard. Take a few minutes to familiarize yourself with the dashboard. You can easily track progress across your entire software development process, from your backlog of work items to recent code deployments.

Dashboard

After the application deployment is complete, choose the endpoint that will display the application.

Pipeline

This is what you’ll see when you open the application endpoint:

The Commit history section of the dashboard lists the commits made to the Git repository. If you choose the commit ID or the Open in GitHub option, you can use a hotlink to your GitHub repository.

Commit history

Your AWS CodeStar project dashboard is where you and your team view the status of your project resources, including the latest commits to your project, the state of your continuous delivery pipeline, and the performance of your instances. This information is displayed on tiles that are dedicated to a particular resource. To see more information about any of these resources, choose the details link on the tile. The console for that AWS service will open on the details page for that resource.

Issues

You can also filter issues based on their status and the assigned user.

Filter

AWS CodeBuild Now Supports Building GitHub Pull Requests

CodeBuild is a fully managed build service that compiles source code, runs tests, and produces software packages that are ready to deploy. With CodeBuild, you don’t need to provision, manage, and scale your own build servers. CodeBuild scales continuously and processes multiple builds concurrently, so your builds are not left waiting in a queue. You can use prepackaged build environments to get started quickly or you can create custom build environments that use your own build tools.

We recently announced support for GitHub pull requests in AWS CodeBuild. This functionality makes it easier to collaborate across your team while editing and building your application code with CodeBuild. You can use the AWS CodeBuild or AWS CodePipeline consoles to run AWS CodeBuild. You can also automate the running of AWS CodeBuild by using the AWS Command Line Interface (AWS CLI), the AWS SDKs, or the AWS CodeBuild Plugin for Jenkins.

AWS CodeBuild

In this section, I will show you how to trigger a build in AWS CodeBuild with a pull request from GitHub through webhooks.

Open the AWS CodeBuild console at https://console.aws.amazon.com/codebuild/. Choose Create project. If you already have a CodeBuild project, you can choose Edit project, and then follow along. CodeBuild can connect to AWS CodeCommit, S3, BitBucket, and GitHub to pull source code for builds. For Source provider, choose GitHub, and then choose Connect to GitHub.

Configure

After you’ve successfully linked GitHub and your CodeBuild project, you can choose a repository in your GitHub account. CodeBuild also supports connections to any public repository. You can review your settings by navigating to your GitHub application settings.

GitHub Apps

On Source: What to Build, for Webhook, select the Rebuild every time a code change is pushed to this repository check box.

Note: You can select this option only if, under Repository, you chose Use a repository in my account.

Source

In Environment: How to build, for Environment image, select Use an image managed by AWS CodeBuild. For Operating system, choose Ubuntu. For Runtime, choose Base. For Version, choose the latest available version. For Build specification, you can provide a collection of build commands and related settings, in YAML format (buildspec.yml) or you can override the build spec by inserting build commands directly in the console. AWS CodeBuild uses these commands to run a build. In this example, the output is the string “hello.”

Environment

On Artifacts: Where to put the artifacts from this build project, for Type, choose No artifacts. (This is also the type to choose if you are just running tests or pushing a Docker image to Amazon ECR.) You also need an AWS CodeBuild service role so that AWS CodeBuild can interact with dependent AWS services on your behalf. Unless you already have a role, choose Create a role, and for Role name, type a name for your role.

Artifacts

In this example, leave the advanced settings at their defaults.

If you expand Show advanced settings, you’ll see options for customizing your build, including:

  • A build timeout.
  • A KMS key to encrypt all the artifacts that the builds for this project will use.
  • Options for building a Docker image.
  • Elevated permissions during your build action (for example, accessing Docker inside your build container to build a Dockerfile).
  • Resource options for the build compute type.
  • Environment variables (built-in or custom). For more information, see Create a Build Project in the AWS CodeBuild User Guide.

Advanced settings

You can use the AWS CodeBuild console to create a parameter in Amazon EC2 Systems Manager. Choose Create a parameter, and then follow the instructions in the dialog box. (In that dialog box, for KMS key, you can optionally specify the ARN of an AWS KMS key in your account. Amazon EC2 Systems Manager uses this key to encrypt the parameter’s value during storage and decrypt during retrieval.)

Create parameter

Choose Continue. On the Review page, either choose Save and build or choose Save to run the build later.

Choose Start build. When the build is complete, the Build logs section should display detailed information about the build.

Logs

To demonstrate a pull request, I will fork the repository as a different GitHub user, make commits to the forked repo, check in the changes to a newly created branch, and then open a pull request.

Pull request

As soon as the pull request is submitted, you’ll see CodeBuild start executing the build.

Build

GitHub sends an HTTP POST payload to the webhook’s configured URL (highlighted here), which CodeBuild uses to download the latest source code and execute the build phases.

Build project

If you expand the Show all checks option for the GitHub pull request, you’ll see that CodeBuild has completed the build, all checks have passed, and a deep link is provided in Details, which opens the build history in the CodeBuild console.

Pull request

Summary:

In this post, I showed you how to use GitHub as the source provider for your CodeStar projects and how to work with recent commits, issues, and pull requests in the CodeStar dashboard. I also showed you how you can use GitHub pull requests to automatically trigger a build in AWS CodeBuild — specifically, how this functionality makes it easier to collaborate across your team while editing and building your application code with CodeBuild.


About the author:

Balaji Iyer is an Enterprise Consultant for the Professional Services Team at Amazon Web Services. In this role, he has helped several customers successfully navigate their journey to AWS. His specialties include architecting and implementing highly scalable distributed systems, serverless architectures, large scale migrations, operational security, and leading strategic AWS initiatives. Before he joined Amazon, Balaji spent more than a decade building operating systems, big data analytics solutions, mobile services, and web applications. In his spare time, he enjoys experiencing the great outdoors and spending time with his family.

 

How to Automatically Revert and Receive Notifications About Changes to Your Amazon VPC Security Groups

Post Syndicated from Rob Barnes original https://aws.amazon.com/blogs/security/how-to-automatically-revert-and-receive-notifications-about-changes-to-your-amazon-vpc-security-groups/

In a previous AWS Security Blog post, Jeff Levine showed how you can monitor changes to your Amazon EC2 security groups. The methods he describes in that post are examples of detective controls, which can help you determine when changes are made to security controls on your AWS resources.

In this post, I take that approach a step further by introducing an example of a responsive control, which you can use to automatically respond to a detected security event by applying a chosen security mitigation. I demonstrate a solution that continuously monitors changes made to an Amazon VPC security group, and if a new ingress rule (the same as an inbound rule) is added to that security group, the solution removes the rule and then sends you a notification after the changes have been automatically reverted.

The scenario

Let’s say you want to reduce your infrastructure complexity by replacing your Secure Shell (SSH) bastion hosts with Amazon EC2 Systems Manager (SSM). SSM allows you to run commands on your hosts remotely, removing the need to manage bastion hosts or rely on SSH to execute commands. To support this objective, you must prevent your staff members from opening SSH ports to your web server’s Amazon VPC security group. If one of your staff members does modify the VPC security group to allow SSH access, you want the change to be automatically reverted and then receive a notification that the change to the security group was automatically reverted. If you are not yet familiar with security groups, see Security Groups for Your VPC before reading the rest of this post.

Solution overview

This solution begins with a directive control to mandate that no web server should be accessible using SSH. The directive control is enforced using a preventive control, which is implemented using a security group rule that prevents ingress from port 22 (typically used for SSH). The detective control is a “listener” that identifies any changes made to your security group. Finally, the responsive control reverts changes made to the security group and then sends a notification of this security mitigation.

The detective control, in this case, is an Amazon CloudWatch event that detects changes to your security group and triggers the responsive control, which in this case is an AWS Lambda function. I use AWS CloudFormation to simplify the deployment.

The following diagram shows the architecture of this solution.

Solution architecture diagram

Here is how the process works:

  1. Someone on your staff adds a new ingress rule to your security group.
  2. A CloudWatch event that continually monitors changes to your security groups detects the new ingress rule and invokes a designated Lambda function (with Lambda, you can run code without provisioning or managing servers).
  3. The Lambda function evaluates the event to determine whether you are monitoring this security group and reverts the new security group ingress rule.
  4. Finally, the Lambda function sends you an email to let you know what the change was, who made it, and that the change was reverted.

Deploy the solution by using CloudFormation

In this section, you will click the Launch Stack button shown below to launch the CloudFormation stack and deploy the solution.

Prerequisites

  • You must have AWS CloudTrail already enabled in the AWS Region where you will be deploying the solution. CloudTrail lets you log, continuously monitor, and retain events related to API calls across your AWS infrastructure. See Getting Started with CloudTrail for more information.
  • You must have a default VPC in the region in which you will be deploying the solution. AWS accounts have one default VPC per AWS Region. If you’ve deleted your VPC, see Creating a Default VPC to recreate it.

Resources that this solution creates

When you launch the CloudFormation stack, it creates the following resources:

  • A sample VPC security group in your default VPC, which is used as the target for reverting ingress rule changes.
  • A CloudWatch event rule that monitors changes to your AWS infrastructure.
  • A Lambda function that reverts changes to the security group and sends you email notifications.
  • A permission that allows CloudWatch to invoke your Lambda function.
  • An AWS Identity and Access Management (IAM) role with limited privileges that the Lambda function assumes when it is executed.
  • An Amazon SNS topic to which the Lambda function publishes notifications.

Launch the CloudFormation stack

The link in this section uses the us-east-1 Region (the US East [N. Virginia] Region). Change the region if you want to use this solution in a different region. See Selecting a Region for more information about changing the region.

To deploy the solution, click the following Launch Stack button to launch the stack. After you click the button, you must sign in to the AWS Management Console if you have not already done so.

Click this "Launch Stack" button

Then:

  1. Choose Next to proceed to the Specify Details page.
  2. On the Specify Details page, type your email address in the Send notifications to box. This is the email address to which change notifications will be sent. (After the stack is launched, you will receive a confirmation email that you must accept before you can receive notifications.)
  3. Choose Next until you get to the Review page, and then choose the I acknowledge that AWS CloudFormation might create IAM resources check box. This confirms that you are aware that the CloudFormation template includes an IAM resource.
  4. Choose Create. CloudFormation displays the stack status, CREATE_COMPLETE, when the stack has launched completely, which should take less than two minutes.Screenshot showing that the stack has launched completely

Testing the solution

  1. Check your email for the SNS confirmation email. You must confirm this subscription to receive future notification emails. If you don’t confirm the subscription, your security group ingress rules still will be automatically reverted, but you will not receive notification emails.
  2. Navigate to the EC2 console and choose Security Groups in the navigation pane.
  3. Choose the security group created by CloudFormation. Its name is Web Server Security Group.
  4. Choose the Inbound tab in the bottom pane of the page. Note that only one rule allows HTTPS ingress on port 443 from 0.0.0.0/0 (from anywhere).Screenshot showing the "Inbound" tab in the bottom pane of the page
  1. Choose Edit to display the Edit inbound rules dialog box (again, an inbound rule and an ingress rule are the same thing).
  2. Choose Add Rule.
  3. Choose SSH from the Type drop-down list.
  4. Choose My IP from the Source drop-down list. Your IP address is populated for you. By adding this rule, you are simulating one of your staff members violating your organization’s policy (in this blog post’s hypothetical example) against allowing SSH access to your EC2 servers. You are testing the solution created when you launched the CloudFormation stack in the previous section. The solution should remove this newly created SSH rule automatically.
    Screenshot of editing inbound rules
  5. Choose Save.

Adding this rule creates an EC2 AuthorizeSecurityGroupIngress service event, which triggers the Lambda function created in the CloudFormation stack. After a few moments, choose the refresh button ( The "refresh" icon ) to see that the new SSH ingress rule that you just created has been removed by the solution you deployed earlier with the CloudFormation stack. If the rule is still there, wait a few more moments and choose the refresh button again.

Screenshot of refreshing the page to see that the SSH ingress rule has been removed

You should also receive an email to notify you that the ingress rule was added and subsequently reverted.

Screenshot of the notification email

Cleaning up

If you want to remove the resources created by this CloudFormation stack, you can delete the CloudFormation stack:

  1. Navigate to the CloudFormation console.
  2. Choose the stack that you created earlier.
  3. Choose the Actions drop-down list.
  4. Choose Delete Stack, and then choose Yes, Delete.
  5. CloudFormation will display a status of DELETE_IN_PROGRESS while it deletes the resources created with the stack. After a few moments, the stack should no longer appear in the list of completed stacks.
    Screenshot of stack "DELETE_IN_PROGRESS"

Other applications of this solution

I have shown one way to use multiple AWS services to help continuously ensure that your security controls haven’t deviated from your security baseline. However, you also could use the CIS Amazon Web Services Foundations Benchmarks, for example, to establish a governance baseline across your AWS accounts and then use the principles in this blog post to automatically mitigate changes to that baseline.

To scale this solution, you can create a framework that uses resource tags to identify particular resources for monitoring. You also can use a consolidated monitoring approach by using cross-account event delivery. See Sending and Receiving Events Between AWS Accounts for more information. You also can extend the principle of automatic mitigation to detect and revert changes to other resources such as IAM policies and Amazon S3 bucket policies.

Summary

In this blog post, I demonstrated how you can automatically revert changes to a VPC security group and have a notification sent about the changes. You can use this solution in your own AWS accounts to enforce your security requirements continuously.

If you have comments about this blog post or other ideas for ways to use this solution, submit a comment in the “Comments” section below. If you have implementation questions, start a new thread in the EC2 forum or contact AWS Support.

– Rob

The Pi Hut’s 3D Xmas Tree pre-order

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/pi-hut-3d-xmas-tree/

We appreciate it’s only October, but hear us out. The Pi Hut’s 3D Xmas Tree is only available for pre-order until the 15th, and we’d hate for you to find out about it too late. So please share in a few minutes of premature Christmas cheer as we introduce you to this gorgeous kit.

The Pi Hut's 3D Xmas Tree for Raspberry Pi

Oooo…aaaaahhhh…

Super early Christmas prep

Designed by Pi Towers alumna Rachel Rayns, the 3D Xmas Tree kit is a 25-LED add-on board for the Raspberry Pi, on sale as a pre-soldered and as a ‘solder yourself’ version. You can control each LED independently via the GPIO pins, allowing you to create some wonderful, twinkly displays this coming holiday season.

The Pi Hut's 3D Xmas Tree for Raspberry Pi

The tree works with any 40-pin Raspberry Pi, including the Zero and Zero W.

You may remember the kit from last Christmas, when The Pi Hut teasingly hinted at its existence. We’ve been itching to get our hands on one for months now, and last week we finally received our own to build and play with.

3D Xmas Tree

So I took the time to record my entire build process for you…only to discover that I had managed to do most of the soldering out of frame. I blame Ben Nuttall for this, as we all rightly should, and offer instead this short GIF of me proudly showing off my finished piece.

The Pi Hut’s website has complete soldering instructions for the tree, as well as example code to get you started. Thus, even the most novice of Raspberry Pi enthusiasts and digital makers should be able to put this kit together and get it twinkling for Christmas.

If you don’t own helping hands for soldering, you’re missing out on, well, a helping hand when soldering.

If you need any help with soldering, check out our video resource. And once you’ve mastered this skill, how about upgrading your tree to twinkle in time with your favourite Christmas song? Or getting two or three, and having them flash in a beautiful synchronised multi-tree display?

Get your own 3D Xmas Tree

As mentioned above, you can pre-order the kit until Sunday 15 October. Once this deadline passes, that’s it — the boat will have sailed and you’ll be left stranded at the dock, waving goodbye to the missed opportunity.

The Pi Hut's 3D Xmas Tree for Raspberry Pi

Don’t be this kid.

With 2730 trees already ordered, you know this kit is going to be in the Christmas stocking of many a maker on 25 December.

And another thing

Shhh…while you’re there, The Pi Hut still has a few Google AIY Projects voice kits available for pre-order…but you didn’t hear that from me. Quick!

The post The Pi Hut’s 3D Xmas Tree pre-order appeared first on Raspberry Pi.

Bringing Clean and Safe Drinking Water to Developing Countries

Post Syndicated from Roderick Bauer original https://www.backblaze.com/blog/keeping-charity-water-data-safe/

image of a cup filling with water

If you’d like to read more about charity: water‘s use of Backblaze for Business, visit backblaze.com/charitywater/

charity: water  + Backblaze for Business

Considering that charity: water sends workers with laptop computers to rural communities in 24 countries around the world, it’s not surprising that computer backup is needed on every computer they have. It’s so essential that Matt Ward, System Administrator for charity: water, says it’s a standard part of employee on-boarding.

charity: water, based in New York City, is a non-profit organization that is working to bring clean water to the nearly one in ten people around the world who live without it — a situation that affects not only health, but education and income.

“We have people constantly traveling all over the world, so a cloud-based service makes sense whether the user is in New York or Malawi. Most of our projects and beneficiaries are in Sub Saharan Africa and Southern/Southeast Asia,” explains Matt. “Water scarcity and poor water quality are a problem here, and in so many countries around the world.”

charity: water in Rwanda

To achieve their mission, charity: water works through implementing organizations on the ground within the targeted communities. The people in these communities must spend hours every day walking to collect water for their families. It’s a losing proposition, as the time they spend walking takes away from education, earning money, and generally limits the opportunities for improving their lives.

charity: water began using Backblaze for Business before Matt came on a year ago. They started with a few licenses, but quickly decided to deploy Backblaze to every computer in the organization.

“We’ve lost computers plenty of times,” he says, “but, because of Backblaze, there’s never been a case where we lost the computer’s data.”

charity: water has about 80 staff computer users, and adds ten to twenty interns each season. Each staff member or intern has at least one computer. “Our IT department is two people, me and my director,” explains Matt, “and we have to support everyone, so being super simple to deploy is valuable to us.”

“When a new person joins us, we just send them an invitation to join the Group on Backblaze, and they’re all set. Their data is automatically backed up whenever they’re connected to the internet, and I can see their current status on the management console. [Backblaze] really nailed the user interface. You can show anyone the interface, even on their first day, and they get it because it’s simple and easy to understand.”

young girl drinkng clean water

One of the frequent uses for Backblaze for Business is when Matt off-boards users, such as all the interns at the end of the season. He starts a restore through the Backblaze admin console even before he has the actual computer. “I know I have a reliable archive in the restore from Backblaze, and it’s easier than doing it directly from the laptop.”

Matt is an enthusiastic user of the features designed for business users, especially Backblaze’s Groups feature, which has enabled charity: water to centralize billing and computer management for their worldwide team. Businesses can create groups to cluster job functions, employee locations, or any other criteria.

charity: water delivery clean water to children

“It saves me time to be able to see the status of any user’s backups, such as the last time the data was backed up” explains Matt. Before Backblaze, charity: water was writing documentation for workers, hoping they would follow backup protocols. Now, Matt knows what’s going on in real time — a valuable feature when the laptops are dispersed around the world.

“Backblaze for Business is an essential element in any organization’s IT continuity plan,” says Matt. “You need to be sure that there is a backup solution for your data should anything go wrong.”

To learn more about how charity: water uses Backblaze for Business, visit backblaze.com/charitywater/.

Matt Ward of charity: water

Matt Ward, System Administrator for charity: water

The post Bringing Clean and Safe Drinking Water to Developing Countries appeared first on Backblaze Blog | Cloud Storage & Cloud Backup.

Roku Shows FBI Warning to Pirate Channel Users

Post Syndicated from Ernesto original https://torrentfreak.com/roku-shows-fbi-warning-to-pirate-channel-users-171009/

In recent years it has become much easier to stream movies and TV-shows over the Internet.

Legal services such as Netflix and HBO are flourishing, but at the same time millions of people are streaming from unauthorized sources, often paired with perfectly legal streaming platforms and devices.

Hollywood insiders have dubbed this trend “Piracy 3.0” and are actively working with stakeholders to address the threat. One of the companies rightsholders are working with is Roku, known for its easy-to-use media players.

Earlier this year a Mexican court ordered retailers to take the Roku media player off the shelves. This legal battle is still ongoing, but it was a clear signal to the company, which now has its own anti-piracy team.

Several third-party “private” channels have been removed from the player in recent weeks as they violate Roku’s terms and conditions. These include the hugely popular streaming channel XTV, which offered access to infringing content.

After its removal, XTV briefly returned as XTV 2, but that didn’t last for long. The infringing channel was soon removed again, this time showing the FBI’s anti-piracy seal followed by a rather ominous message.

“FBI Anti-Piracy Warning: Unauthorized copying is punishable under federal law,” it reads. “Roku has removed this unauthorized service due to repeated claims of copyright infringement.”

FBI Warning (via Cordcuttersnews)

The unusual warning was picked up by Cordcuttersnews and states that Roku itself removed the channel.

To some it may seem that the FBI is cracking down on Roku channels, but this is not the case. The anti-piracy seal and associated warning are often used in cases where the organization is not actively involved, to add extra weight. The FBI supports this, as long as certain standards are met.

A Roku spokesperson confirmed to TorrentFreak that they’re using it on their own accord here.

“We want to send a clear message to Roku customers and to publishers that any publication of pirated content on our platform is a violation of law and our platform rules,” the company says.

“We have recently expanded the messaging that we display to customers that install non-certified channels to alert them to the associated risks, and we display the FBI’s publicly available warning when we remove channels for copyright violations.”

The strong language shows that Roku is taking its efforts to crack down on infringing channels very seriously. A few weeks ago the company started to warn users that pirate channels may be removed without prior notice.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and ANONYMOUS VPN services.

SOPA Ghosts Hinder U.S. Pirate Site Blocking Efforts

Post Syndicated from Ernesto original https://torrentfreak.com/sopa-ghosts-hinder-u-s-pirate-site-blocking-efforts-171008/

Website blocking has become one of the entertainment industries’ favorite anti-piracy tools.

All over the world, major movie and music industry players have gone to court demanding that ISPs take action, often with great success.

Internal MPAA research showed that website blockades help to deter piracy and former boss Chris Dodd said that they are one of the most effective anti-tools available.

While not everyone is in agreement on this, the numbers are used to lobby politicians and convince courts. Interestingly, however, nothing is happening in the United States, which is where most pirate site visitors come from.

This is baffling to many people. Why would US-based companies go out of their way to demand ISP blocking in the most exotic locations, but fail to do the same at home?

We posed this question to Neil Turkewitz, RIAA’s former Executive Vice President International, who currently runs his own consulting group.

The main reason why pirate site blocking requests have not yet been made in the United States is down to SOPA. When the proposed SOPA legislation made headlines five years ago there was a massive backlash against website blocking, which isn’t something copyright groups want to reignite.

“The legacy of SOPA is that copyright industries want to avoid resurrecting the ghosts of SOPA past, and principally focus on ways to creatively encourage cooperation with platforms, and to use existing remedies,” Turkewitz tells us.

Instead of taking the likes of Comcast and Verizon to court, the entertainment industries focused on voluntary agreements, such as the now-defunct Copyright Alerts System. However, that doesn’t mean that website blocking and domain seizures are not an option.

“SOPA made ‘website blocking’ as such a four-letter word. But this is actually fairly misleading,” Turkewitz says.

“There have been a variety of civil and criminal actions addressing the conduct of entities subject to US jurisdiction facilitating piracy, regardless of the source, including hundreds of domain seizures by DHS/ICE.”

Indeed, there are plenty of legal options already available to do much of what SOPA promised. ABS-CBN has taken over dozens of pirate site domain names through the US court system. Most recently even through an ex-parte order, meaning that the site owners had no option to defend themselves before they lost their domains.

ISP and search engine blocking is also around the corner. As we reported earlier this week, a Virginia magistrate judge recently recommended an injunction which would require search engines and Internet providers to prevent users from accessing Sci-Hub.

Still, the major movie and music companies are not yet using these tools to take on The Pirate Bay or other major pirate sites. If it’s so easy, then why not? Apparently, SOPA may still be in the back of their minds.

Interestingly, the RIAA’s former top executive wasn’t a fan of SOPA when it was first announced, as it wouldn’t do much to extend the legal remedies that were already available.

“I actually didn’t like SOPA very much since it mostly reflected existing law and maintained a paradigm that didn’t involve ISP’s in creative interdiction, and simply preserved passivity. To see it characterized as ‘copyright gone wild’ was certainly jarring and incongruous,” Turkewitz says.

Ironically, it looks like a bill that failed to pass, and didn’t impress some copyright holders to begin with, is still holding them back after five years. They’re certainly not using all the legal options available to avoid SOPA comparison. The question is, for how long?

Source: TF, for the latest info on copyright, file-sharing, torrent sites and ANONYMOUS VPN services.

Private Torrent Sites Allow Users to Mine Cryptocurrency for Upload Credit

Post Syndicated from Andy original https://torrentfreak.com/private-torrent-sites-allow-users-to-mine-cryptocurrency-for-upload-credit-171008/

Ever since The Pirate Bay crew added a cryptocurrency miner to their site last month, the debate over user mining has sizzled away in the background.

The basic premise is that a piece of software embedded in a website runs on a user’s machine, utilizing its CPU cycles in order to generate revenue for the site in question. But not everyone likes it.

The main problem has centered around consent. While some sites are giving users the option of whether to be involved or not, others simply run the miner without asking. This week, one site operator suggested to TF that since no one asks whether they can run “shitty” ads on a person’s machine, why should they ask permission to mine?

It’s a controversial point, but it would be hard to find users agreeing on either front. They almost universally insist on consent, wherever possible. That’s why when someone comes up with something innovative to solve a problem, it catches the eye.

Earlier this week a user on Reddit posted a screenshot of a fairly well known private tracker. The site had implemented a mining solution not dissimilar to that appearing on other similar platforms. This one, however, gives the user something back.

Mining for coins – with a twist

First of all, it’s important to note the implementation. The decision to mine is completely under the control of the user, with buttons to start or stop mining. There are even additional controls for how many CPU threads to commit alongside a percentage utilization selector. While still early days, that all sounds pretty fair.

Where this gets even more interesting is how this currency mining affects so-called “upload credit”, an important commodity on a private tracker without which users can be prevented from downloading any content at all.

Very quickly: when BitTorrent users download content, they simultaneously upload to other users too. The idea is that they download X megabytes and upload the same number (at least) to other users, to ensure that everyone in a torrent swarm (a number of users sharing together) gets a piece of the action, aka the content in question.

The amount of content downloaded and uploaded on a private tracker is monitored and documented by the site. If a user has 1TB downloaded and 2TB uploaded, for example, he has 1TB in credit. In basic terms, this means he can download at least 1TB of additional content before he goes into deficit, a position undesirable on a private tracker.

Now, getting more “upload credit” can be as simple as uploading more, but some users find that difficult, either due to the way a tracker’s economy works or simply due to not having resources. If this is the case, some sites allow people to donate real money to receive “upload credit”. On the tracker highlighted in the mining example above, however, it’s possible to virtually ‘trade-in’ some of the mining effort instead.

Tracker politics aside (some people believe this is simply a cash grab opportunity), from a technical standpoint the prospect is quite intriguing.

In a way, the current private tracker system allows users to “mine” upload credits by donating bandwidth to other users of the site. Now they have the opportunity to mine an actual cryptocurrency on the tracker and have some of it converted back into the tracker’s native ‘currency’ – upload credit – which can only be ‘spent’ on the site. Meanwhile, the site’s operator can make a few bucks towards site maintenance.

Another example showing how innovative these mining implementations can be was posted by a member of a second private tracker. Although it’s unclear whether mining is forced or optional, there appears to be complete transparency for the benefit of the user.

The mining ‘Top 10’ on a private tracker

In addition to displaying the total number of users mining and the hashes solved per second, the site publishes a ‘Top 10’ list of users mining the most currently, and overall. Again, some people might not like the concept of users mining at all, but psychologically this is a particularly clever implementation.

Utilizing the desire of many private tracker users to be recognizable among their peers due to their contribution to the platform, the charts give a user a measurable status in the community, at least among those who care about such things. Previously these charts would list top uploaders of content but the addition of a ‘Top miner’ category certainly adds some additional spice to the mix.

Mining is a controversial topic which isn’t likely to go away anytime soon. But, for all its faults, it’s still a way for sites to generate revenue, away from the pitfalls of increasingly hostile and easy-to-trace alternative payment systems. The Pirate Bay may have set the cat among the pigeons last month, but it also gave the old gray matter a boost too.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and ANONYMOUS VPN services.

Hitman’s Bodyguard Pirates Get Automated $300 Fine

Post Syndicated from Ernesto original https://torrentfreak.com/hitmans-bodyguard-pirates-get-automated-300-fine-171007/

Late August a ‘piracy disaster‘ struck the makers of The Hitman’s Bodyguard, an action comedy movie featuring Hollywood stars Samuel L. Jackson and Ryan Reynolds.

The film was leading the box office charts when, eight days after its theatrical release, a high definition copy hit various pirate sites.

While it’s hard to predict whether the leak substantially impacted the movie’s revenue, the people behind the film are determined to claim damages. They hired the services of “Rights Enforcement,” an outfit which tracks down BitTorrent pirates.

Rights Enforcement sends automated ‘fines’ via DMCA notices, which is cheaper than expensive lawsuits. At the same time, this also makes the settlement process easier to scale, as they can send out tens of thousands of ‘fines’ at once with limited resources, without any oversight from a court.

TorrentFreak has seen several notices targeted at The Hitman’s Bodyguard pirates. While the notices themselves don’t list the settlement fee, recipients are referred to a page that does. Those who admit guilt are asked to pay a $300 settlement fee.

“We have evidence that someone using your Internet service has placed a media file that contains the protected content for our client’s motion picture in a shared folder location and is enabling others to download copies of this content,” the notices warn.

Part of the DMCA notice

The text, which is forwarded by several ISPs, is cleverly worded. The account holders in question are notified that if the issue isn’t resolved, they may face a lawsuit.

“You may consider this a notice of potential lawsuit, a demand for the infringing activity to terminate, and a demand for damages from the actual infringer. We invite your voluntary cooperation in assisting us with this matter, identifying the infringer, and ensuring that this activity stops. Should the infringing activity continue we may file a civil lawsuit seeking judicial relief.”

The email points users to the settlement portal where they can review the claim and a possible solution. In this case, “resolving” the matter will set account holders back a hefty $300.



People are free to ignore the claim, of course, but Rights Enforcement warns that if the infringements continue they might eventually be sued.

“If you do not settle the claim and you continue to infringe then odds are you will eventually be sued and face substantial civil liability. So first thing is to stop the activity and make sure you are not involved with infringing activity in the future.”

The notice also kindly mentions that the recipients can contact an attorney for legal advice. However, after an hour or two a legal bill will have exceeded the proposed settlement amount, so for many this isn’t really an option.

It’s quite a clever scheme. Although most people probably won’t be sued for ignoring a notice, there’s always the possibility that they will. Especially since Rights Enforcement is linked to some of the most prolific copyright trolls.

The company, which emerged earlier this year, is operated by lawyer Carl Crowell who is known for his work with movie studios such as Voltage Pictures. In the past, he filed lawsuits for several films such as Dallas Buyers Club and The Hurt Locker.

When faced with a threat of an expensive lawsuit, even innocent subscribers may be inclined to pay the settlement. They should be warned, however, once the first payment is made, many similar requests may follow.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and ANONYMOUS VPN services.

RIAA Identifies Top YouTube MP3 Rippers and Other Pirate Sites

Post Syndicated from Ernesto original https://torrentfreak.com/riaa-identifies-top-youtube-mp3-rippers-and-other-pirate-sites-171006/

Around the same time as Hollywood’s MPAA, the RIAA has also submitted its overview of “notorious markets” to the Office of the US Trade Representative (USTR).

These submissions help to guide the U.S. Government’s position toward foreign countries when it comes to copyright enforcement.

The RIAA’s overview begins positively, announcing two major successes achieved over the past year.

The first is the shutdown of sites such as Emp3world, AudioCastle, Viperial, Album Kings, and im1music. These sites all used the now-defunct Sharebeast platform, whose operator pleaded guilty to criminal copyright infringement.

Another victory followed a few weeks ago when YouTube-MP3.org shut down its services after being sued by the RIAA.

“The most popular YouTube ripping site, youtube-mp3.org, based in Germany and included in last year’s list of notorious markes [sic], recently shut down in response to a civil action brought by major record labels,” the RIAA writes.

This case also had an effect on similar services. Some stream ripping services that were reported to the USTR last year no longer permit the conversion and download of music videos on YouTube, the RIAA reports. However, they add that the problem is far from over.

“Unfortunately, several other stream-ripping sites have ‘doubled down’ and carry on in this illegal behavior, continuing to make this form of theft a major concern for the music industry,” the music group writes.

“The overall popularity of these sites and the staggering volume of traffic it attracts evidences the enormous damage being inflicted on the U.S. record industry.”

The music industry group is tracking more than 70 of these stream ripping sites and the most popular ones are listed in the overview of notorious markets. These are Mp3juices.cc, Convert2mp3.net, Savefrom.net, Ytmp3.cc, Convertmp3.io, Flvto.biz, and 2conv.com.

Youtube2mp3’s listing

The RIAA notes that many sites use domain privacy services to hide their identities, as well as Cloudflare to obscure the sites’ true hosting locations. This frustrates efforts to take action against these sites, they say.

Popular torrent sites are also highlighted, including The Pirate Bay. These sites regularly change domain names to avoid ISP blockades and domain seizures, and also use Cloudflare to hide their hosting location.

“BitTorrent sites, like many other pirate sites, are increasing [sic] turning to Cloudflare because routing their site through Cloudflare obfuscates the IP address of the actual hosting provider, masking the location of the site.”

Finally, the RIAA reports several emerging threats reported to the Government. Third party app stores, such as DownloadAtoZ.com, reportedly offer a slew of infringing apps. In addition, there’s a boom of Nigerian pirate sites that flood the market with free music.

“The number of such infringing sites with a Nigerian operator stands at over 200. Their primary method of promotion is via Twitter, and most sites make use of the Nigerian operated ISP speedhost247.com,” the report notes

The full list of RIAA’s “notorious” pirate sites, which also includes several cyberlockers, MP3 search and download sites, as well as unlicensed pay services, can be found below. The full report is available here (pdf).

Stream-Ripping Sites

– Mp3juices.cc
– Convert2mp3.net
– Savefrom.net
– Ytmp3.cc
– Convertmp3.io
– Flvto.biz
– 2conv.com.

Search-and-Download Sites

– Newalbumreleases.net
– Rnbxclusive.top
– DNJ.to

BitTorrent Indexing and Tracker Sites

– Thepiratebay.org
– Torrentdownloads.me
– Rarbg.to
– 1337x.to

Cyberlockers

– 4shared.com
– Uploaded.net
– Zippyshare.com
– Rapidgator.net
– Dopefile.pk
– Chomikuj.pl

Unlicensed Pay-for-Download Sites

– Mp3va.com
– Mp3fiesta.com

Source: TF, for the latest info on copyright, file-sharing, torrent sites and ANONYMOUS VPN services.

Spotify Threatened Researchers Who Revealed ‘Pirate’ History

Post Syndicated from Andy original https://torrentfreak.com/spotify-threatened-researchers-who-revealed-pirate-history-171006/

As one of the members of Sweden’s infamous Piratbyrån (Piracy Bureau), Rasmus Fleischer was also one of early key figures at The Pirate Bay. Over the years he’s been a writer, researcher, debater, and musician, and in 2012 he finished his PhD thesis on “music’s political economy.”

As part of a five-person research team (Pelle Snickars, Patrick Vonderau, Anna Johansson, Rasmus Fleischer, Maria Eriksson) funded by the Swedish Research Council, Fleischer has co-written a book about the history of Spotify.

Titled ‘Spotify Teardown – Inside the Black Box of Streaming Music’, the publication is set to shine light on the history of the now famous music service while revealing quite a few past secrets.

With its release scheduled for 2018, Fleischer has already teased a few interesting nuggets, not least that Spotify’s early beta version used ‘pirate’ MP3 files, some of them sourced from The Pirate Bay.

Fleischer says that following an interview earlier this year with DI.se, in which he revealed that Spotify distributed unlicensed music between May 2007 to October 2008, Spotify looked at ways to try and stop his team’s research. However, the ‘pirate’ angle wasn’t the clear target, another facet of the team’s research was.

“Building on the tradition of ‘breaching experiments’ in ethnomethodology, the research group sought to break into the hidden infrastructures of digital music distribution in order to study its underlying norms and structures,” project leader Pelle Snickars previously revealed.

With this goal, the team conducted experiments to see if the system was open to abuse or could be manipulated, as Fleischer now explains.

“For example, some hundreds of robot users were created to study whether the same listening behavior results in different recommendations depending on whether the user was registered as male or female,” he says.

“We have also investigated on a small scale the possibilities of manipulating the system. However, we have not collected any data about real users. Our proposed methods appeared several years ago in our research funding application, which was approved by the Swedish Research Council, which was already noted in 2013.”

Fleischer says that Spotify had been aware of the project for several years but it wasn’t until this year, after he spoke of Spotify’s past as a ‘pirate’ service, that pressure began to mount.

“On May 19, our project manager received a letter from Benjamin Helldén-Hegelund, a lawyer at Spotify. The timing was hardly a coincidence. Spotify demanded that we ‘confirm in writing’ that we had ‘ceased activities contrary to their Terms of Use’,” Fleischer reveals.

A corresponding letter to the Swedish Research Council detailed Spotify’s problems with the project.

“Spotify is particularly concerned about the information that has emerged regarding the research group’s methods in the project. The data indicate that the research team has deliberately taken action that is explicitly in violation of Spotify’s Terms of Use and by means of technical methods they sought to conceal these breaches of conditions,” the letter read.

“The research group has worked, among other things, to artificially increase the number of plays and manipulate Spotify’s services using scripts or other automated processes.

“Spotify assumes that the systematic breach of its conditions has not been known to the Swedish Research Council and is convinced that the Swedish Research Council is convinced that the research undertaken with the support of the Swedish Research Council in all respects meets ethical guidelines and is carried out reasonably and in accordance with applicable law.”

Fleischer admits that part of the research was concerned with the possibility of artificially increasing the number of plays, but he says that was carried out on a small scale without any commercial gain.

“The purpose was simply to test if it is true that Spotify could be manipulated on a larger scale, as claimed by journalists who did similar experiments. It is also true that we ‘sought to hide these crimes’ by using a VPN connection,” he says.

Fleischer says that Spotify’s lawyer blended complaints together, such as correlating terms of service violations with violation of research ethics, while presenting the same as grounds for legal action.

“The argument was quite ridiculous. Nevertheless, the letter could not be interpreted as anything other than an attempt by Spotify to prevent us from pursuing the research project,” he notes.

This week, however, it appears the dispute has reached some kind of conclusion. In a posting on his Copyriot blog (Swedish), Fleischer reveals that Spotify has informed the Swedish Research Council that the case has been closed, meaning that the research into the streaming service can continue.

“It must be acknowledged that Spotify’s threats have taken both time and power from the project. This seems to be the purpose when big companies go after researchers who they perceive as uncomfortable. It may not be possible to stop the research but it can be delayed,” Fleischer says.

“Sure [Spotify] dislikes people being reminded of how the service started as a pirate service. But instead of inviting an open dialogue, lawyers are sent out for the purpose of slowing down researchers.”

Spotify Teardown. Inside the Black Box of Streaming Music is to be published by MIT Press in 2018.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and ANONYMOUS VPN services.

timeShift(GrafanaBuzz, 1w) Issue 16

Post Syndicated from Blogs on Grafana Labs Blog original https://grafana.com/blog/2017/10/06/timeshiftgrafanabuzz-1w-issue-16/

Welcome to another issue of TimeShift. In addition to the roundup of articles and plugin updates, we had a big announcement this week – Early Bird tickets to GrafanaCon EU are now available! We’re also accepting CFPs through the end of October, so if you have a topic in mind, don’t wait until the last minute, please send it our way. Speakers who are selected will receive a comped ticket to the conference.


Early Bird Tickets Now Available

We’ve released a limited number of Early Bird tickets before General Admission tickets are available. Take advantage of this discount before they’re sold out!

Get Your Early Bird Ticket Now

Interested in speaking at GrafanaCon? We’re looking for technical and non-tecnical talks of all sizes. Submit a CFP Now.


From the Blogosphere

Get insights into your Azure Cosmos DB: partition heatmaps, OMS, and More: Microsoft recently announced the ability to access a subset of Azure Cosmos DB metrics via Azure Monitor API. Grafana Labs built an Azure Monitor Plugin for Grafana 4.5 to visualize the data.

How to monitor Docker for Mac/Windows: Brian was tired of guessing about the performance of his development machines and test environment. Here, he shows how to monitor Docker with Prometheus to get a better understanding of a dev environment in his quest to monitor all the things.

Prometheus and Grafana to Monitor 10,000 servers: This article covers enokido’s process of choosing a monitoring platform. He identifies three possible solutions, outlines the pros and cons of each, and discusses why he chose Prometheus.

GitLab Monitoring: It’s fascinating to see Grafana dashboards with production data from companies around the world. For instance, we’ve previously highlighted the huge number of dashboards Wikimedia publicly shares. This week, we found that GitLab also has public dashboards to explore.

Monitoring a Docker Swarm Cluster with cAdvisor, InfluxDB and Grafana | The Laboratory: It’s important to know the state of your applications in a scalable environment such as Docker Swarm. This video covers an overview of Docker, VM’s vs. containers, orchestration and how to monitor Docker Swarm.

Introducing Telemetry: Actionable Time Series Data from Counters: Learn how to use counters from mulitple disparate sources, devices, operating systems, and applications to generate actionable time series data.

ofp_sniffer Branch 1.2 (docker/influxdb/grafana) Upcoming Features: This video demo shows off some of the upcoming features for OFP_Sniffer, an OpenFlow sniffer to help network troubleshooting in production networks.


Grafana Plugins

Plugin authors add new features and bugfixes all the time, so it’s important to always keep your plugins up to date. To update plugins from on-prem Grafana, use the Grafana-cli tool, if you are using Hosted Grafana, you can update with 1 click! If you have questions or need help, hit up our community site, where the Grafana team and members of the community are happy to help.

UPDATED PLUGIN

PNP for Nagios Data Source – The latest release for the PNP data source has some fixes and adds a mathematical factor option.

Update

UPDATED PLUGIN

Google Calendar Data Source – This week, there was a small bug fix for the Google Calendar annotations data source.

Update

UPDATED PLUGIN

BT Plugins – Our friends at BT have been busy. All of the BT plugins in our catalog received and update this week. The plugins are the Status Dot Panel, the Peak Report Panel, the Trend Box Panel and the Alarm Box Panel.

Changes include:

  • Custom dashboard links now work in Internet Explorer.
  • The Peak Report panel no longer supports click-to-sort.
  • The Status Dot panel tooltips now look like Grafana tooltips.


This week’s MVC (Most Valuable Contributor)

Each week we highlight some of the important contributions from our amazing open source community. This week, we’d like to recognize a contributor who did a lot of work to improve Prometheus support.

pdoan017
Thanks to Alin Sinpaleanfor his Prometheus PR – that aligns the step and interval parameters. Alin got a lot of feedback from the Prometheus community and spent a lot of time and energy explaining, debating and iterating before the PR was ready.
Thank you!


Grafana Labs is Hiring!

We are passionate about open source software and thrive on tackling complex challenges to build the future. We ship code from every corner of the globe and love working with the community. If this sounds exciting, you’re in luck – WE’RE HIRING!

Check out our Open Positions


Tweet of the Week

We scour Twitter each week to find an interesting/beautiful dashboard and show it off! #monitoringLove

Wow – Excited to be a part of exploring data to find out how Mexico City is evolving.

We Need Your Help!

Do you have a graph that you love because the data is beautiful or because the graph provides interesting information? Please get in touch. Tweet or send us an email with a screenshot, and we’ll tell you about this fun experiment.

Tell Me More


What do you think?

That’s a wrap! How are we doing? Submit a comment on this article below, or post something at our community forum. Help us make these weekly roundups better!

Follow us on Twitter, like us on Facebook, and join the Grafana Labs community.

Dynamic Users with systemd

Post Syndicated from Lennart Poettering original http://0pointer.net/blog/dynamic-users-with-systemd.html

TL;DR: you may now configure systemd to dynamically allocate a UNIX
user ID for service processes when it starts them and release it when
it stops them. It’s pretty secure, mixes well with transient services,
socket activated services and service templating.

Today we released systemd
235
. Among
other improvements this greatly extends the dynamic user logic of
systemd. Dynamic users are a powerful but little known concept,
supported in its basic form since systemd 232. With this blog story I
hope to make it a bit better known.

The UNIX user concept is the most basic and well-understood security
concept in POSIX operating systems. It is UNIX/POSIX’ primary security
concept, the one everybody can agree on, and most security concepts
that came after it (such as process capabilities, SELinux and other
MACs, user name-spaces, …) in some form or another build on it, extend
it or at least interface with it. If you build a Linux kernel with all
security features turned off, the user concept is pretty much the one
you’ll still retain.

Originally, the user concept was introduced to make multi-user systems
a reality, i.e. systems enabling multiple human users to share the
same system at the same time, cleanly separating their resources and
protecting them from each other. The majority of today’s UNIX systems
don’t really use the user concept like that anymore though. Most of
today’s systems probably have only one actual human user (or even
less!), but their user databases (/etc/passwd) list a good number
more entries than that. Today, the majority of UNIX users in most
environments are system users, i.e. users that are not the technical
representation of a human sitting in front of a PC anymore, but the
security identity a system service — an executable program — runs
as. Event though traditional, simultaneous multi-user systems slowly
became less relevant, their ground-breaking basic concept became the
cornerstone of UNIX security. The OS is nowadays partitioned into
isolated services — and each service runs as its own system user, and
thus within its own, minimal security context.

The people behind the Android OS realized the relevance of the UNIX
user concept as the primary security concept on UNIX, and took its use
even further: on Android not only system services take benefit of the
UNIX user concept, but each UI app gets its own, individual user
identity too — thus neatly separating app resources from each other,
and protecting app processes from each other, too.

Back in the more traditional Linux world things are a bit less
advanced in this area. Even though users are the quintessential UNIX
security concept, allocation and management of system users is still a
pretty limited, raw and static affair. In most cases, RPM or DEB
package installation scripts allocate a fixed number of (usually one)
system users when you install the package of a service that wants to
take benefit of the user concept, and from that point on the system
user remains allocated on the system and is never deallocated again,
even if the package is later removed again. Most Linux distributions
limit the number of system users to 1000 (which isn’t particularly a
lot). Allocating a system user is hence expensive: the number of
available users is limited, and there’s no defined way to dispose of
them after use. If you make use of system users too liberally, you are
very likely to run out of them sooner rather than later.

You may wonder why system users are generally not deallocated when the
package that registered them is uninstalled from a system (at least on
most distributions). The reason for that is one relevant property of
the user concept (you might even want to call this a design flaw):
user IDs are sticky to files (and other objects such as IPC
objects). If a service running as a specific system user creates a
file at some location, and is then terminated and its package and user
removed, then the created file still belongs to the numeric ID (“UID”)
the system user originally got assigned. When the next system user is
allocated and — due to ID recycling — happens to get assigned the same
numeric ID, then it will also gain access to the file, and that’s
generally considered a problem, given that the file belonged to a
potentially very different service once upon a time, and likely should
not be readable or changeable by anything coming after
it. Distributions hence tend to avoid UID recycling which means system
users remain registered forever on a system after they have been
allocated once.

The above is a description of the status quo ante. Let’s now focus on
what systemd’s dynamic user concept brings to the table, to improve
the situation.

Introducing Dynamic Users

With systemd dynamic users we hope to make make it easier and cheaper
to allocate system users on-the-fly, thus substantially increasing the
possible uses of this core UNIX security concept.

If you write a systemd service unit file, you may enable the dynamic
user logic for it by setting the
DynamicUser=
option in its [Service] section to yes. If you do a system user is
dynamically allocated the instant the service binary is invoked, and
released again when the service terminates. The user is automatically
allocated from the UID range 61184–65519, by looking for a so far
unused UID.

Now you may wonder, how does this concept deal with the sticky user
issue discussed above? In order to counter the problem, two strategies
easily come to mind:

  1. Prohibit the service from creating any files/directories or IPC objects

  2. Automatically removing the files/directories or IPC objects the
    service created when it shuts down.

In systemd we implemented both strategies, but for different parts of
the execution environment. Specifically:

  1. Setting DynamicUser=yes implies
    ProtectSystem=strict
    and
    ProtectHome=read-only. These
    sand-boxing options turn off write access to pretty much the whole OS
    directory tree, with a few relevant exceptions, such as the API file
    systems /proc, /sys and so on, as well as /tmp and
    /var/tmp. (BTW: setting these two options on your regular services
    that do not use DynamicUser= is a good idea too, as it drastically
    reduces the exposure of the system to exploited services.)

  2. Setting DynamicUser=yes implies
    PrivateTmp=yes. This
    option sets up /tmp and /var/tmp for the service in a way that it
    gets its own, disconnected version of these directories, that are not
    shared by other services, and whose life-cycle is bound to the
    service’s own life-cycle. Thus if the service goes down, the user is
    removed and all its temporary files and directories with it. (BTW: as
    above, consider setting this option for your regular services that do
    not use DynamicUser= too, it’s a great way to lock things down
    security-wise.)

  3. Setting DynamicUser=yes implies
    RemoveIPC=yes. This
    option ensures that when the service goes down all SysV and POSIX IPC
    objects (shared memory, message queues, semaphores) owned by the
    service’s user are removed. Thus, the life-cycle of the IPC objects is
    bound to the life-cycle of the dynamic user and service, too. (BTW:
    yes, here too, consider using this in your regular services, too!)

With these four settings in effect, services with dynamic users are
nicely sand-boxed. They cannot create files or directories, except in
/tmp and /var/tmp, where they will be removed automatically when
the service shuts down, as will any IPC objects created. Sticky
ownership of files/directories and IPC objects is hence dealt with
effectively.

The
RuntimeDirectory=
option may be used to open up a bit the sandbox to external
programs. If you set it to a directory name of your choice, it will be
created below /run when the service is started, and removed in its
entirety when it is terminated. The ownership of the directory is
assigned to the service’s dynamic user. This way, a dynamic user
service can expose API interfaces (AF_UNIX sockets, …) to other
services at a well-defined place and again bind the life-cycle of it to
the service’s own run-time. Example: set RuntimeDirectory=foobar in
your service, and watch how a directory /run/foobar appears at the
moment you start the service, and disappears the moment you stop
it again. (BTW: Much like the other settings discussed above,
RuntimeDirectory= may be used outside of the DynamicUser= context
too, and is a nice way to run any service with a properly owned,
life-cycle-managed run-time directory.)

Persistent Data

Of course, a service running in such an environment (although already
very useful for many cases!), has a major limitation: it cannot leave
persistent data around it can reuse on a later run. As pretty much the
whole OS directory tree is read-only to it, there’s simply no place it
could put the data that survives from one service invocation to the
next.

With systemd 235 this limitation is removed: there are now three new
settings:
StateDirectory=,
LogsDirectory= and CacheDirectory=. In many ways they operate like
RuntimeDirectory=, but create sub-directories below /var/lib,
/var/log and /var/cache, respectively. There’s one major
difference beyond that however: directories created that way are
persistent, they will survive the run-time cycle of a service, and
thus may be used to store data that is supposed to stay around between
invocations of the service.

Of course, the obvious question to ask now is: how do these three
settings deal with the sticky file ownership problem?

For that we lifted a concept from container managers. Container
managers have a very similar problem: each container and the host
typically end up using a very similar set of numeric UIDs, and unless
user name-spacing is deployed this means that host users might be able
to access the data of specific containers that also have a user by the
same numeric UID assigned, even though it actually refers to a very
different identity in a different context. (Actually, it’s even worse
than just getting access, due to the existence of setuid file bits,
access might translate to privilege elevation.) The way container
managers protect the container images from the host (and from each
other to some level) is by placing the container trees below a
boundary directory, with very restrictive access modes and ownership
(0700 and root:root or so). A host user hence cannot take advantage
of the files/directories of a container user of the same UID inside of
a local container tree, simply because the boundary directory makes it
impossible to even reference files in it. After all on UNIX, in order
to get access to a specific path you need access to every single
component of it.

How is that applied to dynamic user services? Let’s say
StateDirectory=foobar is set for a service that has DynamicUser=
turned off. The instant the service is started, /var/lib/foobar is
created as state directory, owned by the service’s user and remains in
existence when the service is stopped. If the same service now is run
with DynamicUser= turned on, the implementation is slightly
altered. Instead of a directory /var/lib/foobar a symbolic link by
the same path is created (owned by root), pointing to
/var/lib/private/foobar (the latter being owned by the service’s
dynamic user). The /var/lib/private directory is created as boundary
directory: it’s owned by root:root, and has a restrictive access
mode of 0700. Both the symlink and the service’s state directory will
survive the service’s life-cycle, but the state directory will remain,
and continues to be owned by the now disposed dynamic UID — however it
is protected from other host users (and other services which might get
the same dynamic UID assigned due to UID recycling) by the boundary
directory.

The obvious question to ask now is: but if the boundary directory
prohibits access to the directory from unprivileged processes, how can
the service itself which runs under its own dynamic UID access it
anyway? This is achieved by invoking the service process in a slightly
modified mount name-space: it will see most of the file hierarchy the
same way as everything else on the system (modulo /tmp and
/var/tmp as mentioned above), except for /var/lib/private, which
is over-mounted with a read-only tmpfs file system instance, with a
slightly more liberal access mode permitting the service read
access. Inside of this tmpfs file system instance another mount is
placed: a bind mount to the host’s real /var/lib/private/foobar
directory, onto the same name. Putting this together these means that
superficially everything looks the same and is available at the same
place on the host and from inside the service, but two important
changes have been made: the /var/lib/private boundary directory lost
its restrictive character inside the service, and has been emptied of
the state directories of any other service, thus making the protection
complete. Note that the symlink /var/lib/foobar hides the fact that
the boundary directory is used (making it little more than an
implementation detail), as the directory is available this way under
the same name as it would be if DynamicUser= was not used. Long
story short: for the daemon and from the view from the host the
indirection through /var/lib/private is mostly transparent.

This logic of course raises another question: what happens to the
state directory if a dynamic user service is started with a state
directory configured, gets UID X assigned on this first invocation,
then terminates and is restarted and now gets UID Y assigned on the
second invocation, with X ≠ Y? On the second invocation the directory
— and all the files and directories below it — will still be owned by
the original UID X so how could the second instance running as Y
access it? Our way out is simple: systemd will recursively change the
ownership of the directory and everything contained within it to UID Y
before invoking the service’s executable.

Of course, such recursive ownership changing (chown()ing) of whole
directory trees can become expensive (though according to my
experiences, IRL and for most services it’s much cheaper than you
might think), hence in order to optimize behavior in this regard, the
allocation of dynamic UIDs has been tweaked in two ways to avoid the
necessity to do this expensive operation in most cases: firstly, when
a dynamic UID is allocated for a service an allocation loop is
employed that starts out with a UID hashed from the service’s
name. This means a service by the same name is likely to always use
the same numeric UID. That means that a stable service name translates
into a stable dynamic UID, and that means recursive file ownership
adjustments can be skipped (of course, after validation). Secondly, if
the configured state directory already exists, and is owned by a
suitable currently unused dynamic UID, it’s preferably used above
everything else, thus maximizing the chance we can avoid the
chown()ing. (That all said, ultimately we have to face it, the
currently available UID space of 4K+ is very small still, and
conflicts are pretty likely sooner or later, thus a chown()ing has to
be expected every now and then when this feature is used extensively).

Note that CacheDirectory= and LogsDirectory= work very similar to
StateDirectory=. The only difference is that they manage directories
below the /var/cache and /var/logs directories, and their boundary
directory hence is /var/cache/private and /var/log/private,
respectively.

Examples

So, after all this introduction, let’s have a look how this all can be
put together. Here’s a trivial example:

# cat > /etc/systemd/system/dynamic-user-test.service <<EOF
[Service]
ExecStart=/usr/bin/sleep 4711
DynamicUser=yes
EOF
# systemctl daemon-reload
# systemctl start dynamic-user-test
# systemctl status dynamic-user-test
● dynamic-user-test.service
   Loaded: loaded (/etc/systemd/system/dynamic-user-test.service; static; vendor preset: disabled)
   Active: active (running) since Fri 2017-10-06 13:12:25 CEST; 3s ago
 Main PID: 2967 (sleep)
    Tasks: 1 (limit: 4915)
   CGroup: /system.slice/dynamic-user-test.service
           └─2967 /usr/bin/sleep 4711

Okt 06 13:12:25 sigma systemd[1]: Started dynamic-user-test.service.
# ps -e -o pid,comm,user | grep 2967
 2967 sleep           dynamic-user-test
# id dynamic-user-test
uid=64642(dynamic-user-test) gid=64642(dynamic-user-test) groups=64642(dynamic-user-test)
# systemctl stop dynamic-user-test
# id dynamic-user-test
id: ‘dynamic-user-test’: no such user

In this example, we create a unit file with DynamicUser= turned on,
start it, check if it’s running correctly, have a look at the service
process’ user (which is named like the service; systemd does this
automatically if the service name is suitable as user name, and you
didn’t configure any user name to use explicitly), stop the service
and verify that the user ceased to exist too.

That’s already pretty cool. Let’s step it up a notch, by doing the
same in an interactive transient service (for those who don’t know
systemd well: a transient service is a service that is defined and
started dynamically at run-time, for example via the systemd-run
command from the shell. Think: run a service without having to write a
unit file first):

# systemd-run --pty --property=DynamicUser=yes --property=StateDirectory=wuff /bin/sh
Running as unit: run-u15750.service
Press ^] three times within 1s to disconnect TTY.
sh-4.4$ id
uid=63122(run-u15750) gid=63122(run-u15750) groups=63122(run-u15750) context=system_u:system_r:initrc_t:s0
sh-4.4$ ls -al /var/lib/private/
total 0
drwxr-xr-x. 3 root       root        60  6. Okt 13:21 .
drwxr-xr-x. 1 root       root       852  6. Okt 13:21 ..
drwxr-xr-x. 1 run-u15750 run-u15750   8  6. Okt 13:22 wuff
sh-4.4$ ls -ld /var/lib/wuff
lrwxrwxrwx. 1 root root 12  6. Okt 13:21 /var/lib/wuff -> private/wuff
sh-4.4$ ls -ld /var/lib/wuff/
drwxr-xr-x. 1 run-u15750 run-u15750 0  6. Okt 13:21 /var/lib/wuff/
sh-4.4$ echo hello > /var/lib/wuff/test
sh-4.4$ exit
exit
# id run-u15750
id: ‘run-u15750’: no such user
# ls -al /var/lib/private
total 0
drwx------. 1 root  root   66  6. Okt 13:21 .
drwxr-xr-x. 1 root  root  852  6. Okt 13:21 ..
drwxr-xr-x. 1 63122 63122   8  6. Okt 13:22 wuff
# ls -ld /var/lib/wuff
lrwxrwxrwx. 1 root root 12  6. Okt 13:21 /var/lib/wuff -> private/wuff
# ls -ld /var/lib/wuff/
drwxr-xr-x. 1 63122 63122 8  6. Okt 13:22 /var/lib/wuff/
# cat /var/lib/wuff/test
hello

The above invokes an interactive shell as transient service
run-u15750.service (systemd-run picked that name automatically,
since we didn’t specify anything explicitly) with a dynamic user whose
name is derived automatically from the service name. Because
StateDirectory=wuff is used, a persistent state directory for the
service is made available as /var/lib/wuff. In the interactive shell
running inside the service, the ls commands show the
/var/lib/private boundary directory and its contents, as well as the
symlink that is placed for the service. Finally, before exiting the
shell, a file is created in the state directory. Back in the original
command shell we check if the user is still allocated: it is not, of
course, since the service ceased to exist when we exited the shell and
with it the dynamic user associated with it. From the host we check
the state directory of the service, with similar commands as we did
from inside of it. We see that things are set up pretty much the same
way in both cases, except for two things: first of all the user/group
of the files is now shown as raw numeric UIDs instead of the
user/group names derived from the unit name. That’s because the user
ceased to exist at this point, and “ls” shows the raw UID for files
owned by users that don’t exist. Secondly, the access mode of the
boundary directory is different: when we look at it from outside of
the service it is not readable by anyone but root, when we looked from
inside we saw it it being world readable.

Now, let’s see how things look if we start another transient service,
reusing the state directory from the first invocation:

# systemd-run --pty --property=DynamicUser=yes --property=StateDirectory=wuff /bin/sh
Running as unit: run-u16087.service
Press ^] three times within 1s to disconnect TTY.
sh-4.4$ cat /var/lib/wuff/test
hello
sh-4.4$ ls -al /var/lib/wuff/
total 4
drwxr-xr-x. 1 run-u16087 run-u16087  8  6. Okt 13:22 .
drwxr-xr-x. 3 root       root       60  6. Okt 15:42 ..
-rw-r--r--. 1 run-u16087 run-u16087  6  6. Okt 13:22 test
sh-4.4$ id
uid=63122(run-u16087) gid=63122(run-u16087) groups=63122(run-u16087) context=system_u:system_r:initrc_t:s0
sh-4.4$ exit
exit

Here, systemd-run picked a different auto-generated unit name, but
the used dynamic UID is still the same, as it was read from the
pre-existing state directory, and was otherwise unused. As we can see
the test file we generated earlier is accessible and still contains
the data we left in there. Do note that the user name is different
this time (as it is derived from the unit name, which is different),
but the UID it is assigned to is the same one as on the first
invocation. We can thus see that the mentioned optimization of the UID
allocation logic (i.e. that we start the allocation loop from the UID
owner of any existing state directory) took effect, so that no
recursive chown()ing was required.

And that’s the end of our example, which hopefully illustrated a bit
how this concept and implementation works.

Use-cases

Now that we had a look at how to enable this logic for a unit and how
it is implemented, let’s discuss where this actually could be useful
in real life.

  • One major benefit of dynamic user IDs is that running a
    privilege-separated service leaves no artifacts in the system. A
    system user is allocated and made use of, but it is discarded
    automatically in a safe and secure way after use, in a fashion that is
    safe for later recycling. Thus, quickly invoking a short-lived service
    for processing some job can be protected properly through a user ID
    without having to pre-allocate it and without this draining the
    available UID pool any longer than necessary.

  • In many cases, starting a service no longer requires
    package-specific preparation. Or in other words, quite often
    useradd/mkdir/chown/chmod invocations in “post-inst” package
    scripts, as well as
    sysusers.d
    and
    tmpfiles.d
    drop-ins become unnecessary, as the DynamicUser= and
    StateDirectory=/CacheDirectory=/LogsDirectory= logic can do the
    necessary work automatically, on-demand and with a well-defined
    life-cycle.

  • By combining dynamic user IDs with the transient unit concept, new
    creative ways of sand-boxing are made available. For example, let’s say
    you don’t trust the correct implementation of the sort command. You
    can now lock it into a simple, robust, dynamic UID sandbox with a
    simple systemd-run and still integrate it into a shell pipeline like
    any other command. Here’s an example, showcasing a shell pipeline
    whose middle element runs as a dynamically on-the-fly allocated UID,
    that is released when the pipelines ends.

    # cat some-file.txt | systemd-run ---pipe --property=DynamicUser=1 sort -u | grep -i foobar > some-other-file.txt
    
  • By combining dynamic user IDs with the systemd templating logic it
    is now possible to do much more fine-grained and fully automatic UID
    management. For example, let’s say you have a template unit file
    /etc/systemd/system/[email protected]:

    [Service]
    ExecStart=/usr/bin/myfoobarserviced
    DynamicUser=1
    StateDirectory=foobar/%i
    

    Now, let’s say you want to start one instance of this service for
    each of your customers. All you need to do now for that is:

    # systemctl enable [email protected] --now
    

    And you are done. (Invoke this as many times as you like, each time
    replacing customerxyz by some customer identifier, you get the
    idea.)

  • By combining dynamic user IDs with socket activation you may easily
    implement a system where each incoming connection is served by a
    process instance running as a different, fresh, newly allocated UID
    within its own sandbox. Here’s an example waldo.socket:

    [Socket]
    ListenStream=2048
    Accept=yes
    

    With a matching [email protected]:

    [Service]
    ExecStart=-/usr/bin/myservicebinary
    DynamicUser=yes
    

    With the two unit files above, systemd will listen on TCP/IP port
    2048, and for each incoming connection invoke a fresh instance of
    [email protected], each time utilizing a different, new,
    dynamically allocated UID, neatly isolated from any other
    instance.

  • Dynamic user IDs combine very well with state-less systems,
    i.e. systems that come up with an unpopulated /etc and /var. A
    service using dynamic user IDs and the StateDirectory=,
    CacheDirectory=, LogsDirectory= and RuntimeDirectory= concepts
    will implicitly allocate the users and directories it needs for
    running, right at the moment where it needs it.

Dynamic users are a very generic concept, hence a multitude of other
uses are thinkable; the list above is just supposed to trigger your
imagination.

What does this mean for you as a packager?

I am pretty sure that a large number of services shipped with today’s
distributions could benefit from using DynamicUser= and
StateDirectory= (and related settings). It often allows removal of
post-inst packaging scripts altogether, as well as any sysusers.d
and tmpfiles.d drop-ins by unifying the needed declarations in the
unit file itself. Hence, as a packager please consider switching your
unit files over. That said, there are a number of conditions where
DynamicUser= and StateDirectory= (and friends) cannot or should
not be used. To name a few:

  1. Service that need to write to files outside of /run/<package>,
    /var/lib/<package>, /var/cache/<package>, /var/log/<package>,
    /var/tmp, /tmp, /dev/shm are generally incompatible with this
    scheme. This rules out daemons that upgrade the system as one example,
    as that involves writing to /usr.

  2. Services that maintain a herd of processes with different user
    IDs. Some SMTP services are like this. If your service has such a
    super-server design, UID management needs to be done by the
    super-server itself, which rules out systemd doing its dynamic UID
    magic for it.

  3. Services which run as root (obviously…) or are otherwise
    privileged.

  4. Services that need to live in the same mount name-space as the host
    system (for example, because they want to establish mount points
    visible system-wide). As mentioned DynamicUser= implies
    ProtectSystem=, PrivateTmp= and related options, which all require
    the service to run in its own mount name-space.

  5. Your focus is older distributions, i.e. distributions that do not
    have systemd 232 (for DynamicUser=) or systemd 235 (for
    StateDirectory= and friends) yet.

  6. If your distribution’s packaging guides don’t allow it. Consult
    your packaging guides, and possibly start a discussion on your
    distribution’s mailing list about this.

Notes

A couple of additional, random notes about the implementation and use
of these features:

  1. Do note that allocating or deallocating a dynamic user leaves
    /etc/passwd untouched. A dynamic user is added into the user
    database through the glibc NSS module
    nss-systemd,
    and this information never hits the disk.

  2. On traditional UNIX systems it was the job of the daemon process
    itself to drop privileges, while the DynamicUser= concept is
    designed around the service manager (i.e. systemd) being responsible
    for that. That said, since v235 there’s a way to marry DynamicUser=
    and such services which want to drop privileges on their own. For
    that, turn on DynamicUser= and set
    User=
    to the user name the service wants to setuid() to. This has the
    effect that systemd will allocate the dynamic user under the specified
    name when the service is started. Then, prefix the command line you
    specify in
    ExecStart=
    with a single ! character. If you do, the user is allocated for the
    service, but the daemon binary is is invoked as root instead of the
    allocated user, under the assumption that the daemon changes its UID
    on its own the right way. Not that after registration the user will
    show up instantly in the user database, and is hence resolvable like
    any other by the daemon process. Example:
    ExecStart=!/usr/bin/mydaemond

  3. You may wonder why systemd uses the UID range 61184–65519 for its
    dynamic user allocations (side note: in hexadecimal this reads as
    0xEF00–0xFFEF). That’s because distributions (specifically Fedora)
    tend to allocate regular users from below the 60000 range, and we
    don’t want to step into that. We also want to stay away from 65535 and
    a bit around it, as some of these UIDs have special meanings (65535 is
    often used as special value for “invalid” or “no” UID, as it is
    identical to the 16bit value -1; 65534 is generally mapped to the
    “nobody” user, and is where some kernel subsystems map unmappable
    UIDs). Finally, we want to stay within the 16bit range. In a user
    name-spacing world each container tends to have much less than the full
    32bit UID range available that Linux kernels theoretically
    provide. Everybody apparently can agree that a container should at
    least cover the 16bit range though — already to include a nobody
    user. (And quite frankly, I am pretty sure assigning 64K UIDs per
    container is nicely systematic, as the the higher 16bit of the 32bit
    UID values this way become a container ID, while the lower 16bit
    become the logical UID within each container, if you still follow what
    I am babbling here…). And before you ask: no this range cannot be
    changed right now, it’s compiled in. We might change that eventually
    however.

  4. You might wonder what happens if you already used UIDs from the
    61184–65519 range on your system for other purposes. systemd should
    handle that mostly fine, as long as that usage is properly registered
    in the user database: when allocating a dynamic user we pick a UID,
    see if it is currently used somehow, and if yes pick a different one,
    until we find a free one. Whether a UID is used right now or not is
    checked through NSS calls. Moreover the IPC object lists are checked to
    see if there are any objects owned by the UID we are about to
    pick. This means systemd will avoid using UIDs you have assigned
    otherwise. Note however that this of course makes the pool of
    available UIDs smaller, and in the worst cases this means that
    allocating a dynamic user might fail because there simply are no
    unused UIDs in the range.

  5. If not specified otherwise the name for a dynamically allocated
    user is derived from the service name. Not everything that’s valid in
    a service name is valid in a user-name however, and in some cases a
    randomized name is used instead to deal with this. Often it makes
    sense to pick the user names to register explicitly. For that use
    User= and choose whatever you like.

  6. If you pick a user name with User= and combine it with
    DynamicUser= and the user already exists statically it will be used
    for the service and the dynamic user logic is automatically
    disabled. This permits automatic up- and downgrades between static and
    dynamic UIDs. For example, it provides a nice way to move a system
    from static to dynamic UIDs in a compatible way: as long as you select
    the same User= value before and after switching DynamicUser= on,
    the service will continue to use the statically allocated user if it
    exists, and only operates in the dynamic mode if it does not. This is
    useful for other cases as well, for example to adapt a service that
    normally would use a dynamic user to concepts that require statically
    assigned UIDs, for example to marry classic UID-based file system
    quota with such services.

  7. systemd always allocates a pair of dynamic UID and GID at the same
    time, with the same numeric ID.

  8. If the Linux kernel had a “shiftfs” or similar functionality,
    i.e. a way to mount an existing directory to a second place, but map
    the exposed UIDs/GIDs in some way configurable at mount time, this
    would be excellent for the implementation of StateDirectory= in
    conjunction with DynamicUser=. It would make the recursive
    chown()ing step unnecessary, as the host version of the state
    directory could simply be mounted into a the service’s mount
    name-space, with a shift applied that maps the directory’s owner to the
    services’ UID/GID. But I don’t have high hopes in this regard, as all
    work being done in this area appears to be bound to user name-spacing
    — which is a concept not used here (and I guess one could say user
    name-spacing is probably more a source of problems than a solution to
    one, but you are welcome to disagree on that).

And that’s all for now. Enjoy your dynamic users!