Tag Archives: Kinesis Data Stream

A serverless solution for invoking AWS Lambda at a sub-minute frequency

Post Syndicated from Emanuele Menga original https://aws.amazon.com/blogs/architecture/a-serverless-solution-for-invoking-aws-lambda-at-a-sub-minute-frequency/

If you’ve used Amazon CloudWatch Events to schedule the invocation of a Lambda function at regular intervals, you may have noticed that the highest frequency possible is one invocation per minute. However, in some cases, you may need to invoke Lambda more often than that. In this blog post, I’ll cover invoking a Lambda function every 10 seconds, but with some simple math you can change to whatever interval you like.

To achieve this, I’ll show you how to leverage Step Functions and Amazon Kinesis Data Streams.

The Solution

For this example, I’ve created a Step Functions State Machine that invokes our Lambda function 6 times, 10 seconds apart. Such State Machine is then executed once per minute by a CloudWatch Events Rule. This state machine is then executed once per minute by an Amazon CloudWatch Events rule. Finally, the Kinesis Data Stream triggers our Lambda function for each record inserted. The result is our Lambda function being invoked every 10 seconds, indefinitely.

Below is a diagram illustrating how the various services work together.

Step 1: My sampleLambda function doesn’t actually do anything, it just simulates an execution for a few seconds. This is the (Python) code of my dummy function:

import time

import random


def lambda_handler(event, context):

rand = random.randint(1, 3)

print('Running for {} seconds'.format(rand))

time.sleep(rand)

return True

Step 2:

The next step is to create a second Lambda function, that I called Iterator, which has two duties:

  • It keeps track of the current number of iterations, since Step Function doesn’t natively have a state we can use for this purpose.
  • It asynchronously invokes our Lambda function at every loops.

This is the code of the Iterator, adapted from here.

 

import boto3

client = boto3.client('kinesis')

def lambda_handler(event, context):

index = event['iterator']['index'] + 1

response = client.put_record(

StreamName='LambdaSubMinute',

PartitionKey='1',

Data='',

)

return {

'index': index,

'continue': index < event['iterator']['count'],

'count': event['iterator']['count']

}

This function does three things:

  • Increments the counter.
  • Verifies if we reached a count of (in this example) 6.
  • Sends an empty record to the Kinesis Stream.

Now we can create the Step Functions State Machine; the definition is, again, adapted from here.

 

{

"Comment": "Invoke Lambda every 10 seconds",

"StartAt": "ConfigureCount",

"States": {

"ConfigureCount": {

"Type": "Pass",

"Result": {

"index": 0,

"count": 6

},

"ResultPath": "$.iterator",

"Next": "Iterator"

},

"Iterator": {

"Type": "Task",

"Resource": “arn:aws:lambda:REGION:ACCOUNT_ID:function:Iterator",

"ResultPath": "$.iterator",

"Next": "IsCountReached"

},

"IsCountReached": {

"Type": "Choice",

"Choices": [

{

"Variable": "$.iterator.continue",

"BooleanEquals": true,

"Next": "Wait"

}

],

"Default": "Done"

},

"Wait": {

"Type": "Wait",

"Seconds": 10,

"Next": "Iterator"

},

"Done": {

"Type": "Pass",

"End": true

}

}

}

This is how it works:

  1. The state machine starts and sets the index at 0 and the count at 6.
  2. Iterator function is invoked.
  3. If the iterator function reached the end of the loop, the IsCountReached state terminates the execution, otherwise the machine waits for 10 seconds.
  4. The machine loops back to the iterator.

Step 3: Create an Amazon CloudWatch Events rule scheduled to trigger every minute and add the state machine as its target. I’ve actually prepared an Amazon CloudFormation template that creates the whole stack and starts the Lambda invocations, you can find it here.

Performance

Let’s have a look at a sample series of invocations and analyse how precise the timing is. In the following chart I reported the delay (in excess of the expected 10-second-wait) of 30 consecutive invocations of my dummy function, when the Iterator is configured with a memory size of 1024MB.

Invocations Delay

Notice the delay increases by a few hundred milliseconds at every invocation. The good news is it accrues only within the same loop, 6 times; after that, a new CloudWatch Events kicks in and it resets.

This delay  is due to the work that AWS Step Function does outside of the Wait state, the main component of which is the Iterator function itself, that runs synchronously in the state machine and therefore adds up its duration to the 10-second-wait.

As we can easily imagine, the memory size of the Iterator Lambda function does make a difference. Here are the Average and Maximum duration of the function with 256MB, 512MB, 1GB and 2GB of memory.

Average Duration

Maximum Duration


Given those results, I’d say that a memory of 1024MB is a good compromise between costs and performance.

Caveats

As mentioned, in our Amazon CloudWatch Events documentation, in rare cases a rule can be triggered twice, causing two parallel executions of the state machine. If that is a concern, we can add a task state at the beginning of the state machine that checks if any other executions are currently running. If the outcome is positive, then a choice state can immediately terminate the flow. Since the state machine is invoked every 60 seconds and runs for about 50, it is safe to assume that executions should all be sequential and any parallel executions should be treated as duplicates. The task state that checks for current running executions can be a Lambda function similar to the following:

 

import boto3

client = boto3.client('stepfunctions')

def lambda_handler(event, context):

response = client.list_executions(

stateMachineArn='arn:aws:states:REGION:ACCOUNTID:stateMachine:LambdaSubMinute',

statusFilter='RUNNING'

)

return {

'alreadyRunning': len(response['executions']) > 0

}

About the Author

Emanuele Menga, Cloud Support Engineer

 

Analyze Apache Parquet optimized data using Amazon Kinesis Data Firehose, Amazon Athena, and Amazon Redshift

Post Syndicated from Roy Hasson original https://aws.amazon.com/blogs/big-data/analyzing-apache-parquet-optimized-data-using-amazon-kinesis-data-firehose-amazon-athena-and-amazon-redshift/

Amazon Kinesis Data Firehose is the easiest way to capture and stream data into a data lake built on Amazon S3. This data can be anything—from AWS service logs like AWS CloudTrail log files, Amazon VPC Flow Logs, Application Load Balancer logs, and others. It can also be IoT events, game events, and much more. To efficiently query this data, a time-consuming ETL (extract, transform, and load) process is required to massage and convert the data to an optimal file format, which increases the time to insight. This situation is less than ideal, especially for real-time data that loses its value over time.

To solve this common challenge, Kinesis Data Firehose can now save data to Amazon S3 in Apache Parquet or Apache ORC format. These are optimized columnar formats that are highly recommended for best performance and cost-savings when querying data in S3. This feature directly benefits you if you use Amazon Athena, Amazon Redshift, AWS Glue, Amazon EMR, or any other big data tools that are available from the AWS Partner Network and through the open-source community.

Amazon Connect is a simple-to-use, cloud-based contact center service that makes it easy for any business to provide a great customer experience at a lower cost than common alternatives. Its open platform design enables easy integration with other systems. One of those systems is Amazon Kinesis—in particular, Kinesis Data Streams and Kinesis Data Firehose.

What’s really exciting is that you can now save events from Amazon Connect to S3 in Apache Parquet format. You can then perform analytics using Amazon Athena and Amazon Redshift Spectrum in real time, taking advantage of this key performance and cost optimization. Of course, Amazon Connect is only one example. This new capability opens the door for a great deal of opportunity, especially as organizations continue to build their data lakes.

Amazon Connect includes an array of analytics views in the Administrator dashboard. But you might want to run other types of analysis. In this post, I describe how to set up a data stream from Amazon Connect through Kinesis Data Streams and Kinesis Data Firehose and out to S3, and then perform analytics using Athena and Amazon Redshift Spectrum. I focus primarily on the Kinesis Data Firehose support for Parquet and its integration with the AWS Glue Data Catalog, Amazon Athena, and Amazon Redshift.

Solution overview

Here is how the solution is laid out:

 

 

The following sections walk you through each of these steps to set up the pipeline.

1. Define the schema

When Kinesis Data Firehose processes incoming events and converts the data to Parquet, it needs to know which schema to apply. The reason is that many times, incoming events contain all or some of the expected fields based on which values the producers are advertising. A typical process is to normalize the schema during a batch ETL job so that you end up with a consistent schema that can easily be understood and queried. Doing this introduces latency due to the nature of the batch process. To overcome this issue, Kinesis Data Firehose requires the schema to be defined in advance.

To see the available columns and structures, see Amazon Connect Agent Event Streams. For the purpose of simplicity, I opted to make all the columns of type String rather than create the nested structures. But you can definitely do that if you want.

The simplest way to define the schema is to create a table in the Amazon Athena console. Open the Athena console, and paste the following create table statement, substituting your own S3 bucket and prefix for where your event data will be stored. A Data Catalog database is a logical container that holds the different tables that you can create. The default database name shown here should already exist. If it doesn’t, you can create it or use another database that you’ve already created.

CREATE EXTERNAL TABLE default.kfhconnectblog (
  awsaccountid string,
  agentarn string,
  currentagentsnapshot string,
  eventid string,
  eventtimestamp string,
  eventtype string,
  instancearn string,
  previousagentsnapshot string,
  version string
)
STORED AS parquet
LOCATION 's3://your_bucket/kfhconnectblog/'
TBLPROPERTIES ("parquet.compression"="SNAPPY")

That’s all you have to do to prepare the schema for Kinesis Data Firehose.

2. Define the data streams

Next, you need to define the Kinesis data streams that will be used to stream the Amazon Connect events.  Open the Kinesis Data Streams console and create two streams.  You can configure them with only one shard each because you don’t have a lot of data right now.

3. Define the Kinesis Data Firehose delivery stream for Parquet

Let’s configure the Data Firehose delivery stream using the data stream as the source and Amazon S3 as the output. Start by opening the Kinesis Data Firehose console and creating a new data delivery stream. Give it a name, and associate it with the Kinesis data stream that you created in Step 2.

As shown in the following screenshot, enable Record format conversion (1) and choose Apache Parquet (2). As you can see, Apache ORC is also supported. Scroll down and provide the AWS Glue Data Catalog database name (3) and table names (4) that you created in Step 1. Choose Next.

To make things easier, the output S3 bucket and prefix fields are automatically populated using the values that you defined in the LOCATION parameter of the create table statement from Step 1. Pretty cool. Additionally, you have the option to save the raw events into another location as defined in the Source record S3 backup section. Don’t forget to add a trailing forward slash “ / “ so that Data Firehose creates the date partitions inside that prefix.

On the next page, in the S3 buffer conditions section, there is a note about configuring a large buffer size. The Parquet file format is highly efficient in how it stores and compresses data. Increasing the buffer size allows you to pack more rows into each output file, which is preferred and gives you the most benefit from Parquet.

Compression using Snappy is automatically enabled for both Parquet and ORC. You can modify the compression algorithm by using the Kinesis Data Firehose API and update the OutputFormatConfiguration.

Be sure to also enable Amazon CloudWatch Logs so that you can debug any issues that you might run into.

Lastly, finalize the creation of the Firehose delivery stream, and continue on to the next section.

4. Set up the Amazon Connect contact center

After setting up the Kinesis pipeline, you now need to set up a simple contact center in Amazon Connect. The Getting Started page provides clear instructions on how to set up your environment, acquire a phone number, and create an agent to accept calls.

After setting up the contact center, in the Amazon Connect console, choose your Instance Alias, and then choose Data Streaming. Under Agent Event, choose the Kinesis data stream that you created in Step 2, and then choose Save.

At this point, your pipeline is complete.  Agent events from Amazon Connect are generated as agents go about their day. Events are sent via Kinesis Data Streams to Kinesis Data Firehose, which converts the event data from JSON to Parquet and stores it in S3. Athena and Amazon Redshift Spectrum can simply query the data without any additional work.

So let’s generate some data. Go back into the Administrator console for your Amazon Connect contact center, and create an agent to handle incoming calls. In this example, I creatively named mine Agent One. After it is created, Agent One can get to work and log into their console and set their availability to Available so that they are ready to receive calls.

To make the data a bit more interesting, I also created a second agent, Agent Two. I then made some incoming and outgoing calls and caused some failures to occur, so I now have enough data available to analyze.

5. Analyze the data with Athena

Let’s open the Athena console and run some queries. One thing you’ll notice is that when we created the schema for the dataset, we defined some of the fields as Strings even though in the documentation they were complex structures.  The reason for doing that was simply to show some of the flexibility of Athena to be able to parse JSON data. However, you can define nested structures in your table schema so that Kinesis Data Firehose applies the appropriate schema to the Parquet file.

Let’s run the first query to see which agents have logged into the system.

The query might look complex, but it’s fairly straightforward:

WITH dataset AS (
  SELECT 
    from_iso8601_timestamp(eventtimestamp) AS event_ts,
    eventtype,
    -- CURRENT STATE
    json_extract_scalar(
      currentagentsnapshot,
      '$.agentstatus.name') AS current_status,
    from_iso8601_timestamp(
      json_extract_scalar(
        currentagentsnapshot,
        '$.agentstatus.starttimestamp')) AS current_starttimestamp,
    json_extract_scalar(
      currentagentsnapshot, 
      '$.configuration.firstname') AS current_firstname,
    json_extract_scalar(
      currentagentsnapshot,
      '$.configuration.lastname') AS current_lastname,
    json_extract_scalar(
      currentagentsnapshot, 
      '$.configuration.username') AS current_username,
    json_extract_scalar(
      currentagentsnapshot, 
      '$.configuration.routingprofile.defaultoutboundqueue.name') AS               current_outboundqueue,
    json_extract_scalar(
      currentagentsnapshot, 
      '$.configuration.routingprofile.inboundqueues[0].name') as current_inboundqueue,
    -- PREVIOUS STATE
    json_extract_scalar(
      previousagentsnapshot, 
      '$.agentstatus.name') as prev_status,
    from_iso8601_timestamp(
      json_extract_scalar(
        previousagentsnapshot, 
       '$.agentstatus.starttimestamp')) as prev_starttimestamp,
    json_extract_scalar(
      previousagentsnapshot, 
      '$.configuration.firstname') as prev_firstname,
    json_extract_scalar(
      previousagentsnapshot, 
      '$.configuration.lastname') as prev_lastname,
    json_extract_scalar(
      previousagentsnapshot, 
      '$.configuration.username') as prev_username,
    json_extract_scalar(
      previousagentsnapshot, 
      '$.configuration.routingprofile.defaultoutboundqueue.name') as current_outboundqueue,
    json_extract_scalar(
      previousagentsnapshot, 
      '$.configuration.routingprofile.inboundqueues[0].name') as prev_inboundqueue
  from kfhconnectblog
  where eventtype <> 'HEART_BEAT'
)
SELECT
  current_status as status,
  current_username as username,
  event_ts
FROM dataset
WHERE eventtype = 'LOGIN' AND current_username <> ''
ORDER BY event_ts DESC

The query output looks something like this:

Here is another query that shows the sessions each of the agents engaged with. It tells us where they were incoming or outgoing, if they were completed, and where there were missed or failed calls.

WITH src AS (
  SELECT
     eventid,
     json_extract_scalar(currentagentsnapshot, '$.configuration.username') as username,
     cast(json_extract(currentagentsnapshot, '$.contacts') AS ARRAY(JSON)) as c,
     cast(json_extract(previousagentsnapshot, '$.contacts') AS ARRAY(JSON)) as p
  from kfhconnectblog
),
src2 AS (
  SELECT *
  FROM src CROSS JOIN UNNEST (c, p) AS contacts(c_item, p_item)
),
dataset AS (
SELECT 
  eventid,
  username,
  json_extract_scalar(c_item, '$.contactid') as c_contactid,
  json_extract_scalar(c_item, '$.channel') as c_channel,
  json_extract_scalar(c_item, '$.initiationmethod') as c_direction,
  json_extract_scalar(c_item, '$.queue.name') as c_queue,
  json_extract_scalar(c_item, '$.state') as c_state,
  from_iso8601_timestamp(json_extract_scalar(c_item, '$.statestarttimestamp')) as c_ts,
  
  json_extract_scalar(p_item, '$.contactid') as p_contactid,
  json_extract_scalar(p_item, '$.channel') as p_channel,
  json_extract_scalar(p_item, '$.initiationmethod') as p_direction,
  json_extract_scalar(p_item, '$.queue.name') as p_queue,
  json_extract_scalar(p_item, '$.state') as p_state,
  from_iso8601_timestamp(json_extract_scalar(p_item, '$.statestarttimestamp')) as p_ts
FROM src2
)
SELECT 
  username,
  c_channel as channel,
  c_direction as direction,
  p_state as prev_state,
  c_state as current_state,
  c_ts as current_ts,
  c_contactid as id
FROM dataset
WHERE c_contactid = p_contactid
ORDER BY id DESC, current_ts ASC

The query output looks similar to the following:

6. Analyze the data with Amazon Redshift Spectrum

With Amazon Redshift Spectrum, you can query data directly in S3 using your existing Amazon Redshift data warehouse cluster. Because the data is already in Parquet format, Redshift Spectrum gets the same great benefits that Athena does.

Here is a simple query to show querying the same data from Amazon Redshift. Note that to do this, you need to first create an external schema in Amazon Redshift that points to the AWS Glue Data Catalog.

SELECT 
  eventtype,
  json_extract_path_text(currentagentsnapshot,'agentstatus','name') AS current_status,
  json_extract_path_text(currentagentsnapshot, 'configuration','firstname') AS current_firstname,
  json_extract_path_text(currentagentsnapshot, 'configuration','lastname') AS current_lastname,
  json_extract_path_text(
    currentagentsnapshot,
    'configuration','routingprofile','defaultoutboundqueue','name') AS current_outboundqueue,
FROM default_schema.kfhconnectblog

The following shows the query output:

Summary

In this post, I showed you how to use Kinesis Data Firehose to ingest and convert data to columnar file format, enabling real-time analysis using Athena and Amazon Redshift. This great feature enables a level of optimization in both cost and performance that you need when storing and analyzing large amounts of data. This feature is equally important if you are investing in building data lakes on AWS.

 


Additional Reading

If you found this post useful, be sure to check out Analyzing VPC Flow Logs with Amazon Kinesis Firehose, Amazon Athena, and Amazon QuickSight and Work with partitioned data in AWS Glue.


About the Author

Roy Hasson is a Global Business Development Manager for AWS Analytics. He works with customers around the globe to design solutions to meet their data processing, analytics and business intelligence needs. Roy is big Manchester United fan cheering his team on and hanging out with his family.

 

 

 

Real-Time Hotspot Detection in Amazon Kinesis Analytics

Post Syndicated from Randall Hunt original https://aws.amazon.com/blogs/aws/real-time-hotspot-detection-in-amazon-kinesis-analytics/

Today we’re releasing a new machine learning feature in Amazon Kinesis Data Analytics for detecting “hotspots” in your streaming data. We launched Kinesis Data Analytics in August of 2016 and we’ve continued to add features since. As you may already know, Kinesis Data Analytics is a fully managed real-time processing engine for streaming data that lets you write SQL queries to derive meaning from your data and output the results to Kinesis Data Firehose, Kinesis Data Streams, or even an AWS Lambda function. The new HOTSPOT function adds to the existing machine learning capabilities in Kinesis that allow customers to leverage unsupervised streaming based machine learning algorithms. Customers don’t need to be experts in data science or machine learning to take advantage of these capabilities.

Hotspots

The HOTSPOTS function is a new Kinesis Data Analytics SQL function you can use to idenitfy relatively dense regions in your data without having to explicity build and train complicated machine learning models. You can identify subsections of your data that need immediate attention and take action programatically by streaming the hotspots out to a Kinesis Data stream, to a Firehose delivery stream, or by invoking a AWS Lambda function.

There are a ton of really cool scenarios where this could make your operations easier. Imagine a ride-share program or autonomous vehicle fleet communicating spatiotemporal data about traffic jams and congestion, or a datacenter where a number of servers start to overheat indicating an HVAC issue. HOTSPOTS is not limited to spatiotemporal data and you could apply it across many problem domains.

The function follows some simple syntax and accepts the DOUBLE, INTEGER, FLOAT, TINYINT, SMALLINT, REAL, and BIGINT data types.

The HOTSPOT function takes a cursor as input and returns a JSON string describing the hotspot. This will be easier to understand with an example.

Using Kinesis Data Analytics to Detect Hotspots

Let’s take a simple data set from NY Taxi and Limousine Commission that tracks yellow cab pickup and dropoff locations. Most of this data is already on S3 and publicly accessible at s3://nyc-tlc/. We will create a small python script to load our Kinesis Data Stream with Taxi records which will feed our Kinesis Data Analytics. Finally we’ll output all of this to a Kinesis Data Firehose connected to an Amazon Elasticsearch Service cluster for visualization with Kibana. I know from living in New York for 5 years that we’ll probably find a hotspot or two in this data.

First, we’ll create an input Kinesis stream and start sending our NYC Taxi Ride data into it. I just wrote a quick python script to read from one of the CSV files and used boto3 to push the records into Kinesis. You can put the record in whatever way works for you.

 

import csv
import json
import boto3
def chunkit(l, n):
    """Yield successive n-sized chunks from l."""
    for i in range(0, len(l), n):
        yield l[i:i + n]

kinesis = boto3.client("kinesis")
with open("taxidata2.csv") as f:
    reader = csv.DictReader(f)
    records = chunkit([{"PartitionKey": "taxis", "Data": json.dumps(row)} for row in reader], 500)
    for chunk in records:
        kinesis.put_records(StreamName="TaxiData", Records=chunk)

Next, we’ll create the Kinesis Data Analytics application and add our input stream with our taxi data as the source.

Next we’ll automatically detect the schema.

Now we’ll create a quick SQL Script to detect our hotspots and add that to the Real Time Analytics section of our application.

CREATE OR REPLACE STREAM "DESTINATION_SQL_STREAM" (
    "pickup_longitude" DOUBLE,
    "pickup_latitude" DOUBLE,
    HOTSPOTS_RESULT VARCHAR(10000)
); 
CREATE OR REPLACE PUMP "STREAM_PUMP" AS INSERT INTO "DESTINATION_SQL_STREAM" 
    SELECT "pickup_longitude", "pickup_latitude", "HOTSPOTS_RESULT" FROM
        TABLE(HOTSPOTS(
            CURSOR(SELECT STREAM * FROM "SOURCE_SQL_STREAM_001"),
            1000,
            0.013,
            20
        )
    );


Our HOTSPOTS function takes an input stream, a window size, scan radius, and a minimum number of points to count as a hotspot. The values for these are application dependent but you can tinker with them in the console easily until you get the results you want. There are more details about the parameters themselves in the documentation. The HOTSPOTS_RESULT returns some useful JSON that would let us plot bounding boxes around our hotspots:

{
  "hotspots": [
    {
      "density": "elided",
      "minValues": [40.7915039, -74.0077401],
      "maxValues": [40.7915041, -74.0078001]
    }
  ]
}

 

When we have our desired results we can save the script and connect our application to our Amazon Elastic Search Service Firehose Delivery Stream. We can run an intermediate lambda function in the firehose to transform our record into a format more suitable for geographic work. Then we can update our mapping in Elasticsearch to index the hotspot objects as Geo-Shapes.

Finally, we can connect to Kibana and visualize the results.

Looks like Manhattan is pretty busy!

Available Now
This feature is available now in all existing regions with Kinesis Data Analytics. I think this is a really interesting new feature of Kinesis Data Analytics that can bring immediate value to many applications. Let us know what you build with it on Twitter or in the comments!

Randall

Central Logging in Multi-Account Environments

Post Syndicated from matouk original https://aws.amazon.com/blogs/architecture/central-logging-in-multi-account-environments/

Centralized logging is often required in large enterprise environments for a number of reasons, ranging from compliance and security to analytics and application-specific needs.

I’ve seen that in a multi-account environment, whether the accounts belong to the same line of business or multiple business units, collecting logs in a central, dedicated logging account is an established best practice. It helps security teams detect malicious activities both in real-time and during incident response. It provides protection to log data in case it is accidentally or intentionally deleted. It also helps application teams correlate and analyze log data across multiple application tiers.

This blog post provides a solution and building blocks to stream Amazon CloudWatch log data across accounts. In a multi-account environment this repeatable solution could be deployed multiple times to stream all relevant Amazon CloudWatch log data from all accounts to a centralized logging account.

Solution Summary 

The solution uses Amazon Kinesis Data Streams and a log destination to set up an endpoint in the logging account to receive streamed logs and uses Amazon Kinesis Data Firehose to deliver log data to the Amazon Simple Storage Solution (S3) bucket. Application accounts will subscribe to stream all (or part) of their Amazon CloudWatch logs to a defined destination in the logging account via subscription filters.

Below is a diagram illustrating how the various services work together.


In logging an account, a Kinesis Data Stream is created to receive streamed log data and a log destination is created to facilitate remote streaming, configured to use the Kinesis Data Stream as its target.

The Amazon Kinesis Data Firehose stream is created to deliver log data from the data stream to S3. The delivery stream uses a generic AWS Lambda function for data validation and transformation.

In each application account, a subscription filter is created between each Amazon CloudWatch log group and the destination created for this log group in the logging account.

The following steps are involved in setting up the central-logging solution:

  1. Create an Amazon S3 bucket for your central logging in the logging account
  2. Create an AWS Lambda function for log data transformation and decoding in logging account
  3. Create a central logging stack as a logging-account destination ready to receive streamed logs and deliver them to S3
  4. Create a subscription in application accounts to deliver logs from a specific CloudWatch log group to the logging account destination
  5. Create Amazon Athena tables to query and analyze log data in your logging account

Creating a log destination in your logging account

In this section, we will setup the logging account side of the solution, providing detail on the list above. The example I use is for the us-east-1 region, however any region where required services are available could be used.

It’s important to note that your logging-account destination and application-account subscription must be in the same region. You can deploy the solution multiple times to create destinations in all required regions if application accounts use multiple regions.

Step 1: Create an S3 bucket

Use the CloudFormation template below to create S3 bucket in logging account. This template also configures the bucket to archive log data to Glacier after 60 days.


{
  "AWSTemplateFormatVersion":"2010-09-09",
  "Description": "CF Template to create S3 bucket for central logging",
  "Parameters":{

    "BucketName":{
      "Type":"String",
      "Default":"",
      "Description":"Central logging bucket name"
    }
  },
  "Resources":{
                        
   "CentralLoggingBucket" : {
      "Type" : "AWS::S3::Bucket",
      "Properties" : {
        "BucketName" : {"Ref": "BucketName"},
        "LifecycleConfiguration": {
            "Rules": [
                {
                  "Id": "ArchiveToGlacier",
                  "Prefix": "",
                  "Status": "Enabled",
                  "Transitions":[{
                      "TransitionInDays": "60",
                      "StorageClass": "GLACIER"
                  }]
                }
            ]
        }
      }
    }

  },
  "Outputs":{
    "CentralLogBucket":{
    	"Description" : "Central log bucket",
    	"Value" : {"Ref": "BucketName"} ,
    	"Export" : { "Name" : "CentralLogBucketName"}
    }
  }
} 

To create your central-logging bucket do the following:

  1. Save the template file to your local developer machine as “central-log-bucket.json”
  2. From the CloudFormation console, select “create new stack” and import the file “central-log-bucket.json”
  3. Fill in the parameters and complete stack creation steps (as indicated in the screenshot below)
  4. Verify the bucket has been created successfully and take a note of the bucket name

Step 2: Create data processing Lambda function

Use the template below to create a Lambda function in your logging account that will be used by Amazon Firehose for data transformation during the delivery process to S3. This function is based on the AWS Lambda kinesis-firehose-cloudwatch-logs-processor blueprint.

The function could be created manually from the blueprint or using the cloudformation template below. To find the blueprint navigate to Lambda -> Create -> Function -> Blueprints

This function will unzip the event message, parse it and verify that it is a valid CloudWatch log event. Additional processing can be added if needed. As this function is generic, it could be reused by all log-delivery streams.

{
  "AWSTemplateFormatVersion":"2010-09-09",
  "Description": "Create cloudwatch data processing lambda function",
  "Resources":{
      
    "LambdaRole": {
        "Type": "AWS::IAM::Role",
        "Properties": {
            "AssumeRolePolicyDocument": {
                "Version": "2012-10-17",
                "Statement": [
                    {
                        "Effect": "Allow",
                        "Principal": {
                            "Service": "lambda.amazonaws.com"
                        },
                        "Action": "sts:AssumeRole"
                    }
                ]
            },
            "Path": "/",
            "Policies": [
                {
                    "PolicyName": "firehoseCloudWatchDataProcessing",
                    "PolicyDocument": {
                        "Version": "2012-10-17",
                        "Statement": [
                            {
                                "Effect": "Allow",
                                "Action": [
                                    "logs:CreateLogGroup",
                                    "logs:CreateLogStream",
                                    "logs:PutLogEvents"
                                ],
                                "Resource": "arn:aws:logs:*:*:*"
                            }
                        ]
                    }
                }
            ]
        }
    },
      
    "FirehoseDataProcessingFunction": {
        "Type": "AWS::Lambda::Function",
        "Properties": {
            "Handler": "index.handler",
            "Role": {"Fn::GetAtt": ["LambdaRole","Arn"]},
            "Description": "Firehose cloudwatch data processing",
            "Code": {
                "ZipFile" : { "Fn::Join" : ["\n", [
                  "'use strict';",
                  "const zlib = require('zlib');",
                  "function transformLogEvent(logEvent) {",
                  "       return Promise.resolve(`${logEvent.message}\n`);",
                  "}",
                  "exports.handler = (event, context, callback) => {",
                  "    Promise.all(event.records.map(r => {",
                  "        const buffer = new Buffer(r.data, 'base64');",
                  "        const decompressed = zlib.gunzipSync(buffer);",
                  "        const data = JSON.parse(decompressed);",
                  "        if (data.messageType !== 'DATA_MESSAGE') {",
                  "            return Promise.resolve({",
                  "                recordId: r.recordId,",
                  "                result: 'ProcessingFailed',",
                  "            });",
                  "         } else {",
                  "            const promises = data.logEvents.map(transformLogEvent);",
                  "            return Promise.all(promises).then(transformed => {",
                  "                const payload = transformed.reduce((a, v) => a + v, '');",
                  "                const encoded = new Buffer(payload).toString('base64');",
                  "                console.log('---------------payloadv2:'+JSON.stringify(payload, null, 2));",
                  "                return {",
                  "                    recordId: r.recordId,",
                  "                    result: 'Ok',",
                  "                    data: encoded,",
                  "                };",
                  "           });",
                  "        }",
                  "    })).then(recs => callback(null, { records: recs }));",
                    "};"

                ]]}
            },
            "Runtime": "nodejs6.10",
            "Timeout": "60"
        }
    }

  },
  "Outputs":{
   "Function" : {
      "Description": "Function ARN",
      "Value": {"Fn::GetAtt": ["FirehoseDataProcessingFunction","Arn"]},
      "Export" : { "Name" : {"Fn::Sub": "${AWS::StackName}-Function" }}
    }
  }
}

To create the function follow the steps below:

  1. Save the template file as “central-logging-lambda.json”
  2. Login to logging account and, from the CloudFormation console, select “create new stack”
  3. Import the file “central-logging-lambda.json” and click next
  4. Follow the steps to create the stack and verify successful creation
  5. Take a note of Lambda function arn from the output section

Step 3: Create log destination in logging account

Log destination is used as the target of a subscription from application accounts, log destination can be shared between multiple subscriptions however according to the architecture suggested in this solution all logs streamed to the same destination will be stored in the same S3 location, if you would like to store log data in different hierarchy or in a completely different bucket you need to create separate destinations.

As noted previously, your destination and subscription have to be in the same region

Use the template below to create destination stack in logging account.

{
  "AWSTemplateFormatVersion":"2010-09-09",
  "Description": "Create log destination and required resources",
  "Parameters":{

    "LogBucketName":{
      "Type":"String",
      "Default":"central-log-do-not-delete",
      "Description":"Destination logging bucket"
    },
    "LogS3Location":{
      "Type":"String",
      "Default":"<BU>/<ENV>/<SOURCE_ACCOUNT>/<LOG_TYPE>/",
      "Description":"S3 location for the logs streamed to this destination; example marketing/prod/999999999999/flow-logs/"
    },
    "ProcessingLambdaARN":{
      "Type":"String",
      "Default":"",
      "Description":"CloudWatch logs data processing function"
    },
    "SourceAccount":{
      "Type":"String",
      "Default":"",
      "Description":"Source application account number"
    }
  },
    
  "Resources":{
    "MyStream": {
      "Type": "AWS::Kinesis::Stream",
      "Properties": {
        "Name": {"Fn::Join" : [ "", [{ "Ref" : "AWS::StackName" },"-Stream"] ]},
        "RetentionPeriodHours" : 48,
        "ShardCount": 1,
        "Tags": [
          {
            "Key": "Solution",
            "Value": "CentralLogging"
          }
       ]
      }
    },
    "LogRole" : {
      "Type"  : "AWS::IAM::Role",
      "Properties" : {
          "AssumeRolePolicyDocument" : {
              "Statement" : [ {
                  "Effect" : "Allow",
                  "Principal" : {
                      "Service" : [ {"Fn::Join": [ "", [ "logs.", { "Ref": "AWS::Region" }, ".amazonaws.com" ] ]} ]
                  },
                  "Action" : [ "sts:AssumeRole" ]
              } ]
          },         
          "Path" : "/service-role/"
      }
    },
      
    "LogRolePolicy" : {
        "Type" : "AWS::IAM::Policy",
        "Properties" : {
            "PolicyName" : {"Fn::Join" : [ "", [{ "Ref" : "AWS::StackName" },"-LogPolicy"] ]},
            "PolicyDocument" : {
              "Version": "2012-10-17",
              "Statement": [
                {
                  "Effect": "Allow",
                  "Action": ["kinesis:PutRecord"],
                  "Resource": [{ "Fn::GetAtt" : ["MyStream", "Arn"] }]
                },
                {
                  "Effect": "Allow",
                  "Action": ["iam:PassRole"],
                  "Resource": [{ "Fn::GetAtt" : ["LogRole", "Arn"] }]
                }
              ]
            },
            "Roles" : [ { "Ref" : "LogRole" } ]
        }
    },
      
    "LogDestination" : {
      "Type" : "AWS::Logs::Destination",
      "DependsOn" : ["MyStream","LogRole","LogRolePolicy"],
      "Properties" : {
        "DestinationName": {"Fn::Join" : [ "", [{ "Ref" : "AWS::StackName" },"-Destination"] ]},
        "RoleArn": { "Fn::GetAtt" : ["LogRole", "Arn"] },
        "TargetArn": { "Fn::GetAtt" : ["MyStream", "Arn"] },
        "DestinationPolicy": { "Fn::Join" : ["",[
		
				"{\"Version\" : \"2012-10-17\",\"Statement\" : [{\"Effect\" : \"Allow\",",
                " \"Principal\" : {\"AWS\" : \"", {"Ref":"SourceAccount"} ,"\"},",
                "\"Action\" : \"logs:PutSubscriptionFilter\",",
                " \"Resource\" : \"", 
                {"Fn::Join": [ "", [ "arn:aws:logs:", { "Ref": "AWS::Region" }, ":" ,{ "Ref": "AWS::AccountId" }, ":destination:",{ "Ref" : "AWS::StackName" },"-Destination" ] ]}  ,"\"}]}"

			]]}
          
          
      }
    },
      
    "S3deliveryStream": {
      "DependsOn": ["S3deliveryRole", "S3deliveryPolicy"],
      "Type": "AWS::KinesisFirehose::DeliveryStream",
      "Properties": {
        "DeliveryStreamName": {"Fn::Join" : [ "", [{ "Ref" : "AWS::StackName" },"-DeliveryStream"] ]},
        "DeliveryStreamType": "KinesisStreamAsSource",
        "KinesisStreamSourceConfiguration": {
            "KinesisStreamARN": { "Fn::GetAtt" : ["MyStream", "Arn"] },
            "RoleARN": {"Fn::GetAtt" : ["S3deliveryRole", "Arn"] }
        },
        "ExtendedS3DestinationConfiguration": {
          "BucketARN": {"Fn::Join" : [ "", ["arn:aws:s3:::",{"Ref":"LogBucketName"}] ]},
          "BufferingHints": {
            "IntervalInSeconds": "60",
            "SizeInMBs": "50"
          },
          "CompressionFormat": "UNCOMPRESSED",
          "Prefix": {"Ref": "LogS3Location"},
          "RoleARN": {"Fn::GetAtt" : ["S3deliveryRole", "Arn"] },
          "ProcessingConfiguration" : {
              "Enabled": "true",
              "Processors": [
              {
                "Parameters": [ 
                { 
                    "ParameterName": "LambdaArn",
                    "ParameterValue": {"Ref":"ProcessingLambdaARN"}
                }],
                "Type": "Lambda"
              }]
          }
        }

      }
    },
      
    "S3deliveryRole": {
      "Type": "AWS::IAM::Role",
      "Properties": {
        "AssumeRolePolicyDocument": {
          "Version": "2012-10-17",
          "Statement": [
            {
              "Sid": "",
              "Effect": "Allow",
              "Principal": {
                "Service": "firehose.amazonaws.com"
              },
              "Action": "sts:AssumeRole",
              "Condition": {
                "StringEquals": {
                  "sts:ExternalId": {"Ref":"AWS::AccountId"}
                }
              }
            }
          ]
        }
      }
    },
      
    "S3deliveryPolicy": {
      "Type": "AWS::IAM::Policy",
      "Properties": {
        "PolicyName": {"Fn::Join" : [ "", [{ "Ref" : "AWS::StackName" },"-FirehosePolicy"] ]},
        "PolicyDocument": {
          "Version": "2012-10-17",
          "Statement": [
            {
              "Effect": "Allow",
              "Action": [
                "s3:AbortMultipartUpload",
                "s3:GetBucketLocation",
                "s3:GetObject",
                "s3:ListBucket",
                "s3:ListBucketMultipartUploads",
                "s3:PutObject"
              ],
              "Resource": [
                {"Fn::Join": ["", [ {"Fn::Join" : [ "", ["arn:aws:s3:::",{"Ref":"LogBucketName"}] ]}]]},
                {"Fn::Join": ["", [ {"Fn::Join" : [ "", ["arn:aws:s3:::",{"Ref":"LogBucketName"}] ]}, "*"]]}
              ]
            },
            {
              "Effect": "Allow",
              "Action": [
                "lambda:InvokeFunction",
                "lambda:GetFunctionConfiguration",
                "logs:PutLogEvents",
                "kinesis:DescribeStream",
                "kinesis:GetShardIterator",
                "kinesis:GetRecords",
                "kms:Decrypt"
              ],
              "Resource": "*"
            }
          ]
        },
        "Roles": [{"Ref": "S3deliveryRole"}]
      }
    }

  },
  "Outputs":{
      
   "Destination" : {
      "Description": "Destination",
      "Value": {"Fn::Join": [ "", [ "arn:aws:logs:", { "Ref": "AWS::Region" }, ":" ,{ "Ref": "AWS::AccountId" }, ":destination:",{ "Ref" : "AWS::StackName" },"-Destination" ] ]},
      "Export" : { "Name" : {"Fn::Sub": "${AWS::StackName}-Destination" }}
    }

  }
} 

To create log your destination and all required resources, follow these steps:

  1. Save your template as “central-logging-destination.json”
  2. Login to your logging account and, from the CloudFormation console, select “create new stack”
  3. Import the file “central-logging-destination.json” and click next
  4. Fill in the parameters to configure the log destination and click Next
  5. Follow the default steps to create the stack and verify successful creation
    1. Bucket name is the same as in the “create central logging bucket” step
    2. LogS3Location is the directory hierarchy for saving log data that will be delivered to this destination
    3. ProcessingLambdaARN is as created in “create data processing Lambda function” step
    4. SourceAccount is the application account number where the subscription will be created
  6. Take a note of destination ARN as it appears in outputs section as you did above.

Step 4: Create the log subscription in your application account

In this section, we will create the subscription filter in one of the application accounts to stream logs from the CloudWatch log group to the log destination that was created in your logging account.

Create log subscription filter

The subscription filter is created between the CloudWatch log group and a destination endpoint. Asubscription could be filtered to send part (or all) of the logs in the log group. For example,you can create a subscription filter to stream only flow logs with status REJECT.

Use the CloudFormation template below to create subscription filter. Subscription filter and log destination must be in the same region.

{
  "AWSTemplateFormatVersion":"2010-09-09",
  "Description": "Create log subscription filter for a specific Log Group",
  "Parameters":{

    "DestinationARN":{
      "Type":"String",
      "Default":"",
      "Description":"ARN of logs destination"
    },
    "LogGroupName":{
      "Type":"String",
      "Default":"",
      "Description":"Name of LogGroup to forward logs from"
    },
    "FilterPattern":{
      "Type":"String",
      "Default":"",
      "Description":"Filter pattern to filter events to be sent to log destination; Leave empty to send all logs"
    }
  },
    
  "Resources":{
    "SubscriptionFilter" : {
      "Type" : "AWS::Logs::SubscriptionFilter",
      "Properties" : {
        "LogGroupName" : { "Ref" : "LogGroupName" },
        "FilterPattern" : { "Ref" : "FilterPattern" },
        "DestinationArn" : { "Ref" : "DestinationARN" }
      }
    }
  }
}

To create a subscription filter for one of CloudWatch log groups in your application account, follow the steps below:

  1. Save the template as “central-logging-subscription.json”
  2. Login to your application account and, from the CloudFormation console, select “create new stack”
  3. Select the file “central-logging-subscription.json” and click next
  4. Fill in the parameters as appropriate to your environment as you did above
    a.  DestinationARN is the value of obtained in “create log destination in logging account” step
    b.  FilterPatterns is the filter value for log data to be streamed to your logging account (leave empty to stream all logs in the selected log group)
    c.  LogGroupName is the log group as it appears under CloudWatch Logs
  5. Verify successful creation of the subscription

This completes the deployment process in both the logging- and application-account side. After a few minutes, log data will be streamed to the central-logging destination defined in your logging account.

Step 5: Analyzing log data

Once log data is centralized, it opens the door to run analytics on the consolidated data for business or security reasons. One of the powerful services that AWS offers is Amazon Athena.

Amazon Athena allows you to query data in S3 using standard SQL.

Follow the steps below to create a simple table and run queries on the flow logs data that has been collected from your application accounts

  1. Login to your logging account and from the Amazon Athena console, use the DDL below in your query  editor to create a new table

CREATE EXTERNAL TABLE IF NOT EXISTS prod_vpc_flow_logs (

Version INT,

Account STRING,

InterfaceId STRING,

SourceAddress STRING,

DestinationAddress STRING,

SourcePort INT,

DestinationPort INT,

Protocol INT,

Packets INT,

Bytes INT,

StartTime INT,

EndTime INT,

Action STRING,

LogStatus STRING

)

ROW FORMAT SERDE ‘org.apache.hadoop.hive.serde2.RegexSerDe’

WITH SERDEPROPERTIES (

“input.regex” = “^([^ ]+)\\s+([0-9]+)\\s+([^ ]+)\\s+([^ ]+)\\s+([^ ]+)\\s+([^ ]+)\\s+([^ ]+)\\s+([^ ]+)\\s+([^ ]+)\\s+([^ ]+)\\s+([0-9]+)\\s+([0-9]+)\\s+([^ ]+)\\s+([^ ]+)$”)

LOCATION ‘s3://central-logging-company-do-not-delete/’;

2. Click ”run query” and verify a successful run/ This creates the table “prod_vpc_flow_logs”

3. You can then run queries against the table data as below:

Conclusion

By following the steps I’ve outlined, you will build a central logging solution to stream CloudWatch logs from one application account to a central logging account. This solution is repeatable and could be deployed multiple times for multiple accounts and logging requirements.

 

About the Author

Mahmoud Matouk is a Senior Cloud Infrastructure Architect. He works with our customers to help accelerate migration and cloud adoption at the enterprise level.

 

Best Practices for Running Apache Kafka on AWS

Post Syndicated from Prasad Alle original https://aws.amazon.com/blogs/big-data/best-practices-for-running-apache-kafka-on-aws/

This post was written in partnership with Intuit to share learnings, best practices, and recommendations for running an Apache Kafka cluster on AWS. Thanks to Vaishak Suresh and his colleagues at Intuit for their contribution and support.

Intuit, in their own words: Intuit, a leading enterprise customer for AWS, is a creator of business and financial management solutions. For more information on how Intuit partners with AWS, see our previous blog post, Real-time Stream Processing Using Apache Spark Streaming and Apache Kafka on AWS. Apache Kafka is an open-source, distributed streaming platform that enables you to build real-time streaming applications.

The best practices described in this post are based on our experience in running and operating large-scale Kafka clusters on AWS for more than two years. Our intent for this post is to help AWS customers who are currently running Kafka on AWS, and also customers who are considering migrating on-premises Kafka deployments to AWS.

AWS offers Amazon Kinesis Data Streams, a Kafka alternative that is fully managed.

Running your Kafka deployment on Amazon EC2 provides a high performance, scalable solution for ingesting streaming data. AWS offers many different instance types and storage option combinations for Kafka deployments. However, given the number of possible deployment topologies, it’s not always trivial to select the most appropriate strategy suitable for your use case.

In this blog post, we cover the following aspects of running Kafka clusters on AWS:

  • Deployment considerations and patterns
  • Storage options
  • Instance types
  • Networking
  • Upgrades
  • Performance tuning
  • Monitoring
  • Security
  • Backup and restore

Note: While implementing Kafka clusters in a production environment, make sure also to consider factors like your number of messages, message size, monitoring, failure handling, and any operational issues.

Deployment considerations and patterns

In this section, we discuss various deployment options available for Kafka on AWS, along with pros and cons of each option. A successful deployment starts with thoughtful consideration of these options. Considering availability, consistency, and operational overhead of the deployment helps when choosing the right option.

Single AWS Region, Three Availability Zones, All Active

One typical deployment pattern (all active) is in a single AWS Region with three Availability Zones (AZs). One Kafka cluster is deployed in each AZ along with Apache ZooKeeper and Kafka producer and consumer instances as shown in the illustration following.

In this pattern, this is the Kafka cluster deployment:

  • Kafka producers and Kafka cluster are deployed on each AZ.
  • Data is distributed evenly across three Kafka clusters by using Elastic Load Balancer.
  • Kafka consumers aggregate data from all three Kafka clusters.

Kafka cluster failover occurs this way:

  • Mark down all Kafka producers
  • Stop consumers
  • Debug and restack Kafka
  • Restart consumers
  • Restart Kafka producers

Following are the pros and cons of this pattern.

Pros Cons
  • Highly available
  • Can sustain the failure of two AZs
  • No message loss during failover
  • Simple deployment

 

  • Very high operational overhead:
    • All changes need to be deployed three times, one for each Kafka cluster
    • Maintaining and monitoring three Kafka clusters
    • Maintaining and monitoring three consumer clusters

A restart is required for patching and upgrading brokers in a Kafka cluster. In this approach, a rolling upgrade is done separately for each cluster.

Single Region, Three Availability Zones, Active-Standby

Another typical deployment pattern (active-standby) is in a single AWS Region with a single Kafka cluster and Kafka brokers and Zookeepers distributed across three AZs. Another similar Kafka cluster acts as a standby as shown in the illustration following. You can use Kafka mirroring with MirrorMaker to replicate messages between any two clusters.

In this pattern, this is the Kafka cluster deployment:

  • Kafka producers are deployed on all three AZs.
  • Only one Kafka cluster is deployed across three AZs (active).
  • ZooKeeper instances are deployed on each AZ.
  • Brokers are spread evenly across all three AZs.
  • Kafka consumers can be deployed across all three AZs.
  • Standby Kafka producers and a Multi-AZ Kafka cluster are part of the deployment.

Kafka cluster failover occurs this way:

  • Switch traffic to standby Kafka producers cluster and Kafka cluster.
  • Restart consumers to consume from standby Kafka cluster.

Following are the pros and cons of this pattern.

Pros Cons
  • Less operational overhead when compared to the first option
  • Only one Kafka cluster to manage and consume data from
  • Can handle single AZ failures without activating a standby Kafka cluster
  • Added latency due to cross-AZ data transfer among Kafka brokers
  • For Kafka versions before 0.10, replicas for topic partitions have to be assigned so they’re distributed to the brokers on different AZs (rack-awareness)
  • The cluster can become unavailable in case of a network glitch, where ZooKeeper does not see Kafka brokers
  • Possibility of in-transit message loss during failover

Intuit recommends using a single Kafka cluster in one AWS Region, with brokers distributing across three AZs (single region, three AZs). This approach offers stronger fault tolerance than otherwise, because a failed AZ won’t cause Kafka downtime.

Storage options

There are two storage options for file storage in Amazon EC2:

Ephemeral storage is local to the Amazon EC2 instance. It can provide high IOPS based on the instance type. On the other hand, Amazon EBS volumes offer higher resiliency and you can configure IOPS based on your storage needs. EBS volumes also offer some distinct advantages in terms of recovery time. Your choice of storage is closely related to the type of workload supported by your Kafka cluster.

Kafka provides built-in fault tolerance by replicating data partitions across a configurable number of instances. If a broker fails, you can recover it by fetching all the data from other brokers in the cluster that host the other replicas. Depending on the size of the data transfer, it can affect recovery process and network traffic. These in turn eventually affect the cluster’s performance.

The following table contrasts the benefits of using an instance store versus using EBS for storage.

Instance store EBS
  • Instance storage is recommended for large- and medium-sized Kafka clusters. For a large cluster, read/write traffic is distributed across a high number of brokers, so the loss of a broker has less of an impact. However, for smaller clusters, a quick recovery for the failed node is important, but a failed broker takes longer and requires more network traffic for a smaller Kafka cluster.
  • Storage-optimized instances like h1, i3, and d2 are an ideal choice for distributed applications like Kafka.

 

  • The primary advantage of using EBS in a Kafka deployment is that it significantly reduces data-transfer traffic when a broker fails or must be replaced. The replacement broker joins the cluster much faster.
  • Data stored on EBS is persisted in case of an instance failure or termination. The broker’s data stored on an EBS volume remains intact, and you can mount the EBS volume to a new EC2 instance. Most of the replicated data for the replacement broker is already available in the EBS volume and need not be copied over the network from another broker. Only the changes made after the original broker failure need to be transferred across the network. That makes this process much faster.

 

 

Intuit chose EBS because of their frequent instance restacking requirements and also other benefits provided by EBS.

Generally, Kafka deployments use a replication factor of three. EBS offers replication within their service, so Intuit chose a replication factor of two instead of three.

Instance types

The choice of instance types is generally driven by the type of storage required for your streaming applications on a Kafka cluster. If your application requires ephemeral storage, h1, i3, and d2 instances are your best option.

Intuit used r3.xlarge instances for their brokers and r3.large for ZooKeeper, with ST1 (throughput optimized HDD) EBS for their Kafka cluster.

Here are sample benchmark numbers from Intuit tests.

Configuration Broker bytes (MB/s)
  • r3.xlarge
  • ST1 EBS
  • 12 brokers
  • 12 partitions

 

Aggregate 346.9

If you need EBS storage, then AWS has a newer-generation r4 instance. The r4 instance is superior to R3 in many ways:

  • It has a faster processor (Broadwell).
  • EBS is optimized by default.
  • It features networking based on Elastic Network Adapter (ENA), with up to 10 Gbps on smaller sizes.
  • It costs 20 percent less than R3.

Note: It’s always best practice to check for the latest changes in instance types.

Networking

The network plays a very important role in a distributed system like Kafka. A fast and reliable network ensures that nodes can communicate with each other easily. The available network throughput controls the maximum amount of traffic that Kafka can handle. Network throughput, combined with disk storage, is often the governing factor for cluster sizing.

If you expect your cluster to receive high read/write traffic, select an instance type that offers 10-Gb/s performance.

In addition, choose an option that keeps interbroker network traffic on the private subnet, because this approach allows clients to connect to the brokers. Communication between brokers and clients uses the same network interface and port. For more details, see the documentation about IP addressing for EC2 instances.

If you are deploying in more than one AWS Region, you can connect the two VPCs in the two AWS Regions using cross-region VPC peering. However, be aware of the networking costs associated with cross-AZ deployments.

Upgrades

Kafka has a history of not being backward compatible, but its support of backward compatibility is getting better. During a Kafka upgrade, you should keep your producer and consumer clients on a version equal to or lower than the version you are upgrading from. After the upgrade is finished, you can start using a new protocol version and any new features it supports. There are three upgrade approaches available, discussed following.

Rolling or in-place upgrade

In a rolling or in-place upgrade scenario, upgrade one Kafka broker at a time. Take into consideration the recommendations for doing rolling restarts to avoid downtime for end users.

Downtime upgrade

If you can afford the downtime, you can take your entire cluster down, upgrade each Kafka broker, and then restart the cluster.

Blue/green upgrade

Intuit followed the blue/green deployment model for their workloads, as described following.

If you can afford to create a separate Kafka cluster and upgrade it, we highly recommend the blue/green upgrade scenario. In this scenario, we recommend that you keep your clusters up-to-date with the latest Kafka version. For additional details on Kafka version upgrades or more details, see the Kafka upgrade documentation.

The following illustration shows a blue/green upgrade.

In this scenario, the upgrade plan works like this:

  • Create a new Kafka cluster on AWS.
  • Create a new Kafka producers stack to point to the new Kafka cluster.
  • Create topics on the new Kafka cluster.
  • Test the green deployment end to end (sanity check).
  • Using Amazon Route 53, change the new Kafka producers stack on AWS to point to the new green Kafka environment that you have created.

The roll-back plan works like this:

  • Switch Amazon Route 53 to the old Kafka producers stack on AWS to point to the old Kafka environment.

For additional details on blue/green deployment architecture using Kafka, see the re:Invent presentation Leveraging the Cloud with a Blue-Green Deployment Architecture.

Performance tuning

You can tune Kafka performance in multiple dimensions. Following are some best practices for performance tuning.

 These are some general performance tuning techniques:

  • If throughput is less than network capacity, try the following:
    • Add more threads
    • Increase batch size
    • Add more producer instances
    • Add more partitions
  • To improve latency when acks =-1, increase your num.replica.fetches value.
  • For cross-AZ data transfer, tune your buffer settings for sockets and for OS TCP.
  • Make sure that num.io.threads is greater than the number of disks dedicated for Kafka.
  • Adjust num.network.threads based on the number of producers plus the number of consumers plus the replication factor.
  • Your message size affects your network bandwidth. To get higher performance from a Kafka cluster, select an instance type that offers 10 Gb/s performance.

For Java and JVM tuning, try the following:

  • Minimize GC pauses by using the Oracle JDK, which uses the new G1 garbage-first collector.
  • Try to keep the Kafka heap size below 4 GB.

Monitoring

Knowing whether a Kafka cluster is working correctly in a production environment is critical. Sometimes, just knowing that the cluster is up is enough, but Kafka applications have many moving parts to monitor. In fact, it can easily become confusing to understand what’s important to watch and what you can set aside. Items to monitor range from simple metrics about the overall rate of traffic, to producers, consumers, brokers, controller, ZooKeeper, topics, partitions, messages, and so on.

For monitoring, Intuit used several tools, including Newrelec, Wavefront, Amazon CloudWatch, and AWS CloudTrail. Our recommended monitoring approach follows.

For system metrics, we recommend that you monitor:

  • CPU load
  • Network metrics
  • File handle usage
  • Disk space
  • Disk I/O performance
  • Garbage collection
  • ZooKeeper

For producers, we recommend that you monitor:

  • Batch-size-avg
  • Compression-rate-avg
  • Waiting-threads
  • Buffer-available-bytes
  • Record-queue-time-max
  • Record-send-rate
  • Records-per-request-avg

For consumers, we recommend that you monitor:

  • Batch-size-avg
  • Compression-rate-avg
  • Waiting-threads
  • Buffer-available-bytes
  • Record-queue-time-max
  • Record-send-rate
  • Records-per-request-avg

Security

Like most distributed systems, Kafka provides the mechanisms to transfer data with relatively high security across the components involved. Depending on your setup, security might involve different services such as encryption, Kerberos, Transport Layer Security (TLS) certificates, and advanced access control list (ACL) setup in brokers and ZooKeeper. The following tells you more about the Intuit approach. For details on Kafka security not covered in this section, see the Kafka documentation.

Encryption at rest

For EBS-backed EC2 instances, you can enable encryption at rest by using Amazon EBS volumes with encryption enabled. Amazon EBS uses AWS Key Management Service (AWS KMS) for encryption. For more details, see Amazon EBS Encryption in the EBS documentation. For instance store–backed EC2 instances, you can enable encryption at rest by using Amazon EC2 instance store encryption.

Encryption in transit

Kafka uses TLS for client and internode communications.

Authentication

Authentication of connections to brokers from clients (producers and consumers) to other brokers and tools uses either Secure Sockets Layer (SSL) or Simple Authentication and Security Layer (SASL).

Kafka supports Kerberos authentication. If you already have a Kerberos server, you can add Kafka to your current configuration.

Authorization

In Kafka, authorization is pluggable and integration with external authorization services is supported.

Backup and restore

The type of storage used in your deployment dictates your backup and restore strategy.

The best way to back up a Kafka cluster based on instance storage is to set up a second cluster and replicate messages using MirrorMaker. Kafka’s mirroring feature makes it possible to maintain a replica of an existing Kafka cluster. Depending on your setup and requirements, your backup cluster might be in the same AWS Region as your main cluster or in a different one.

For EBS-based deployments, you can enable automatic snapshots of EBS volumes to back up volumes. You can easily create new EBS volumes from these snapshots to restore. We recommend storing backup files in Amazon S3.

For more information on how to back up in Kafka, see the Kafka documentation.

Conclusion

In this post, we discussed several patterns for running Kafka in the AWS Cloud. AWS also provides an alternative managed solution with Amazon Kinesis Data Streams, there are no servers to manage or scaling cliffs to worry about, you can scale the size of your streaming pipeline in seconds without downtime, data replication across availability zones is automatic, you benefit from security out of the box, Kinesis Data Streams is tightly integrated with a wide variety of AWS services like Lambda, Redshift, Elasticsearch and it supports open source frameworks like Storm, Spark, Flink, and more. You may refer to kafka-kinesis connector.

If you have questions or suggestions, please comment below.


Additional Reading

If you found this post useful, be sure to check out Implement Serverless Log Analytics Using Amazon Kinesis Analytics and Real-time Clickstream Anomaly Detection with Amazon Kinesis Analytics.


About the Author

Prasad Alle is a Senior Big Data Consultant with AWS Professional Services. He spends his time leading and building scalable, reliable Big data, Machine learning, Artificial Intelligence and IoT solutions for AWS Enterprise and Strategic customers. His interests extend to various technologies such as Advanced Edge Computing, Machine learning at Edge. In his spare time, he enjoys spending time with his family.