Tag Archives: LAPS

Coaxing 2D platforming out of Unity

Post Syndicated from Eevee original https://eev.ee/blog/2017/10/13/coaxing-2d-platforming-out-of-unity/

An anonymous donor asked a question that I can’t even begin to figure out how to answer, but they also said anything else is fine, so here’s anything else.

I’ve been avoiding writing about game physics, since I want to save it for ✨ the book I’m writing ✨, but that book will almost certainly not touch on Unity. Here, then, is a brief run through some of the brick walls I ran into while trying to convince Unity to do 2D platforming.

This is fairly high-level — there are no blocks of code or helpful diagrams. I’m just getting this out of my head because it’s interesting. If you want more gritty details, I guess you’ll have to wait for ✨ the book ✨.

The setup

I hadn’t used Unity before. I hadn’t even used a “real” physics engine before. My games so far have mostly used LÖVE, a Lua-based engine. LÖVE includes box2d bindings, but for various reasons (not all of them good), I opted to avoid them and instead write my own physics completely from scratch. (How, you ask? ✨ Book ✨!)

I was invited to work on a Unity project, Chaos Composer, that someone else had already started. It had basic movement already implemented; I taught myself Unity’s physics system by hacking on it. It’s entirely possible that none of this is actually the best way to do anything, since I was really trying to reproduce my own homegrown stuff in Unity, but it’s the best I’ve managed to come up with.

Two recurring snags were that you can’t ask Unity to do multiple physics updates in a row, and sometimes getting the information I wanted was difficult. Working with my own code spoiled me a little, since I could invoke it at any time and ask it anything I wanted; Unity, on the other hand, is someone else’s black box with a rigid interface on top.

Also, wow, Googling for a lot of this was not quite as helpful as expected. A lot of what’s out there is just the first thing that works, and often that’s pretty hacky and imposes severe limits on the game design (e.g., “this won’t work with slopes”). Basic movement and collision are the first thing you do, which seems to me like the worst time to be locking yourself out of a lot of design options. I tried very (very, very, very) hard to minimize those kinds of constraints.

Problem 1: Movement

When I showed up, movement was already working. Problem solved!

Like any good programmer, I immediately set out to un-solve it. Given a “real” physics engine like Unity prominently features, you have two options: ⓐ treat the player as a physics object, or ⓑ don’t. The existing code went with option ⓑ, like I’d done myself with LÖVE, and like I’d seen countless people advise. Using a physics sim makes for bad platforming.

But… why? I believed it, but I couldn’t concretely defend it. I had to know for myself. So I started a blank project, drew some physics boxes, and wrote a dozen-line player controller.

Ah! Immediate enlightenment.

If the player was sliding down a wall, and I tried to move them into the wall, they would simply freeze in midair until I let go of the movement key. The trouble is that the physics sim works in terms of forces — moving the player involves giving them a nudge in some direction, like a giant invisible hand pushing them around the level. Surprise! If you press a real object against a real wall with your real hand, you’ll see the same effect — friction will cancel out gravity, and the object will stay in midair..

Platformer movement, as it turns out, doesn’t make any goddamn physical sense. What is air control? What are you pushing against? Nothing, really; we just have it because it’s nice to play with, because not having it is a nightmare.

I looked to see if there were any common solutions to this, and I only really found one: make all your walls frictionless.

Game development is full of hacks like this, and I… don’t like them. I can accept that minor hacks are necessary sometimes, but this one makes an early and widespread change to a fundamental system to “fix” something that was wrong in the first place. It also imposes an “invisible” requirement, something I try to avoid at all costs — if you forget to make a particular wall frictionless, you’ll never know unless you happen to try sliding down it.

And so, I swiftly returned to the existing code. It wasn’t too different from what I’d come up with for LÖVE: it applied gravity by hand, tracked the player’s velocity, computed the intended movement each frame, and moved by that amount. The interesting thing was that it used MovePosition, which schedules a movement for the next physics update and stops the movement if the player hits something solid.

It’s kind of a nice hybrid approach, actually; all the “physics” for conscious actors is done by hand, but the physics engine is still used for collision detection. It’s also used for collision rejection — if the player manages to wedge themselves several pixels into a solid object, for example, the physics engine will try to gently nudge them back out of it with no extra effort required on my part. I still haven’t figured out how to get that to work with my homegrown stuff, which is built to prevent overlap rather than to jiggle things out of it.

But wait, what about…

Our player is a dynamic body with rotation lock and no gravity. Why not just use a kinematic body?

I must be missing something, because I do not understand the point of kinematic bodies. I ran into this with Godot, too, which documented them the same way: as intended for use as players and other manually-moved objects. But by default, they don’t even collide with other kinematic bodies or static geometry. What? There’s a checkbox to turn this on, which I enabled, but then I found out that MovePosition doesn’t stop kinematic bodies when they hit something, so I would’ve had to cast along the intended path of movement to figure out when to stop, thus duplicating the same work the physics engine was about to do.

But that’s impossible anyway! Static geometry generally wants to be made of edge colliders, right? They don’t care about concave/convex. Imagine the player is standing on the ground near a wall and tries to move towards the wall. Both the ground and the wall are different edges from the same edge collider.

If you try to cast the player’s hitbox horizontally, parallel to the ground, you’ll only get one collision: the existing collision with the ground. Casting doesn’t distinguish between touching and hitting. And because Unity only reports one collision per collider, and because the ground will always show up first, you will never find out about the impending wall collision.

So you’re forced to either use raycasts for collision detection or decomposed polygons for world geometry, both of which are slightly worse tools for no real gain.

I ended up sticking with a dynamic body.

Oh, one other thing that doesn’t really fit anywhere else: keep track of units! If you’re adding something called “velocity” directly to something called “position”, something has gone very wrong. Acceleration is distance per time squared; velocity is distance per time; position is distance. You must multiply or divide by time to convert between them.

I never even, say, add a constant directly to position every frame; I always phrase it as velocity and multiply by Δt. It keeps the units consistent: time is always in seconds, not in tics.

Problem 2: Slopes

Ah, now we start to get off in the weeds.

A sort of pre-problem here was detecting whether we’re on a slope, which means detecting the ground. The codebase originally used a manual physics query of the area around the player’s feet to check for the ground, which seems to be somewhat common, but that can’t tell me the angle of the detected ground. (It’s also kind of error-prone, since “around the player’s feet” has to be specified by hand and may not stay correct through animations or changes in the hitbox.)

I replaced that with what I’d eventually settled on in LÖVE: detect the ground by detecting collisions, and looking at the normal of the collision. A normal is a vector that points straight out from a surface, so if you’re standing on the ground, the normal points straight up; if you’re on a 10° incline, the normal points 10° away from straight up.

Not all collisions are with the ground, of course, so I assumed something is ground if the normal pointed away from gravity. (I like this definition more than “points upwards”, because it avoids assuming anything about the direction of gravity, which leaves some interesting doors open for later on.) That’s easily detected by taking the dot product — if it’s negative, the collision was with the ground, and I now have the normal of the ground.

Actually doing this in practice was slightly tricky. With my LÖVE engine, I could cram this right into the middle of collision resolution. With Unity, not quite so much. I went through a couple iterations before I really grasped Unity’s execution order, which I guess I will have to briefly recap for this to make sense.

Unity essentially has two update cycles. It performs physics updates at fixed intervals for consistency, and updates everything else just before rendering. Within a single frame, Unity does as many fixed physics updates as it has spare time for (which might be zero, one, or more), then does a regular update, then renders. User code can implement either or both of Update, which runs during a regular update, and FixedUpdate, which runs just before Unity does a physics pass.

So my solution was:

  • At the very end of FixedUpdate, clear the actor’s “on ground” flag and ground normal.

  • During OnCollisionEnter2D and OnCollisionStay2D (which are called from within a physics pass), if there’s a collision that looks like it’s with the ground, set the “on ground” flag and ground normal. (If there are multiple ground collisions, well, good luck figuring out the best way to resolve that! At the moment I’m just taking the first and hoping for the best.)

That means there’s a brief window between the end of FixedUpdate and Unity’s physics pass during which a grounded actor might mistakenly believe it’s not on the ground, which is a bit of a shame, but there are very few good reasons for anything to be happening in that window.

Okay! Now we can do slopes.

Just kidding! First we have to do sliding.

When I first looked at this code, it didn’t apply gravity while the player was on the ground. I think I may have had some problems with detecting the ground as result, since the player was no longer pushing down against it? Either way, it seemed like a silly special case, so I made gravity always apply.

Lo! I was a fool. The player could no longer move.

Why? Because MovePosition does exactly what it promises. If the player collides with something, they’ll stop moving. Applying gravity means that the player is trying to move diagonally downwards into the ground, and so MovePosition stops them immediately.

Hence, sliding. I don’t want the player to actually try to move into the ground. I want them to move the unblocked part of that movement. For flat ground, that means the horizontal part, which is pretty much the same as discarding gravity. For sloped ground, it’s a bit more complicated!

Okay but actually it’s less complicated than you’d think. It can be done with some cross products fairly easily, but Unity makes it even easier with a couple casts. There’s a Vector3.ProjectOnPlane function that projects an arbitrary vector on a plane given by its normal — exactly the thing I want! So I apply that to the attempted movement before passing it along to MovePosition. I do the same thing with the current velocity, to prevent the player from accelerating infinitely downwards while standing on flat ground.

One other thing: I don’t actually use the detected ground normal for this. The player might be touching two ground surfaces at the same time, and I’d want to project on both of them. Instead, I use the player body’s GetContacts method, which returns contact points (and normals!) for everything the player is currently touching. I believe those contact points are tracked by the physics engine anyway, so asking for them doesn’t require any actual physics work.

(Looking at the code I have, I notice that I still only perform the slide for surfaces facing upwards — but I’d want to slide against sloped ceilings, too. Why did I do this? Maybe I should remove that.)

(Also, I’m pretty sure projecting a vector on a plane is non-commutative, which raises the question of which order the projections should happen in and what difference it makes. I don’t have a good answer.)

(I note that my LÖVE setup does something slightly different: it just tries whatever the movement ought to be, and if there’s a collision, then it projects — and tries again with the remaining movement. But I can’t ask Unity to do multiple moves in one physics update, alas.)

Okay! Now, slopes. But actually, with the above work done, slopes are most of the way there already.

One obvious problem is that the player tries to move horizontally even when on a slope, and the easy fix is to change their movement from speed * Vector2.right to speed * new Vector2(ground.y, -ground.x) while on the ground. That’s the ground normal rotated a quarter-turn clockwise, so for flat ground it still points to the right, and in general it points rightwards along the ground. (Note that it assumes the ground normal is a unit vector, but as far as I’m aware, that’s true for all the normals Unity gives you.)

Another issue is that if the player stands motionless on a slope, gravity will cause them to slowly slide down it — because the movement from gravity will be projected onto the slope, and unlike flat ground, the result is no longer zero. For conscious actors only, I counter this by adding the opposite factor to the player’s velocity as part of adding in their walking speed. This matches how the real world works, to some extent: when you’re standing on a hill, you’re exerting some small amount of effort just to stay in place.

(Note that slope resistance is not the same as friction. Okay, yes, in the real world, virtually all resistance to movement happens as a result of friction, but bracing yourself against the ground isn’t the same as being passively resisted.)

From here there are a lot of things you can do, depending on how you think slopes should be handled. You could make the player unable to walk up slopes that are too steep. You could make walking down a slope faster than walking up it. You could make jumping go along the ground normal, rather than straight up. You could raise the player’s max allowed speed while running downhill. Whatever you want, really. Armed with a normal and awareness of dot products, you can do whatever you want.

But first you might want to fix a few aggravating side effects.

Problem 3: Ground adherence

I don’t know if there’s a better name for this. I rarely even see anyone talk about it, which surprises me; it seems like it should be a very common problem.

The problem is: if the player runs up a slope which then abruptly changes to flat ground, their momentum will carry them into the air. For very fast players going off the top of very steep slopes, this makes sense, but it becomes visible even for relatively gentle slopes. It was a mild nightmare in the original release of our game Lunar Depot 38, which has very “rough” ground made up of lots of shallow slopes — so the player is very frequently slightly off the ground, which meant they couldn’t jump, for seemingly no reason. (I even had code to fix this, but I disabled it because of a silly visual side effect that I never got around to fixing.)

Anyway! The reason this is a problem is that game protagonists are generally not boxes sliding around — they have legs. We don’t go flying off the top of real-world hilltops because we put our foot down until it touches the ground.

Simulating this footfall is surprisingly fiddly to get right, especially with someone else’s physics engine. It’s made somewhat easier by Cast, which casts the entire hitbox — no matter what shape it is — in a particular direction, as if it had moved, and tells you all the hypothetical collisions in order.

So I cast the player in the direction of gravity by some distance. If the cast hits something solid with a ground-like collision normal, then the player must be close to the ground, and I move them down to touch it (and set that ground as the new ground normal).

There are some wrinkles.

Wrinkle 1: I only want to do this if the player is off the ground now, but was on the ground last frame, and is not deliberately moving upwards. That latter condition means I want to skip this logic if the player jumps, for example, but also if the player is thrust upwards by a spring or abducted by a UFO or whatever. As long as external code goes through some interface and doesn’t mess with the player’s velocity directly, that shouldn’t be too hard to track.

Wrinkle 2: When does this logic run? It needs to happen after the player moves, which means after a Unity physics pass… but there’s no callback for that point in time. I ended up running it at the beginning of FixedUpdate and the beginning of Update — since I definitely want to do it before rendering happens! That means it’ll sometimes happen twice between physics updates. (I could carefully juggle a flag to skip the second run, but I… didn’t do that. Yet?)

Wrinkle 3: I can’t move the player with MovePosition! Remember, MovePosition schedules a movement, it doesn’t actually perform one; that means if it’s called twice before the physics pass, the first call is effectively ignored. I can’t easily combine the drop with the player’s regular movement, for various fiddly reasons. I ended up doing it “by hand” using transform.Translate, which I think was the “old way” to do manual movement before MovePosition existed. I’m not totally sure if it activates triggers? For that matter, I’m not sure it even notices collisions — but since I did a full-body Cast, there shouldn’t be any anyway.

Wrinkle 4: What, exactly, is “some distance”? I’ve yet to find a satisfying answer for this. It seems like it ought to be based on the player’s current speed and the slope of the ground they’re moving along, but every time I’ve done that math, I’ve gotten totally ludicrous answers that sometimes exceed the size of a tile. But maybe that’s not wrong? Play around, I guess, and think about when the effect should “break” and the player should go flying off the top of a hill.

Wrinkle 5: It’s possible that the player will launch off a slope, hit something, and then be adhered to the ground where they wouldn’t have hit it. I don’t much like this edge case, but I don’t see a way around it either.

This problem is surprisingly awkward for how simple it sounds, and the solution isn’t entirely satisfying. Oh, well; the results are much nicer than the solution. As an added bonus, this also fixes occasional problems with running down a hill and becoming detached from the ground due to precision issues or whathaveyou.

Problem 4: One-way platforms

Ah, what a nightmare.

It took me ages just to figure out how to define one-way platforms. Only block when the player is moving downwards? Nope. Only block when the player is above the platform? Nuh-uh.

Well, okay, yes, those approaches might work for convex players and flat platforms. But what about… sloped, one-way platforms? There’s no reason you shouldn’t be able to have those. If Super Mario World can do it, surely Unity can do it almost 30 years later.

The trick is, again, to look at the collision normal. If it faces away from gravity, the player is hitting a ground-like surface, so the platform should block them. Otherwise (or if the player overlaps the platform), it shouldn’t.

Here’s the catch: Unity doesn’t have conditional collision. I can’t decide, on the fly, whether a collision should block or not. In fact, I think that by the time I get a callback like OnCollisionEnter2D, the physics pass is already over.

I could go the other way and use triggers (which are non-blocking), but then I have the opposite problem: I can’t stop the player on the fly. I could move them back to where they hit the trigger, but I envision all kinds of problems as a result. What if they were moving fast enough to activate something on the other side of the platform? What if something else moved to where I’m trying to shove them back to in the meantime? How does this interact with ground detection and listing contacts, which would rightly ignore a trigger as non-blocking?

I beat my head against this for a while, but the inability to respond to collision conditionally was a huge roadblock. It’s all the more infuriating a problem, because Unity ships with a one-way platform modifier thing. Unfortunately, it seems to have been implemented by someone who has never played a platformer. It’s literally one-way — the player is only allowed to move straight upwards through it, not in from the sides. It also tries to block the player if they’re moving downwards while inside the platform, which invokes clumsy rejection behavior. And this all seems to be built into the physics engine itself somehow, so I can’t simply copy whatever they did.

Eventually, I settled on the following. After calculating attempted movement (including sliding), just at the end of FixedUpdate, I do a Cast along the movement vector. I’m not thrilled about having to duplicate the physics engine’s own work, but I do filter to only things on a “one-way platform” physics layer, which should at least help. For each object the cast hits, I use Physics2D.IgnoreCollision to either ignore or un-ignore the collision between the player and the platform, depending on whether the collision was ground-like or not.

(A lot of people suggested turning off collision between layers, but that can’t possibly work — the player might be standing on one platform while inside another, and anyway, this should work for all actors!)

Again, wrinkles! But fewer this time. Actually, maybe just one: handling the case where the player already overlaps the platform. I can’t just check for that with e.g. OverlapCollider, because that doesn’t distinguish between overlapping and merely touching.

I came up with a fairly simple fix: if I was going to un-ignore the collision (i.e. make the platform block), and the cast distance is reported as zero (either already touching or overlapping), I simply do nothing instead. If I’m standing on the platform, I must have already set it blocking when I was approaching it from the top anyway; if I’m overlapping it, I must have already set it non-blocking to get here in the first place.

I can imagine a few cases where this might go wrong. Moving platforms, especially, are going to cause some interesting issues. But this is the best I can do with what I know, and it seems to work well enough so far.

Oh, and our player can deliberately drop down through platforms, which was easy enough to implement; I just decide the platform is always passable while some button is held down.

Problem 5: Pushers and carriers

I haven’t gotten to this yet! Oh boy, can’t wait. I implemented it in LÖVE, but my way was hilariously invasive; I’m hoping that having a physics engine that supports a handwaved “this pushes that” will help. Of course, you also have to worry about sticking to platforms, for which the recommended solution is apparently to parent the cargo to the platform, which sounds goofy to me? I guess I’ll find out when I throw myself at it later.

Overall result

I ended up with a fairly pleasant-feeling system that supports slopes and one-way platforms and whatnot, with all the same pieces as I came up with for LÖVE. The code somehow ended up as less of a mess, too, but it probably helps that I’ve been down this rabbit hole once before and kinda knew what I was aiming for this time.

Animation of a character running smoothly along the top of an irregular dinosaur skeleton

Sorry that I don’t have a big block of code for you to copy-paste into your project. I don’t think there are nearly enough narrative discussions of these fundamentals, though, so hopefully this is useful to someone. If not, well, look forward to ✨ my book, that I am writing ✨!

Predict Billboard Top 10 Hits Using RStudio, H2O and Amazon Athena

Post Syndicated from Gopal Wunnava original https://aws.amazon.com/blogs/big-data/predict-billboard-top-10-hits-using-rstudio-h2o-and-amazon-athena/

Success in the popular music industry is typically measured in terms of the number of Top 10 hits artists have to their credit. The music industry is a highly competitive multi-billion dollar business, and record labels incur various costs in exchange for a percentage of the profits from sales and concert tickets.

Predicting the success of an artist’s release in the popular music industry can be difficult. One release may be extremely popular, resulting in widespread play on TV, radio and social media, while another single may turn out quite unpopular, and therefore unprofitable. Record labels need to be selective in their decision making, and predictive analytics can help them with decision making around the type of songs and artists they need to promote.

In this walkthrough, you leverage H2O.ai, Amazon Athena, and RStudio to make predictions on whether a song might make it to the Top 10 Billboard charts. You explore the GLM, GBM, and deep learning modeling techniques using H2O’s rapid, distributed and easy-to-use open source parallel processing engine. RStudio is a popular IDE, licensed either commercially or under AGPLv3, for working with R. This is ideal if you don’t want to connect to a server via SSH and use code editors such as vi to do analytics. RStudio is available in a desktop version, or a server version that allows you to access R via a web browser. RStudio’s Notebooks feature is used to demonstrate the execution of code and output. In addition, this post showcases how you can leverage Athena for query and interactive analysis during the modeling phase. A working knowledge of statistics and machine learning would be helpful to interpret the analysis being performed in this post.


Your goal is to predict whether a song will make it to the Top 10 Billboard charts. For this purpose, you will be using multiple modeling techniques―namely GLM, GBM and deep learning―and choose the model that is the best fit.

This solution involves the following steps:

  • Install and configure RStudio with Athena
  • Log in to RStudio
  • Install R packages
  • Connect to Athena
  • Create a dataset
  • Create models

Install and configure RStudio with Athena

Use the following AWS CloudFormation stack to install, configure, and connect RStudio on an Amazon EC2 instance with Athena.

Launching this stack creates all required resources and prerequisites:

  • Amazon EC2 instance with Amazon Linux (minimum size of t2.large is recommended)
  • Provisioning of the EC2 instance in an existing VPC and public subnet
  • Installation of Java 8
  • Assignment of an IAM role to the EC2 instance with the required permissions for accessing Athena and Amazon S3
  • Security group allowing access to the RStudio and SSH ports from the internet (I recommend restricting access to these ports)
  • S3 staging bucket required for Athena (referenced within RStudio as ATHENABUCKET)
  • RStudio username and password
  • Setup logs in Amazon CloudWatch Logs (if needed for additional troubleshooting)
  • Amazon EC2 Systems Manager agent, which makes it easy to manage and patch

All AWS resources are created in the US-East-1 Region. To avoid cross-region data transfer fees, launch the CloudFormation stack in the same region. To check the availability of Athena in other regions, see Region Table.

Log in to RStudio

The instance security group has been automatically configured to allow incoming connections on the RStudio port 8787 from any source internet address. You can edit the security group to restrict source IP access. If you have trouble connecting, ensure that port 8787 isn’t blocked by subnet network ACLS or by your outgoing proxy/firewall.

  1. In the CloudFormation stack, choose Outputs, Value, and then open the RStudio URL. You might need to wait for a few minutes until the instance has been launched.
  2. Log in to RStudio with the and password you provided during setup.

Install R packages

Next, install the required R packages from the RStudio console. You can download the R notebook file containing just the code.

#install pacman – a handy package manager for managing installs
if("pacman" %in% rownames(installed.packages()) == FALSE)
h2o.init(nthreads = -1)
##  Connection successful!
## R is connected to the H2O cluster: 
##     H2O cluster uptime:         2 hours 42 minutes 
##     H2O cluster version: 
##     H2O cluster version age:    4 months and 4 days !!! 
##     H2O cluster name:           H2O_started_from_R_rstudio_hjx881 
##     H2O cluster total nodes:    1 
##     H2O cluster total memory:   3.30 GB 
##     H2O cluster total cores:    4 
##     H2O cluster allowed cores:  4 
##     H2O cluster healthy:        TRUE 
##     H2O Connection ip:          localhost 
##     H2O Connection port:        54321 
##     H2O Connection proxy:       NA 
##     H2O Internal Security:      FALSE 
##     R Version:                  R version 3.3.3 (2017-03-06)
## Warning in h2o.clusterInfo(): 
## Your H2O cluster version is too old (4 months and 4 days)!
## Please download and install the latest version from http://h2o.ai/download/
#install aws sdk if not present (pre-requisite for using Athena with an IAM role)
if (!aws_sdk_present()) {


Connect to Athena

Next, establish a connection to Athena from RStudio, using an IAM role associated with your EC2 instance. Use ATHENABUCKET to specify the S3 staging directory.

URL <- 'https://s3.amazonaws.com/athena-downloads/drivers/AthenaJDBC41-1.0.1.jar'
fil <- basename(URL)
#download the file into current working directory
if (!file.exists(fil)) download.file(URL, fil)
#verify that the file has been downloaded successfully
## [1] "AthenaJDBC41-1.0.1.jar"
drv <- JDBC(driverClass="com.amazonaws.athena.jdbc.AthenaDriver", fil, identifier.quote="'")

con <- jdbcConnection <- dbConnect(drv, 'jdbc:awsathena://athena.us-east-1.amazonaws.com:443/',

Verify the connection. The results returned depend on your specific Athena setup.

## <JDBCConnection>
##  [1] "gdelt"               "wikistats"           "elb_logs_raw_native"
##  [4] "twitter"             "twitter2"            "usermovieratings"   
##  [7] "eventcodes"          "events"              "billboard"          
## [10] "billboardtop10"      "elb_logs"            "gdelthist"          
## [13] "gdeltmaster"         "twitter"             "twitter3"

Create a dataset

For this analysis, you use a sample dataset combining information from Billboard and Wikipedia with Echo Nest data in the Million Songs Dataset. Upload this dataset into your own S3 bucket. The table below provides a description of the fields used in this dataset.

Field Description
year Year that song was released
songtitle Title of the song
artistname Name of the song artist
songid Unique identifier for the song
artistid Unique identifier for the song artist
timesignature Variable estimating the time signature of the song
timesignature_confidence Confidence in the estimate for the timesignature
loudness Continuous variable indicating the average amplitude of the audio in decibels
tempo Variable indicating the estimated beats per minute of the song
tempo_confidence Confidence in the estimate for tempo
key Variable with twelve levels indicating the estimated key of the song (C, C#, B)
key_confidence Confidence in the estimate for key
energy Variable that represents the overall acoustic energy of the song, using a mix of features such as loudness
pitch Continuous variable that indicates the pitch of the song
timbre_0_min thru timbre_11_min Variables that indicate the minimum values over all segments for each of the twelve values in the timbre vector
timbre_0_max thru timbre_11_max Variables that indicate the maximum values over all segments for each of the twelve values in the timbre vector
top10 Indicator for whether or not the song made it to the Top 10 of the Billboard charts (1 if it was in the top 10, and 0 if not)

Create an Athena table based on the dataset

In the Athena console, select the default database, sampled, or create a new database.

Run the following create table statement.

create external table if not exists billboard
year int,
songtitle string,
artistname string,
songID string,
artistID string,
timesignature int,
timesignature_confidence double,
loudness double,
tempo double,
tempo_confidence double,
key int,
key_confidence double,
energy double,
pitch double,
timbre_0_min double,
timbre_0_max double,
timbre_1_min double,
timbre_1_max double,
timbre_2_min double,
timbre_2_max double,
timbre_3_min double,
timbre_3_max double,
timbre_4_min double,
timbre_4_max double,
timbre_5_min double,
timbre_5_max double,
timbre_6_min double,
timbre_6_max double,
timbre_7_min double,
timbre_7_max double,
timbre_8_min double,
timbre_8_max double,
timbre_9_min double,
timbre_9_max double,
timbre_10_min double,
timbre_10_max double,
timbre_11_min double,
timbre_11_max double,
Top10 int
LOCATION 's3://aws-bigdata-blog/artifacts/predict-billboard/data'

Inspect the table definition for the ‘billboard’ table that you have created. If you chose a database other than sampledb, replace that value with your choice.

dbGetQuery(con, "show create table sampledb.billboard")
##                                      createtab_stmt
## 1       CREATE EXTERNAL TABLE `sampledb.billboard`(
## 2                                       `year` int,
## 3                               `songtitle` string,
## 4                              `artistname` string,
## 5                                  `songid` string,
## 6                                `artistid` string,
## 7                              `timesignature` int,
## 8                `timesignature_confidence` double,
## 9                                `loudness` double,
## 10                                  `tempo` double,
## 11                       `tempo_confidence` double,
## 12                                       `key` int,
## 13                         `key_confidence` double,
## 14                                 `energy` double,
## 15                                  `pitch` double,
## 16                           `timbre_0_min` double,
## 17                           `timbre_0_max` double,
## 18                           `timbre_1_min` double,
## 19                           `timbre_1_max` double,
## 20                           `timbre_2_min` double,
## 21                           `timbre_2_max` double,
## 22                           `timbre_3_min` double,
## 23                           `timbre_3_max` double,
## 24                           `timbre_4_min` double,
## 25                           `timbre_4_max` double,
## 26                           `timbre_5_min` double,
## 27                           `timbre_5_max` double,
## 28                           `timbre_6_min` double,
## 29                           `timbre_6_max` double,
## 30                           `timbre_7_min` double,
## 31                           `timbre_7_max` double,
## 32                           `timbre_8_min` double,
## 33                           `timbre_8_max` double,
## 34                           `timbre_9_min` double,
## 35                           `timbre_9_max` double,
## 36                          `timbre_10_min` double,
## 37                          `timbre_10_max` double,
## 38                          `timbre_11_min` double,
## 39                          `timbre_11_max` double,
## 40                                     `top10` int)
## 41                             ROW FORMAT DELIMITED 
## 42                         FIELDS TERMINATED BY ',' 
## 43                            STORED AS INPUTFORMAT 
## 44       'org.apache.hadoop.mapred.TextInputFormat' 
## 45                                     OUTPUTFORMAT 
## 46  'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'
## 47                                        LOCATION
## 48    's3://aws-bigdata-blog/artifacts/predict-billboard/data'
## 49                                  TBLPROPERTIES (
## 50            'transient_lastDdlTime'='1505484133')

Run a sample query

Next, run a sample query to obtain a list of all songs from Janet Jackson that made it to the Billboard Top 10 charts.

dbGetQuery(con, " SELECT songtitle,artistname,top10   FROM sampledb.billboard WHERE lower(artistname) =     'janet jackson' AND top10 = 1")
##                       songtitle    artistname top10
## 1                       Runaway Janet Jackson     1
## 2               Because Of Love Janet Jackson     1
## 3                         Again Janet Jackson     1
## 4                            If Janet Jackson     1
## 5  Love Will Never Do (Without You) Janet Jackson 1
## 6                     Black Cat Janet Jackson     1
## 7               Come Back To Me Janet Jackson     1
## 8                       Alright Janet Jackson     1
## 9                      Escapade Janet Jackson     1
## 10                Rhythm Nation Janet Jackson     1

Determine how many songs in this dataset are specifically from the year 2010.

dbGetQuery(con, " SELECT count(*)   FROM sampledb.billboard WHERE year = 2010")
##   _col0
## 1   373

The sample dataset provides certain song properties of interest that can be analyzed to gauge the impact to the song’s overall popularity. Look at one such property, timesignature, and determine the value that is the most frequent among songs in the database. Timesignature is a measure of the number of beats and the type of note involved.

Running the query directly may result in an error, as shown in the commented lines below. This error is a result of trying to retrieve a large result set over a JDBC connection, which can cause out-of-memory issues at the client level. To address this, reduce the fetch size and run again.

#t<-dbGetQuery(con, " SELECT timesignature FROM sampledb.billboard")
#Note:  Running the preceding query results in the following error: 
#Error in .jcall(rp, "I", "fetch", stride, block): java.sql.SQLException: The requested #fetchSize is more than the allowed value in Athena. Please reduce the fetchSize and try #again. Refer to the Athena documentation for valid fetchSize values.
# Use the dbSendQuery function, reduce the fetch size, and run again
r <- dbSendQuery(con, " SELECT timesignature     FROM sampledb.billboard")
dftimesignature<- fetch(r, n=-1, block=100)
## [1] TRUE
## dftimesignature
##    0    1    3    4    5    7 
##   10  143  503 6787  112   19
## [1] 7574

From the results, observe that 6787 songs have a timesignature of 4.

Next, determine the song with the highest tempo.

dbGetQuery(con, " SELECT songtitle,artistname,tempo   FROM sampledb.billboard WHERE tempo = (SELECT max(tempo) FROM sampledb.billboard) ")
##                   songtitle      artistname   tempo
## 1 Wanna Be Startin' Somethin' Michael Jackson 244.307

Create the training dataset

Your model needs to be trained such that it can learn and make accurate predictions. Split the data into training and test datasets, and create the training dataset first.  This dataset contains all observations from the year 2009 and earlier. You may face the same JDBC connection issue pointed out earlier, so this query uses a fetch size.

#BillboardTrain <- dbGetQuery(con, "SELECT * FROM sampledb.billboard WHERE year <= 2009")
#Running the preceding query results in the following error:-
#Error in .verify.JDBC.result(r, "Unable to retrieve JDBC result set for ", : Unable to retrieve #JDBC result set for SELECT * FROM sampledb.billboard WHERE year <= 2009 (Internal error)
#Follow the same approach as before to address this issue.

r <- dbSendQuery(con, "SELECT * FROM sampledb.billboard WHERE year <= 2009")
BillboardTrain <- fetch(r, n=-1, block=100)
## [1] TRUE
##   year           songtitle artistname timesignature
## 1 2009 The Awkward Goodbye    Athlete             3
## 2 2009        Rubik's Cube    Athlete             3
##   timesignature_confidence loudness   tempo tempo_confidence
## 1                    0.732   -6.320  89.614   0.652
## 2                    0.906   -9.541 117.742   0.542
## [1] 7201

Create the test dataset

BillboardTest <- dbGetQuery(con, "SELECT * FROM sampledb.billboard where year = 2010")
##   year              songtitle        artistname key
## 1 2010 This Is the House That Doubt Built A Day to Remember  11
## 2 2010        Sticks & Bricks A Day to Remember  10
##   key_confidence    energy pitch timbre_0_min
## 1          0.453 0.9666556 0.024        0.002
## 2          0.469 0.9847095 0.025        0.000
## [1] 373

Convert the training and test datasets into H2O dataframes

train.h2o <- as.h2o(BillboardTrain)
  |                                                                 |   0%
  |=================================================================| 100%
test.h2o <- as.h2o(BillboardTest)
  |                                                                 |   0%
  |=================================================================| 100%

Inspect the column names in your H2O dataframes.

##  [1] "year"                     "songtitle"               
##  [3] "artistname"               "songid"                  
##  [5] "artistid"                 "timesignature"           
##  [7] "timesignature_confidence" "loudness"                
##  [9] "tempo"                    "tempo_confidence"        
## [11] "key"                      "key_confidence"          
## [13] "energy"                   "pitch"                   
## [15] "timbre_0_min"             "timbre_0_max"            
## [17] "timbre_1_min"             "timbre_1_max"            
## [19] "timbre_2_min"             "timbre_2_max"            
## [21] "timbre_3_min"             "timbre_3_max"            
## [23] "timbre_4_min"             "timbre_4_max"            
## [25] "timbre_5_min"             "timbre_5_max"            
## [27] "timbre_6_min"             "timbre_6_max"            
## [29] "timbre_7_min"             "timbre_7_max"            
## [31] "timbre_8_min"             "timbre_8_max"            
## [33] "timbre_9_min"             "timbre_9_max"            
## [35] "timbre_10_min"            "timbre_10_max"           
## [37] "timbre_11_min"            "timbre_11_max"           
## [39] "top10"

Create models

You need to designate the independent and dependent variables prior to applying your modeling algorithms. Because you’re trying to predict the ‘top10’ field, this would be your dependent variable and everything else would be independent.

Create your first model using GLM. Because GLM works best with numeric data, you create your model by dropping non-numeric variables. You only use the variables in the dataset that describe the numerical attributes of the song in the logistic regression model. You won’t use these variables:  “year”, “songtitle”, “artistname”, “songid”, or “artistid”.

y.dep <- 39
x.indep <- c(6:38)
##  [1]  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
## [24] 29 30 31 32 33 34 35 36 37 38

Create Model 1: All numeric variables

Create Model 1 with the training dataset, using GLM as the modeling algorithm and H2O’s built-in h2o.glm function.

modelh1 <- h2o.glm( y = y.dep, x = x.indep, training_frame = train.h2o, family = "binomial")
  |                                                                 |   0%
  |=====                                                            |   8%
  |=================================================================| 100%

Measure the performance of Model 1, using H2O’s built-in performance function.

## H2OBinomialMetrics: glm
## MSE:  0.09924684
## RMSE:  0.3150347
## LogLoss:  0.3220267
## Mean Per-Class Error:  0.2380168
## AUC:  0.8431394
## Gini:  0.6862787
## R^2:  0.254663
## Null Deviance:  326.0801
## Residual Deviance:  240.2319
## AIC:  308.2319
## Confusion Matrix (vertical: actual; across: predicted) for F1-optimal threshold:
##          0   1    Error     Rate
## 0      255  59 0.187898  =59/314
## 1       17  42 0.288136   =17/59
## Totals 272 101 0.203753  =76/373
## Maximum Metrics: Maximum metrics at their respective thresholds
##                         metric threshold    value idx
## 1                       max f1  0.192772 0.525000 100
## 2                       max f2  0.124912 0.650510 155
## 3                 max f0point5  0.416258 0.612903  23
## 4                 max accuracy  0.416258 0.879357  23
## 5                max precision  0.813396 1.000000   0
## 6                   max recall  0.037579 1.000000 282
## 7              max specificity  0.813396 1.000000   0
## 8             max absolute_mcc  0.416258 0.455251  23
## 9   max min_per_class_accuracy  0.161402 0.738854 125
## 10 max mean_per_class_accuracy  0.124912 0.765006 155
## Gains/Lift Table: Extract with `h2o.gainsLift(<model>, <data>)` or ` 
## [1] 0.8431394

The AUC metric provides insight into how well the classifier is able to separate the two classes. In this case, the value of 0.8431394 indicates that the classification is good. (A value of 0.5 indicates a worthless test, while a value of 1.0 indicates a perfect test.)

Next, inspect the coefficients of the variables in the dataset.

dfmodelh1 <- as.data.frame(h2o.varimp(modelh1))
##                       names coefficients sign
## 1              timbre_0_max  1.290938663  NEG
## 2                  loudness  1.262941934  POS
## 3                     pitch  0.616995941  NEG
## 4              timbre_1_min  0.422323735  POS
## 5              timbre_6_min  0.349016024  NEG
## 6                    energy  0.348092062  NEG
## 7             timbre_11_min  0.307331997  NEG
## 8              timbre_3_max  0.302225619  NEG
## 9             timbre_11_max  0.243632060  POS
## 10             timbre_4_min  0.224233951  POS
## 11             timbre_4_max  0.204134342  POS
## 12             timbre_5_min  0.199149324  NEG
## 13             timbre_0_min  0.195147119  POS
## 14 timesignature_confidence  0.179973904  POS
## 15         tempo_confidence  0.144242598  POS
## 16            timbre_10_max  0.137644568  POS
## 17             timbre_7_min  0.126995955  NEG
## 18            timbre_10_min  0.123851179  POS
## 19             timbre_7_max  0.100031481  NEG
## 20             timbre_2_min  0.096127636  NEG
## 21           key_confidence  0.083115820  POS
## 22             timbre_6_max  0.073712419  POS
## 23            timesignature  0.067241917  POS
## 24             timbre_8_min  0.061301881  POS
## 25             timbre_8_max  0.060041698  POS
## 26                      key  0.056158445  POS
## 27             timbre_3_min  0.050825116  POS
## 28             timbre_9_max  0.033733561  POS
## 29             timbre_2_max  0.030939072  POS
## 30             timbre_9_min  0.020708113  POS
## 31             timbre_1_max  0.014228818  NEG
## 32                    tempo  0.008199861  POS
## 33             timbre_5_max  0.004837870  POS
## 34                                    NA <NA>

Typically, songs with heavier instrumentation tend to be louder (have higher values in the variable “loudness”) and more energetic (have higher values in the variable “energy”). This knowledge is helpful for interpreting the modeling results.

You can make the following observations from the results:

  • The coefficient estimates for the confidence values associated with the time signature, key, and tempo variables are positive. This suggests that higher confidence leads to a higher predicted probability of a Top 10 hit.
  • The coefficient estimate for loudness is positive, meaning that mainstream listeners prefer louder songs with heavier instrumentation.
  • The coefficient estimate for energy is negative, meaning that mainstream listeners prefer songs that are less energetic, which are those songs with light instrumentation.

These coefficients lead to contradictory conclusions for Model 1. This could be due to multicollinearity issues. Inspect the correlation between the variables “loudness” and “energy” in the training set.

## [1] 0.7399067

This number indicates that these two variables are highly correlated, and Model 1 does indeed suffer from multicollinearity. Typically, you associate a value of -1.0 to -0.5 or 1.0 to 0.5 to indicate strong correlation, and a value of 0.1 to 0.1 to indicate weak correlation. To avoid this correlation issue, omit one of these two variables and re-create the models.

You build two variations of the original model:

  • Model 2, in which you keep “energy” and omit “loudness”
  • Model 3, in which you keep “loudness” and omit “energy”

You compare these two models and choose the model with a better fit for this use case.

Create Model 2: Keep energy and omit loudness

##  [1] "year"                     "songtitle"               
##  [3] "artistname"               "songid"                  
##  [5] "artistid"                 "timesignature"           
##  [7] "timesignature_confidence" "loudness"                
##  [9] "tempo"                    "tempo_confidence"        
## [11] "key"                      "key_confidence"          
## [13] "energy"                   "pitch"                   
## [15] "timbre_0_min"             "timbre_0_max"            
## [17] "timbre_1_min"             "timbre_1_max"            
## [19] "timbre_2_min"             "timbre_2_max"            
## [21] "timbre_3_min"             "timbre_3_max"            
## [23] "timbre_4_min"             "timbre_4_max"            
## [25] "timbre_5_min"             "timbre_5_max"            
## [27] "timbre_6_min"             "timbre_6_max"            
## [29] "timbre_7_min"             "timbre_7_max"            
## [31] "timbre_8_min"             "timbre_8_max"            
## [33] "timbre_9_min"             "timbre_9_max"            
## [35] "timbre_10_min"            "timbre_10_max"           
## [37] "timbre_11_min"            "timbre_11_max"           
## [39] "top10"
y.dep <- 39
x.indep <- c(6:7,9:38)
##  [1]  6  7  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
## [24] 30 31 32 33 34 35 36 37 38
modelh2 <- h2o.glm( y = y.dep, x = x.indep, training_frame = train.h2o, family = "binomial")
  |                                                                 |   0%
  |=======                                                          |  10%
  |=================================================================| 100%

Measure the performance of Model 2.

## H2OBinomialMetrics: glm
## MSE:  0.09922606
## RMSE:  0.3150017
## LogLoss:  0.3228213
## Mean Per-Class Error:  0.2490554
## AUC:  0.8431933
## Gini:  0.6863867
## R^2:  0.2548191
## Null Deviance:  326.0801
## Residual Deviance:  240.8247
## AIC:  306.8247
## Confusion Matrix (vertical: actual; across: predicted) for F1-optimal threshold:
##          0  1    Error     Rate
## 0      280 34 0.108280  =34/314
## 1       23 36 0.389831   =23/59
## Totals 303 70 0.152815  =57/373
## Maximum Metrics: Maximum metrics at their respective thresholds
##                         metric threshold    value idx
## 1                       max f1  0.254391 0.558140  69
## 2                       max f2  0.113031 0.647208 157
## 3                 max f0point5  0.413999 0.596026  22
## 4                 max accuracy  0.446250 0.876676  18
## 5                max precision  0.811739 1.000000   0
## 6                   max recall  0.037682 1.000000 283
## 7              max specificity  0.811739 1.000000   0
## 8             max absolute_mcc  0.254391 0.469060  69
## 9   max min_per_class_accuracy  0.141051 0.716561 131
## 10 max mean_per_class_accuracy  0.113031 0.761821 157
## Gains/Lift Table: Extract with `h2o.gainsLift(<model>, <data>)` or `h2o.gainsLift(<model>, valid=<T/F>, xval=<T/F>)`
dfmodelh2 <- as.data.frame(h2o.varimp(modelh2))
##                       names coefficients sign
## 1                     pitch  0.700331511  NEG
## 2              timbre_1_min  0.510270513  POS
## 3              timbre_0_max  0.402059546  NEG
## 4              timbre_6_min  0.333316236  NEG
## 5             timbre_11_min  0.331647383  NEG
## 6              timbre_3_max  0.252425901  NEG
## 7             timbre_11_max  0.227500308  POS
## 8              timbre_4_max  0.210663865  POS
## 9              timbre_0_min  0.208516163  POS
## 10             timbre_5_min  0.202748055  NEG
## 11             timbre_4_min  0.197246582  POS
## 12            timbre_10_max  0.172729619  POS
## 13         tempo_confidence  0.167523934  POS
## 14 timesignature_confidence  0.167398830  POS
## 15             timbre_7_min  0.142450727  NEG
## 16             timbre_8_max  0.093377516  POS
## 17            timbre_10_min  0.090333426  POS
## 18            timesignature  0.085851625  POS
## 19             timbre_7_max  0.083948442  NEG
## 20           key_confidence  0.079657073  POS
## 21             timbre_6_max  0.076426046  POS
## 22             timbre_2_min  0.071957831  NEG
## 23             timbre_9_max  0.071393189  POS
## 24             timbre_8_min  0.070225578  POS
## 25                      key  0.061394702  POS
## 26             timbre_3_min  0.048384697  POS
## 27             timbre_1_max  0.044721121  NEG
## 28                   energy  0.039698433  POS
## 29             timbre_5_max  0.039469064  POS
## 30             timbre_2_max  0.018461133  POS
## 31                    tempo  0.013279926  POS
## 32             timbre_9_min  0.005282143  NEG
## 33                                    NA <NA>

## [1] 0.8431933

You can make the following observations:

  • The AUC metric is 0.8431933.
  • Inspecting the coefficient of the variable energy, Model 2 suggests that songs with high energy levels tend to be more popular. This is as per expectation.
  • As H2O orders variables by significance, the variable energy is not significant in this model.

You can conclude that Model 2 is not ideal for this use , as energy is not significant.

CreateModel 3: Keep loudness but omit energy

##  [1] "year"                     "songtitle"               
##  [3] "artistname"               "songid"                  
##  [5] "artistid"                 "timesignature"           
##  [7] "timesignature_confidence" "loudness"                
##  [9] "tempo"                    "tempo_confidence"        
## [11] "key"                      "key_confidence"          
## [13] "energy"                   "pitch"                   
## [15] "timbre_0_min"             "timbre_0_max"            
## [17] "timbre_1_min"             "timbre_1_max"            
## [19] "timbre_2_min"             "timbre_2_max"            
## [21] "timbre_3_min"             "timbre_3_max"            
## [23] "timbre_4_min"             "timbre_4_max"            
## [25] "timbre_5_min"             "timbre_5_max"            
## [27] "timbre_6_min"             "timbre_6_max"            
## [29] "timbre_7_min"             "timbre_7_max"            
## [31] "timbre_8_min"             "timbre_8_max"            
## [33] "timbre_9_min"             "timbre_9_max"            
## [35] "timbre_10_min"            "timbre_10_max"           
## [37] "timbre_11_min"            "timbre_11_max"           
## [39] "top10"
y.dep <- 39
x.indep <- c(6:12,14:38)
##  [1]  6  7  8  9 10 11 12 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
## [24] 30 31 32 33 34 35 36 37 38
modelh3 <- h2o.glm( y = y.dep, x = x.indep, training_frame = train.h2o, family = "binomial")
  |                                                                 |   0%
  |========                                                         |  12%
  |=================================================================| 100%
## H2OBinomialMetrics: glm
## MSE:  0.0978859
## RMSE:  0.3128672
## LogLoss:  0.3178367
## Mean Per-Class Error:  0.264925
## AUC:  0.8492389
## Gini:  0.6984778
## R^2:  0.2648836
## Null Deviance:  326.0801
## Residual Deviance:  237.1062
## AIC:  303.1062
## Confusion Matrix (vertical: actual; across: predicted) for F1-optimal threshold:
##          0  1    Error     Rate
## 0      286 28 0.089172  =28/314
## 1       26 33 0.440678   =26/59
## Totals 312 61 0.144772  =54/373
## Maximum Metrics: Maximum metrics at their respective thresholds
##                         metric threshold    value idx
## 1                       max f1  0.273799 0.550000  60
## 2                       max f2  0.125503 0.663265 155
## 3                 max f0point5  0.435479 0.628931  24
## 4                 max accuracy  0.435479 0.882038  24
## 5                max precision  0.821606 1.000000   0
## 6                   max recall  0.038328 1.000000 280
## 7              max specificity  0.821606 1.000000   0
## 8             max absolute_mcc  0.435479 0.471426  24
## 9   max min_per_class_accuracy  0.173693 0.745763 120
## 10 max mean_per_class_accuracy  0.125503 0.775073 155
## Gains/Lift Table: Extract with `h2o.gainsLift(<model>, <data>)` or `h2o.gainsLift(<model>, valid=<T/F>, xval=<T/F>)`
dfmodelh3 <- as.data.frame(h2o.varimp(modelh3))
##                       names coefficients sign
## 1              timbre_0_max 1.216621e+00  NEG
## 2                  loudness 9.780973e-01  POS
## 3                     pitch 7.249788e-01  NEG
## 4              timbre_1_min 3.891197e-01  POS
## 5              timbre_6_min 3.689193e-01  NEG
## 6             timbre_11_min 3.086673e-01  NEG
## 7              timbre_3_max 3.025593e-01  NEG
## 8             timbre_11_max 2.459081e-01  POS
## 9              timbre_4_min 2.379749e-01  POS
## 10             timbre_4_max 2.157627e-01  POS
## 11             timbre_0_min 1.859531e-01  POS
## 12             timbre_5_min 1.846128e-01  NEG
## 13 timesignature_confidence 1.729658e-01  POS
## 14             timbre_7_min 1.431871e-01  NEG
## 15            timbre_10_max 1.366703e-01  POS
## 16            timbre_10_min 1.215954e-01  POS
## 17         tempo_confidence 1.183698e-01  POS
## 18             timbre_2_min 1.019149e-01  NEG
## 19           key_confidence 9.109701e-02  POS
## 20             timbre_7_max 8.987908e-02  NEG
## 21             timbre_6_max 6.935132e-02  POS
## 22             timbre_8_max 6.878241e-02  POS
## 23            timesignature 6.120105e-02  POS
## 24                      key 5.814805e-02  POS
## 25             timbre_8_min 5.759228e-02  POS
## 26             timbre_1_max 2.930285e-02  NEG
## 27             timbre_9_max 2.843755e-02  POS
## 28             timbre_3_min 2.380245e-02  POS
## 29             timbre_2_max 1.917035e-02  POS
## 30             timbre_5_max 1.715813e-02  POS
## 31                    tempo 1.364418e-02  NEG
## 32             timbre_9_min 8.463143e-05  NEG
## 33                                    NA <NA>
## Warning in h2o.find_row_by_threshold(object, t): Could not find exact
## threshold: 0.5 for this set of metrics; using closest threshold found:
## 0.501855569251422. Run `h2o.predict` and apply your desired threshold on a
## probability column.
## [[1]]
## [1] 0.2033898
## [1] 0.8492389

You can make the following observations:

  • The AUC metric is 0.8492389.
  • From the confusion matrix, the model correctly predicts that 33 songs will be top 10 hits (true positives). However, it has 26 false positives (songs that the model predicted would be Top 10 hits, but ended up not being Top 10 hits).
  • Loudness has a positive coefficient estimate, meaning that this model predicts that songs with heavier instrumentation tend to be more popular. This is the same conclusion from Model 2.
  • Loudness is significant in this model.

Overall, Model 3 predicts a higher number of top 10 hits with an accuracy rate that is acceptable. To choose the best fit for production runs, record labels should consider the following factors:

  • Desired model accuracy at a given threshold
  • Number of correct predictions for top10 hits
  • Tolerable number of false positives or false negatives

Next, make predictions using Model 3 on the test dataset.

predict.regh <- h2o.predict(modelh3, test.h2o)
  |                                                                 |   0%
  |=================================================================| 100%
##   predict        p0          p1
## 1       0 0.9654739 0.034526052
## 2       0 0.9654748 0.034525236
## 3       0 0.9635547 0.036445318
## 4       0 0.9343579 0.065642149
## 5       0 0.9978334 0.002166601
## 6       0 0.9779949 0.022005078
## [373 rows x 3 columns]
##   predict
## 1       0
## 2       0
## 3       0
## 4       0
## 5       0
## 6       0
## [373 rows x 1 column]
#Rename the predicted column 
colnames(dpr)[colnames(dpr) == 'predict'] <- 'predict_top10'
##   0   1 
## 312  61

The first set of output results specifies the probabilities associated with each predicted observation.  For example, observation 1 is 96.54739% likely to not be a Top 10 hit, and 3.4526052% likely to be a Top 10 hit (predict=1 indicates Top 10 hit and predict=0 indicates not a Top 10 hit).  The second set of results list the actual predictions made.  From the third set of results, this model predicts that 61 songs will be top 10 hits.

Compute the baseline accuracy, by assuming that the baseline predicts the most frequent outcome, which is that most songs are not Top 10 hits.

##   0   1 
## 314  59

Now observe that the baseline model would get 314 observations correct, and 59 wrong, for an accuracy of 314/(314+59) = 0.8418231.

It seems that Model 3, with an accuracy of 0.8552, provides you with a small improvement over the baseline model. But is this model useful for record labels?

View the two models from an investment perspective:

  • A production company is interested in investing in songs that are more likely to make it to the Top 10. The company’s objective is to minimize the risk of financial losses attributed to investing in songs that end up unpopular.
  • How many songs does Model 3 correctly predict as a Top 10 hit in 2010? Looking at the confusion matrix, you see that it predicts 33 top 10 hits correctly at an optimal threshold, which is more than half the number
  • It will be more useful to the record label if you can provide the production company with a list of songs that are highly likely to end up in the Top 10.
  • The baseline model is not useful, as it simply does not label any song as a hit.

Considering the three models built so far, you can conclude that Model 3 proves to be the best investment choice for the record label.

GBM model

H2O provides you with the ability to explore other learning models, such as GBM and deep learning. Explore building a model using the GBM technique, using the built-in h2o.gbm function.

Before you do this, you need to convert the target variable to a factor for multinomial classification techniques.

gbm.modelh <- h2o.gbm(y=y.dep, x=x.indep, training_frame = train.h2o, ntrees = 500, max_depth = 4, learn_rate = 0.01, seed = 1122,distribution="multinomial")
  |                                                                 |   0%
  |===                                                              |   5%
  |=====                                                            |   7%
  |======                                                           |   9%
  |=======                                                          |  10%
  |======================                                           |  33%
  |=====================================                            |  56%
  |====================================================             |  79%
  |================================================================ |  98%
  |=================================================================| 100%
## H2OBinomialMetrics: gbm
## MSE:  0.09860778
## RMSE:  0.3140188
## LogLoss:  0.3206876
## Mean Per-Class Error:  0.2120263
## AUC:  0.8630573
## Gini:  0.7261146
## Confusion Matrix (vertical: actual; across: predicted) for F1-optimal threshold:
##          0  1    Error     Rate
## 0      266 48 0.152866  =48/314
## 1       16 43 0.271186   =16/59
## Totals 282 91 0.171582  =64/373
## Maximum Metrics: Maximum metrics at their respective thresholds
##                       metric threshold    value idx
## 1                     max f1  0.189757 0.573333  90
## 2                     max f2  0.130895 0.693717 145
## 3               max f0point5  0.327346 0.598802  26
## 4               max accuracy  0.442757 0.876676  14
## 5              max precision  0.802184 1.000000   0
## 6                 max recall  0.049990 1.000000 284
## 7            max specificity  0.802184 1.000000   0
## 8           max absolute_mcc  0.169135 0.496486 104
## 9 max min_per_class_accuracy  0.169135 0.796610 104
## 10 max mean_per_class_accuracy  0.169135 0.805948 104
## Gains/Lift Table: Extract with `h2o.gainsLift(<model>, <data>)` or `
## Warning in h2o.find_row_by_threshold(object, t): Could not find exact
## threshold: 0.5 for this set of metrics; using closest threshold found:
## 0.501205344484314. Run `h2o.predict` and apply your desired threshold on a
## probability column.
## [[1]]
## [1] 0.1355932
## [1] 0.8630573

This model correctly predicts 43 top 10 hits, which is 10 more than the number predicted by Model 3. Moreover, the AUC metric is higher than the one obtained from Model 3.

As seen above, H2O’s API provides the ability to obtain key statistical measures required to analyze the models easily, using several built-in functions. The record label can experiment with different parameters to arrive at the model that predicts the maximum number of Top 10 hits at the desired level of accuracy and threshold.

H2O also allows you to experiment with deep learning models. Deep learning models have the ability to learn features implicitly, but can be more expensive computationally.

Now, create a deep learning model with the h2o.deeplearning function, using the same training and test datasets created before. The time taken to run this model depends on the type of EC2 instance chosen for this purpose.  For models that require more computation, consider using accelerated computing instances such as the P2 instance type.

  dlearning.modelh <- h2o.deeplearning(y = y.dep,
                                      x = x.indep,
                                      training_frame = train.h2o,
                                      epoch = 250,
                                      hidden = c(250,250),
                                      activation = "Rectifier",
                                      seed = 1122,
  |                                                                 |   0%
  |===                                                              |   4%
  |=====                                                            |   8%
  |========                                                         |  12%
  |==========                                                       |  16%
  |=============                                                    |  20%
  |================                                                 |  24%
  |==================                                               |  28%
  |=====================                                            |  32%
  |=======================                                          |  36%
  |==========================                                       |  40%
  |=============================                                    |  44%
  |===============================                                  |  48%
  |==================================                               |  52%
  |====================================                             |  56%
  |=======================================                          |  60%
  |==========================================                       |  64%
  |============================================                     |  68%
  |===============================================                  |  72%
  |=================================================                |  76%
  |====================================================             |  80%
  |=======================================================          |  84%
  |=========================================================        |  88%
  |============================================================     |  92%
  |==============================================================   |  96%
  |=================================================================| 100%
##    user  system elapsed 
##   1.216   0.020 166.508
## H2OBinomialMetrics: deeplearning
## MSE:  0.1678359
## RMSE:  0.4096778
## LogLoss:  1.86509
## Mean Per-Class Error:  0.3433013
## AUC:  0.7568822
## Gini:  0.5137644
## Confusion Matrix (vertical: actual; across: predicted) for F1-optimal threshold:
##          0  1    Error     Rate
## 0      290 24 0.076433  =24/314
## 1       36 23 0.610169   =36/59
## Totals 326 47 0.160858  =60/373
## Maximum Metrics: Maximum metrics at their respective thresholds
##                       metric threshold    value idx
## 1                     max f1  0.826267 0.433962  46
## 2                     max f2  0.000000 0.588235 239
## 3               max f0point5  0.999929 0.511811  16
## 4               max accuracy  0.999999 0.865952  10
## 5              max precision  1.000000 1.000000   0
## 6                 max recall  0.000000 1.000000 326
## 7            max specificity  1.000000 1.000000   0
## 8           max absolute_mcc  0.999929 0.363219  16
## 9 max min_per_class_accuracy  0.000004 0.662420 145
## 10 max mean_per_class_accuracy  0.000000 0.685334 224
## Gains/Lift Table: Extract with `h2o.gainsLift(<model>, <data>)` or `h2o.gainsLift(<model>, valid=<T/F>, xval=<T/F>)`
## Warning in h2o.find_row_by_threshold(object, t): Could not find exact
## threshold: 0.5 for this set of metrics; using closest threshold found:
## 0.496293348880151. Run `h2o.predict` and apply your desired threshold on a
## probability column.
## [[1]]
## [1] 0.3898305
## [1] 0.7568822

The AUC metric for this model is 0.7568822, which is less than what you got from the earlier models. I recommend further experimentation using different hyper parameters, such as the learning rate, epoch or the number of hidden layers.

H2O’s built-in functions provide many key statistical measures that can help measure model performance. Here are some of these key terms.

Metric Description
Sensitivity Measures the proportion of positives that have been correctly identified. It is also called the true positive rate, or recall.
Specificity Measures the proportion of negatives that have been correctly identified. It is also called the true negative rate.
Threshold Cutoff point that maximizes specificity and sensitivity. While the model may not provide the highest prediction at this point, it would not be biased towards positives or negatives.
Precision The fraction of the documents retrieved that are relevant to the information needed, for example, how many of the positively classified are relevant

Provides insight into how well the classifier is able to separate the two classes. The implicit goal is to deal with situations where the sample distribution is highly skewed, with a tendency to overfit to a single class.

0.90 – 1 = excellent (A)

0.8 – 0.9 = good (B)

0.7 – 0.8 = fair (C)

.6 – 0.7 = poor (D)

0.5 – 0.5 = fail (F)

Here’s a summary of the metrics generated from H2O’s built-in functions for the three models that produced useful results.

Metric Model 3 GBM Model Deep Learning Model



















1.0 1.0





1.0 1.0





0.2033898 0.1355932



AUC 0.8492389 0.8630573 0.756882

Note: ‘t’ denotes threshold.

Your options at this point could be narrowed down to Model 3 and the GBM model, based on the AUC and accuracy metrics observed earlier.  If the slightly lower accuracy of the GBM model is deemed acceptable, the record label can choose to go to production with the GBM model, as it can predict a higher number of Top 10 hits.  The AUC metric for the GBM model is also higher than that of Model 3.

Record labels can experiment with different learning techniques and parameters before arriving at a model that proves to be the best fit for their business. Because deep learning models can be computationally expensive, record labels can choose more powerful EC2 instances on AWS to run their experiments faster.


In this post, I showed how the popular music industry can use analytics to predict the type of songs that make the Top 10 Billboard charts. By running H2O’s scalable machine learning platform on AWS, data scientists can easily experiment with multiple modeling techniques and interactively query the data using Amazon Athena, without having to manage the underlying infrastructure. This helps record labels make critical decisions on the type of artists and songs to promote in a timely fashion, thereby increasing sales and revenue.

If you have questions or suggestions, please comment below.

Additional Reading

Learn how to build and explore a simple geospita simple GEOINT application using SparkR.

About the Authors

gopalGopal Wunnava is a Partner Solution Architect with the AWS GSI Team. He works with partners and customers on big data engagements, and is passionate about building analytical solutions that drive business capabilities and decision making. In his spare time, he loves all things sports and movies related and is fond of old classics like Asterix, Obelix comics and Hitchcock movies.



Bob Strahan, a Senior Consultant with AWS Professional Services, contributed to this post.



Denuvo Crisis After Total Warhammer 2 Gets Pirated in Hours

Post Syndicated from Andy original https://torrentfreak.com/denuvo-crisis-after-total-warhammer-2-gets-pirated-in-hours-170929/

Needing little introduction, the anti-piracy system sold by Denuvo Software Solutions of Austria is probably the most well-known product of its type of the planet.

For years, Denuvo was considered pretty much impenetrable, with its presence a virtual stamp of assurance that a game being protected by it would not fall victim to piracy, potentially for years. In recent times, however, things have begun to crumble.

Strangely, it started in early 2016 with bad news. Chinese cracking group 3DM declared that Denuvo was probably uncrackable and no protected games would appear online during the next two years.

By June, however, hope appeared on the horizon, with hints that progress was being made. By August 2016, all doubts were removed when a group called CONSPIR4CY (a reported collaboration between CPY and CODEX) released Rise of the Tomb Raider.

After that, Denuvo-protected titles began dropping like flies, with some getting cracked weeks after their launch. Then things got serious.

Early this year, Resident Evil 7 fell in less than a week. In the summer, RiME fell in a few days, four days exactly for Tekken 7.

Now, however, Denuvo has suffered its biggest failure yet, with strategy game Total War: Warhammer 2 falling to pirates in less than a day, arguably just a few hours. It was cracked by STEAMPUNKS, a group that’s been dumping cracked games on the Internet at quite a rate for the past few months.


“Take this advice, DO NOT CODE a new installer when you have very hot Babes dancing in their bikini just in front of you. Never again,” the group said in a statement. “This time we locked ourselves inside and produced a new installer.”

The fall of this game in such a short space of time will be of major concern to Denuvo Software Solutions. After Resident Evil 7 was cracked in days earlier this year, Denuvo Marketing Director Thomas Goebl told Eurogamer that some protection was better than nothing.

“Given the fact that every unprotected title is cracked on the day of release — as well as every update of games — our solution made a difference for this title,” he said.

With yesterday’s 0-day crack of Total War: Warhammer 2, it can be argued that Denuvo made absolutely no difference whatsoever to the availability of the title. It didn’t even protect the initial launch window.

Goebl’s additional comment in the summer was that “so far only one piracy group has been able to bypass [Denuvo].” Now, just a handful of months later, there are several groups with the ability. That’s not a good look for the company.

Back in 2016, Denuvo co-founder Robert Hernandez told Kotaku that the company does not give refunds. It would be interesting to know if anything has changed there too.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and ANONYMOUS VPN services.

Google Signs Agreement to Tackle YouTube Piracy

Post Syndicated from Andy original https://torrentfreak.com/google-signs-unprecedented-agreement-to-tackle-youtube-piracy-170921/

Once upon a time, people complaining about piracy would point to the hundreds of piracy sites around the Internet. These days, criticism is just as likely to be leveled at Google-owned services.

YouTube, in particular, has come in for intense criticism, with the music industry complaining of exploitation of the DMCA in order to obtain unfair streaming rates from record labels. Along with streaming-ripping, this so-called Value Gap is one of the industry’s hottest topics.

With rightsholders seemingly at war with Google to varying degrees, news from France suggests that progress can be made if people sit down and negotiate.

According to local reports, Google and local anti-piracy outfit ALPA (l’Association de Lutte Contre la Piraterie Audiovisuelle) under the auspices of the CNC have signed an agreement to grant rightsholders direct access to content takedown mechanisms on YouTube.

YouTube has granted access to its Content ID systems to companies elsewhere for years but the new deal will see the system utilized by French content owners for the first time. It’s hoped that the access will result in infringing content being taken down or monetized more quickly than before.

“We do not want fraudsters to use our platforms to the detriment of creators,” said Carlo D’Asaro Biondo, Google’s President of Strategic Relationships in Europe, the Middle East and Africa.

The agreement, overseen by the Ministry of Culture, will see Google provide ALPA with financial support and rightsholders with essential training.

ALPA president Nicolas Seydoux welcomed the deal, noting that it symbolizes the “collapse of the wall of incomprehension” that previously existed between France’s rightsholders and the Internet search giant.

The deal forms part of the French government’s “Plan of Action Against Piracy”, in which it hopes to crack down on infringement in various ways, including tackling the threat of pirate sites, better promotion of services offering legitimate content, and educating children “from an early age” on the need to respect copyright.

“The fight against piracy is the great challenge of the new century in the cultural sphere,” said France’s Minister of Culture, Françoise Nyssen.

“I hope this is just the beginning of a process. It will require other agreements with rights holders and other platforms, as well as at the European level.”

According to NextInpact, the Google agreement will eventually encompass the downgrading of infringing content in search results as part of the Trusted Copyright Removal Program. A similar system is already in place in the UK.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and ANONYMOUS VPN services.

A printing GIF camera? Is that even a thing?

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/printing-gif-camera/

Abhishek Singh’s printing GIF camera uses two Raspberry Pis, the Model 3 and the Zero W, to take animated images and display them on an ejectable secondary screen.

Instagif – A DIY Camera that prints GIFs instantly

I built a camera that snaps a GIF and ejects a little cartridge so you can hold a moving photo in your hand! I’m calling it the “Instagif NextStep”.

The humble GIF

Created in 1987, Graphics Interchange Format files, better known as GIFs, have somewhat taken over the internet. And whether you pronounce it G-IF or J-IF, you’ve probably used at least one to express an emotion, animate images on your screen, or create small, movie-like memories of events.

In 2004, all patents on the humble GIF expired, which added to the increased usage of the file format. And by the early 2010s, sites such as giphy.com and phone-based GIF keyboards were introduced into our day-to-day lives.

A GIF from a scene in The Great Gatsby - Raspberry Pi GIF Camera

Welcome to the age of the GIF

Polaroid cameras

Polaroid cameras have a somewhat older history. While the first documented instant camera came into existence in 1923, commercial iterations made their way to market in the 1940s, with Polaroid’s model 95 Land Camera.

In recent years, the instant camera has come back into fashion, with camera stores and high street fashion retailers alike stocking their shelves with pastel-coloured, affordable models. But nothing beats the iconic look of the Polaroid Spirit series, and the rainbow colour stripe that separates it from its competitors.

Polaroid Spirit Camera - Raspberry Pi GIF Camera

Shake it like a Polaroid picture…

And if you’re one of our younger readers and find yourself wondering where else you’ve seen those stripes, you’re probably more familiar with previous versions of the Instagram logo, because, well…

Instagram Logo - Raspberry Pi GIF Camera

I’m sorry for the comment on the previous image. It was just too easy.

Abhishek Singh’s printing GIF camera

Abhishek labels his creation the Instagif NextStep, and cites his inspiration for the project as simply wanting to give it a go, and to see if he could hold a ‘moving photo’.

“What I love about these kinds of projects is that they involve a bunch of different skill sets and disciplines”, he explains at the start of his lengthy, highly GIFed and wonderfully detailed imugr tutorial. “Hardware, software, 3D modeling, 3D printing, circuit design, mechanical/electrical engineering, design, fabrication etc. that need to be integrated for it to work seamlessly. Ironically, this is also what I hate about these kinds of projects”

Care to see how the whole thing comes together? Well, in the true spirit of the project, Abhishek created this handy step-by-step GIF.

Piecing it together

I thought I’ll start off with the entire assembly and then break down the different elements. As you can see, everything is assembled from the base up in layers helping in easy assembly and quick disassembly for troubleshooting

The build comes in two parts – the main camera housing a Raspberry Pi 3 and Camera Module V2, and the ejectable cartridge fitted with Raspberry Pi Zero W and Adafruit PiTFT screen.

When the capture button is pressed, the camera takes 3 seconds’ worth of images and converts them into .gif format via a Python script. Once compressed and complete, the Pi 3 sends the file to the Zero W via a network connection. When it is satisfied that the Zero W has the image, the Pi 3 automatically ejects the ‘printed GIF’ cartridge, and the image is displayed.

A demonstration of how the GIF is displayed on the Raspberry Pi GIF Camera

For a full breakdown of code, 3D-printable files, and images, check out the full imgur post. You can see more of Abhishek’s work at his website here.

Create GIFs with a Raspberry Pi

Want to create GIFs with your Raspberry Pi? Of course you do. Who wouldn’t? So check out our free time-lapse animations resource. As with all our learning resources, the project is free for you to use at home and in your clubs or classrooms. And once you’ve mastered the art of Pi-based GIF creation, why not incorporate it into another project? Say, a motion-detecting security camera or an on-the-go tweeting GIF camera – the possibilities are endless.

And make sure you check out Abhishek’s other Raspberry Pi GIF project, Peeqo, who we covered previously in the blog. So cute. SO CUTE.

The post A printing GIF camera? Is that even a thing? appeared first on Raspberry Pi.

On ISO standardization of blockchains

Post Syndicated from Robert Graham original http://blog.erratasec.com/2017/08/on-iso-standardization-of-blockchains.html

So ISO, the primary international standards organization, is seeking to standardize blockchain technologies. On the surface, this seems a reasonable idea, creating a common standard that everyone can interoperate with.

But it can be silly idea in practice. I mean, it should not be assumed that this is a good thing to do.

The value of official standards

You don’t need the official imprimatur of a government committee for something to be a “standard”. The Internet itself is a prime example of that.

In the 1980s, the ISO and the IETF (Internet Engineering Task Force) pursued competing standards for creating a world-wide “internet”. The IETF was an informal group of technologist that had essentially no official standing.

The ISO version of the Internet failed. Their process was to bring multiple stakeholders from business, government, and universities together in committees to debate competing interests. The result was something so horrible that it could never work in practice.

The IETF succeeded. It consisted of engineers just building things. Rather than officially “standardized”, these things were “described”, so that others knew enough to build their own version that interoperated. Once lots of different people built interoperating versions of something, then it became a “standard”.

In other words, the way the Internet came to be, standardization followed interoperability — it didn’t create interoperability.

In the end, the ISO gave up on their standards and adopted the IETF standards. The ISO brought no value to the development of Internet standards. Whether they ratified the Internet’s “TCP/IP” standard, ignored it, or condemned it, the Internet would exist today anyway, and a competing ISO-blessed internetwork would not.

The same question exists for blockchain technologies. Groups are off busy innovating quickly, creating their own standards. If the ISO blesses one, or creates its own, it’s unlikely to have any impact on interoperability.

Blockchain vs. chaining blocks

The excitement over blockchains is largely driven by people who don’t know the details, who don’t understand the difference between a blockchain like Bitcoin and the problem they are trying to solve.

Consider a record keeping system, especially public records. Storing them in a blockchain seems like a natural idea.

But in fact, it’s a terrible idea. A Bitcoin-style blockchain has a lot of features you don’t want, like “proof-of-work” signing. It is also missing necessary features, like bulk storage with redundancy (backups). Sure, Bitcoin has redundancy, but by brute force, storing the blockchain in thousands of places around the Internet. This is far from what a public records system would need, which would store a lot more data with far fewer backup copies (fewer than 10).

The only real overlap between Bitcoin and a public records system is a “signing chain”. But this is something that already existed before Bitcoin. It’s what Bitcoin blockchain was built on top of — it’s not the blockchain itself.

It’s like people discovering “cryptography” for the first time when they looked at Bitcoin, ignoring the thousand year history of crypto, and now every time they see a need for “crypto” they think “Bitcoin blockchain”.

Consensus and forking

The entire point of Bitcoin, the reason it was created, was as the antithesis to centralized standardization like ISO. Standardizing blockchains misses the entire point of their existence. The Bitcoin manifesto is that standardization comes from acclamation not proclamation, and that many different standards are preferable to a single one.

This is not just a theoretical idea but one built into Bitcoin’s blockchain technology. “Consensus” is achieved by the proof-of-work mechanism, so that those who do the most work are the ones that drive the consensus. When irreconcilable differences arise, the blockchain “forks”, with each side continuing on with their now non-interoperable blockchains. Such forks are not a sin, but part of the natural evolution.

We saw this with the recent fork of Bitcoin. There are now so many transactions that they exceed the size of blocks. One group chose a change to make transactions smaller. Another group chose a change to make block sizes larger.

It is this problem, of consensus, that is the innovation that Bitcoin created with blockchains, not the chain signing of public transaction records.


What “blockchain standardization” is going to mean in practice is not the blockchain itself, but trying to standardize the Ethereum version. What makes Ethereum different is the “smart contracts” programming language, which has financial institutions excited.

This is a bad idea because from a cybersecurity perspective, Ethereum’s programming language is flawed. Different bugs in “smart contracts” have led to multiple $100-million hacks, such as the infamous “DAO collapse”.

While it has interesting possibilities, we should be scared of standardizing Ethereum’s language before it works.


People who matter are too busy innovating, creating their own blockchain standards. There is little that the ISO can do to improve this. Their official imprimatur is not needed to foster innovation and interoperability — if they are consequential at anything, it’ll just be interfering.

Awesome Raspberry Pi cases to 3D print at home

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/3d-printed-raspberry-pi-cases/

Unless you’re planning to fit your Raspberry Pi inside a build, you may find yourself in need of a case to protect it from dust, damage and/or the occasional pet attack. Here are some of our favourite 3D-printed cases, for which files are available online so you can recreate them at home.


TARDIS Raspberry PI 3 case – 3D Printing Time lapse

Every Tuesday we’ll 3D print designs from the community and showcase slicer settings, use cases and of course, Time-lapses! This week: TARDIS Raspberry PI 3 case By: https://www.thingiverse.com/Jason3030 https://www.thingiverse.com/thing:2430122/ BCN3D Sigma Blue PLA 3hrs 20min X:73 Y:73 Z:165mm .4mm layer / .6mm nozzle 0% Infill / 4mm retract 230C / 0C 114G 60mm/s —————————————– Shop for parts for your own DIY projects http://adafru.it/3dprinting Download Autodesk Fusion 360 – 1 Year Free License (renew it after that for more free use!)

Since I am an avid Whovian, it’s not surprising that this case made its way onto the list. Its outside is aesthetically pleasing to the aspiring Time Lord, and it snugly fits your treasured Pi.

Pop this case on your desk and chuckle with glee every time someone asks what’s inside it:

Person: What’s that?
You: My Raspberry Pi.
Person: What’s a Raspberry Pi?
You: It’s a computer!
Person: There’s a whole computer in that tiny case?

I’ll get my coat.

Pi crust

Yes, we all wish we’d thought of it first. What better case for a Raspberry Pi than a pie crust?

3D-printed Raspberry Pi cases

While the case is designed to fit the Raspberry Pi Model B, you will be able to upgrade the build to accommodate newer models with a few tweaks.

Just make sure that if you do, you credit Marco Valenzuela, its original baker.


Since many people use the Raspberry Pi to run RetroPie, there is a growing trend of 3D-printed console-style Pi cases.

3D-printed Raspberry Pi cases

So why not pop your Raspberry Pi into a case made to look like your favourite vintage console, such as the Nintendo NES or N64?

You could also use an adapter to fit a Raspberry Pi Zero within an actual Atari cartridge, or go modern and print a PlayStation 4 case!


Maybe you’re looking to use your Raspberry Pi as a component of a larger project, such as a home automation system, learning suite, or makerspace. In that case you may need to attach it to a wall, under a desk, or behind a monitor.

3D-printed Raspberry Pi cases

Coo! Coo!

The Pidgeon, shown above, allows you to turn your Zero W into a surveillance camera, while the piPad lets you keep a breadboard attached for easy access to your Pi’s GPIO pins.

Functional cases with added brackets are great for incorporating your Pi on the sly. The VESA mount case will allow you to attach your Pi to any VESA-compatible monitor, and the Fallout 4 Terminal is just really cool.


You might want your case to just look cute, especially if it’s going to sit in full view on your desk or shelf.

3D-printed Raspberry Pi cases

The tired cube above is the only one of our featured 3D prints for which you have to buy the files ($1.30), but its adorable face begged to be shared anyway.

If you’d rather save your money for another day, you may want to check out this adorable monster from Adafruit. Be aware that this case will also need some altering to fit newer versions of the Pi.

Our cases

Finally, there are great options for you if you don’t have access to a 3D printer, or if you would like to help the Raspberry Pi Foundation’s mission. You can buy one of the official Raspberry Pi cases for the Raspberry Pi 3 and Raspberry Pi Zero (and Zero W)!

3D-printed Raspberry Pi cases

As with all official Raspberry Pi accessories (and with the Pi itself), your money goes toward helping the Foundation to put the power of digital making into the hands of people all over the world.

3D-printed Raspberry Pi cases

You could also print a replica of the official Astro Pi cases, in which two Pis are currently orbiting the earth on the International Space Station.

Design your own Raspberry Pi case!

If you’ve built a case for your Raspberry Pi, be it with a 3D printer, laser-cutter, or your bare hands, make sure to share it with us in the comments below, or via our social media channels.

And if you’d like to give 3D printing a go, there are plenty of free online learning resources, and sites that offer tutorials and software to get you started, such as TinkerCAD, Instructables, and Adafruit.

The post Awesome Raspberry Pi cases to 3D print at home appeared first on Raspberry Pi.

Time-lapse Visualizes Game of Thrones Piracy Around The Globe

Post Syndicated from Ernesto original https://torrentfreak.com/time-lapse-visualizes-game-of-thrones-piracy-around-the-globe-17-730/

Game of Thrones has been the most pirated TV-show online for years, and this isn’t expected to change anytime soon.

While most of today’s piracy takes place through streaming services, BitTorrent traffic remains significant as well. The show’s episodes are generally downloaded millions of times each, by people from all over the world.

In recent years there have been several attempts to quantify this piracy bonanza. While MILLIONS of downloads make for a good headline, there are some other trends worth looking at as well.

TorrentFreak spoke to Abigail De Kosnik, an Associate Professor at the University of California, Berkeley. Together with computer scientist and artist Benjamin De Kosnik, she runs the BitTorrent-oriented research project “alpha60.”

The goal of alpha60 is to quantify and map BitTorrent activity around various media titles, to make this “shadow economy” visible to media scholars and the general public. Over the past two weeks, they’ve taken a close look at Game of Thrones downloads.

Their tracking software collected swarm data from 72 torrents that were released shortly after the first episode premiered. Before being anonymized, the collected IP-addresses were first translated to geographical locations, to reveal various traffic patterns.

The results, summarized in a white paper, reveal that during the first five days, alpha60 registered an estimated 1.77 million downloads. Of particular interest is the five-day time-lapse of the worldwide swarm activity.

Five-day Game of Thrones piracy timelapse

The time-lapse shows that download patterns vary depending on the time of the day. There is a lot of activity in Asia, but cities such as Athens, Toronto, and Sao Paulo also pop up regularly.

When looking at the absolute numbers, Seoul comes out on top as the Game of Thrones download capital of the world, followed by Athens, São Paulo, Guangzhou, Mumbai, and Bangalore.

Perhaps more interesting is the view of the number of downloads relative to the population, or the “over-pirating” cities, as alpha60 calls them. Here, Dallas comes out on top, before Brisbane, Chicago, Riyadh, Saudi Arabia, Seattle, and Perth.

Of course, VPNs may skew the results somewhat, but overall the data should give a pretty accurate impression of the download traffic around the globe.

Below are the complete top tens of most active cities, both in absolute numbers and relative to the population. Further insights and additional information is available in the full whitepaper, which can be accessed here.

Note: The download totals reported by alpha60 are significantly lower than the MUSO figures that came out last week. Alpha60 stresses, however, that their methods and data are accurate. MUSO, for its part, has made some dubious claims in the past.

Most downloads (absolute)

1 Seoul, Rep. of Korea
2 Athens, Greece
3 São Paulo, Brazil
4 Guangzhou, China
5 Mumbai, India
6 Bangalore, India
7 Shanghai, China
8 Riyadh, Saudi Arabia
9 Delhi, India
10 Beijing, China

Most downloads (relative)

1 Dallas, USA
2 Brisbane, Australia
3 Chicago, USA
4 Riyadh, Saudi Arabia
5 Seattle, USA
6 Perth, Australia
7 Phoenix, USA
8 Toronto, Canada
9 Athens, Greece
10 Guangzhou, China

Source: TF, for the latest info on copyright, file-sharing, torrent sites and ANONYMOUS VPN services.

Kim Dotcom Spying Fiasco Puts Prime Minister Under Pressure

Post Syndicated from Andy original https://torrentfreak.com/kim-dotcom-spying-fiasco-puts-prime-minister-under-pressure-170725/

In the lead up to the January 2012 raid on cloud storage site Megaupload, authorities in New Zealand used the Government Communications Security Bureau (GCSB) agency to spy on Kim and Mona Dotcom, plus Megaupload co-defendant Bram van der Kolk. That should not have happened.

Intelligence agency GCSB was forbidden by law from conducting surveillance on its own citizens or permanent residents in the country. Former Prime Minister John Key later apologized for the glaring error but for Dotcom, that wasn’t enough. The entrepreneur launched legal action in pursuit of the information illegally obtained by GCSB and appropriate compensation.

Last week the High Court decided that Dotcom wouldn’t get access to the information but it also revealed something of much interest. Instead of confirming that the illegal spying on Dotcom took place December 16, 2011, through to January 20, 2012, the range was extended by two months to March 22, 2012.

The implications of the extension are numerous, not least that GCSB continued to spy on Dotcom even after it knew it was acting illegally. The reveal also undermines an earlier affidavit from a GCSB staff member, problems which are now returning to haunt New Zealand Prime Minister, Bill English.

When the spying was taking place, John Key was Prime Minister but when Key traveled overseas, English was left at the helm. As a result, when the possibility that Dotcom had been spied on was raised during court hearings in 2012, it was English who was approached by the GCSB with a request to have its involvement made a state secret.

According to NZHerald, English was briefed by then-GCSB director Ian Fletcher and former acting director Hugh Wolfensohn on GCSB’s assistance to the police in the Dotcom case.

The content of those discussion has not been made public but English appears to have been convinced of the need to keep the information private. He subsequently signed a ministerial certificate, which barred disclosure of GCSB activities, even by people asked to provide them in a court of law.

However, since GCSB had broken the law by illegally spying on the Dotcoms and van Der Kolk, the certificate subsequently collapsed. But, like a dog with a bone, Dotcom isn’t letting this go, claiming that acting Prime Minister English acted unlawfully by signing the certificate in an effort to suppress wrong-doing.

“The ministerial certificate was an attempted cover-up. Bill English must have been briefed that GCSB was facing legal troubles because of unlawful conduct,” he told NZHerald.

“And only after the attempted gag-order failed in the High Court did the Government admit unlawful spying with a fake narrative that it was all a big mistake, a misunderstanding of the law, an error.”

Following the judgment last week that revealed the extended spying period, Dotcom confirms that there will be fresh legal action to obtain information from GCSB.

“The new revelations completely undermine the government narrative and it raises new questions about what really happened,” Dotcom concludes.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and ANONYMOUS VPN services.

[email protected] – Intelligent Processing of HTTP Requests at the Edge

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/lambdaedge-intelligent-processing-of-http-requests-at-the-edge/

Late last year I announced a preview of [email protected] and talked about how you could use it to intelligently process HTTP requests at locations that are close (latency-wise) to your customers. Developers who applied and gained access to the preview have been making good use of it, and have provided us with plenty of very helpful feedback. During the preview we added the ability to generate HTTP responses and support for CloudWatch Logs, and also updated our roadmap based on the feedback.

Now Generally Available
Today I am happy to announce that [email protected] is now generally available! You can use it to:

  • Inspect cookies and rewrite URLs to perform A/B testing.
  • Send specific objects to your users based on the User-Agent header.
  • Implement access control by looking for specific headers before passing requests to the origin.
  • Add, drop, or modify headers to direct users to different cached objects.
  • Generate new HTTP responses.
  • Cleanly support legacy URLs.
  • Modify or condense headers or URLs to improve cache utilization.
  • Make HTTP requests to other Internet resources and use the results to customize responses.

[email protected] allows you to create web-based user experiences that are rich and personal. As is rapidly becoming the norm in today’s world, you don’t need to provision or manage any servers. You simply upload your code (Lambda functions written in Node.js) and pick one of the CloudFront behaviors that you have created for the distribution, along with the desired CloudFront event:

In this case, my function (the imaginatively named EdgeFunc1) would run in response to origin requests for image/* within the indicated distribution. As you can see, you can run code in response to four different CloudFront events:

Viewer Request – This event is triggered when an event arrives from a viewer (an HTTP client, generally a web browser or a mobile app), and has access to the incoming HTTP request. As you know, each CloudFront edge location maintains a large cache of objects so that it can efficiently respond to repeated requests. This particular event is triggered regardless of whether the requested object is already cached.

Origin Request – This event is triggered when the edge location is about to make a request back to the origin, due to the fact that the requested object is not cached at the edge location. It has access to the request that will be made to the origin (often an S3 bucket or code running on an EC2 instance).

Origin Response – This event is triggered after the origin returns a response to a request. It has access to the response from the origin.

Viewer Response – This is event is triggered before the edge location returns a response to the viewer. It has access to the response.

Functions are globally replicated and requests are automatically routed to the optimal location for execution. You can write your code once and with no overt action on your part, have it be available at low latency to users all over the world.

Your code has full access to requests and responses, including headers, cookies, the HTTP method (GET, HEAD, and so forth), and the URI. Subject to a few restrictions, it can modify existing headers and insert new ones.

[email protected] in Action
Let’s create a simple function that runs in response to the Viewer Request event. I open up the Lambda Console and create a new function. I choose the Node.js 6.10 runtime and search for cloudfront blueprints:

I choose cloudfront-response-generation and configure a trigger to invoke the function:

The Lambda Console provides me with some information about the operating environment for my function:

I enter a name and a description for my function, as usual:

The blueprint includes a fully operational function. It generates a “200” HTTP response and a very simple body:

I used this as the starting point for my own code, which pulls some interesting values from the request and displays them in a table:

'use strict';
exports.handler = (event, context, callback) => {

    /* Set table row style */
    const rs = '"border-bottom:1px solid black;vertical-align:top;"';
    /* Get request */
    const request = event.Records[0].cf.request;
    /* Get values from request */ 
    const httpVersion = request.httpVersion;
    const clientIp    = request.clientIp;
    const method      = request.method;
    const uri         = request.uri;
    const headers     = request.headers;
    const host        = headers['host'][0].value;
    const agent       = headers['user-agent'][0].value;
    var sreq = JSON.stringify(event.Records[0].cf.request, null, '&nbsp;');
    sreq = sreq.replace(/\n/g, '<br/>');

    /* Generate body for response */
    const body = 
     + '<head><title>Hello From [email protected]</title></head>\n'
     + '<body>\n'
     + '<table style="border:1px solid black;background-color:#e0e0e0;border-collapse:collapse;" cellpadding=4 cellspacing=4>\n'
     + '<tr style=' + rs + '><td>Host</td><td>'        + host     + '</td></tr>\n'
     + '<tr style=' + rs + '><td>Agent</td><td>'       + agent    + '</td></tr>\n'
     + '<tr style=' + rs + '><td>Client IP</td><td>'   + clientIp + '</td></tr>\n'
     + '<tr style=' + rs + '><td>Method</td><td>'      + method   + '</td></tr>\n'
     + '<tr style=' + rs + '><td>URI</td><td>'         + uri      + '</td></tr>\n'
     + '<tr style=' + rs + '><td>Raw Request</td><td>' + sreq     + '</td></tr>\n'
     + '</table>\n'
     + '</body>\n'
     + '</html>'

    /* Generate HTTP response */
    const response = {
        status: '200',
        statusDescription: 'HTTP OK',
        httpVersion: httpVersion,
        body: body,
        headers: {
            'vary':          [{key: 'Vary',          value: '*'}],
            'last-modified': [{key: 'Last-Modified', value:'2017-01-13'}]

    callback(null, response);

I configure my handler, and request the creation of a new IAM Role with Basic Edge Lambda permissions:

On the next page I confirm my settings (as I would do for a regular Lambda function), and click on Create function:

This creates the function, attaches the trigger to the distribution, and also initiates global replication of the function. The status of my distribution changes to In Progress for the duration of the replication (typically 5 to 8 minutes):

The status changes back to Deployed as soon as the replication completes:

Then I access the root of my distribution (https://dogy9dy9kvj6w.cloudfront.net/), the function runs, and this is what I see:

Feel free to click on the image (it is linked to the root of my distribution) to run my code!

As usual, this is a very simple example and I am sure that you can do a lot better. Here are a few ideas to get you started:

Site Management – You can take an entire dynamic website offline and replace critical pages with [email protected] functions for maintenance or during a disaster recovery operation.

High Volume Content – You can create scoreboards, weather reports, or public safety pages and make them available at the edge, both quickly and cost-effectively.

Create something cool and share it in the comments or in a blog post, and I’ll take a look.

Things to Know
Here are a couple of things to keep in mind as you start to think about how to put [email protected] to use in your application:

Timeouts – Functions that handle Origin Request and Origin Response events must complete within 3 seconds. Functions that handle Viewer Request and Viewer Response events must complete within 1 second.

Versioning – After you update your code in the Lambda Console, you must publish a new version and set up a fresh set of triggers for it, and then wait for the replication to complete. You must always refer to your code using a version number; $LATEST and aliases do not apply.

Headers – As you can see from my code, the HTTP request headers are accessible as an array. The headers fall in to four categories:

  • Accessible – Can be read, written, deleted, or modified.
  • Restricted – Must be passed on to the origin.
  • Read-only – Can be read, but not modified in any way.
  • Blacklisted – Not seen by code, and cannot be added.

Runtime Environment – The runtime environment provides each function with 128 MB of memory, but no builtin libraries or access to /tmp.

Web Service Access – Functions that handle Origin Request and Origin Response events must complete within 3 seconds can access the AWS APIs and fetch content via HTTP. These requests are always made synchronously with request to the original request or response.

Function Replication – As I mentioned earlier, your functions will be globally replicated. The replicas are visible in the “other” regions from the Lambda Console:

CloudFront – Everything that you already know about CloudFront and CloudFront behaviors is relevant to [email protected]. You can use multiple behaviors (each with up to four [email protected] functions) from each behavior, customize header & cookie forwarding, and so forth. You can also make the association between events and functions (via ARNs that include function versions) while you are editing a behavior:

Available Now
[email protected] is available now and you can start using it today. Pricing is based on the number of times that your functions are invoked and the amount of time that they run (see the [email protected] Pricing page for more info).



Basic API Rate-Limiting

Post Syndicated from Bozho original https://techblog.bozho.net/basic-api-rate-limiting/

It is likely that you are developing some form of (web/RESTful) API, and in case it is publicly-facing (or even when it’s internal), you normally want to rate-limit it somehow. That is, to limit the number of requests performed over a period of time, in order to save resources and protect from abuse.

This can probably be achieved on web-server/load balancer level with some clever configurations, but usually you want the rate limiter to be client-specific (i.e. each client of your API sohuld have a separate rate limit), and the way the client is identified varies. It’s probably still possible to do it on the load balancer, but I think it makes sense to have it on the application level.

I’ll use spring-mvc for the example, but any web framework has a good way to plug an interceptor.

So here’s an example of a spring-mvc interceptor:

public class RateLimitingInterceptor extends HandlerInterceptorAdapter {

    private static final Logger logger = LoggerFactory.getLogger(RateLimitingInterceptor.class);
    private boolean enabled;
    private int hourlyLimit;

    private Map<String, Optional<SimpleRateLimiter>> limiters = new ConcurrentHashMap<>();
    public boolean preHandle(HttpServletRequest request, HttpServletResponse response, Object handler)
            throws Exception {
        if (!enabled) {
            return true;
        String clientId = request.getHeader("Client-Id");
        // let non-API requests pass
        if (clientId == null) {
            return true;
        SimpleRateLimiter rateLimiter = getRateLimiter(clientId);
        boolean allowRequest = limiter.tryAcquire();
        if (!allowRequest) {
        response.addHeader("X-RateLimit-Limit", String.valueOf(hourlyLimit));
        return allowRequest;
    private SimpleRateLimiter getRateLimiter(String clientId) {
        return limiters.computeIfAbsent(clientId, clientId -> {
            return Optional.of(createRateLimiter(clientId));

    public void destroy() {
        // loop and finalize all limiters

This initializes rate-limiters per client on demand. Alternatively, on startup you could just loop through all registered API clients and create a rate limiter for each. In case the rate limiter doesn’t allow more requests (tryAcquire() returns false), then raturn “Too many requests” and abort the execution of the request (return “false” from the interceptor).

This sounds simple. But there are a few catches. You may wonder where the SimpleRateLimiter above is defined. We’ll get there, but first let’s see what options do we have for rate limiter implementations.

The most recommended one seems to be the guava RateLimiter. It has a straightforward factory method that gives you a rate limiter for a specified rate (permits per second). However, it doesn’t accomodate web APIs very well, as you can’t initilize the RateLimiter with pre-existing number of permits. That means a period of time should elapse before the limiter would allow requests. There’s another issue – if you have less than one permits per second (e.g. if your desired rate limit is “200 requests per hour”), you can pass a fraction (hourlyLimit / secondsInHour), but it still won’t work the way you expect it to, as internally there’s a “maxPermits” field that would cap the number of permits to much less than you want it to. Also, the rate limiter doesn’t allow bursts – you have exactly X permits per second, but you cannot spread them over a long period of time, e.g. have 5 requests in one second, and then no requests for the next few seconds. In fact, all of the above can be solved, but sadly, through hidden fields that you don’t have access to. Multiple feature requests exist for years now, but Guava just doesn’t update the rate limiter, making it much less applicable to API rate-limiting.

Using reflection, you can tweak the parameters and make the limiter work. However, it’s ugly, and it’s not guaranteed it will work as expected. I have shown here how to initialize a guava rate limiter with X permits per hour, with burstability and full initial permits. When I thought that would do, I saw that tryAcquire() has a synchronized(..) block. Will that mean all requests will wait for each other when simply checking whether allowed to make a request? That would be horrible.

So in fact the guava RateLimiter is not meant for (web) API rate-limiting. Maybe keeping it feature-poor is Guava’s way for discouraging people from misusing it?

That’s why I decided to implement something simple myself, based on a Java Semaphore. Here’s the naive implementation:

public class SimpleRateLimiter {
    private Semaphore semaphore;
    private int maxPermits;
    private TimeUnit timePeriod;
    private ScheduledExecutorService scheduler;

    public static SimpleRateLimiter create(int permits, TimeUnit timePeriod) {
        SimpleRateLimiter limiter = new SimpleRateLimiter(permits, timePeriod);
        return limiter;

    private SimpleRateLimiter(int permits, TimeUnit timePeriod) {
        this.semaphore = new Semaphore(permits);
        this.maxPermits = permits;
        this.timePeriod = timePeriod;

    public boolean tryAcquire() {
        return semaphore.tryAcquire();

    public void stop() {

    public void schedulePermitReplenishment() {
        scheduler = Executors.newScheduledThreadPool(1);
        scheduler.schedule(() -> {
            semaphore.release(maxPermits - semaphore.availablePermits());
        }, 1, timePeriod);


It takes a number of permits (allowed number of requests) and a time period. The time period is “1 X”, where X can be second/minute/hour/daily – depending on how you want your limit to be configured – per second, per minute, hourly, daily. Every 1 X a scheduler replenishes the acquired permits (in the example above there’s one scheduler per client, which may be inefficient with large number of clients – you can pass a shared scheduler pool instead). There is no control for bursts (a client can spend all permits with a rapid succession of requests), there is no warm-up functionality, there is no gradual replenishment. Depending on what you want, this may not be ideal, but that’s just a basic rate limiter that is thread-safe and doesn’t have any blocking. I wrote a unit test to confirm that the limiter behaves properly, and also ran performance tests against a local application to make sure the limit is obeyed. So far it seems to be working.

Are there alternatives? Well, yes – there are libraries like RateLimitJ that uses Redis to implement rate-limiting. That would mean, however, that you need to setup and run Redis. Which seems like an overhead for “simply” having rate-limiting. (Note: it seems to also have an in-memory version)

On the other hand, how would rate-limiting work properly in a cluster of application nodes? Application nodes probably need some database or gossip protocol to share data about the per-client permits (requests) remaining? Not necessarily. A very simple approach to this issue would be to assume that the load balancer distributes the load equally among your nodes. That way you would just have to set the limit on each node to be equal to the total limit divided by the number of nodes. It won’t be exact, but you rarely need it to be – allowing 5-10 more requests won’t kill your application, allowing 5-10 less won’t be dramatic for the users.

That, however, would mean that you have to know the number of application nodes. If you employ auto-scaling (e.g. in AWS), the number of nodes may change depending on the load. If that is the case, instead of configuring a hard-coded number of permits, the replenishing scheduled job can calculate the “maxPermits” on the fly, by calling an AWS (or other cloud-provider) API to obtain the number of nodes in the current auto-scaling group. That would still be simpler than supporting a redis deployment just for that.

Overall, I’m surprised there isn’t a “canonical” way to implement rate-limiting (in Java). Maybe the need for rate-limiting is not as common as it may seem. Or it’s implemented manually – by temporarily banning API clients that use “too much resources”.

Update: someone pointed out the bucket4j project, which seems nice and worth taking a look at.

The post Basic API Rate-Limiting appeared first on Bozho's tech blog.

PiCorder, the miniature camcorder

Post Syndicated from Janina Ander original https://www.raspberrypi.org/blog/picorder/

The modest dimensions of our Raspberry Pi Zero and its wirelessly connectable sibling, the Pi Zero W, enable makers in our community to build devices that are very small indeed. The PiCorder built by Wayne Keenan is probably the slimmest Pi-powered video-recording device we’ve ever seen.

PiCorder – Pimoroni HyperPixel

A simple Pi-camcorder using @pimoroni #HyperPixel, ZeroLipo, lipo bat, camera and #PiZeroW. All parts from the Pirates, total of ~£85. Project build instructions: https://www.hackster.io/TheBubbleworks/picorder-0eb94d

PiCorder hardware

Wayne’s PiCorder is a very straightforward make. On the hardware side, it features a Pimoroni HyperPixel screen, Pi Zero camera module, and Zero LiPo plus LiPo battery pack. To put it together, he simply soldered header pins onto a Zero W, and connected all the components to it – easy as Pi! (Yes, I went there.)


So sleek as to be almost aerodynamic

Recording with the PiCorder (rePiCording?)

Then it was just a matter of installing the HyperPixel driver on the Pi, and the PiCorder was good to go. In this basic setup, recording is controlled via SSH. However, there’s a discussion about better ways to control the device in the comments on Wayne’s write-up. As the HyperPixel is a touchscreen, adding a GUI would make full use of its capabilities.

Picorder screen

Think about how many screens you’re looking at right now

The PiCorder is a great project to recreate if you’re looking to build a small portable camera. If you’re new to soldering, this build is perfect for you: just follow our ‘How to solder’ video and tutorial, and you’re on your way. This could be the start of your journey into the magical world of physical computing!

You could also check our blog on Alex Ellis‘s implementation of YouTube live-streaming for the Pi, and learn how to share your videos in real time.

Cool camera projects

Our educational resources include plenty of cool projects that could use the PiCorder, or for which the device could be adapted.

Get your head around using the official Raspberry Pi Camera Module with this picamera tutorial. Learn how to set up a stationary or wearable time-lapse camera, and turn your images into animated GIFs. You could also kickstart your career as a director by making an amazing stop-motion film!

No matter which camera project you choose to work on, we’d love to see the results. So be sure to share a link in the comments.

The post PiCorder, the miniature camcorder appeared first on Raspberry Pi.

Now Available – Developer Preview of AWS SDK for Java 2.0

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/now-available-developer-preview-of-aws-sdk-for-java-2-0/

The AWS Developer Tools Team has been hard at work on the AWS SDK for Java and is launching a Developer Preview of version 2.0 today.

This version is a major rewrite of the older, 1.11.x codebase. Built on top of Java 8 with a focus on consistency, immutability and ease of use, the new SDK includes frequently requested features such as support for non-blocking I/O and the ability to choose the desired HTTP implementation at runtime. The new non-blocking I/O support is more efficient than the existing, thread-based implementation of the Async variants of the service clients. Each non-blocking request returns a CompletableFuture object.

The version 2.0 SDK includes a number of changes to the earlier APIs. For example, it replaces the existing mix of client constructors and mutable methods with a consistent model based on client builders and immutable clients. The SDK also collapses the disparate collection of classes used to configure regions into a single Region class, and provides a new set of APIs for streaming.

The SDK is available on GitHub. You can send public feedback by opening GitHub issues and you can also send pull requests in the usual way.

To learn more about this SDK, read AWS SDK for Java 2.0 – Developer Preview on the AWS Developer Blog.



How to Deploy Local Administrator Password Solution with AWS Microsoft AD

Post Syndicated from Dragos Madarasan original https://aws.amazon.com/blogs/security/how-to-deploy-local-administrator-password-solution-with-aws-microsoft-ad/

Local Administrator Password Solution (LAPS) from Microsoft simplifies password management by allowing organizations to use Active Directory (AD) to store unique passwords for computers. Typically, an organization might reuse the same local administrator password across the computers in an AD domain. However, this approach represents a security risk because it can be exploited during lateral escalation attacks. LAPS solves this problem by creating unique, randomized passwords for the Administrator account on each computer and storing it encrypted in AD.

Deploying LAPS with AWS Microsoft AD requires the following steps:

  1. Install the LAPS binaries on instances joined to your AWS Microsoft AD domain. The binaries add additional client-side extension (CSE) functionality to the Group Policy client.
  2. Extend the AWS Microsoft AD schema. LAPS requires new AD attributes to store an encrypted password and its expiration time.
  3. Configure AD permissions and delegate the ability to retrieve the local administrator password for IT staff in your organization.
  4. Configure Group Policy on instances joined to your AWS Microsoft AD domain to enable LAPS. This configures the Group Policy client to process LAPS settings and uses the binaries installed in Step 1.

The following diagram illustrates the setup that I will be using throughout this post and the associated tasks to set up LAPS. Note that the AWS Directory Service directory is deployed across multiple Availability Zones, and monitoring automatically detects and replaces domain controllers that fail.

Diagram illustrating this blog post's solution

In this blog post, I explain the prerequisites to set up Local Administrator Password Solution, demonstrate the steps involved to update the AD schema on your AWS Microsoft AD domain, show how to delegate permissions to IT staff and configure LAPS via Group Policy, and demonstrate how to retrieve the password using the graphical user interface or with Windows PowerShell.

This post assumes you are familiar with Lightweight Directory Access Protocol Data Interchange Format (LDIF) files and AWS Microsoft AD. If you need more of an introduction to Directory Service and AWS Microsoft AD, see How to Move More Custom Applications to the AWS Cloud with AWS Directory Service, which introduces working with schema changes in AWS Microsoft AD.


In order to implement LAPS, you must use AWS Directory Service for Microsoft Active Directory (Enterprise Edition), also known as AWS Microsoft AD. Any instance on which you want to configure LAPS must be joined to your AWS Microsoft AD domain. You also need a Management instance on which you install the LAPS management tools.

In this post, I use an AWS Microsoft AD domain called example.com that I have launched in the EU (London) region. To see which the regions in which Directory Service is available, see AWS Regions and Endpoints.

Screenshot showing the AWS Microsoft AD domain example.com used in this blog post

In addition, you must have at least two instances launched in the same region as the AWS Microsoft AD domain. To join the instances to your AWS Microsoft AD domain, you have two options:

  1. Use the Amazon EC2 Systems Manager (SSM) domain join feature. To learn more about how to set up domain join for EC2 instances, see joining a Windows Instance to an AWS Directory Service Domain.
  2. Manually configure the DNS server addresses in the Internet Protocol version 4 (TCP/IPv4) settings of the network card to use the AWS Microsoft AD DNS addresses ( and, for this blog post) and perform a manual domain join.

For the purpose of this post, my two instances are:

  1. A Management instance on which I will install the management tools that I have tagged as Management.
  2. A Web Server instance on which I will be deploying the LAPS binary.

Screenshot showing the two EC2 instances used in this post

Implementing the solution


1. Install the LAPS binaries on instances joined to your AWS Microsoft AD domain by using EC2 Run Command

LAPS binaries come in the form of an MSI installer and can be downloaded from the Microsoft Download Center. You can install the LAPS binaries manually, with an automation service such as EC2 Run Command, or with your existing software deployment solution.

For this post, I will deploy the LAPS binaries on my Web Server instance (i-0b7563d0f89d3453a) by using EC2 Run Command:

  1. While signed in to the AWS Management Console, choose EC2. In the Systems Manager Services section of the navigation pane, choose Run Command.
  2. Choose Run a command, and from the Command document list, choose AWS-InstallApplication.
  3. From Target instances, choose the instance on which you want to deploy the LAPS binaries. In my case, I will be selecting the instance tagged as Web Server. If you do not see any instances listed, make sure you have met the prerequisites for Amazon EC2 Systems Manager (SSM) by reviewing the Systems Manager Prerequisites.
  4. For Action, choose Install, and then stipulate the following values:
    • Parameters: /quiet
    • Source: https://download.microsoft.com/download/C/7/A/C7AAD914-A8A6-4904-88A1-29E657445D03/LAPS.x64.msi
    • Source Hash: f63ebbc45e2d080630bd62a195cd225de734131a56bb7b453c84336e37abd766
    • Comment: LAPS deployment

Leave the other options with the default values and choose Run. The AWS Management Console will return a Command ID, which will initially have a status of In Progress. It should take less than 5 minutes to download and install the binaries, after which the Command ID will update its status to Success.

Status showing the binaries have been installed successfully

If the Command ID runs for more than 5 minutes or returns an error, it might indicate a problem with the installer. To troubleshoot, review the steps in Troubleshooting Systems Manager Run Command.

To verify the binaries have been installed successfully, open Control Panel and review the recently installed applications in Programs and Features.

Screenshot of Control Panel that confirms LAPS has been installed successfully

You should see an entry for Local Administrator Password Solution with a version of or newer.

2. Extend the AWS Microsoft AD schema

In the previous section, I used EC2 Run Command to install the LAPS binaries on an EC2 instance. Now, I am ready to extend the schema in an AWS Microsoft AD domain. Extending the schema is a requirement because LAPS relies on new AD attributes to store the encrypted password and its expiration time.

In an on-premises AD environment, you would update the schema by running the Update-AdmPwdADSchema Windows PowerShell cmdlet with schema administrator credentials. Because AWS Microsoft AD is a managed service, I do not have permissions to update the schema directly. Instead, I will update the AD schema from the Directory Service console by importing an LDIF file. If you are unfamiliar with schema updates or LDIF files, see How to Move More Custom Applications to the AWS Cloud with AWS Directory Service.

To make things easier for you, I am providing you with a sample LDIF file that contains the required AD schema changes. Using Notepad or a similar text editor, open the SchemaChanges-0517.ldif file and update the values of dc=example,dc=com with your own AWS Microsoft AD domain and suffix.

After I update the LDIF file with my AWS Microsoft AD details, I import it by using the AWS Management Console:

  1. On the Directory Service console, select from the list of directories in the Microsoft AD directory by choosing its identifier (it will look something like d-534373570ea).
  2. On the Directory details page, choose the Schema extensions tab and choose Upload and update schema.
    Screenshot showing the "Upload and update schema" option
  3. When prompted for the LDIF file that contains the changes, choose the sample LDIF file.
  4. In the background, the LDIF file is validated for errors and a backup of the directory is created for recovery purposes. Updating the schema might take a few minutes and the status will change to Updating Schema. When the process has completed, the status of Completed will be displayed, as shown in the following screenshot.

Screenshot showing the schema updates in progress
When the process has completed, the status of Completed will be displayed, as shown in the following screenshot.

Screenshot showing the process has completed

If the LDIF file contains errors or the schema extension fails, the Directory Service console will generate an error code and additional debug information. To help troubleshoot error messages, see Schema Extension Errors.

The sample LDIF file triggers AWS Microsoft AD to perform the following actions:

  1. Create the ms-Mcs-AdmPwd attribute, which stores the encrypted password.
  2. Create the ms-Mcs-AdmPwdExpirationTime attribute, which stores the time of the password’s expiration.
  3. Add both attributes to the Computer class.

3. Configure AD permissions

In the previous section, I updated the AWS Microsoft AD schema with the required attributes for LAPS. I am now ready to configure the permissions for administrators to retrieve the password and for computer accounts to update their password attribute.

As part of configuring AD permissions, I grant computers the ability to update their own password attribute and specify which security groups have permissions to retrieve the password from AD. As part of this process, I run Windows PowerShell cmdlets that are not installed by default on Windows Server.

Note: To learn more about Windows PowerShell and the concept of a cmdlet (pronounced “command-let”), go to Getting Started with Windows PowerShell.

Before getting started, I need to set up the required tools for LAPS on my Management instance, which must be joined to the AWS Microsoft AD domain. I will be using the same LAPS installer that I downloaded from the Microsoft LAPS website. In my Management instance, I have manually run the installer by clicking the LAPS.x64.msi file. On the Custom Setup page of the installer, under Management Tools, for each option I have selected Install on local hard drive.

Screenshot showing the required management tools

In the preceding screenshot, the features are:

  • The fat client UI – A simple user interface for retrieving the password (I will use it at the end of this post).
  • The Windows PowerShell module – Needed to run the commands in the next sections.
  • The GPO Editor templates – Used to configure Group Policy objects.

The next step is to grant computers in the Computers OU the permission to update their own attributes. While connected to my Management instance, I go to the Start menu and type PowerShell. In the list of results, right-click Windows PowerShell and choose Run as administrator and then Yes when prompted by User Account Control.

In the Windows PowerShell prompt, I type the following command.

Import-module AdmPwd.PS

Set-AdmPwdComputerSelfPermission –OrgUnit “OU=Computers,OU=MyMicrosoftAD,DC=example,DC=com

To grant the administrator group called Admins the permission to retrieve the computer password, I run the following command in the Windows PowerShell prompt I previously started.

Import-module AdmPwd.PS

Set-AdmPwdReadPasswordPermission –OrgUnit “OU=Computers, OU=MyMicrosoftAD,DC=example,DC=com” –AllowedPrincipals “Admins”

4. Configure Group Policy to enable LAPS

In the previous section, I deployed the LAPS management tools on my management instance, granted the computer accounts the permission to self-update their local administrator password attribute, and granted my Admins group permissions to retrieve the password.

Note: The following section addresses the Group Policy Management Console and Group Policy objects. If you are unfamiliar with or wish to learn more about these concepts, go to Get Started Using the GPMC and Group Policy for Beginners.

I am now ready to enable LAPS via Group Policy:

  1. On my Management instance (i-03b2c5d5b1113c7ac), I have installed the Group Policy Management Console (GPMC) by running the following command in Windows PowerShell.
Install-WindowsFeature –Name GPMC
  1. Next, I have opened the GPMC and created a new Group Policy object (GPO) called LAPS GPO.
  2. In the Local Group Policy Editor, I navigate to Computer Configuration > Policies > Administrative Templates > LAPS. I have configured the settings using the values in the following table.




Password Settings


Complexity: large letters, small letters, numbers, specials

Do not allow password expiration time longer than required by policy



Enable local admin password management



  1. Next, I need to link the GPO to an organizational unit (OU) in which my machine accounts sit. In your environment, I recommend testing the new settings on a test OU and then deploying the GPO to production OUs.

Note: If you choose to create a new test organizational unit, you must create it in the OU that AWS Microsoft AD delegates to you to manage. For example, if your AWS Microsoft AD directory name were example.com, the test OU path would be example.com/example/Computers/Test.

  1. To test that LAPS works, I need to make sure the computer has received the new policy by forcing a Group Policy update. While connected to the Web Server instance (i-0b7563d0f89d3453a) using Remote Desktop, I open an elevated administrative command prompt and run the following command: gpupdate /force. I can check if the policy is applied by running the command: gpresult /r | findstr LAPS GPO, where LAPS GPO is the name of the GPO created in the second step.
  2. Back on my Management instance, I can then launch the LAPS interface from the Start menu and use it to retrieve the password (as shown in the following screenshot). Alternatively, I can run the Get-ADComputer Windows PowerShell cmdlet to retrieve the password.
Get-ADComputer [YourComputerName] -Properties ms-Mcs-AdmPwd | select name, ms-Mcs-AdmPwd

Screenshot of the LAPS UI, which you can use to retrieve the password


In this blog post, I demonstrated how you can deploy LAPS with an AWS Microsoft AD directory. I then showed how to install the LAPS binaries by using EC2 Run Command. Using the sample LDIF file I provided, I showed you how to extend the schema, which is a requirement because LAPS relies on new AD attributes to store the encrypted password and its expiration time. Finally, I showed how to complete the LAPS setup by configuring the necessary AD permissions and creating the GPO that starts the LAPS password change.

If you have comments about this post, submit them in the “Comments” section below. If you have questions about or issues implementing this solution, please start a new thread on the Directory Service forum.

– Dragos

systemd for Administrators, Part VII

Post Syndicated from Lennart Poettering original http://0pointer.net/blog/projects/blame-game.html

Here’s yet another installment of my ongoing

The Blame Game

Fedora 15[1] is the first Fedora release to sport systemd. Our
primary goal for F15 was to get everything integrated and working
well. One focus for Fedora 16 will be to further polish and speed up
what we have in the distribution now. To prepare for this cycle we
have implemented a few tools (which are already available in F15),
which can help us pinpoint where exactly the biggest problems in our
boot-up remain. With this blog story I hope to shed some light on how
to figure out what to blame for your slow boot-up, and what to do
about it. We want to allow you to put the blame where the blame
belongs: on the system component responsible.

The first utility is a very simple one: systemd will automatically
write a log message with the time it needed to syslog/kmsg when it
finished booting up.

systemd[1]: Startup finished in 2s 65ms 924us (kernel) + 2s 828ms 195us (initrd) + 11s 900ms 471us (userspace) = 16s 794ms 590us.

And here’s how you read this: 2s have been spent for kernel
initialization, until the time where the initial RAM disk (initrd,
i.e. dracut) was started. A bit less than 3s have then been spent in
the initrd. Finally, a bit less than 12s have been spent after the
actual system init daemon (systemd) has been invoked by the initrd to
bring up userspace. Summing this up the time that passed since the
boot loader jumped into the kernel code until systemd was finished
doing everything it needed to do at boot was a bit less than 17s. This
number is nice and simple to understand — and also easy to
misunderstand: it does not include the time that is spent initializing
your GNOME session, as that is outside of the scope of the init
system. Also, in many cases this is just where systemd finished doing
everything it needed to do. Very likely some daemons are still busy
doing whatever they need to do to finish startup when this time
is elapsed. Hence: while the time logged here is a good indication on
the general boot speed, it is not the time the user might feel
the boot actually takes.

Also, it is a pretty superficial value: it gives no insight which
system component systemd was waiting for all the time. To break this
up, we introduced the tool systemd-analyze blame:

$ systemd-analyze blame
  6207ms udev-settle.service
  5228ms [email protected]\x2d9899b85d\x2df790\x2d4d2a\x2da650\x2d8b7d2fb92cc3.service
   735ms NetworkManager.service
   642ms avahi-daemon.service
   600ms abrtd.service
   517ms rtkit-daemon.service
   478ms fedora-storage-init.service
   396ms dbus.service
   390ms rpcidmapd.service
   346ms systemd-tmpfiles-setup.service
   322ms fedora-sysinit-unhack.service
   316ms cups.service
   310ms console-kit-log-system-start.service
   309ms libvirtd.service
   303ms rpcbind.service
   298ms ksmtuned.service
   288ms lvm2-monitor.service
   281ms rpcgssd.service
   277ms sshd.service
   276ms livesys.service
   267ms iscsid.service
   236ms mdmonitor.service
   234ms nfslock.service
   223ms ksm.service
   218ms mcelog.service

This tool lists which systemd unit needed how much time to finish
initialization at boot, the worst offenders listed first. What we can
see here is that on this boot two services required more than 1s of
boot time: udev-settle.service and
[email protected]\x2d9899b85d\x2df790\x2d4d2a\x2da650\x2d8b7d2fb92cc3.service. This
tool’s output is easily misunderstood as well, it does not shed any
light on why the services in question actually need this much time, it
just determines that they did. Also note that the times listed here
might be spent “in parallel”, i.e. two services might be initializing
at the same time and thus the time spent to initialize them both is
much less than the sum of both individual times combined.

Let’s have a closer look at the worst offender on this boot: a
service by the name of udev-settle.service. So why does it
take that much time to initialize, and what can we do about it? This
service actually does very little: it just waits for the device
probing being done by udev to finish and then exits. Device probing
can be slow. In this instance for example, the reason for the device
probing to take more than 6s is the 3G modem built into the machine,
which when not having an inserted SIM card takes this long to respond
to software probe requests. The software probing is part of the logic
that makes ModemManager work and enables NetworkManager to offer easy
3G setup. An obvious reflex might now be to blame ModemManager for
having such a slow prober. But that’s actually ill-directed: hardware
probing quite frequently is this slow, and in the case of ModemManager
it’s a simple fact that the 3G hardware takes this long. It is an
essential requirement for a proper hardware probing solution that
individual probers can take this much time to finish probing. The
actual culprit is something else: the fact that we actually wait for
the probing, in other words: that udev-settle.service is part
of our boot process.

So, why is udev-settle.service part of our boot process?
Well, it actually doesn’t need to be. It is pulled in by the storage
setup logic of Fedora: to be precise, by the LVM, RAID and Multipath
setup script. These storage services have not been implemented in the
way hardware detection and probing work today: they expect to be
initialized at a point in time where “all devices have been probed”,
so that they can simply iterate through the list of available disks
and do their work on it. However, on modern machinery this is not how
things actually work: hardware can come and hardware can go all the
time, during boot and during runtime. For some technologies it is not
even possible to know when the device enumeration is complete
(example: USB, or iSCSI), thus waiting for all storage devices to show
up and be probed must necessarily include a fixed delay when it is
assumed that all devices that can show up have shown up, and got
probed. In this case all this shows very negatively in the boot time: the
storage scripts force us to delay bootup until all potential devices
have shown up and all devices that did got probed — and all that even
though we don’t actually need most devices for anything. In particular
since this machine actually does not make use of LVM, RAID or

Knowing what we know now we can go and disable
udev-settle.service for the next boots: since neither LVM,
RAID nor Multipath is used we can mask the services in question and
thus speed up our boot a little:

# ln -s /dev/null /etc/systemd/system/udev-settle.service
# ln -s /dev/null /etc/systemd/system/fedora-wait-storage.service
# ln -s /dev/null /etc/systemd/system/fedora-storage-init.service
# systemctl daemon-reload

After restarting we can measure that the boot is now about 1s
faster. Why just 1s? Well, the second worst offender is cryptsetup
here: the machine in question has an encrypted
/home directory. For testing purposes I have stored the
passphrase in a file on disk, so that the boot-up is not delayed
because I as the user am a slow typer. The cryptsetup tool
unfortunately still takes more han 5s to set up the encrypted
partition. Being lazy instead of trying to fix
cryptsetup[3] we’ll just tape over it here [4]:
systemd will normally wait for all file systems not marked with the
noauto option in /etc/fstab to show up, to be fscked and to
be mounted before proceeding bootup and starting the usual system
services. In the case of /home (unlike for example
/var) we know that it is needed only very late (i.e. when the
user actually logs in). An easy fix is hence to make the mount point
available already during boot, but not actually wait until cryptsetup,
fsck and mount finished running for it. You ask how we can make a
mount point available before actually mounting the file system behind
it? Well, systemd possesses magic powers, in form of the
comment=systemd.automount mount option in
/etc/fstab. If you specify it, systemd will create an
automount point at /home and when at the time of the first
access to the file system it still isn’t backed by a proper file
system systemd will wait for the device, fsck and mount it.

And here’s the result with this change to /etc/fstab

systemd[1]: Startup finished in 2s 47ms 112us (kernel) + 2s 663ms 942us (initrd) + 5s 540ms 522us (userspace) = 10s 251ms 576us.

Nice! With a few fixes we took almost 7s off our boot-time. And
these two changes are only fixes for the two most superficial
problems. With a bit of love and detail work there’s a lot of
additional room for improvements. In fact, on a different machine, a
more than two year old X300 laptop (which even back then wasn’t the
fastest machine on earth) and a bit of decrufting we have boot times
of around 4s (total) now, with a resonably complete GNOME system. And there’s
still a lot of room in it.

systemd-analyze blame is a nice and simple tool for
tracking down slow services. However, it suffers by a big problem: it
does not visualize how the parallel execution of the services actually
diminishes the price one pays for slow starting services. For that we
have prepared systemd-analyize plot for you. Use it like

$ systemd-analyze plot > plot.svg
$ eog plot.svg

It creates pretty graphs, showing the time services spent to start
up in relation to the other services. It currently doesn’t visualize
explicitly which services wait for which ones, but with a bit of guess
work this is easily seen nonetheless.

To see the effect of our two little optimizations here are two
graphs generated with systemd-analyze plot, the first before
and the other after our change:

Before After

(For the sake of completeness, here are the two complete outputs of
systemd-analyze blame for these two boots: before and after.)

The well-informed reader probably wonders how this relates to Michael Meeks’
. This plot and bootchart do show similar graphs, that is
true. Bootchart is by far the more powerful tool. It plots in all
detail what is happening during the boot, how much CPU and IO is
used. systemd-analyze plot shows more high-level data: which
service took how much time to initialize, and what needed to wait for
it. If you use them both together you’ll have a wonderful toolset to
figure out why your boot is not as fast as it could be.

Now, before you now take these tools and start filing bugs against
the worst boot-up time offenders on your system: think twice. These
tools give you raw data, don’t misread it. As my optimization example
above hopefully shows, the blame for the slow bootup was not actually
with udev-settle.service, and not with the ModemManager
prober run by it either. It is with the subsystem that pulled this
service in in the first place. And that’s where the problem needs to
be fixed. So, file the bugs at the right places. Put the blame where
the blame belongs.

As mentioned, these three utilities are available on your Fedora 15
system out-of-the-box.

And here’s what to take home from this little blog story:

  • systemd-analyze is a wonderful tool and systemd comes
    with profiling built in.
  • Don’t misread the data these tools generate!
  • With two simple changes you might be able to speed up your system
    by 7s!
  • Fix your software if it can’t handle dynamic hardware
  • The Fedora default of installing the OS on an enterprise-level
    storage managing system might be something to rethink.

And that’s all for now. Thank you for your interest.


[1] Also known as the greatest Free Software OS release

[2] The right fix here is to improve the services in
question to actively listen to hotplug events via libudev or similar
and act on the devices showing up as they show up, so that we can
continue with the bootup the instant everything we really need to go
on has shown up. To get a quick bootup we should wait for what we
actually need to proceed, not for everything. Also note that the
storage services are not the only services which do not cope well with
modern dynamic hardware, and assume that the device list is static and
stays unchanged. For example, in this example the reason the initrd is
actually as slow as it is is mostly due to the fact that Plymouth
expects to be executed when all video devices have shown up and have
been probed. For an unknown reason (at least unknown to me) loading
the video kernel modules for my Intel graphics cards takes multiple
seconds, and hence the entire boot is delayed unnecessarily. (Here too
I’d not put the blame on the probing but on the fact that we
wait for it to complete before going on.)

[3] Well, to be precise, I actually did try to get this
fixed. Most of the delay of crypsetup stems from the — in my eyes —
unnecessarily high default values for --iter-time in
cryptsetup. I tried to convince our cryptsetup maintainers that 100ms
as a default here are not really less secure than 1s, but well, I

[4] Of course, it’s usually not our style to just tape over
problems instead of fixing them, but this is such a nice occasion to
show off yet another cool systemd feature…