Tag Archives: laptop

Server vs Endpoint Backup — Which is Best?

Post Syndicated from Roderick Bauer original https://www.backblaze.com/blog/endpoint-backup-for-distributed-computing/

server and computer backup to the cloud

How common are these statements in your organization?

  • I know I saved that file. The application must have put it somewhere outside of my documents folder.” — Mike in Marketing
  • I was on the road and couldn’t get a reliable VPN connection. I guess that’s why my laptop wasn’t backed up.” — Sally in Sales
  • I try to follow file policies, but I had a deadline this week and didn’t have time to copy my files to the server.” — Felicia in Finance
  • I just did a commit of my code changes and that was when the coffee mug was knocked over onto the laptop.” — Erin in Engineering
  • If you need a file restored from backup, contact the help desk at [email protected] The IT department will get back to you.” — XYZ corporate intranet
  • Why don’t employees save files on the network drive like they’re supposed to?” — Isaac in IT

If these statements are familiar, most likely you rely on file server backups to safeguard your valuable endpoint data.

The problem is, the workplace has changed. Where server backups might have fit how offices worked at one time in the past, relying solely on server backups today means you could be missing valuable endpoint data from your backups. On top of that, you likely are unnecessarily expending valuable user and IT time in attempting to secure and restore endpoint data.

Times Have Changed, and so have Effective Enterprise Backup Strategies

The ways we use computers and handle files today are vastly different from just five or ten years ago. Employees are mobile, and we no longer are limited to monolithic PC and Mac-based office suites. Cloud applications are everywhere. Company-mandated network drive policies are difficult to enforce as office practices change, devices proliferate, and organizational culture evolves. Besides, your IT staff has other things to do than babysit your employees to make sure they follow your organization’s policies for managing files.

Server Backup has its Place, but Does it Support How People Work Today?

Many organizations still rely on server backup. If your organization works primarily in centralized offices with all endpoints — likely desktops — connected directly to your network, and you maintain tight control of how employees manage their files, it still might work for you.

Your IT department probably has set network drive policies that require employees to save files in standard places that are regularly backed up to your file server. Turns out, though, that even standard applications don’t always save files where IT would like them to be. They could be in a directory or folder that’s not regularly backed up.

As employees have become more mobile, they have adopted practices that enable them to access files from different places, but these practices might not fit in with your organization’s server policies. An employee saving a file to Dropbox might be planning to copy it to an “official” location later, but whether that ever happens could be doubtful. Often people don’t realize until it’s too late that accidentally deleting a file in one sync service directory means that all copies in all locations — even the cloud — are also deleted.

Employees are under increasing demands to produce, which means that network drive policies aren’t always followed; time constraints and deadlines can cause best practices to go out the window. Users will attempt to comply with policies as best they can — and you might get 70% or even 75% effective compliance — but getting even to that level requires training, monitoring, and repeatedly reminding employees of policies they need to follow — none of which leads to a good work environment.

Even if you get to 75% compliance with network file policies, what happens if the critical file needed to close out an end-of-year financial summary isn’t one of the files backed up? The effort required for IT to get from 70% to 80% or 90% of an endpoint’s files effectively backed up could require multiple hours from your IT department, and you still might not have backed up the one critical file you need later.

Your Organization Operates on its Data — And Today That Data Exists in Multiple Locations

Users are no longer tied to one endpoint, and may use different computers in the office, at home, or traveling. The greater the number of endpoints used, the greater the chance of an accidental or malicious device loss or data corruption. The loss of the Sales VP’s laptop at the airport on her way back from meeting with major customers can affect an entire organization and require weeks to resolve.

Even with the best intentions and efforts, following policies when out of the office can be difficult or impossible. Connecting to your private network when remote most likely requires a VPN, and VPN connectivity can be challenging from the lobby Wi-Fi at the Radisson. Server restores require time from the IT staff, which can mean taking resources away from other IT priorities and a growing backlog of requests from users to need their files as soon as possible. When users are dependent on IT to get back files critical to their work, employee productivity and often deadlines are affected.

Managing Finite Server Storage Is an Ongoing Challenge

Network drive backup usually requires on-premises data storage for endpoint backups. Since it is a finite resource, allocating that storage is another burden on your IT staff. To make sure that storage isn’t exceeded, IT departments often ration storage by department and/or user — another oversight duty for IT, and even more choices required by your IT department and department heads who have to decide which files to prioritize for backing up.

Adding Backblaze Endpoint Backup Improves Business Continuity and Productivity

Having an endpoint backup strategy in place can mitigate these problems and improve user productivity, as well. A good endpoint backup service, such as Backblaze Cloud Backup, will ensure that all devices are backed up securely, automatically, without requiring any action by the user or by your IT department.

For 99% of users, no configuration is required for Backblaze Backup. Everything on the endpoint is encrypted and securely backed up to the cloud, including program configuration files and files outside of standard document folders. Even temp files are backed up, which can prove invaluable when recovering a file after a crash or other program interruption. Cloud storage is unlimited with Backblaze Backup, so there are no worries about running out of storage or rationing file backups.

The Backblaze client can be silently and remotely installed to both Macintosh and Windows clients with no user interaction. And, with Backblaze Groups, your IT staff has complete visibility into when files were last backed up. IT staff can recover any backed up file, folder, or entire computer from the admin panel, and even give file restore capability to the user, if desired, which reduces dependency on IT and time spent waiting for restores.

With over 500 petabytes of customer data stored and one million files restored every hour of every day by Backblaze customers, you know that Backblaze Backup works for its users.

You Need Data Security That Matches the Way People Work Today

Both file server and endpoint backup have their places in an organization’s data security plan, but their use and value differ. If you already are using file server backup, adding endpoint backup will make a valuable contribution to your organization by reducing workload, improving productivity, and increasing confidence that all critical files are backed up.

By guaranteeing fast and automatic backup of all endpoint data, and matching the current way organizations and people work with data, Backblaze Backup will enable you to effectively and affordably meet the data security demands of your organization.

The post Server vs Endpoint Backup — Which is Best? appeared first on Backblaze Blog | Cloud Storage & Cloud Backup.

2018-02-08 FOSDEM

Post Syndicated from Vasil Kolev original https://vasil.ludost.net/blog/?p=3378

Спимисе.

В понеделник сутрин се прибрахме от FOSDEM 2018, където правихме видео. Нямам много структурирани спомени, та разни бележки на едно място:

ULB (университетът, в който е FOSDEM) са страшна работа със сигурността, няколко пъти ни заключваха в зали/сгради. И понеже там като цяло хората говорят всякакъв език, стига да е френски, постоянно трябваше да звъним на локалните хора от екипа да се обаждат на охраната да ни отключват. Интересно дали можем да се доберем до тяхната система за контрол…

По време на setup-а се оказа, че имаме един juniper switch за видео laptop-ите. Докато седяхме в NOC-а и си говорехме, че трябва да се конфигурира, влезе един доброволец и каза “аз съм за видео екипа, казаха, че има нещо за кримпване” “можеш ли да конфигурираш juniper switch-ове?” “ами да, занимавал съм се”, след което го затворихме в сървърното и успя да излезе от там чак вечерта…

В първия половин час на конференцията някой се обади по irc – “абе, защо там пише 2017 в ъгъла?”. Оказа се, че фонът е приготвен и commit-нат, но не е бил налян на voctop-ите, та имаше едно много бързо pscp. Във финалната лекция това го споменаха, а преди това няколко човека обикаляха с няколко листа и предложения как да го коригираме (например да напишем 2017++ …).

За 20 минути успяхме в една от залите да сглобим setup, с който лектор да изнесе лекция remote, но па той не можа да се свърже. Жалко, щеше да е интересен експеримент.

Времето в Брюксел беше отвратително – вятър, дъжд, и точно следобяда слънце, че да ми пече в монитора.

Игнат за малко беше на FOSDEM и даже му показах сървърното. Ако го бях пуснал да полази там, дали щеше да спре всичко в рамките на 5 минути…

Като цяло проблемите от нашата техника бяха малко, от тая на университета – доста (аз дебъгвах setup-а в една зала и още не мога да си обясня как е работел досега), но най-големия проблем си остава, че хората не си включват микрофоните… Може би трябва за някакви такива случаи да помислим за някаква система, която чете по движенията на устните и прави субтитри. За догодина задължително monitoring на аудионивата на stream-овете.

Трябва да си намерим полет на връщане, за който да не трябва да ставаме в 6:30, не е човешко.

И понеже все ме питат дали съм гледал една или друга лекция – може би съм един от малкото хора, дето хем са били там, хем не са гледали абсолютно нищо 🙂

Jackpotting Attacks Against US ATMs

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2018/02/jackpotting_att.html

Brian Krebs is reporting sophisticated jackpotting attacks against US ATMs. The attacker gains physical access to the ATM, plants malware using specialized electronics, and then later returns and forces the machine to dispense all the cash it has inside.

The Secret Service alert explains that the attackers typically use an endoscope — a slender, flexible instrument traditionally used in medicine to give physicians a look inside the human body — to locate the internal portion of the cash machine where they can attach a cord that allows them to sync their laptop with the ATM’s computer.

“Once this is complete, the ATM is controlled by the fraudsters and the ATM will appear Out of Service to potential customers,” reads the confidential Secret Service alert.

At this point, the crook(s) installing the malware will contact co-conspirators who can remotely control the ATMs and force the machines to dispense cash.

“In previous Ploutus.D attacks, the ATM continuously dispensed at a rate of 40 bills every 23 seconds,” the alert continues. Once the dispense cycle starts, the only way to stop it is to press cancel on the keypad. Otherwise, the machine is completely emptied of cash, according to the alert.

Lots of details in the article.

The Effects of the Spectre and Meltdown Vulnerabilities

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2018/01/the_effects_of_3.html

On January 3, the world learned about a series of major security vulnerabilities in modern microprocessors. Called Spectre and Meltdown, these vulnerabilities were discovered by several different researchers last summer, disclosed to the microprocessors’ manufacturers, and patched­ — at least to the extent possible.

This news isn’t really any different from the usual endless stream of security vulnerabilities and patches, but it’s also a harbinger of the sorts of security problems we’re going to be seeing in the coming years. These are vulnerabilities in computer hardware, not software. They affect virtually all high-end microprocessors produced in the last 20 years. Patching them requires large-scale coordination across the industry, and in some cases drastically affects the performance of the computers. And sometimes patching isn’t possible; the vulnerability will remain until the computer is discarded.

Spectre and Meltdown aren’t anomalies. They represent a new area to look for vulnerabilities and a new avenue of attack. They’re the future of security­ — and it doesn’t look good for the defenders.

Modern computers do lots of things at the same time. Your computer and your phone simultaneously run several applications — ­or apps. Your browser has several windows open. A cloud computer runs applications for many different computers. All of those applications need to be isolated from each other. For security, one application isn’t supposed to be able to peek at what another one is doing, except in very controlled circumstances. Otherwise, a malicious advertisement on a website you’re visiting could eavesdrop on your banking details, or the cloud service purchased by some foreign intelligence organization could eavesdrop on every other cloud customer, and so on. The companies that write browsers, operating systems, and cloud infrastructure spend a lot of time making sure this isolation works.

Both Spectre and Meltdown break that isolation, deep down at the microprocessor level, by exploiting performance optimizations that have been implemented for the past decade or so. Basically, microprocessors have become so fast that they spend a lot of time waiting for data to move in and out of memory. To increase performance, these processors guess what data they’re going to receive and execute instructions based on that. If the guess turns out to be correct, it’s a performance win. If it’s wrong, the microprocessors throw away what they’ve done without losing any time. This feature is called speculative execution.

Spectre and Meltdown attack speculative execution in different ways. Meltdown is more of a conventional vulnerability; the designers of the speculative-execution process made a mistake, so they just needed to fix it. Spectre is worse; it’s a flaw in the very concept of speculative execution. There’s no way to patch that vulnerability; the chips need to be redesigned in such a way as to eliminate it.

Since the announcement, manufacturers have been rolling out patches to these vulnerabilities to the extent possible. Operating systems have been patched so that attackers can’t make use of the vulnerabilities. Web browsers have been patched. Chips have been patched. From the user’s perspective, these are routine fixes. But several aspects of these vulnerabilities illustrate the sorts of security problems we’re only going to be seeing more of.

First, attacks against hardware, as opposed to software, will become more common. Last fall, vulnerabilities were discovered in Intel’s Management Engine, a remote-administration feature on its microprocessors. Like Spectre and Meltdown, they affected how the chips operate. Looking for vulnerabilities on computer chips is new. Now that researchers know this is a fruitful area to explore, security researchers, foreign intelligence agencies, and criminals will be on the hunt.

Second, because microprocessors are fundamental parts of computers, patching requires coordination between many companies. Even when manufacturers like Intel and AMD can write a patch for a vulnerability, computer makers and application vendors still have to customize and push the patch out to the users. This makes it much harder to keep vulnerabilities secret while patches are being written. Spectre and Meltdown were announced prematurely because details were leaking and rumors were swirling. Situations like this give malicious actors more opportunity to attack systems before they’re guarded.

Third, these vulnerabilities will affect computers’ functionality. In some cases, the patches for Spectre and Meltdown result in significant reductions in speed. The press initially reported 30%, but that only seems true for certain servers running in the cloud. For your personal computer or phone, the performance hit from the patch is minimal. But as more vulnerabilities are discovered in hardware, patches will affect performance in noticeable ways.

And then there are the unpatchable vulnerabilities. For decades, the computer industry has kept things secure by finding vulnerabilities in fielded products and quickly patching them. Now there are cases where that doesn’t work. Sometimes it’s because computers are in cheap products that don’t have a patch mechanism, like many of the DVRs and webcams that are vulnerable to the Mirai (and other) botnets — ­groups of Internet-connected devices sabotaged for coordinated digital attacks. Sometimes it’s because a computer chip’s functionality is so core to a computer’s design that patching it effectively means turning the computer off. This, too, is becoming more common.

Increasingly, everything is a computer: not just your laptop and phone, but your car, your appliances, your medical devices, and global infrastructure. These computers are and always will be vulnerable, but Spectre and Meltdown represent a new class of vulnerability. Unpatchable vulnerabilities in the deepest recesses of the world’s computer hardware is the new normal. It’s going to leave us all much more vulnerable in the future.

This essay previously appeared on TheAtlantic.com.

Spiegelbilder Studio’s giant CRT video walls

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/crt-video-walls/

After getting in contact with us to share their latest build with us, we invited Matvey Fridman of Germany-based production company Spiegelbilder Studio to write a guest blog post about their CRT video walls created for the band STRANDKØNZERT.

STRANDKØNZERT – TAGTRAUMER – OFFICIAL VIDEO

GERMAN DJENT RAP / EST. 2017. COMPLETE DIY-PROJECT.

CRT video wall

About a year ago, we had the idea of building a huge video wall out of old TVs to use in a music video. It took some time, but half a year later we found ourselves in a studio actually building this thing using 30 connected computers, 24 of which were Raspberry Pis.

STRANDKØNZERT CRT video wall Raspberry Pi

How we did it

After weeks and months of preproduction and testing, we decided on two consecutive days to build the wall, create the underlying IP network, run a few tests, and then film the artists’ performance in front of it. We actually had 32 Pis (a mixed bag of first, second, and third generation models) and even more TVs ready to go, since we didn’t know what the final build would actually look like. We ended up using 29 separate screens of various sizes hooked up to 24 separate Pis — the remaining five TVs got a daisy-chained video signal out of other monitors for a cool effect. Each Pi had to run a free software called PiWall.

STRANDKØNZERT CRT video wall Raspberry Pi

Since the TVs only had analogue video inputs, we had to get special composite breakout cables and then adapt the RCA connectors to either SCART, S-Video, or BNC.

STRANDKØNZERT CRT video wall Raspberry Pi

As soon as we had all of that running, we connected every Pi to a 48-port network switch that we’d hooked up to a Windows PC acting as a DHCP server to automatically assign IP addresses and handle the multicast addressing. To make remote control of the Raspberry Pis easier, a separate master Linux PC and two MacBook laptops, each with SSH enabled and a Samba server running, joined the network as well.

STRANDKØNZERT CRT video wall Raspberry Pi

The MacBook laptops were used to drop two files containing the settings on each Pi. The .pitile file was unique to every Pi and contained their respective IDs. The .piwall file contained the same info for all Pis: the measurements and positions of every single screen to help the software split up the video signal coming in through the network. After every Pi got the command to start the PiWall software, which specifies the UDP multicast address and settings to be used to receive the video stream, the master Linux PC was tasked with streaming the video file to these UDP addresses. Now every TV was showing its section of the video, and we could begin filming.

STRANDKØNZERT CRT video wall Raspberry Pi

The whole process and the contents of the files and commands are summarised in the infographic below. A lot of trial and error was involved in the making of this project, but it all worked out well in the end. We hope you enjoy the craft behind the music video even though the music is not for everybody 😉

PiWall_Infographic

You can follow Spiegelbilder Studio on Facebook, Twitter, and Instagram. And if you enjoyed the music video, be sure to follow STRANDKØNZERT too.

The post Spiegelbilder Studio’s giant CRT video walls appeared first on Raspberry Pi.

Yet Another FBI Proposal for Insecure Communications

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2018/01/yet_another_fbi.html

Deputy Attorney General Rosenstein has given talks where he proposes that tech companies decrease their communications and device security for the benefit of the FBI. In a recent talk, his idea is that tech companies just save a copy of the plaintext:

Law enforcement can also partner with private industry to address a problem we call “Going Dark.” Technology increasingly frustrates traditional law enforcement efforts to collect evidence needed to protect public safety and solve crime. For example, many instant-messaging services now encrypt messages by default. The prevent the police from reading those messages, even if an impartial judge approves their interception.

The problem is especially critical because electronic evidence is necessary for both the investigation of a cyber incident and the prosecution of the perpetrator. If we cannot access data even with lawful process, we are unable to do our job. Our ability to secure systems and prosecute criminals depends on our ability to gather evidence.

I encourage you to carefully consider your company’s interests and how you can work cooperatively with us. Although encryption can help secure your data, it may also prevent law enforcement agencies from protecting your data.

Encryption serves a valuable purpose. It is a foundational element of data security and essential to safeguarding data against cyber-attacks. It is critical to the growth and flourishing of the digital economy, and we support it. I support strong and responsible encryption.

I simply maintain that companies should retain the capability to provide the government unencrypted copies of communications and data stored on devices, when a court orders them to do so.

Responsible encryption is effective secure encryption, coupled with access capabilities. We know encryption can include safeguards. For example, there are systems that include central management of security keys and operating system updates; scanning of content, like your e-mails, for advertising purposes; simulcast of messages to multiple destinations at once; and key recovery when a user forgets the password to decrypt a laptop. No one calls any of those functions a “backdoor.” In fact, those very capabilities are marketed and sought out.

I do not believe that the government should mandate a specific means of ensuring access. The government does not need to micromanage the engineering.

The question is whether to require a particular goal: When a court issues a search warrant or wiretap order to collect evidence of crime, the company should be able to help. The government does not need to hold the key.

Rosenstein is right that many services like Gmail naturally keep plaintext in the cloud. This is something we pointed out in our 2016 paper: “Don’t Panic.” But forcing companies to build an alternate means to access the plaintext that the user can’t control is an enormous vulnerability.

Tamper-Detection App for Android

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2018/01/tamper-detectio.html

Edward Snowden and Nathan Freitas have created an Android app that detects when it’s being tampered with. The basic idea is to put the app on a second phone and put the app on or near something important, like your laptop. The app can then text you — and also record audio and video — when something happens around it: when it’s moved, when the lighting changes, and so on. This gives you some protection against the “evil maid attack” against laptops.

Micah Lee has a good article about the app, including some caveats about its use and security.

Ubuntu 17.10 can brick some laptops

Post Syndicated from corbet original https://lwn.net/Articles/741913/rss

Downloads of Ubuntu 17.10 have been disabled due to an
issue
that can cause it to corrupt the firmware on some laptops.
Lenovo laptops appear to be the most affected, but the problem is
apparently not limited to them. The intel-spi driver has been named as the
source of the problem; it’s not clear whether other distributions may also
be affected. If you downloaded 17.10, you might want to hold off on
installing it.

Amazon Linux 2 – Modern, Stable, and Enterprise-Friendly

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/amazon-linux-2-modern-stable-and-enterprise-friendly/

I’m getting ready to wrap up my work for the year, cleaning up my inbox and catching up on a few recent AWS launches that happened at and shortly after AWS re:Invent.

Last week we launched Amazon Linux 2. This is modern version of Linux, designed to meet the security, stability, and productivity needs of enterprise environments while giving you timely access to new tools and features. It also includes all of the things that made the Amazon Linux AMI popular, including AWS integration, cloud-init, a secure default configuration, regular security updates, and AWS Support. From that base, we have added many new features including:

Long-Term Support – You can use Amazon Linux 2 in situations where you want to stick with a single major version of Linux for an extended period of time, perhaps to avoid re-qualifying your applications too frequently. This build (2017.12) is a candidate for LTS status; the final determination will be made based on feedback in the Amazon Linux Discussion Forum. Long-term support for the Amazon Linux 2 LTS build will include security updates, bug fixes, user-space Application Binary Interface (ABI), and user-space Application Programming Interface (API) compatibility for 5 years.

Extras Library – You can now get fast access to fresh, new functionality while keeping your base OS image stable and lightweight. The Amazon Linux Extras Library eliminates the age-old tradeoff between OS stability and access to fresh software. It contains open source databases, languages, and more, each packaged together with any needed dependencies.

Tuned Kernel – You have access to the latest 4.9 LTS kernel, with support for the latest EC2 features and tuned to run efficiently in AWS and other virtualized environments.

SystemdAmazon Linux 2 includes the systemd init system, designed to provide better boot performance and increased control over individual services and groups of interdependent services. For example, you can indicate that Service B must be started only after Service A is fully started, or that Service C should start on a change in network connection status.

Wide AvailabiltyAmazon Linux 2 is available in all AWS Regions in AMI and Docker image form. Virtual machine images for Hyper-V, KVM, VirtualBox, and VMware are also available. You can build and test your applications on your laptop or in your own data center and then deploy them to AWS.

Launching an Instance
You can launch an instance in all of the usual ways – AWS Management Console, AWS Command Line Interface (CLI), AWS Tools for Windows PowerShell, RunInstances, and via a AWS CloudFormation template. I’ll use the Console:

I’m interested in the Extras Library; here’s how I see which topics (lists of packages) are available:

As you can see, the library includes languages, editors, and web tools that receive frequent updates. Each topic contains all of dependencies that are needed to install the package on Amazon Linux 2. For example, the Rust topic includes the cmake build system for Rust, cargo for Rust package maintenance, and the LLVM-based compiler toolchain for Rust.

Here’s how I install a topic (Emacs 25.3):

SNS Updates
Many AWS customers use the Amazon Linux AMIs as a starting point for their own AMIs. If you do this and would like to kick off your build process whenever a new AMI is released, you can subscribe to an SNS topic:

You can be notified by email, invoke a AWS Lambda function, and so forth.

Available Now
Amazon Linux 2 is available now and you can start using it in the cloud and on-premises today! To learn more, read the Amazon Linux 2 LTS Candidate (2017.12) Release Notes.

Jeff;

 

Matt’s steampunk radio jukebox

Post Syndicated from Janina Ander original https://www.raspberrypi.org/blog/matts-steampunk-radio-jukebox/

Matt Van Gastel breathed new life into his great-grandparents’ 1930s Westinghouse with a Raspberry Pi, an amplifier HAT, Google Music, and some serious effort. The result is a really beautiful, striking piece.

Matt Van Gastel Steampunk Radio Raspberry Pi

The radio

With a background in radio electronics, Matt Van Gastel had always planned to restore his great-grandparents’ mid-30s Westinghouse radio. “I even found the original schematics glued to the bottom of the base of the main electronics assembly,” he explains in his Instructables walkthrough. However, considering the age of the piece and the cost of sourcing parts for a repair, he decided to take the project in a slightly different direction.



“I pulled the main electronics assembly out quite easily, it was held in by four flat head screws […] I decided to make a Steampunk themed Jukebox based off this main assembly and power it with a Raspberry Pi,” he writes.

The build

Matt added JustBoom’s Amp HAT to a Raspberry Pi 3 to boost the sound quality and functionality of the board.

He spent a weekend prototyping and testing the electronics before deciding on his final layout. After a little time playing around with different software, Matt chose Mopidy, a flexible music server written in Python. Mopidy lets him connect to his music-streaming service of choice, Google Music, and also allows airplay connectivity for other wireless devices.

Stripping out the old electronics from inside the Westinghouse radio easily made enough space for Matt’s new, much smaller, setup. Reserving various pieces for the final build, and scrubbing the entire unit to within an inch of its life with soap and water, he moved on to the aesthetics of the piece.

The steampunk

LED Nixie tubes, a 1950s DC voltmeter, and spray paint all contributed to the final look of the radio. It has a splendid steampunk look that works wonderfully with the vintage of the original radio.



Retrofit and steampunk Raspberry Pi builds

From old pub jukeboxes to Bakelite kitchen radios, we’ve seen lots of retrofit audio visual Pi projects over the years, with all kinds of functionality and in all sorts of styles.

Americana – does exactly what it says on the tin jukebox

For more steampunk inspiration, check out phrazelle’s laptop and Derek Woodroffe’s tentacle hat. And for more audiophile builds, Tijuana Rick’s 60s Wurlitzer and Steve Devlin’s 50s wallbox are stand-out examples.

The post Matt’s steampunk radio jukebox appeared first on Raspberry Pi.

GPIO expander: access a Pi’s GPIO pins on your PC/Mac

Post Syndicated from Gordon Hollingworth original https://www.raspberrypi.org/blog/gpio-expander/

Use the GPIO pins of a Raspberry Pi Zero while running Debian Stretch on a PC or Mac with our new GPIO expander software! With this tool, you can easily access a Pi Zero’s GPIO pins from your x86 laptop without using SSH, and you can also take advantage of your x86 computer’s processing power in your physical computing projects.

A Raspberry Pi zero connected to a laptop - GPIO expander

What is this magic?

Running our x86 Stretch distribution on a PC or Mac, whether installed on the hard drive or as a live image, is a great way of taking advantage of a well controlled and simple Linux distribution without the need for a Raspberry Pi.

The downside of not using a Pi, however, is that there aren’t any GPIO pins with which your Scratch or Python programs could communicate. This is a shame, because it means you are limited in your physical computing projects.

I was thinking about this while playing around with the Pi Zero’s USB booting capabilities, having seen people employ the Linux gadget USB mode to use the Pi Zero as an Ethernet device. It struck me that, using the udev subsystem, we could create a simple GUI application that automatically pops up when you plug a Pi Zero into your computer’s USB port. Then the Pi Zero could be programmed to turn into an Ethernet-connected computer running pigpio to provide you with remote GPIO pins.

So we went ahead and built this GPIO expander application, and your PC or Mac can now have GPIO pins which are accessible through Scratch or the GPIO Zero Python library. Note that you can only use this tool to access the Pi Zero.

You can also install the application on the Raspberry Pi. Theoretically, you could connect a number of Pi Zeros to a single Pi and (without a USB hub) use a maximum of 140 pins! But I’ve not tested this — one for you, I think…

Making the GPIO expander work

If you’re using a PC or Mac and you haven’t set up x86 Debian Stretch yet, you’ll need to do that first. An easy way to do it is to download a copy of the Stretch release from this page and image it onto a USB stick. Boot from the USB stick (on most computers, you just need to press F10 during booting and select the stick when asked), and then run Stretch directly from the USB key. You can also install it to the hard drive, but be aware that installing it will overwrite anything that was on your hard drive before.

Whether on a Mac, PC, or Pi, boot through to the Stretch desktop, open a terminal window, and install the GPIO expander application:

sudo apt install usbbootgui

Next, plug in your Raspberry Pi Zero (don’t insert an SD card), and after a few seconds the GUI will appear.

A screenshot of the GPIO expander GUI

The Raspberry Pi USB programming GUI

Select GPIO expansion board and click OK. The Pi Zero will now be programmed as a locally connected Ethernet port (if you run ifconfig, you’ll see the new interface usb0 coming up).

What’s really cool about this is that your plugged-in Pi Zero is now running pigpio, which allows you to control its GPIOs through the network interface.

With Scratch 2

To utilise the pins with Scratch 2, just click on the start bar and select Programming > Scratch 2.

In Scratch, click on More Blocks, select Add an Extension, and then click Pi GPIO.

Two new blocks will be added: the first is used to set the output pin, the second is used to get the pin value (it is true if the pin is read high).

This a simple application using a Pibrella I had hanging around:

A screenshot of a Scratch 2 program - GPIO expander

With Python

This is a Python example using the GPIO Zero library to flash an LED:

[email protected]:~ $ export GPIOZERO_PIN_FACTORY=pigpio
[email protected]:~ $ export PIGPIO_ADDR=fe80::1%usb0
[email protected]:~ $ python3
>>> from gpiozero import LED
>>> led = LED(17)
>>> led.blink()
A Raspberry Pi zero connected to a laptop - GPIO expander

The pinout command line tool is your friend

Note that in the code above the IP address of the Pi Zero is an IPv6 address and is shortened to fe80::1%usb0, where usb0 is the network interface created by the first Pi Zero.

With pigs directly

Another option you have is to use the pigpio library and the pigs application and redirect the output to the Pi Zero network port running IPv6. To do this, you’ll first need to set some environment variable for the redirection:

[email protected]:~ $ export PIGPIO_ADDR=fe80::1%usb0
[email protected]:~ $ pigs bc2 0x8000
[email protected]:~ $ pigs bs2 0x8000

With the commands above, you should be able to flash the LED on the Pi Zero.

The secret sauce

I know there’ll be some people out there who would be interested in how we put this together. And I’m sure many people are interested in the ‘buildroot’ we created to run on the Pi Zero — after all, there are lots of things you can create if you’ve got a Pi Zero on the end of a piece of IPv6 string! For a closer look, find the build scripts for the GPIO expander here and the source code for the USB boot GUI here.

And be sure to share your projects built with the GPIO expander by tagging us on social media or posting links in the comments!

The post GPIO expander: access a Pi’s GPIO pins on your PC/Mac appeared first on Raspberry Pi.

Stretch for PCs and Macs, and a Raspbian update

Post Syndicated from Simon Long original https://www.raspberrypi.org/blog/stretch-pcs-macs-raspbian-update/

Today, we are launching the first Debian Stretch release of the Raspberry Pi Desktop for PCs and Macs, and we’re also releasing the latest version of Raspbian Stretch for your Pi.

Raspberry Pi Desktop Stretch splash screen

For PCs and Macs

When we released our custom desktop environment on Debian for PCs and Macs last year, we were slightly taken aback by how popular it turned out to be. We really only created it as a result of one of those “Wouldn’t it be cool if…” conversations we sometimes have in the office, so we were delighted by the Pi community’s reaction.

Seeing how keen people were on the x86 version, we decided that we were going to try to keep releasing it alongside Raspbian, with the ultimate aim being to make simultaneous releases of both. This proved to be tricky, particularly with the move from the Jessie version of Debian to the Stretch version this year. However, we have now finished the job of porting all the custom code in Raspbian Stretch to Debian, and so the first Debian Stretch release of the Raspberry Pi Desktop for your PC or Mac is available from today.

The new Stretch releases

As with the Jessie release, you can either run this as a live image from a DVD, USB stick, or SD card or install it as the native operating system on the hard drive of an old laptop or desktop computer. Please note that installing this software will erase anything else on the hard drive — do not install this over a machine running Windows or macOS that you still need to use for its original purpose! It is, however, safe to boot a live image on such a machine, since your hard drive will not be touched by this.

We’re also pleased to announce that we are releasing the latest version of Raspbian Stretch for your Pi today. The Pi and PC versions are largely identical: as before, there are a few applications (such as Mathematica) which are exclusive to the Pi, but the user interface, desktop, and most applications will be exactly the same.

For Raspbian, this new release is mostly bug fixes and tweaks over the previous Stretch release, but there are one or two changes you might notice.

File manager

The file manager included as part of the LXDE desktop (on which our desktop is based) is a program called PCManFM, and it’s very feature-rich; there’s not much you can’t do in it. However, having used it for a few years, we felt that it was perhaps more complex than it needed to be — the sheer number of menu options and choices made some common operations more awkward than they needed to be. So to try to make file management easier, we have implemented a cut-down mode for the file manager.

Raspberry Pi Desktop Stretch - file manager

Most of the changes are to do with the menus. We’ve removed a lot of options that most people are unlikely to change, and moved some other options into the Preferences screen rather than the menus. The two most common settings people tend to change — how icons are displayed and sorted — are now options on the toolbar and in a top-level menu rather than hidden away in submenus.

The sidebar now only shows a single hierarchical view of the file system, and we’ve tidied the toolbar and updated the icons to make them match our house style. We’ve removed the option for a tabbed interface, and we’ve stomped a few bugs as well.

One final change was to make it possible to rename a file just by clicking on its icon to highlight it, and then clicking on its name. This is the way renaming works on both Windows and macOS, and it’s always seemed slightly awkward that Unix desktop environments tend not to support it.

As with most of the other changes we’ve made to the desktop over the last few years, the intention is to make it simpler to use, and to ease the transition from non-Unix environments. But if you really don’t like what we’ve done and long for the old file manager, just untick the box for Display simplified user interface and menus in the Layout page of Preferences, and everything will be back the way it was!

Raspberry Pi Desktop Stretch - preferences GUI

Battery indicator for laptops

One important feature missing from the previous release was an indication of the amount of battery life. Eben runs our desktop on his Mac, and he was becoming slightly irritated by having to keep rebooting into macOS just to check whether his battery was about to die — so fixing this was a priority!

We’ve added a battery status icon to the taskbar; this shows current percentage charge, along with whether the battery is charging, discharging, or connected to the mains. When you hover over the icon with the mouse pointer, a tooltip with more details appears, including the time remaining if the battery can provide this information.

Raspberry Pi Desktop Stretch - battery indicator

While this battery monitor is mainly intended for the PC version, it also supports the first-generation pi-top — to see it, you’ll only need to make sure that I2C is enabled in Configuration. A future release will support the new second-generation pi-top.

New PC applications

We have included a couple of new applications in the PC version. One is called PiServer — this allows you to set up an operating system, such as Raspbian, on the PC which can then be shared by a number of Pi clients networked to it. It is intended to make it easy for classrooms to have multiple Pis all running exactly the same software, and for the teacher to have control over how the software is installed and used. PiServer is quite a clever piece of software, and it’ll be covered in more detail in another blog post in December.

We’ve also added an application which allows you to easily use the GPIO pins of a Pi Zero connected via USB to a PC in applications using Scratch or Python. This makes it possible to run the same physical computing projects on the PC as you do on a Pi! Again, we’ll tell you more in a separate blog post this month.

Both of these applications are included as standard on the PC image, but not on the Raspbian image. You can run them on a Pi if you want — both can be installed from apt.

How to get the new versions

New images for both Raspbian and Debian versions are available from the Downloads page.

It is possible to update existing installations of both Raspbian and Debian versions. For Raspbian, this is easy: just open a terminal window and enter

sudo apt-get update
sudo apt-get dist-upgrade

Updating Raspbian on your Raspberry Pi

How to update to the latest version of Raspbian on your Raspberry Pi. Download Raspbian here: More information on the latest version of Raspbian: Buy a Raspberry Pi:

It is slightly more complex for the PC version, as the previous release was based around Debian Jessie. You will need to edit the files /etc/apt/sources.list and /etc/apt/sources.list.d/raspi.list, using sudo to do so. In both files, change every occurrence of the word “jessie” to “stretch”. When that’s done, do the following:

sudo apt-get update 
sudo dpkg --force-depends -r libwebkitgtk-3.0-common
sudo apt-get -f install
sudo apt-get dist-upgrade
sudo apt-get install python3-thonny
sudo apt-get install sonic-pi=2.10.0~repack-rpt1+2
sudo apt-get install piserver
sudo apt-get install usbbootgui

At several points during the upgrade process, you will be asked if you want to keep the current version of a configuration file or to install the package maintainer’s version. In every case, keep the existing version, which is the default option. The update may take an hour or so, depending on your network connection.

As with all software updates, there is the possibility that something may go wrong during the process, which could lead to your operating system becoming corrupted. Therefore, we always recommend making a backup first.

Enjoy the new versions, and do let us know any feedback you have in the comments or on the forums!

The post Stretch for PCs and Macs, and a Raspbian update appeared first on Raspberry Pi.

NSA "Red Disk" Data Leak

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2017/11/nsa_red_disk_da.html

ZDNet is reporting about another data leak, this one from US Army’s Intelligence and Security Command (INSCOM), which is also within to the NSA.

The disk image, when unpacked and loaded, is a snapshot of a hard drive dating back to May 2013 from a Linux-based server that forms part of a cloud-based intelligence sharing system, known as Red Disk. The project, developed by INSCOM’s Futures Directorate, was slated to complement the Army’s so-called distributed common ground system (DCGS), a legacy platform for processing and sharing intelligence, surveillance, and reconnaissance information.

[…]

Red Disk was envisioned as a highly customizable cloud system that could meet the demands of large, complex military operations. The hope was that Red Disk could provide a consistent picture from the Pentagon to deployed soldiers in the Afghan battlefield, including satellite images and video feeds from drones trained on terrorists and enemy fighters, according to a Foreign Policy report.

[…]

Red Disk was a modular, customizable, and scalable system for sharing intelligence across the battlefield, like electronic intercepts, drone footage and satellite imagery, and classified reports, for troops to access with laptops and tablets on the battlefield. Marking files found in several directories imply the disk is “top secret,” and restricted from being shared to foreign intelligence partners.

A couple of points. One, this isn’t particularly sensitive. It’s an intelligence distribution system under development. It’s not raw intelligence. Two, this doesn’t seem to be classified data. Even the article hedges, using the unofficial term of “highly sensitive.” Three, it doesn’t seem that Chris Vickery, the researcher that discovered the data, has published it.

Chris Vickery, director of cyber risk research at security firm UpGuard, found the data and informed the government of the breach in October. The storage server was subsequently secured, though its owner remains unknown.

This doesn’t feel like a big deal to me.

Slashdot thread.

Warrant Protections against Police Searches of Our Data

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2017/11/warrant_protect.html

The cell phones we carry with us constantly are the most perfect surveillance device ever invented, and our laws haven’t caught up to that reality. That might change soon.

This week, the Supreme Court will hear a case with profound implications on your security and privacy in the coming years. The Fourth Amendment’s prohibition of unlawful search and seizure is a vital right that protects us all from police overreach, and the way the courts interpret it is increasingly nonsensical in our computerized and networked world. The Supreme Court can either update current law to reflect the world, or it can further solidify an unnecessary and dangerous police power.

The case centers on cell phone location data and whether the police need a warrant to get it, or if they can use a simple subpoena, which is easier to obtain. Current Fourth Amendment doctrine holds that you lose all privacy protections over any data you willingly share with a third party. Your cellular provider, under this interpretation, is a third party with whom you’ve willingly shared your movements, 24 hours a day, going back months — even though you don’t really have any choice about whether to share with them. So police can request records of where you’ve been from cell carriers without any judicial oversight. The case before the court, Carpenter v. United States, could change that.

Traditionally, information that was most precious to us was physically close to us. It was on our bodies, in our homes and offices, in our cars. Because of that, the courts gave that information extra protections. Information that we stored far away from us, or gave to other people, afforded fewer protections. Police searches have been governed by the “third-party doctrine,” which explicitly says that information we share with others is not considered private.

The Internet has turned that thinking upside-down. Our cell phones know who we talk to and, if we’re talking via text or e-mail, what we say. They track our location constantly, so they know where we live and work. Because they’re the first and last thing we check every day, they know when we go to sleep and when we wake up. Because everyone has one, they know whom we sleep with. And because of how those phones work, all that information is naturally shared with third parties.

More generally, all our data is literally stored on computers belonging to other people. It’s our e-mail, text messages, photos, Google docs, and more ­ all in the cloud. We store it there not because it’s unimportant, but precisely because it is important. And as the Internet of Things computerizes the rest our lives, even more data will be collected by other people: data from our health trackers and medical devices, data from our home sensors and appliances, data from Internet-connected “listeners” like Alexa, Siri, and your voice-activated television.

All this data will be collected and saved by third parties, sometimes for years. The result is a detailed dossier of your activities more complete than any private investigator –­ or police officer –­ could possibly collect by following you around.

The issue here is not whether the police should be allowed to use that data to help solve crimes. Of course they should. The issue is whether that information should be protected by the warrant process that requires the police to have probable cause to investigate you and get approval by a court.

Warrants are a security mechanism. They prevent the police from abusing their authority to investigate someone they have no reason to suspect of a crime. They prevent the police from going on “fishing expeditions.” They protect our rights and liberties, even as we willingly give up our privacy to the legitimate needs of law enforcement.

The third-party doctrine never made a lot of sense. Just because I share an intimate secret with my spouse, friend, or doctor doesn’t mean that I no longer consider it private. It makes even less sense in today’s hyper-connected world. It’s long past time the Supreme Court recognized that a months’-long history of my movements is private, and my e-mails and other personal data deserve the same protections, whether they’re on my laptop or on Google’s servers.

This essay previously appeared in the Washington Post.

Details on the case. Two opinion pieces.

I signed on to two amicus briefs on the case.

EDITED TO ADD (12/1): Good commentary on the Supreme Court oral arguments.

Amazon EC2 Update – Streamlined Access to Spot Capacity, Smooth Price Changes, Instance Hibernation

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/amazon-ec2-update-streamlined-access-to-spot-capacity-smooth-price-changes-instance-hibernation/

EC2 Spot Instances give you access to spare compute capacity in the AWS Cloud. Our customers use fleets of Spot Instances to power their CI/CD environments & traffic generators, host web servers & microservices, render movies, and to run many types of analytics jobs, all at prices that offer significant savings in comparison to On-Demand Instances.

New Streamlined Access
Today we are introducing a new, streamlined access model for Spot Instances. You simply indicate your desire to use Spot capacity when you launch an instance via the RunInstances function, the run-instances command, or the AWS Management Console to submit a request that will be fulfilled as long as the capacity is available. With no extra effort on your part you’ll save up to 90% off of the On-Demand price for the instance type, allowing you to boost your overall application throughput by up to 10x for the same budget. The instances that you launch in this way will continue to run until you terminate them or if EC2 needs to reclaim them for On-Demand usage. At that point the instance will be given the usual 2-minute warning and then reclaimed, making this a great fit for applications that are fault-tolerant.

Unlike the old model which required an understanding of Spot markets, bidding, and calls to a standalone asynchronous API, the new model is synchronous and as easy to use as On-Demand. Your code or your script receives an Instance ID immediately and need not check back to see if the request has been processed and accepted.

We’ve made this as clean and as simple as possible, with the expectation that it will be easy to modify many current scripts and applications to request and make use of Spot capacity. If you want to exercise additional control over your Spot instance budget, you have the option to specify a maximum price when you make a request for capacity. If you use Spot capacity to power your Amazon EMR, Amazon ECS, or AWS Batch clusters, or if you launch Spot instances by way of a AWS CloudFormation template or Auto Scaling Group, you will benefit from this new model without having to make any changes.

Applications that are built around RequestSpotInstances or RequestSpotFleet will continue to work just fine with no changes. However, you now have the option to make requests that do not include the SpotPrice parameter.

Smooth Price Changes
As part of today’s launch we are also changing the way that Spot prices change, moving to a model where prices adjust more gradually, based on longer-term trends in supply and demand. As I mentioned earlier, you will continue to save an average of 70-90% off the On-Demand price, and you will continue to pay the Spot price that’s in effect for the time period your instances are running. Applications built around our Spot Fleet feature will continue to automatically diversify placement of their Spot Instances across the most cost-effective pools based on the configuration you specified when you created the fleet.

Spot in Action
To launch a Spot Instance from the command line; simply specify the Spot market:

$ aws ec2 run-instances –-market Spot --image-id ami-1a2b3c4d --count 1 --instance-type c3.large 

Instance Hibernation
If you run workloads that keep a lot of state in memory, you will love this new feature!

You can arrange for instances to save their in-memory state when they are reclaimed, allowing the instances and the applications on them to pick up where they left off when capacity is once again available, just like closing and then opening your laptop. This feature works on C3, C4, and certain sizes of R3, R4, and M4 instances running Amazon Linux, Ubuntu, or Windows Server, and is supported by the EC2 Hibernation Agent.

The in-memory state is written to the root EBS volume of the instance using space that is set-aside when the instance launches. The private IP address and any Elastic IP Addresses are also preserved across a stop/start cycle.

Jeff;

Potential impact of the Intel ME vulnerability

Post Syndicated from Matthew Garrett original https://mjg59.dreamwidth.org/49611.html

(Note: this is my personal opinion based on public knowledge around this issue. I have no knowledge of any non-public details of these vulnerabilities, and this should not be interpreted as the position or opinion of my employer)

Intel’s Management Engine (ME) is a small coprocessor built into the majority of Intel CPUs[0]. Older versions were based on the ARC architecture[1] running an embedded realtime operating system, but from version 11 onwards they’ve been small x86 cores running Minix. The precise capabilities of the ME have not been publicly disclosed, but it is at minimum capable of interacting with the network[2], display[3], USB, input devices and system flash. In other words, software running on the ME is capable of doing a lot, without requiring any OS permission in the process.

Back in May, Intel announced a vulnerability in the Advanced Management Technology (AMT) that runs on the ME. AMT offers functionality like providing a remote console to the system (so IT support can connect to your system and interact with it as if they were physically present), remote disk support (so IT support can reinstall your machine over the network) and various other bits of system management. The vulnerability meant that it was possible to log into systems with enabled AMT with an empty authentication token, making it possible to log in without knowing the configured password.

This vulnerability was less serious than it could have been for a couple of reasons – the first is that “consumer”[4] systems don’t ship with AMT, and the second is that AMT is almost always disabled (Shodan found only a few thousand systems on the public internet with AMT enabled, out of many millions of laptops). I wrote more about it here at the time.

How does this compare to the newly announced vulnerabilities? Good question. Two of the announced vulnerabilities are in AMT. The previous AMT vulnerability allowed you to bypass authentication, but restricted you to doing what AMT was designed to let you do. While AMT gives an authenticated user a great deal of power, it’s also designed with some degree of privacy protection in mind – for instance, when the remote console is enabled, an animated warning border is drawn on the user’s screen to alert them.

This vulnerability is different in that it allows an authenticated attacker to execute arbitrary code within the AMT process. This means that the attacker shouldn’t have any capabilities that AMT doesn’t, but it’s unclear where various aspects of the privacy protection are implemented – for instance, if the warning border is implemented in AMT rather than in hardware, an attacker could duplicate that functionality without drawing the warning. If the USB storage emulation for remote booting is implemented as a generic USB passthrough, the attacker could pretend to be an arbitrary USB device and potentially exploit the operating system through bugs in USB device drivers. Unfortunately we don’t currently know.

Note that this exploit still requires two things – first, AMT has to be enabled, and second, the attacker has to be able to log into AMT. If the attacker has physical access to your system and you don’t have a BIOS password set, they will be able to enable it – however, if AMT isn’t enabled and the attacker isn’t physically present, you’re probably safe. But if AMT is enabled and you haven’t patched the previous vulnerability, the attacker will be able to access AMT over the network without a password and then proceed with the exploit. This is bad, so you should probably (1) ensure that you’ve updated your BIOS and (2) ensure that AMT is disabled unless you have a really good reason to use it.

The AMT vulnerability applies to a wide range of versions, everything from version 6 (which shipped around 2008) and later. The other vulnerability that Intel describe is restricted to version 11 of the ME, which only applies to much more recent systems. This vulnerability allows an attacker to execute arbitrary code on the ME, which means they can do literally anything the ME is able to do. This probably also means that they are able to interfere with any other code running on the ME. While AMT has been the most frequently discussed part of this, various other Intel technologies are tied to ME functionality.

Intel’s Platform Trust Technology (PTT) is a software implementation of a Trusted Platform Module (TPM) that runs on the ME. TPMs are intended to protect access to secrets and encryption keys and record the state of the system as it boots, making it possible to determine whether a system has had part of its boot process modified and denying access to the secrets as a result. The most common usage of TPMs is to protect disk encryption keys – Microsoft Bitlocker defaults to storing its encryption key in the TPM, automatically unlocking the drive if the boot process is unmodified. In addition, TPMs support something called Remote Attestation (I wrote about that here), which allows the TPM to provide a signed copy of information about what the system booted to a remote site. This can be used for various purposes, such as not allowing a compute node to join a cloud unless it’s booted the correct version of the OS and is running the latest firmware version. Remote Attestation depends on the TPM having a unique cryptographic identity that is tied to the TPM and inaccessible to the OS.

PTT allows manufacturers to simply license some additional code from Intel and run it on the ME rather than having to pay for an additional chip on the system motherboard. This seems great, but if an attacker is able to run code on the ME then they potentially have the ability to tamper with PTT, which means they can obtain access to disk encryption secrets and circumvent Bitlocker. It also means that they can tamper with Remote Attestation, “attesting” that the system booted a set of software that it didn’t or copying the keys to another system and allowing that to impersonate the first. This is, uh, bad.

Intel also recently announced Intel Online Connect, a mechanism for providing the functionality of security keys directly in the operating system. Components of this are run on the ME in order to avoid scenarios where a compromised OS could be used to steal the identity secrets – if the ME is compromised, this may make it possible for an attacker to obtain those secrets and duplicate the keys.

It’s also not entirely clear how much of Intel’s Secure Guard Extensions (SGX) functionality depends on the ME. The ME does appear to be required for SGX Remote Attestation (which allows an application using SGX to prove to a remote site that it’s the SGX app rather than something pretending to be it), and again if those secrets can be extracted from a compromised ME it may be possible to compromise some of the security assumptions around SGX. Again, it’s not clear how serious this is because it’s not publicly documented.

Various other things also run on the ME, including stuff like video DRM (ensuring that high resolution video streams can’t be intercepted by the OS). It may be possible to obtain encryption keys from a compromised ME that allow things like Netflix streams to be decoded and dumped. From a user privacy or security perspective, these things seem less serious.

The big problem at the moment is that we have no idea what the actual process of compromise is. Intel state that it requires local access, but don’t describe what kind. Local access in this case could simply require the ability to send commands to the ME (possible on any system that has the ME drivers installed), could require direct hardware access to the exposed ME (which would require either kernel access or the ability to install a custom driver) or even the ability to modify system flash (possible only if the attacker has physical access and enough time and skill to take the system apart and modify the flash contents with an SPI programmer). The other thing we don’t know is whether it’s possible for an attacker to modify the system such that the ME is persistently compromised or whether it needs to be re-compromised every time the ME reboots. Note that even the latter is more serious than you might think – the ME may only be rebooted if the system loses power completely, so even a “temporary” compromise could affect a system for a long period of time.

It’s also almost impossible to determine if a system is compromised. If the ME is compromised then it’s probably possible for it to roll back any firmware updates but still report that it’s been updated, giving admins a false sense of security. The only way to determine for sure would be to dump the system flash and compare it to a known good image. This is impractical to do at scale.

So, overall, given what we know right now it’s hard to say how serious this is in terms of real world impact. It’s unlikely that this is the kind of vulnerability that would be used to attack individual end users – anyone able to compromise a system like this could just backdoor your browser instead with much less effort, and that already gives them your banking details. The people who have the most to worry about here are potential targets of skilled attackers, which means activists, dissidents and companies with interesting personal or business data. It’s hard to make strong recommendations about what to do here without more insight into what the vulnerability actually is, and we may not know that until this presentation next month.

Summary: Worst case here is terrible, but unlikely to be relevant to the vast majority of users.

[0] Earlier versions of the ME were built into the motherboard chipset, but as portions of that were incorporated onto the CPU package the ME followed
[1] A descendent of the SuperFX chip used in Super Nintendo cartridges such as Starfox, because why not
[2] Without any OS involvement for wired ethernet and for wireless networks in the system firmware, but requires OS support for wireless access once the OS drivers have loaded
[3] Assuming you’re using integrated Intel graphics
[4] “Consumer” is a bit of a misnomer here – “enterprise” laptops like Thinkpads ship with AMT, but are often bought by consumers.

comment count unavailable comments

The AWS Cloud Goes Underground at re:Invent

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/the-aws-cloud-goes-underground-at-reinvent/

As you wander through the AWS re:Invent campus, take a minute to think about your expectations for all of the elements that need to come together…

Starting with the location, my colleagues have chosen the best venues, designed the sessions, picked the speakers, laid out the menu, selected the color schemes, programmed or printed all of the signs, and much more, all with the goal of creating an optimal learning environment for you and tens of thousands of other AWS customers.

However, as is often the case, the part that you can see is just a part of the picture. Behind the scenes, people, processes, plans, and systems come together to put all of this infrastructure in to place and to make it run so smoothly that you don’t usually notice it.

Today I would like to tell you about a mission-critical aspect of the re:Invent infrastructure that is actually underground. In addition to providing great Wi-Fi for your phones, tablets, cameras, laptops, and other devices, we need to make sure that a myriad of events, from the live-streamed keynotes, to the live-streamed keynotes and the WorkSpaces-powered hands-on labs are well-connected to each other and to the Internet. With events running at hotels up and down the Las Vegas Strip, reliable, low-latency connectivity is essential!

Thank You CenturyLink / Level3
Over the years we have been working with the great folks at Level3 to make this happen. They recently became part of CenturyLink and are now the Official Network Sponsor of re:Invent, responsible for the network fiber, circuits, and services that tie the re:Invent campus together.

To make this happen, they set up two miles of dark fiber beneath the Strip, routed to multiple Availability Zones in two separate AWS Regions. The Sands Expo Center is equipped with redundant 10 gigabit connections and the other venues (Aria, MGM, Mirage, and Wynn) are each provisioned for 2 to 10 gigabits, meaning that over half of the Strip is enabled for Direct Connect. According to the IT manager at one of the facilities, this may be the largest temporary hybrid network ever configured in Las Vegas.

On the Wi-Fi side, showNets is plugged in to the same network; your devices are talking directly to Direct Connect access points (how cool is that?).

Here’s a simplified illustration of how it all fits together:

The CenturyLink team will be onsite at re:Invent and will be tweeting live network stats throughout the week.

I hope you have enjoyed this quick look behind the scenes and beneath the street!

Jeff;

The Truth Behind the “Kodi Boxes Can Kill Their Owners” Headlines

Post Syndicated from Andy original https://torrentfreak.com/the-truth-behind-the-kodi-boxes-can-kill-their-owners-headlines-171118/

Another week, another batch of ‘Kodi Box Armageddon’ stories. This time it hasn’t been directly about the content they can provide but the physical risks they pose to their owners.

After being primed in advance, the usual British tabloids jumped into action early Thursday, noting that following tests carried out on “illicit streaming devices” (aka Android set-top devices), 100% of them failed to meet UK national electrical safety regulations.

The tests were carried out by Electrical Safety First, a charity which was prompted into action by anti-piracy outfit Federation Against Copyright Theft.

“A series of product safety tests on popular illicit streaming devices entering the UK have found that 100% fail to meet national electrical safety regulations,” a FACT statement reads.

“The news is all the more significant as the Intellectual Property Office (IPO) estimates that more than one million of these illegal devices have been sold in the UK in the last two years, representing a significant risk to the general public.”

After reading many sensational headlines stating that “Kodi Boxes Might Kill Their Owners”, please excuse us for groaning. This story has absolutely nothing – NOTHING – to do with Kodi or any other piece of software. Quite obviously, software doesn’t catch fire.

So, suspecting that there might be more to this than meets the eye, we decided to look beyond the press releases into the actual Electrical Safety First (ESF) report. While we have no doubt that ESF is extremely competent in its field (it is, no question), the front page of its report is disappointing.

Despite the items sent for testing being straightforward Android-based media players, the ESF report clearly describes itself as examining “illicit streaming devices”. It’s terminology that doesn’t describe the subject matter from an electrical, safety or technical perspective but is pretty convenient for FACT clients Sky and the Premier League.

Nevertheless, the full picture reveals rather more than most of the headlines suggest.

First of all, it’s important to know that ESF tested just nine devices out of the million or so allegedly sold in the UK during the past two years. Even more importantly, every single one of those devices was supplied to ESF by FACT.

Now, we’re not suggesting they were hand-picked to fail but it’s clear that the samples weren’t provided from a neutral source. Also, as we’ll learn shortly, it’s possible to determine in advance if an item will fail to meet UK standards simply by looking at its packaging and casing.

But perhaps even more intriguing is that the electrical testing carried out by ESF related primarily not to the set-top boxes themselves, but to their power supplies. ESF say so themselves.

“The product review relates primarily to the switched mode power supply units for the connection to the mains supply, which were supplied with the devices, to identify any potential risks to consumers such as electric shocks, heating and resistance to fire,” ESF reports.

The set-top boxes themselves were only assessed “in terms of any faults in the marking, warnings and instructions,” the group adds.

So, what we’re really talking about here isn’t dangerous illicit streaming devices set-top boxes, but the power supply units that come with them. It might seem like a small detail but we’ll come to the vast importance of this later on.

Firstly, however, we should note that none of the equipment supplied by FACT complied with Schedule 1 of the Electrical Equipment (Safety) Regulations 1994. This means that they failed to have the “Conformité Européene” or CE logo present. That’s unacceptable.

In addition, none of them lived up the requirements of Schedule 3 of the Electrical Equipment (Safety) Regulations 1994 either, which in part requires the manufacturer’s brand name or trademark to be “clearly printed on the electrical equipment or, where that is not possible, on the packaging.” (That’s how you can tell they’ll definitely fail UK standards, before sending them for testing)

Also, none of the samples were supplied with “sufficient safety or warning information to ensure the safe and correct use, assembly, installation or maintenance of the equipment.” This represents ‘a technical breach’ of the regulations, ESF reports.

Finally, several of the samples were considered to be a potential risk to their users, either via electric shock and/or fire. That’s an important finding and people who suspect they have such devices at home should definitely take note.

However, the really important point isn’t mentioned in the tabloids, probably since it distracts from the “Kodi Armageddon” narrative which underlies the whole study and subsequent reports.

ESF says that one of the key issues is that the set-top boxes come unbranded, something which breaches safety regulations while making it difficult for consumers to assess whether they’re buying a quality product. Crucially, this is not exclusively a set-top box problem, it is much, MUCH bigger.

“Issues with power supply units or unbranded and counterfeit chargers go beyond illicit streaming devices. In the last year, issues have been reported with other consumer electrical devices, such as laptop chargers and counterfeit phone chargers,” the same ESF report reveals.

“The total annual online sales of mains plug-in chargers is estimated to be in the region of 1.8 million and according to Electrical Safety First, it is likely that most of these sales involve cheap, unbranded chargers.”

So, we looked into this issue of problem power supplies and chargers generally, to see where this report fits into the bigger picture. It transpires it’s a massive problem, all over the UK, across a wide range of products. In fact, Trading Standards reports that 99% of non-genuine Apple chargers bought online “fail a basic safety test”.

But buying from reputable High Street retailers doesn’t help either.

During the past year, Poundworld was fined for selling – wait for it – 72,000 dangerous chargers. Home Bargains was also fined for selling “thousands” of power adaptors that fail to meet UK standards.

“All samples provided failed to comply with Electrical Equipment Safety Regulations and were not marked with the manufacturer’s name,” Trading Standards reports.

That sounds familiar.

So, there you have it. Far from this being an isolated “Kodi Box Crisis” as some have proclaimed, this is a broad issue affecting imported electrical items in general. On this basis, one can’t help but think the tabloids missed a trick here. Think of the power of this headline:

ALL UNBRANDED ELECTRICAL EQUIPMENT CAN KILL, DISCONNECT EVERYTHING

or, alternatively:

PIRATES URGED TO SWITCH TO BRANDED AMAZON FIRESTICKS, SAFER FOR KODI

Perhaps not….

The ESF report can be found here (pdf)

Source: TF, for the latest info on copyright, file-sharing, torrent sites and more. We also have VPN discounts, offers and coupons

B2 Cloud Storage Roundup

Post Syndicated from Andy Klein original https://www.backblaze.com/blog/b2-cloud-storage-roundup/

B2 Integrations
Over the past several months, B2 Cloud Storage has continued to grow like we planted magic beans. During that time we have added a B2 Java SDK, and certified integrations with GoodSync, Arq, Panic, UpdraftPlus, Morro Data, QNAP, Archiware, Restic, and more. In addition, B2 customers like Panna Cooking, Sermon Audio, and Fellowship Church are happy they chose B2 as their cloud storage provider. If any of that sounds interesting, read on.

The B2 Java SDK

While the Backblaze B2 API is well documented and straight-forward to implement, we were asked by a few of our Integration Partners if we had an SDK they could use. So we developed one as an open-course project on GitHub, where we hope interested parties will not only use our Java SDK, but make it better for everyone else.

There are different reasons one might use the Java SDK, but a couple of areas where the SDK can simplify the coding process are:

Expiring Authorization — B2 requires an application key for a given account be reissued once a day when using the API. If the application key expires while you are in the middle of transferring files or some other B2 activity (bucket list, etc.), the SDK can be used to detect and then update the application key on the fly. Your B2 related activities will continue without incident and without having to capture and code your own exception case.

Error Handling — There are different types of error codes B2 will return, from expired application keys to detecting malformed requests to command time-outs. The SDK can dramatically simplify the coding needed to capture and account for the various things that can happen.

While Backblaze has created the Java SDK, developers in the GitHub community have also created other SDKs for B2, for example, for PHP (https://github.com/cwhite92/b2-sdk-php,) and Go (https://github.com/kurin/blazer.) Let us know in the comments about other SDKs you’d like to see or perhaps start your own GitHub project. We will publish any updates in our next B2 roundup.

What You Can Do with Affordable and Available Cloud Storage

You’re probably aware that B2 is up to 75% less expensive than other similar cloud storage services like Amazon S3 and Microsoft Azure. Businesses and organizations are finding that projects that previously weren’t economically feasible with other Cloud Storage services are now not only possible, but a reality with B2. Here are a few recent examples:

SermonAudio logo SermonAudio wanted their media files to be readily available, but didn’t want to build and manage their own internal storage farm. Until B2, cloud storage was just too expensive to use. Now they use B2 to store their audio and video files, and also as the primary source of downloads and streaming requests from their subscribers.
Fellowship Church logo Fellowship Church wanted to escape from the ever increasing amount of time they were spending saving their data to their LTO-based system. Using B2 saved countless hours of personnel time versus LTO, fit easily into their video processing workflow, and provided instant access at any time to their media library.
Panna logo Panna Cooking replaced their closet full of archive hard drives with a cost-efficient hybrid-storage solution combining 45Drives and Backblaze B2 Cloud Storage. Archived media files that used to take hours to locate are now readily available regardless of whether they reside in local storage or in the B2 Cloud.

B2 Integrations

Leading companies in backup, archive, and sync continue to add B2 Cloud Storage as a storage destination for their customers. These companies realize that by offering B2 as an option, they can dramatically lower the total cost of ownership for their customers — and that’s always a good thing.

If your favorite application is not integrated to B2, you can do something about it. One integration partner told us they received over 200 customer requests for a B2 integration. The partner got the message and the integration is currently in beta test.

Below are some of the partner integrations completed in the past few months. You can check the B2 Partner Integrations page for a complete list.

Archiware — Both P5 Archive and P5 Backup can now store data in the B2 Cloud making your offsite media files readily available while keeping your off-site storage costs predictable and affordable.

Arq — Combine Arq and B2 for amazingly affordable backup of external drives, network drives, NAS devices, Windows PCs, Windows Servers, and Macs to the cloud.

GoodSync — Automatically synchronize and back up all your photos, music, email, and other important files between all your desktops, laptops, servers, external drives, and sync, or back up to B2 Cloud Storage for off-site storage.

QNAP — QNAP Hybrid Backup Sync consolidates backup, restoration, and synchronization functions into a single QTS application to easily transfer your data to local, remote, and cloud storage.

Morro Data — Their CloudNAS solution stores files in the cloud, caches them locally as needed, and syncs files globally among other CloudNAS systems in an organization.

Restic – Restic is a fast, secure, multi-platform command line backup program. Files are uploaded to a B2 bucket as de-duplicated, encrypted chunks. Each backup is a snapshot of only the data that has changed, making restores of a specific date or time easy.

Transmit 5 by Panic — Transmit 5, the gold standard for macOS file transfer apps, now supports B2. Upload, download, and manage files on tons of servers with an easy, familiar, and powerful UI.

UpdraftPlus — WordPress developers and admins can now use the UpdraftPlus Premium WordPress plugin to affordably back up their data to the B2 Cloud.

Getting Started with B2 Cloud Storage

If you’re using B2 today, thank you. If you’d like to try B2, but don’t know where to start, here’s a guide to getting started with the B2 Web Interface — no programming or scripting is required. You get 10 gigabytes of free storage and 1 gigabyte a day in free downloads. Give it a try.

The post B2 Cloud Storage Roundup appeared first on Backblaze Blog | Cloud Storage & Cloud Backup.