We have two new resources to help customers address their data protection requirements in Argentina. These resources specifically address the needs outlined under the Personal Data Protection Law No. 25.326, as supplemented by Regulatory Decree No. 1558/2001 (“PDPL”), including Disposition No. 11/2006. For context, the PDPL is an Argentine federal law that applies to the protection of personal data, including during transfer and processing.
A new webpage focused on data privacy in Argentina features FAQs, helpful links, and whitepapers that provide an overview of PDPL considerations, as well as our security assurance frameworks and international certifications, including ISO 27001, ISO 27017, and ISO 27018. You’ll also find details about our Information Request Report and the high bar of security at AWS data centers.
Additionally, we’ve released a new workbook that offers a detailed mapping as to how customers can operate securely under the Shared Responsibility Model while also aligning with Disposition No. 11/2006. The AWS Disposition 11/2006 Workbook can be downloaded from the Argentina Data Privacy page or directly from this link. Both resources are also available in Spanish from the Privacidad de los datos en Argentina page.
Want more AWS Security news? Follow us on Twitter.
We have seen a lot of discussion this past week about the role of Amazon Rekognition in facial recognition, surveillance, and civil liberties, and we wanted to share some thoughts.
Amazon Rekognition is a service we announced in 2016. It makes use of new technologies – such as deep learning – and puts them in the hands of developers in an easy-to-use, low-cost way. Since then, we have seen customers use the image and video analysis capabilities of Amazon Rekognition in ways that materially benefit both society (e.g. preventing human trafficking, inhibiting child exploitation, reuniting missing children with their families, and building educational apps for children), and organizations (enhancing security through multi-factor authentication, finding images more easily, or preventing package theft). Amazon Web Services (AWS) is not the only provider of services like these, and we remain excited about how image and video analysis can be a driver for good in the world, including in the public sector and law enforcement.
There have always been and will always be risks with new technology capabilities. Each organization choosing to employ technology must act responsibly or risk legal penalties and public condemnation. AWS takes its responsibilities seriously. But we believe it is the wrong approach to impose a ban on promising new technologies because they might be used by bad actors for nefarious purposes in the future. The world would be a very different place if we had restricted people from buying computers because it was possible to use that computer to do harm. The same can be said of thousands of technologies upon which we all rely each day. Through responsible use, the benefits have far outweighed the risks.
Customers are off to a great start with Amazon Rekognition; the evidence of the positive impact this new technology can provide is strong (and growing by the week), and we’re excited to continue to support our customers in its responsible use.
-Dr. Matt Wood, general manager of artificial intelligence at AWS
Tom Standage has a great story of the first cyberattack against a telegraph network.
The Blanc brothers traded government bonds at the exchange in the city of Bordeaux, where information about market movements took several days to arrive from Paris by mail coach. Accordingly, traders who could get the information more quickly could make money by anticipating these movements. Some tried using messengers and carrier pigeons, but the Blanc brothers found a way to use the telegraph line instead. They bribed the telegraph operator in the city of Tours to introduce deliberate errors into routine government messages being sent over the network.
The telegraph’s encoding system included a “backspace” symbol that instructed the transcriber to ignore the previous character. The addition of a spurious character indicating the direction of the previous day’s market movement, followed by a backspace, meant the text of the message being sent was unaffected when it was written out for delivery at the end of the line. But this extra character could be seen by another accomplice: a former telegraph operator who observed the telegraph tower outside Bordeaux with a telescope, and then passed on the news to the Blancs. The scam was only uncovered in 1836, when the crooked operator in Tours fell ill and revealed all to a friend, who he hoped would take his place. The Blanc brothers were put on trial, though they could not be convicted because there was no law against misuse of data networks. But the Blancs’ pioneering misuse of the French network qualifies as the world’s first cyber-attack.
SHB is a small invitational gathering of people studying various aspects of the human side of security, organized each year by Alessandro Acquisti, Ross Anderson, and myself. The 50 or so people in the room include psychologists, economists, computer security researchers, sociologists, political scientists, neuroscientists, designers, lawyers, philosophers, anthropologists, business school professors, and a smattering of others. It’s not just an interdisciplinary event; most of the people here are individually interdisciplinary.
The goal is to maximize discussion and interaction. We do that by putting everyone on panels, and limiting talks to 7-10 minutes. The rest of the time is left to open discussion. Four hour-and-a-half panels per day over two days equals eight panels; six people per panel means that 48 people get to speak. We also have lunches, dinners, and receptions — all designed so people from different disciplines talk to each other.
I invariably find this to be the most intellectually stimulating conference of my year. It influences my thinking in many different, and sometimes surprising, ways.
Here are my posts on the first, second, third, fourth, fifth, sixth, seventh, eighth, ninth, and tenth SHB workshops. Follow those links to find summaries, papers, and occasionally audio recordings of the various workshops.
I’m in danger of contradicting myself, after previously pointing out that x86 machine code is a high-level language, but this article claiming C is a not a low level language is bunk. C certainly has some problems, but it’s still the closest language to assembly. This is obvious by the fact it’s still the fastest compiled language. What we see is a typical academic out of touch with the real world.
The author makes the (wrong) observation that we’ve been stuck emulating the PDP-11 for the past 40 years. C was written for the PDP-11, and since then CPUs have been designed to make C run faster. The author imagines a different world, such as where CPU designers instead target something like LISP as their preferred language, or Erlang. This misunderstands the state of the market. CPUs do indeed supports lots of different abstractions, and C has evolved to accommodate this.
The author criticizes things like “out-of-order” execution which has lead to the Spectre sidechannel vulnerabilities. Out-of-order execution is necessary to make C run faster. The author claims instead that those resources should be spent on having more slower CPUs, with more threads. This sacrifices single-threaded performance in exchange for a lot more threads executing in parallel. The author cites Sparc Tx CPUs as his ideal processor.
But here’s the thing, the Sparc Tx was a failure. To be fair, it’s mostly a failure because most of the time, people wanted to run old C code instead of new Erlang code. But it was still a failure at running Erlang.
Time after time, engineers keep finding that “out-of-order”, single-threaded performance is still the winner. A good example is ARM processors for both mobile phones and servers. All the theory points to in-order CPUs as being better, but all the products are out-of-order, because this theory is wrong. The custom ARM cores from Apple and Qualcomm used in most high-end phones are so deeply out-of-order they give Intel CPUs competition. The same is true on the server front with the latest Qualcomm Centriq and Cavium ThunderX2 processors, deeply out of order supporting more than 100 instructions in flight.
The Cavium is especially telling. Its ThunderX CPU had 48 simple cores which was replaced with the ThunderX2 having 32 complex, deeply out-of-order cores. The performance increase was massive, even on multithread-friendly workloads. Every competitor to Intel’s dominance in the server space has learned the lesson from Sparc Tx: many wimpy cores is a failure, you need fewer beefy cores. Yes, they don’t need to be as beefy as Intel’s processors, but they need to be close.
Even Intel’s “Xeon Phi” custom chip learned this lesson. This is their GPU-like chip, running 60 cores with 512-bit wide “vector” (sic) instructions, designed for supercomputer applications. Its first version was purely in-order. Its current version is slightly out-of-order. It supports four threads and focuses on basic number crunching, so in-order cores seems to be the right approach, but Intel found in this case that out-of-order processing still provided a benefit. Practice is different than theory.
As an academic, the author of the above article focuses on abstractions. The criticism of C is that it has the wrong abstractions which are hard to optimize, and that if we instead expressed things in the right abstractions, it would be easier to optimize.
This is an intellectually compelling argument, but so far bunk.
The reason is that while the theoretical base language has issues, everyone programs using extensions to the language, like “intrinsics” (C ‘functions’ that map to assembly instructions). Programmers write libraries using these intrinsics, which then the rest of the normal programmers use. In other words, if your criticism is that C is not itself low level enough, it still provides the best access to low level capabilities.
Given that C can access new functionality in CPUs, CPU designers add new paradigms, from SIMD to transaction processing. In other words, while in the 1980s CPUs were designed to optimize C (stacks, scaled pointers), these days CPUs are designed to optimize tasks regardless of language.
The author of that article criticizes the memory/cache hierarchy, claiming it has problems. Yes, it has problems, but only compared to how well it normally works. The author praises the many simple cores/threads idea as hiding memory latency with little caching, but misses the point that caches also dramatically increase memory bandwidth. Intel processors are optimized to read a whopping 256 bits every clock cycle from L1 cache. Main memory bandwidth is orders of magnitude slower.
The author goes onto criticize cache coherency as a problem. C uses it, but other languages like Erlang don’t need it. But that’s largely due to the problems each languages solves. Erlang solves the problem where a large number of threads work on largely independent tasks, needing to send only small messages to each other across threads. The problems C solves is when you need many threads working on a huge, common set of data.
For example, consider the “intrusion prevention system”. Any thread can process any incoming packet that corresponds to any region of memory. There’s no practical way of solving this problem without a huge coherent cache. It doesn’t matter which language or abstractions you use, it’s the fundamental constraint of the problem being solved. RDMA is an important concept that’s moved from supercomputer applications to the data center, such as with memcached. Again, we have the problem of huge quantities (terabytes worth) shared among threads rather than small quantities (kilobytes).
The fundamental issue the author of the the paper is ignoring is decreasing marginal returns. Moore’s Law has gifted us more transistors than we can usefully use. We can’t apply those additional registers to just one thing, because the useful returns we get diminish.
For example, Intel CPUs have two hardware threads per core. That’s because there are good returns by adding a single additional thread. However, the usefulness of adding a third or fourth thread decreases. That’s why many CPUs have only two threads, or sometimes four threads, but no CPU has 16 threads per core.
You can apply the same discussion to any aspect of the CPU, from register count, to SIMD width, to cache size, to out-of-order depth, and so on. Rather than focusing on one of these things and increasing it to the extreme, CPU designers make each a bit larger every process tick that adds more transistors to the chip.
The same applies to cores. It’s why the “more simpler cores” strategy fails, because more cores have their own decreasing marginal returns. Instead of adding cores tied to limited memory bandwidth, it’s better to add more cache. Such cache already increases the size of the cores, so at some point it’s more effective to add a few out-of-order features to each core rather than more cores. And so on.
The question isn’t whether we can change this paradigm and radically redesign CPUs to match some academic’s view of the perfect abstraction. Instead, the goal is to find new uses for those additional transistors. For example, “message passing” is a useful abstraction in languages like Go and Erlang that’s often more useful than sharing memory. It’s implemented with shared memory and atomic instructions, but I can’t help but think it couldn’t better be done with direct hardware support.
Of course, as soon as they do that, it’ll become an intrinsic in C, then added to languages like Go and Erlang.
Summary Academics live in an ideal world of abstractions, the rest of us live in practical reality. The reality is that vast majority of programmers work with the C family of languages (JavaScript, Go, etc.), whereas academics love the epiphanies they learned using other languages, especially function languages. CPUs are only superficially designed to run C and “PDP-11 compatibility”. Instead, they keep adding features to support other abstractions, abstractions available to C. They are driven by decreasing marginal returns — they would love to add new abstractions to the hardware because it’s a cheap way to make use of additional transitions. Academics are wrong believing that the entire system needs to be redesigned from scratch. Instead, they just need to come up with new abstractions CPU designers can add.
GDPR day, May 25, 2018, is nearly here. On that day, will your inbox explode with update notices, opt-in agreements, and offers from lawyers searching for GDPR violators? Perhaps all the companies on earth that are not GDPR ready will just dissolve into dust. More likely, there will be some changes, but business as usual will continue and we’ll all be more aware of data privacy. Let’s go with the last one.
What’s Different With GDPR at Backblaze
The biggest difference you’ll notice is a completely updated Privacy Policy. Last week we sent out a service email announcing the new Privacy Policy. Some people asked what was different. Basically everything. About 95% of the agreement was rewritten. In the agreement, we added in the appropriate provisions required by GDPR, and hopefully did a better job specifying the data we collect from you, why we collect it, and what we are going to do with it.
As a reminder, at Backblaze your data falls into two catagories. The first type of data is the data you store with us — stored data. These are the files and objects you upload and store, and as needed, restore. We do not share this data. We do not process this data, except as requested by you to store and restore the data. We do not analyze this data looking for keywords, tags, images, etc. No one outside of Backblaze has access to this data unless you explicitly shared the data by providing that person access to one or more files.
The second type of data is your account data. Some of your account data is considered personal data. This is the information we collect from you to provide our Personal Backup, Business Backup and B2 Cloud Storage services. Examples include your email address to provide access to your account, or the name of your computer so we can organize your files like they are arranged on your computer to make restoration easier. We have written a number of Help Articles covering the different ways this information is collected and processed. In addition, these help articles outline the various “rights” granted via GDPR. We will continue to add help articles over the coming weeks to assist in making it easy to work with us to understand and exercise your rights.
What’s New With GDPR at Backblaze
The most obvious addition is the Data Processing Addendum (DPA). This covers how we protect the data you store with us, i.e. stored data. As noted above, we don’t do anything with your data, except store it and keep it safe until you need it. Now we have a separate document saying that.
It is important to note the new Data Processing Addendum is now incorporated by reference into our Terms of Service, which everyone agrees to when they sign up for any of our services. Now all of our customers have a shiny new Data Processing Agreement to go along with the updated Privacy Policy. We promise they are not long or complicated, and we encourage you to read them. If you have any questions, stop by our GDPR help section on our website.
Patience, Please
Every company we have dealt with over the last few months is working hard to comply with GDPR. It has been a tough road whether you tried to do it yourself or like Backblaze, hired an EU-based law firm for advice. Over the coming weeks and months as you reach out to discover and assert your rights, please have a little patience. We are all going through a steep learning curve as GDPR gets put into practice. Along the way there are certain to be some growing pains — give us a chance, we all want to get it right.
Regardless, at Backblaze we’ve been diligently protecting our customers’ data for over 11 years and nothing that will happen on May 25th will change that.
The efail.de site describes a set of vulnerabilities in the implementation of PGP and MIME that can cause the disclosure of encrypted communications, including old messages. “In a nutshell, EFAIL abuses active content of HTML emails, for example externally loaded images or styles, to exfiltrate plaintext through requested URLs.”
The EFF recommends uninstalling email-encryption tools that automatically decrypt email entirely. “Until the flaws described in the paper are more widely understood and fixed, users should arrange for the use of alternative end-to-end secure channels, such as Signal, and temporarily stop sending and especially reading PGP-encrypted email.”
Spencer Ackerman has this interesting story about a guy assigned to crack down on unauthorized White House leaks. It’s necessarily light on technical details, so I thought I’d write up some guesses, either as a guide for future reporters asking questions, or for people who want to better know the risks when leak information.
It should come as no surprise that your work email and phone are already monitored. They can get every email you’ve sent or received, even if you’ve deleted it. They can get every text message you’ve sent or received, the metadata of every phone call sent or received, and so forth.
To a lesser extent, this also applies to your well-known personal phone and email accounts. Law enforcement can get the metadata (which includes text messages) for these things without a warrant. In the above story, the person doing the investigation wasn’t law enforcement, but I’m not sure that’s a significant barrier if they can pass things onto the Secret Service or something.
The danger here isn’t that you used these things to leak, it’s that you’ve used these things to converse with the reporter before you made the decision to leak. That’s what happened in the Reality Winner case: she communicated with The Intercept before she allegedly leaked a printed document to them via postal mail. While it wasn’t conclusive enough to convict her, the innocent emails certainly put the investigators on her trail.
The path to leaking often starts this way: innocent actions before the decision to leak was made that will come back to haunt the person afterwards. That includes emails. That also includes Google searches. That includes websites you visit (like this one). I’m not sure how to solve this, except that if you’ve been in contact with The Intercept, and then you decide to leak, send it to anybody but The Intercept.
By the way, the other thing that caught Reality Winner is the records they had of her accessing files and printing them on a printer. Depending where you work, they may have a record of every file you’ve accessed, every intranet page you visited. Because of the way printers put secret dots on documents, investigators know precisely which printer and time the document leaked to The Intercept was printed.
Photographs suffer the same problem: your camera and phone tag the photographs with GPS coordinates and time the photograph was taken, as well as information about the camera. This accidentally exposed John McAfee’s hiding location when Vice took pictures of him a few years ago. Some people leak by taking pictures of the screen — use a camera without GPS for this (meaning, a really old camera you bought from a pawnshop).
These examples should impress upon you the dangers of not understanding technology. As soon as you do something to evade surveillance you know about, you may get caught by surveillance you don’t know about.
If you nonetheless want to continue forward, the next step may be to get a “burner phone”. You can get an adequate Android “prepaid” phone for cash at the local Walmart, electronics store, or phone store.
There’s some problems with such phones, though. They can often be tracked back to the store that sold them, and the store will have security cameras that record you making the purchase. License plate readers and GPS tracking on your existing phone may also place you at that Walmart.
I don’t know how to resolve these problems. Perhaps the best is grow a beard and on the last day of your vacation, color your hair, take a long bike/metro ride (without your existing phone) to a store many miles away and pick up a phone, then shave and change your color back again. I don’t know — there’s a good chance any lame attempt you or I might think of has already been experienced by law enforcement, so they are likely ahead of you. Maybe ask your local drug dealer where they get their burner phones, and if they can sell you one. Of course, that just means when they get caught for drug dealing, they can reduce their sentence by giving up the middle class person who bought a phone from them.
Lastly, they may age out old security videos, so simply waiting six months before using the phone might work. That means prepaying for an entire year.
Note that I’m not going to link to examples of cheap burner phones on this page. Web browsers will sometimes prefetch some information from links in a webpage, so simply including links in this page can condemn you as having interest in burner phones. You are already in enough trouble for having visited this web page.
Burner phones have GPS. Newer the technology, like the latest Android LTE phones, have pretty accurate GPS that the police can query (without a warrant). If you take the phone home and turn it on, they’ll then be able to trace back the phone to your home. Carrying the phone around with you has the same problem, with the phone’s location correlating with your existing phone (which presumably you also carry) or credit card receipts. Rumors are that Petraeus was partly brought down by tracking locations where he used his credit card, namely, matching the hotel he was in with Internet address information.
Older phones that support 3G or even 2G have poorer GPS capabilities. They’ll still located you to the nearest cell tower, but not as accurately to your exact location.
A better strategy than a burner phone would be a burner laptop computer used with WiFi. You can get a cheap one for $200 at Amazon.com. My favorite are the 11 inch ones with a full sized keyboard and Windows 10. Better yet, get an older laptop for cash from a pawn shop.
You can install chat apps on this like “Signal Desktop”, “Wire Desktop”, or “WhatsApp” that will allow you to securely communicate. Or use “Discord”, which isn’t really encrypted, but it’s popular among gamers so therefore less likely to stand out. You can sit in a bar with free WiFi and a USB headset and talk to reporters without having a phone. If the reporter you want to leak to doesn’t have those apps (either on their own laptop or phone) then you don’t want to talk to them.
Needless to say, don’t cross the streams. Don’t log onto your normal accounts like Facebook. If you create fake Facebook accounts, don’t follow the same things. Better yet, configure your browser to discard all information (especially “cookies”) every time you log off, so you can’t be tracked. Install ad blockers, or use the “Brave” web browser, to remove even more trackers. A common trick among hackers is to change the “theme” to a red background, as a constant subliminal reminder that you using your dangerous computer, and never to do anything that identifies the real you.
Put tape over the camera. I’m not sure it’s a really big danger, but put tape over the camera. If they infect you enough to get your picture, they’ve also infected you enough to record any audio on your computer. Remember that proper encryption is end-to-end (they can’t eavesdrop in transit), but if they hack the ends (your laptop, or the reporter’s) they can still record the audio.
Note that when your burner laptop is in “sleep” mode, it can still be talking to the local wifi. Before taking it home, make sure it’s off. Go into the settings and configure it so that when the lid is closed, the computer is turned completely off.
It goes without saying: don’t use that burner laptop from home. Luckily, free wifi is everyone, so the local cafe, bar, or library can be used.
The next step is to also use a VPN or Tor to mask your Internet address. If there’s an active investigation into the reporter, they’ll get the metadata, the Internet address of the bar/cafe you are coming from. A good VPN provider or especially Tor will stop this. Remember that these providers increase latency, making phone calls a bit harder, but they are a lot safer.
Remember that Ross Ulbricht (owner of dark website market Silk Road) was caught in a library. They’d traced back his Internet address and grabbed his laptop out of his hands. Having it turn off (off off, not sleep off) when the lid is closed is one way to reduce this risk. Configuring your web browser to flush all cookies and passwords on restart is another. If they catch you in mid conversation with your secret contact, though, they’ll at least be able to hear your side of the conversation, and know who you are talking to.
The best measure, though it takes some learning, is “Tails live”. It’s a Linux distribution preconfigured with Tor and various secure chat apps that’ll boot from the USB or SD card. When you turn off the computer, nothing will be saved, so there will be no evidence saved to the disk for investigators to retrieve later.
While we are talking about Tor, it should be noted that many news organizations (NYTimes, Washington Post, The Intercept, etc.) support “SecureDrop” accessed only through Tor for receiving anonymous tips. Burner laptops you use from bars from Tails is the likely your most secure way of doing things.
Summary
The point of this post was not to provide a howto guide, but to discuss many of the technological issues involved. In a story about White House people investigating leaks, I’d like to see something in this technological direction. I’d like to know exactly how they were investigating leaks. Certainly, they were investigating all work computers, accounts, and phones. Where they also able to get to non-work computers, accounts, phones? Did they have law enforcement powers? What could they do about burner phones and laptops?
In any case, if you do want a howto guide, the discussion above should put some fear into you how easily you can inadvertently make a mistake.
Abstract: Every day, hundreds of people fly on airline tickets that have been obtained fraudulently. This crime script analysis provides an overview of the trade in these tickets, drawing on interviews with industry and law enforcement, and an analysis of an online blackmarket. Tickets are purchased by complicit travellers or resellers from the online blackmarket. Victim travellers obtain tickets from fake travel agencies or malicious insiders. Compromised credit cards used to be the main method to purchase tickets illegitimately. However, as fraud detection systems improved, offenders displaced to other methods, including compromised loyalty point accounts, phishing, and compromised business accounts. In addition to complicit and victim travellers, fraudulently obtained tickets are used for transporting mules, and for trafficking and smuggling. This research details current prevention approaches, and identifies additional interventions, aimed at the act, the actor, and the marketplace.
Earlier this month, the Pentagon stopped selling phones made by the Chinese companies ZTE and Huawei on military bases because they might be used to spy on their users.
It’s a legitimate fear, and perhaps a prudent action. But it’s just one instance of the much larger issue of securing our supply chains.
All of our computerized systems are deeply international, and we have no choice but to trust the companies and governments that touch those systems. And while we can ban a few specific products, services or companies, no country can isolate itself from potential foreign interference.
In this specific case, the Pentagon is concerned that the Chinese government demanded that ZTE and Huawei add “backdoors” to their phones that could be surreptitiously turned on by government spies or cause them to fail during some future political conflict. This tampering is possible because the software in these phones is incredibly complex. It’s relatively easy for programmers to hide these capabilities, and correspondingly difficult to detect them.
This isn’t the first time the United States has taken action against foreign software suspected to contain hidden features that can be used against us. Last December, President Trump signed into law a bill banning software from the Russian company Kaspersky from being used within the US government. In 2012, the focus was on Chinese-made Internet routers. Then, the House Intelligence Committee concluded: “Based on available classified and unclassified information, Huawei and ZTE cannot be trusted to be free of foreign state influence and thus pose a security threat to the United States and to our systems.”
Nor is the United States the only country worried about these threats. In 2014, China reportedly banned antivirus products from both Kaspersky and the US company Symantec, based on similar fears. In 2017, the Indian government identified 42 smartphone apps that China subverted. Back in 1997, the Israeli company Check Point was dogged by rumors that its government added backdoors into its products; other of that country’s tech companies have been suspected of the same thing. Even al-Qaeda was concerned; ten years ago, a sympathizer released the encryption software Mujahedeen Secrets, claimed to be free of Western influence and backdoors. If a country doesn’t trust another country, then it can’t trust that country’s computer products.
But this trust isn’t limited to the country where the company is based. We have to trust the country where the software is written — and the countries where all the components are manufactured. In 2016, researchers discovered that many different models of cheap Android phones were sending information back to China. The phones might be American-made, but the software was from China. In 2016, researchers demonstrated an even more devious technique, where a backdoor could be added at the computer chip level in the factory that made the chips without the knowledge of, and undetectable by, the engineers who designed the chips in the first place. Pretty much every US technology company manufactures its hardware in countries such as Malaysia, Indonesia, China and Taiwan.
We also have to trust the programmers. Today’s large software programs are written by teams of hundreds of programmers scattered around the globe. Backdoors, put there by we-have-no-idea-who, have been discovered in Juniper firewalls and D-Link routers, both of which are US companies. In 2003, someone almost slipped a very clever backdoor into Linux. Think of how many countries’ citizens are writing software for Apple or Microsoft or Google.
We can go even farther down the rabbit hole. We have to trust the distribution systems for our hardware and software. Documents disclosed by Edward Snowden showed the National Security Agency installing backdoors into Cisco routers being shipped to the Syrian telephone company. There are fake apps in the Google Play store that eavesdrop on you. Russian hackers subverted the update mechanism of a popular brand of Ukrainian accounting software to spread the NotPetya malware.
In 2017, researchers demonstrated that a smartphone can be subverted by installing a malicious replacement screen.
I could go on. Supply-chain security is an incredibly complex problem. US-only design and manufacturing isn’t an option; the tech world is far too internationally interdependent for that. We can’t trust anyone, yet we have no choice but to trust everyone. Our phones, computers, software and cloud systems are touched by citizens of dozens of different countries, any one of whom could subvert them at the demand of their government. And just as Russia is penetrating the US power grid so they have that capability in the event of hostilities, many countries are almost certainly doing the same thing at the consumer level.
We don’t know whether the risk of Huawei and ZTE equipment is great enough to warrant the ban. We don’t know what classified intelligence the United States has, and what it implies. But we do know that this is just a minor fix for a much larger problem. It’s doubtful that this ban will have any real effect. Members of the military, and everyone else, can still buy the phones. They just can’t buy them on US military bases. And while the US might block the occasional merger or acquisition, or ban the occasional hardware or software product, we’re largely ignoring that larger issue. Solving it borders on somewhere between incredibly expensive and realistically impossible.
Perhaps someday, global norms and international treaties will render this sort of device-level tampering off-limits. But until then, all we can do is hope that this particular arms race doesn’t get too far out of control.
Last month, Wired published a long article about Ray Ozzie and his supposed new scheme for adding a backdoor in encrypted devices. It’s a weird article. It paints Ozzie’s proposal as something that “attains the impossible” and “satisfies both law enforcement and privacy purists,” when (1) it’s barely a proposal, and (2) it’s essentially the same key escrow scheme we’ve been hearing about for decades.
Basically, each device has a unique public/private key pair and a secure processor. The public key goes into the processor and the device, and is used to encrypt whatever user key encrypts the data. The private key is stored in a secure database, available to law enforcement on demand. The only other trick is that for law enforcement to use that key, they have to put the device in some sort of irreversible recovery mode, which means it can never be used again. That’s basically it.
I have no idea why anyone is talking as if this were anything new. Severalcryptographershavealreadyexplained why this key escrow scheme is no better than any other key escrow scheme. The short answer is (1) we won’t be able to secure that database of backdoor keys, (2) we don’t know how to build the secure coprocessor the scheme requires, and (3) it solves none of the policy problems around the whole system. This is the typical mistake non-cryptographers make when they approach this problem: they think that the hard part is the cryptography to create the backdoor. That’s actually the easy part. The hard part is ensuring that it’s only used by the good guys, and there’s nothing in Ozzie’s proposal that addresses any of that.
I worry that this kind of thing is damaging in the long run. There should be some rule that any backdoor or key escrow proposal be a fully specified proposal, not just some cryptography and hand-waving notions about how it will be used in practice. And before it is analyzed and debated, it should have to satisfy some sort of basic security analysis. Otherwise, we’ll be swatting pseudo-proposals like this one, while those on the other side of this debate become increasingly convinced that it’s possible to design one of these things securely.
Already people are using the National Academies report on backdoors for law enforcement as evidence that engineers are developing workable and secure backdoors. Writing in Lawfare, Alan Z. Rozenshtein claims that the report — and a related New York Timesstory — “undermine the argument that secure third-party access systems are so implausible that it’s not even worth trying to develop them.” Susan Landau effectively corrects this misconception, but the damage is done.
Here’s the thing: it’s not hard to design and build a backdoor. What’s hard is building the systems — both technical and procedural — around them. Here’s Rob Graham:
He’s only solving the part we already know how to solve. He’s deliberately ignoring the stuff we don’t know how to solve. We know how to make backdoors, we just don’t know how to secure them.
A bunch of us cryptographers have already explained why we don’t think this sort of thing will work in the foreseeable future. We write:
Exceptional access would force Internet system developers to reverse “forward secrecy” design practices that seek to minimize the impact on user privacy when systems are breached. The complexity of today’s Internet environment, with millions of apps and globally connected services, means that new law enforcement requirements are likely to introduce unanticipated, hard to detect security flaws. Beyond these and other technical vulnerabilities, the prospect of globally deployed exceptional access systems raises difficult problems about how such an environment would be governed and how to ensure that such systems would respect human rights and the rule of law.
The reason so few of us are willing to bet on massive-scale key escrow systems is that we’ve thought about it and we don’t think it will work. We’ve looked at the threat model, the usage model, and the quality of hardware and software that exists today. Our informed opinion is that there’s no detection system for key theft, there’s no renewability system, HSMs are terrifically vulnerable (and the companies largely staffed with ex-intelligence employees), and insiders can be suborned. We’re not going to put the data of a few billion people on the line an environment where we believe with high probability that the system will fail.
Today is the early May bank holiday in England and Wales, a public holiday, and while this blog rarely rests, the Pi Towers team does. So, while we take a day with our families, our friends, and/or our favourite pastimes, I thought I’d point you at a couple of features from HackSpace magazine, our monthly magazine for makers.
To my mind, they go quite well with a deckchair in the garden, the buzz of a lawnmower a few houses down, and a view of the weeds I ought to have dealt with by now, but I’m sure you’ll find your own ambience.
If you want a unique piece of jewellery to show your love for pencils, follow Peter Brown’s lead. Peter glued twelve pencils together in two rows of six. He then measured the size of his finger and drilled a hole between the glued pencils using a drill bit.
First off, pencils. It hadn’t occurred to me that you could make super useful stuff like a miniature crossbow and a catapult out of pencils. Not only can you do this, you can probably go ahead and do it right now: all you need is a handful of pencils, some rubber bands, some drawing pins, and a bulldog clip (or, as you might prefer, some push pins and a binder clip). The sentence that really leaps out at me here is “To keep a handful of boys aged three to eleven occupied during a family trip, Marie decided to build mini crossbows to help their target practice.” The internet hasn’t helped me find out much about Marie, but I am in awe of her.
If you haven’t wandered off to make a stationery arsenal by now, read Lucy Rogers‘ reflections on making a right mess of things. I hope you do, because I think it’d be great if more people coped better with the fact that we all, unavoidably, fail. You probably won’t really get anywhere without a few goes where you just completely muck it all up.
This true of everything. Wet lab work and gardening and coding and parenting. And everything. You can share your heroic failures in the comments, if you like, as well as any historic weaponry you have fashioned from the contents of your desk tidy.
Bad software is everywhere. One can even claim that every software is bad. Cool companies, tech giants, established companies, all produce bad software. And no, yours is not an exception.
Who’s to blame for bad software? It’s all complicated and many factors are intertwined – there’s business requirements, there’s organizational context, there’s lack of sufficient skilled developers, there’s the inherent complexity of software development, there’s leaky abstractions, reliance on 3rd party software, consequences of wrong business and purchase decisions, time limitations, flawed business analysis, etc. So yes, despite the catchy title, I’m aware it’s actually complicated.
But in every “it’s complicated” scenario, there’s always one or two factors that are decisive. All of them contribute somehow, but the major drivers are usually a handful of things. And in the case of base software, I think it’s the fault of technical people. Developers, architects, ops.
We don’t seem to care about best practices. And I’ll do some nasty generalizations here, but bear with me. We can spend hours arguing about tabs vs spaces, curly bracket on new line, git merge vs rebase, which IDE is better, which framework is better and other largely irrelevant stuff. But we tend to ignore the important aspects that span beyond the code itself. The context in which the code lives, the non-functional requirements – robustness, security, resilience, etc.
We don’t seem to get security. Even trivial stuff such as user authentication is almost always implemented wrong. These days Twitter and GitHub realized they have been logging plain-text passwords, for example, but that’s just the tip of the iceberg. Too often we ignore the security implications.
“But the business didn’t request the security features”, one may say. The business never requested 2-factor authentication, encryption at rest, PKI, secure (or any) audit trail, log masking, crypto shredding, etc., etc. Because the business doesn’t know these things – we do and we have to put them on the backlog and fight for them to be implemented. Each organization has its specifics and tech people can influence the backlog in different ways, but almost everywhere we can put things there and prioritize them.
The other aspect is testing. We should all be well aware by now that automated testing is mandatory. We have all the tools in the world for unit, functional, integration, performance and whatnot testing, and yet many software projects lack the necessary test coverage to be able to change stuff without accidentally breaking things. “But testing takes time, we don’t have it”. We are perfectly aware that testing saves time, as we’ve all had those “not again!” recurring bugs. And yet we think of all sorts of excuses – “let the QAs test it”, we have to ship that now, we’ll test it later”, “this is too trivial to be tested”, etc.
And you may say it’s not our job. We don’t define what has do be done, we just do it. We don’t define the budget, the scope, the features. We just write whatever has been decided. And that’s plain wrong. It’s not our job to make money out of our code, and it’s not our job to define what customers need, but apart from that everything is our job. The way the software is structured, the security aspects and security features, the stability of the code base, the way the software behaves in different environments. The non-functional requirements are our job, and putting them on the backlog is our job.
You’ve probably heard that every software becomes “legacy” after 6 months. And that’s because of us, our sloppiness, our inability to mitigate external factors and constraints. Too often we create a mess through “just doing our job”.
And of course that’s a generalization. I happen to know a lot of great professionals who don’t make these mistakes, who strive for excellence and implement things the right way. But our industry as a whole doesn’t. Our industry as a whole produces bad software. And it’s our fault, as developers – as the only people who know why a certain piece of software is bad.
In a talk of his, Bob Martin warns us of the risks of our sloppiness. We have been building websites so far, but we are more and more building stuff that interacts with the real world, directly and indirectly. Ultimately, lives may depend on our software (like the recent unfortunate death caused by a self-driving car). And I’ll agree with Uncle Bob that it’s high time we self-regulate as an industry, before some technically incompetent politician decides to do that.
How, I don’t know. We’ll have to think more about it. But I’m pretty sure it’s our fault that software is bad, and no amount of blaming the management, the budget, the timing, the tools or the process can eliminate our responsibility.
Why do I insist on bashing my fellow software engineers? Because if we start looking at software development with more responsibility; with the fact that if it fails, it’s our fault, then we’re more likely to get out of our current bug-ridden, security-flawed, fragile software hole and really become the experts of the future.
Researchers havedisclosed a massive vulnerability in the VingCard eletronic lock system, used in hotel rooms around the world:
With a $300 Proxmark RFID card reading and writing tool, any expired keycard pulled from the trash of a target hotel, and a set of cryptographic tricks developed over close to 15 years of on-and-off analysis of the codes Vingcard electronically writes to its keycards, they found a method to vastly narrow down a hotel’s possible master key code. They can use that handheld Proxmark device to cycle through all the remaining possible codes on any lock at the hotel, identify the correct one in about 20 tries, and then write that master code to a card that gives the hacker free reign to roam any room in the building. The whole process takes about a minute.
[…]
The two researchers say that their attack works only on Vingcard’s previous-generation Vision locks, not the company’s newer Visionline product. But they estimate that it nonetheless affects 140,000 hotels in more than 160 countries around the world; the researchers say that Vingcard’s Swedish parent company, Assa Abloy, admitted to them that the problem affects millions of locks in total. When WIRED reached out to Assa Abloy, however, the company put the total number of vulnerable locks somewhat lower, between 500,000 and a million.
Patching is a nightmare. It requires updating the firmware on every lock individually.
And the researchers speculate whether or not others knew of this hack:
The F-Secure researchers admit they don’t know if their Vinguard attack has occurred in the real world. But the American firm LSI, which trains law enforcement agencies in bypassing locks, advertises Vingcard’s products among those it promises to teach students to unlock. And the F-Secure researchers point to a 2010 assassination of a Palestinian Hamas official in a Dubai hotel, widely believed to have been carried out by the Israeli intelligence agency Mossad. The assassins in that case seemingly used a vulnerability in Vingcard locks to enter their target’s room, albeit one that required re-programming the lock. “Most probably Mossad has a capability to do something like this,” Tuominen says.
According to this Wired article, Ray Ozzie may have a solution to the crypto backdoor problem. No, he hasn’t. He’s only solving the part we already know how to solve. He’s deliberately ignoring the stuff we don’t know how to solve. We know how to make backdoors, we just don’t know how to secure them.
The vault doesn’t scale
Yes, Apple has a vault where they’ve successfully protected important keys. No, it doesn’t mean this vault scales. The more people and the more often you have to touch the vault, the less secure it becomes. We are talking thousands of requests per day from 100,000 different law enforcement agencies around the world. We are unlikely to protect this against incompetence and mistakes. We are definitely unable to secure this against deliberate attack.
A good analogy to Ozzie’s solution is LetsEncrypt for getting SSL certificates for your website, which is fairly scalable, using a private key locked in a vault for signing hundreds of thousands of certificates. That this scales seems to validate Ozzie’s proposal.
But at the same time, LetsEncrypt is easily subverted. LetsEncrypt uses DNS to verify your identity. But spoofing DNS is easy, as was recently shown in the recent BGP attack against a cryptocurrency. Attackers can create fraudulent SSL certificates with enough effort. We’ve got other protections against this, such as discovering and revoking the SSL bad certificate, so while damaging, it’s not catastrophic.
But with Ozzie’s scheme, equivalent attacks would be catastrophic, as it would lead to unlocking the phone and stealing all of somebody’s secrets.
In particular, consider what would happen if LetsEncrypt’s certificate was stolen (as Matthew Green points out). The consequence is that this would be detected and mass revocations would occur. If Ozzie’s master key were stolen, nothing would happen. Nobody would know, and evildoers would be able to freely decrypt phones. Ozzie claims his scheme can work because SSL works — but then his scheme includes none of the many protections necessary to make SSL work.
What I’m trying to show here is that in a lab, it all looks nice and pretty, but when attacked at scale, things break down — quickly. We have so much experience with failure at scale that we can judge Ozzie’s scheme as woefully incomplete. It’s not even up to the standard of SSL, and we have a long list of SSL problems.
Cryptography is about people more than math We have a mathematically pure encryption algorithm called the “One Time Pad”. It can’t ever be broken, provably so with mathematics.
It’s also perfectly useless, as it’s not something humans can use. That’s why we use AES, which is vastly less secure (anything you encrypt today can probably be decrypted in 100 years). AES can be used by humans whereas One Time Pads cannot be. (I learned the fallacy of One Time Pad’s on my grandfather’s knee — he was a WW II codebreaker who broke German messages trying to futz with One Time Pads).
The same is true with Ozzie’s scheme. It focuses on the mathematical model but ignores the human element. We already know how to solve the mathematical problem in a hundred different ways. The part we don’t know how to secure is the human element.
How do we know the law enforcement person is who they say they are? How do we know the “trusted Apple employee” can’t be bribed? How can the law enforcement agent communicate securely with the Apple employee?
You think these things are theoretical, but they aren’t. Consider financial transactions. It used to be common that you could just email your bank/broker to wire funds into an account for such things as buying a house. Hackers have subverted that, intercepting messages, changing account numbers, and stealing millions. Most banks/brokers require additional verification before doing such transfers.
Let me repeat: Ozzie has only solved the part we already know how to solve. He hasn’t addressed these issues that confound us.
We still can’t secure security, much less secure backdoors
We already know how to decrypt iPhones: just wait a year or two for somebody to discover a vulnerability. FBI claims it’s “going dark”, but that’s only for timely decryption of phones. If they are willing to wait a year or two a vulnerability will eventually be found that allows decryption.
That’s what’s happened with the “GrayKey” device that’s been all over the news lately. Apple is fixing it so that it won’t work on new phones, but it works on old phones.
Ozzie’s solution is based on the assumption that iPhones are already secure against things like GrayKey. Like his assumption “if Apple already has a vault for private keys, then we have such vaults for backdoor keys”, Ozzie is saying “if Apple already had secure hardware/software to secure the phone, then we can use the same stuff to secure the backdoors”. But we don’t really have secure vaults and we don’t really have secure hardware/software to secure the phone.
Again, to stress this point, Ozzie is solving the part we already know how to solve, but ignoring the stuff we don’t know how to solve. His solution is insecure for the same reason phones are already insecure.
Locked phones aren’t the problem Phones are general purpose computers. That means anybody can install an encryption app on the phone regardless of whatever other security the phone might provide. The police are powerless to stop this. Even if they make such encryption crime, then criminals will still use encryption.
That leads to a strange situation that the only data the FBI will be able to decrypt is that of people who believe they are innocent. Those who know they are guilty will install encryption apps like Signal that have no backdoors.
In the past this was rare, as people found learning new apps a barrier. These days, apps like Signal are so easy even drug dealers can figure out how to use them.
We know how to get Apple to give us a backdoor, just pass a law forcing them to. It may look like Ozzie’s scheme, it may be something more secure designed by Apple’s engineers. Sure, it will weaken security on the phone for everyone, but those who truly care will just install Signal. But again we are back to the problem that Ozzie’s solving the problem we know how to solve while ignoring the much larger problem, that of preventing people from installing their own encryption.
The FBI isn’t necessarily the problem Ozzie phrases his solution in terms of U.S. law enforcement. Well, what about Europe? What about Russia? What about China? What about North Korea?
Technology is borderless. A solution in the United States that allows “legitimate” law enforcement requests will inevitably be used by repressive states for what we believe would be “illegitimate” law enforcement requests.
Ozzie sees himself as the hero helping law enforcement protect 300 million American citizens. He doesn’t see himself what he really is, the villain helping oppress 1.4 billion Chinese, 144 million Russians, and another couple billion living in oppressive governments around the world.
Conclusion Ozzie pretends the problem is political, that he’s created a solution that appeases both sides. He hasn’t. He’s solved the problem we already know how to solve. He’s ignored all the problems we struggle with, the problems we claim make secure backdoors essentially impossible. I’ve listed some in this post, but there are many more. Any famous person can create a solution that convinces fawning editors at Wired Magazine, but if Ozzie wants to move forward he’s going to have to work harder to appease doubting cryptographers.
At the 2018 Legal and Licensing Workshop (LLW), which is a yearly gathering of lawyers and technical folks organized by the Free Software Foundation Europe (FSFE), attendees got more details on a recent hearing in a German GPL enforcement case. Marcus von Welser is a lawyer who represented the defendant, Geniatech, in a case that was brought by Patrick McHardy. In the presentation, von Welser was joined by Armijn Hemel, who helped Geniatech in its compliance efforts. The hearing was of interest for a number of reasons, not least because McHardy withdrew his request for an injunction once it became clear that the judge was leaning in favor of the defendants—effectively stopping this case dead in its tracks.
This post courtesy of Massimiliano Angelino, AWS Solutions Architect
Different enterprise systems—ERP, CRM, BI, HR, etc.—need to exchange information but normally cannot do that natively because they are from different vendors. Enterprises have tried multiple ways to integrate heterogeneous systems, generally referred to as enterprise application integration (EAI).
Modern EAI systems are based on a message-oriented middleware (MoM), also known as enterprise service bus (ESB). An ESB provides data communication via a message bus, on top of which it also provides components to orchestrate, route, translate, and monitor the data exchange. Communication with the ESB is done via adapters or connectors provided by the ESB. In this way, the different applications do not have to have specific knowledge of the technology used to provide the integration.
Amazon MQ used with Apache Camel is an open-source alternative to commercial ESBs. With the launch of Amazon MQ, integration between on-premises applications and cloud services becomes much simpler. Amazon MQ provides a managed message broker service currently supporting ApacheMQ 5.15.0.
In this post, I show how a simple integration between Amazon MQ and other AWS services can be achieved by using Apache Camel.
Apache Camel provides built-in connectors for integration with a wide variety of AWS services such as Amazon MQ, Amazon SQS, Amazon SNS, Amazon SWF, Amazon S3, AWS Lambda, Amazon DynamoDB, AWS Elastic Beanstalk, and Amazon Kinesis Streams. It also provides a broad range of other connectors including Cassandra, JDBC, Spark, and even Facebook and Slack.
EAI system architecture
Different applications use different data formats, hence the need for a translation/transformation service. Such services can be provided to or from a common “normalized” format, or specifically between two applications.
The use of normalized formats simplifies the integration process when multiple applications need to share the same data, as the number of conversions to be realized is N (number of applications). This is at the cost of a more complex adaptation to a common format, which is required to cover all needs from the different applications, current and future.
Another characteristic of an EAI system is the support of distributed transactions to ensure data consistency across multiple applications.
EAI system architecture is normally composed of the following components:
A centralized broker that handles security, access control, and data communications. Amazon MQ provides these features through the support of multiple transport protocols (AMQP, Openwire, MQTT, WebSocket), security (all communications are encrypted via SSL), and per destination granular access control.
An independent data model, also known as the canonical data model. XML is the de facto standard for the data representation.
Connectors/agents that allow the applications to communicate with the broker.
A system model to allow a standardized way for all components to interface with the EAI. Java Message Service (JMS) and Windows Communication Foundation (WCF) are standard APIs to interact with constructs such as queues and topics to implement the different messaging patterns.
Walkthrough
This solution walks you through the following steps:
Creating the broker
Writing a simple application
Adding the dependencies
Triaging files into S3
Writing the Camel route
Sending files to the AMQP queue
Setting up AMQP
Testing the code
Creating the broker
To create a new broker, log in to your AWS account and choose Amazon MQ. Amazon MQ is currently available in six AWS Regions:
US East (N. Virginia)
US East (Ohio)
US West (Oregon)
EU (Ireland)
EU (Frankfurt)
Asia Pacific (Sydney) regions.
Make sure that you have selected one of these Regions.
The master user name and password are used to access the monitoring console of the broker and can be also used to authenticate when connecting the clients to the broker. I recommend creating separate users, without console access, to authenticate the clients to the broker, after the broker has been created.
For this example, create a single broker without failover. If your application requires a higher availability level, check the Create standby in a different zone check box. In case the principal broker instance would fail, the standby takes over in seconds. To make the client aware of the standby, use the failover:// protocol in the connection configuration pointing to both broker endpoints.
Leave the other settings as is. The broker takes few minutes to be created. After it’s done, you can see the list of endpoints available for the different protocols.
After the broker has been created, modify the security group to add the allowed ports and sources for access.
For this example, you need access to the ActiveMQ admin page and to AMQP. Open up ports 8162 and 5671 to the public address of your laptop.
You can also create a new user for programmatic access to the broker. In the Users section, choose Create User and add a new user named sdk.
Writing a simple application
The complete code for this walkthrough is available from the aws-amazonmq-apachecamel-sample GitHub repo. Clone the repository on your local machine to have the fully functional example. The rest of this post offers step-by-step instructions to build this solution.
To write the application, use Apache Maven and the Camel archetypes provided by Maven. If you do not have Apache Maven installed on your machine, you can follow the instructions at Installing Apache Maven.
From a terminal, run the following command:
mvn archetype:generate
You get a list of archetypes. Type camel to get only the one related to camel. In this case, use the java8 example and type the following:
Maven now generates the skeleton code in a folder named as the artifactId. In this case:
camel-aws-simple
Next, test that the environment is configured correctly to run Camel. At the prompt, run the following commands:
cd camel-aws-simple
mvn install
mvn exec:java
You should see a log appearing in the console, printing the following:
[INFO] --- exec-maven-plugin:1.6.0:java (default-cli) @ camel-aws-test ---
[ com.angmas.MainApp.main()] DefaultCamelContext INFO Apache Camel 2.20.1 (CamelContext: camel-1) is starting
[ com.angmas.MainApp.main()] ManagedManagementStrategy INFO JMX is enabled
[ com.angmas.MainApp.main()] DefaultTypeConverter INFO Type converters loaded (core: 192, classpath: 0)
[ com.angmas.MainApp.main()] DefaultCamelContext INFO StreamCaching is not in use. If using streams then its recommended to enable stream caching. See more details at http://camel.apache.org/stream-caching.html
[ com.angmas.MainApp.main()] DefaultCamelContext INFO Route: route1 started and consuming from: timer://simple?period=1000
[ com.angmas.MainApp.main()] DefaultCamelContext INFO Total 1 routes, of which 1 are started
[ com.angmas.MainApp.main()] DefaultCamelContext INFO Apache Camel 2.20.1 (CamelContext: camel-1) started in 0.419 seconds
[-1) thread #2 - timer://simple] route1 INFO Got a String body
[-1) thread #2 - timer://simple] route1 INFO Got an Integer body
[-1) thread #2 - timer://simple] route1 INFO Got a Double body
[-1) thread #2 - timer://simple] route1 INFO Got a String body
[-1) thread #2 - timer://simple] route1 INFO Got an Integer body
[-1) thread #2 - timer://simple] route1 INFO Got a Double body
[-1) thread #2 - timer://simple] route1 INFO Got a String body
[-1) thread #2 - timer://simple] route1 INFO Got an Integer body
[-1) thread #2 - timer://simple] route1 INFO Got a Double body
Adding the dependencies
Now that you have verified that the sample works, modify it to add the dependencies to interface to Amazon MQ/ActiveMQ and AWS.
For the following steps, you can use a normal text editor, such as vi, Sublime Text, or Visual Studio Code. Or, open the maven project in an IDE such as Eclipse or IntelliJ IDEA.
Open pom.xml and add the following lines inside the <dependencies> tag:
The camel-aws component is taking care of the interface with the supported AWS services without requiring any in-depth knowledge of the AWS Java SDK. For more information, see Camel Components for Amazon Web Services.
Triaging files into S3
Write a Camel component that receives files as a payload to messages in a queue and write them to an S3 bucket with different prefixes depending on the extension.
Because the broker that you created is exposed via a public IP address, you can execute the code from anywhere that there is an internet connection that allows communication on the specific ports. In this example, run the code from your own laptop. A broker can also be created without public IP address, in which case it is only accessible from inside the VPC in which it has been created, or by any peered VPC or network connected via a virtual gateway (VPN or AWS Direct Connect).
First, look at the code created by Maven. The archetype chosen created a standalone Camel context run via the helper org.apache.camel.main.Main class. This provides an easy way to run Camel routes from an IDE or the command line without needing to deploy it inside a container. Apache Camel can be also run as an OSGi module, or Spring and SpringBoot bean.
package com.angmas;
import org.apache.camel.main.Main;
/**
* A Camel Application
*/
public class MainApp {
/**
* A main() so you can easily run these routing rules in your IDE
*/
public static void main(String... args) throws Exception {
Main main = new Main();
main.addRouteBuilder(new MyRouteBuilder());
main.run(args);
}
}
The main method instantiates the Camel Main helper class and the routes, and runs the Camel application. The MyRouteBuilder class creates a route using Java DSL. It is also possible to define routes in Spring XML and load them dynamically in the code.
public void configure() {
// this sample sets a random body then performs content-based
// routing on the message using method references
from("timer:simple?period=1000")
.process()
.message(m -> m.setHeader("index", index++ % 3))
.transform()
.message(this::randomBody)
.choice()
.when()
.body(String.class::isInstance)
.log("Got a String body")
.when()
.body(Integer.class::isInstance)
.log("Got an Integer body")
.when()
.body(Double.class::isInstance)
.log("Got a Double body")
.otherwise()
.log("Other type message");
}
Writing the Camel route
Replace the existing route with one that fetches messages from Amazon MQ over AMQP, and routes the content to different S3 buckets depending on the file name extension.
Reads messages from the AMQP queue named filequeue.
Processes the message and sets a new ext header using the setExtensionHeader method (see below).
Checks the value of the ext header and write the body of the message as an object in an S3 bucket using different key prefixes, retaining the original name of the file.
The Amazon S3 component is configured with the bucket name, and a reference to an S3 client (amazonS3client=#s3Client) that you added to the Camel registry in the Main method of the app. Adding the object to the Camel registry allows Camel to find the object at runtime. Even though you could pass the region, accessKey, and secretKey parameters directly in the component URI, this way is more secure. It can make use of EC2 instance roles, so that you never need to pass the secrets.
Sending files to the AMQP queue
To send the files to the AMQP queue for testing, add another Camel route. In a real scenario, the messages to the AMQP queue are generated by another client. You are going to create a new route builder, but you could also add this route inside the existing MyRouteBuilder.
package com.angmas;
import org.apache.camel.builder.RouteBuilder;
/**
* A Camel Java8 DSL Router
*/
public class MessageProducerBuilder extends RouteBuilder {
/**
* Configure the Camel routing rules using Java code...
*/
public void configure() {
from("file://input?delete=false&noop=true")
.log("Content ${body} ${headers.CamelFileName}")
.to("amqp:filequeue");
}
}
The code reads files from the input folder in the work directory and publishes it to the queue. The route builder is added in the main class:
By default, Camel tries to connect to a local AMQP broker. Configure it to connect to your Amazon MQ broker.
Create an AMQPConnectionDetails object that is configured to connect to Amazon MQ broker with SSL and pass the user name and password that you set on the broker. Adding the object to the Camel registry allows Camel to find the object at runtime and use it as the default connection to AMQP.
public class MainApp {
public static String BROKER_URL = System.getenv("BROKER_URL");
public static String AMQP_URL = "amqps://"+BROKER_URL+":5671";
public static String BROKER_USERNAME = System.getenv("BROKER_USERNAME");
public static String BROKER_PASSWORD = System.getenv("BROKER_PASSWORD");
/**
* A main() so you can easily run these routing rules in your IDE
*/
public static void main(String... args) throws Exception {
Main main = new Main();
main.bind("amqp", getAMQPconnection());
main.bind("s3Client", AmazonS3ClientBuilder.standard().withRegion(Regions.US_EAST_1).build());
main.addRouteBuilder(new MyRouteBuilder());
main.addRouteBuilder(new MessageProducerBuilder());
main.run(args);
}
public static AMQPConnectionDetails getAMQPconnection() {
return new AMQPConnectionDetails(AMQP_URL, BROKER_USERNAME, BROKER_PASSWORD);
}
}
The AMQP_URL uses the amqps schema that indicates that you are using SSL. You then add the component to the registry. Camel finds it by matching the class type. main.bind("amqp-ssl", getAMQPConnection());
Testing the code
Create an input folder in the project root, and create few files with different extensions, such as txt, html, and csv.
Set the different environment variables required by the code, either in the shell or in your IDE as execution configuration.
If you are running the example from an EC2 instance, ensure that the EC2 instance role has read permission on the S3 bucket.
If you are running this on your laptop, ensure that you have configured the AWS credentials in the environment, for example, by using the aws configure command.
From the command line, execute the code:
mvn exec:java
If you are using an IDE, execute the main class. Camel outputs logging information and you should see messages listing the content and names of the files in the input folder.
Keep adding some more files to the input folder. You see that they are triaged in S3 a few seconds later. You can open the S3 console to check that they have been created.
To stop Camel, press CTRL+C in the shell.
Conclusion
In this post, I showed you how to create a publicly accessible Amazon MQ broker, and how to use Apache Camel to easily integrate AWS services with the broker. In the example, you created a Camel route that reads messages containing files from the AMQP queue and triages them by file extension into an S3 bucket.
Camel supports several components and provides blueprints for several enterprise integration patterns. Used in combination with the Amazon MQ, it provides a powerful and flexible solution to extend traditional enterprise solutions to the AWS Cloud, and integrate them seamlessly with cloud-native services, such as Amazon S3, Amazon SNS, Amazon SQS, Amazon CloudWatch, and AWS Lambda.
To learn more, see the Amazon MQ website. You can try Amazon MQ for free with the AWS Free Tier, which includes up to 750 hours of a single-instance mq.t2.micro broker and up to 1 GB of storage per month for one year.
This article, pointed out by @TheGrugq, is stupid enough that it’s worth rebutting.
“The views and opinions expressed are those of the author and not necessarily the positions of the U.S. Army, Department of Defense, or the U.S. Government.” <- I sincerely hope so… “the cyber guns of August” https://t.co/xdybbr5B0E
The article starts with the question “Why did the lessons of Stuxnet, Wannacry, Heartbleed and Shamoon go unheeded?“. It then proceeds to ignore the lessons of those things.
Some of the actual lessons should be things like how Stuxnet crossed air gaps, how Wannacry spread through flat Windows networking, how Heartbleed comes from technical debt, and how Shamoon furthers state aims by causing damage.
But this article doesn’t cover the technical lessons. Instead, it thinks the lesson should be the moral lesson, that we should take these things more seriously. But that’s stupid. It’s the sort of lesson people teach you that know nothing about the topic. When you have nothing of value to contribute to a topic you can always take the moral high road and criticize everyone for being morally weak for not taking it more seriously. Obviously, since doctors haven’t cured cancer yet, it’s because they don’t take the problem seriously.
The article continues to ignore the lesson of these cyber attacks and instead regales us with a list of military lessons from WW I and WW II. This makes the same flaw that many in the military make, trying to understand cyber through analogies with the real world. It’s not that such lessons could have no value, it’s that this article contains a poor list of them. It seems to consist of a random list of events that appeal to the author rather than events that have bearing on cybersecurity.
Then, in case we don’t get the point, the article bullies us with hyperbole, cliches, buzzwords, bombastic language, famous quotes, and citations. It’s hard to see how most of them actually apply to the text. Rather, it seems like they are included simply because he really really likes them.
The article invests much effort in discussing the buzzword “OODA loop”. Most attacks in cyberspace don’t have one. Instead, attackers flail around, trying lots of random things, overcoming defense with brute-force rather than an understanding of what’s going on. That’s obviously the case with Wannacry: it was an accident, with the perpetrator experimenting with what would happen if they added the ETERNALBLUE exploit to their existing ransomware code. The consequence was beyond anybody’s ability to predict.
You might claim that this is just the first stage, that they’ll loop around, observe Wannacry’s effects, orient themselves, decide, then act upon what they learned. Nope. Wannacry burned the exploit. It’s essentially removed any vulnerable systems from the public Internet, thereby making it impossible to use what they learned. It’s still active a year later, with infected systems behind firewalls busily scanning the Internet so that if you put a new system online that’s vulnerable, it’ll be taken offline within a few hours, before any other evildoer can take advantage of it.
See what I’m doing here? Learning the actual lessons of things like Wannacry? The thing the above article fails to do??
The article has a humorous paragraph on “defense in depth”, misunderstanding the term. To be fair, it’s the cybersecurity industry’s fault: they adopted then redefined the term. That’s why there’s two separate articles on Wikipedia: one for the old military term (as used in this article) and one for the new cybersecurity term.
As used in the cybersecurity industry, “defense in depth” means having multiple layers of security. Many organizations put all their defensive efforts on the perimeter, and none inside a network. The idea of “defense in depth” is to put more defenses inside the network. For example, instead of just one firewall at the edge of the network, put firewalls inside the network to segment different subnetworks from each other, so that a ransomware infection in the customer support computers doesn’t spread to sales and marketing computers.
The article talks about exploiting WiFi chips to bypass the defense in depth measures like browser sandboxes. This is conflating different types of attacks. A WiFi attack is usually considered a local attack, from somebody next to you in bar, rather than a remote attack from a server in Russia. Moreover, far from disproving “defense in depth” such WiFi attacks highlight the need for it. Namely, phones need to be designed so that successful exploitation of other microprocessors (namely, the WiFi, Bluetooth, and cellular baseband chips) can’t directly compromise the host system. In other words, once exploited with “Broadpwn”, a hacker would need to extend the exploit chain with another vulnerability in the hosts Broadcom WiFi driver rather than immediately exploiting a DMA attack across PCIe. This suggests that if PCIe is used to interface to peripherals in the phone that an IOMMU be used, for “defense in depth”.
Cybersecurity is a young field. There are lots of useful things that outsider non-techies can teach us. Lessons from military history would be well-received.
But that’s not this story. Instead, this story is by an outsider telling us we don’t know what we are doing, that they do, and then proceeds to prove they don’t know what they are doing. Their argument is based on a moral suasion and bullying us with what appears on the surface to be intellectual rigor, but which is in fact devoid of anything smart.
My fear, here, is that I’m going to be in a meeting where somebody has read this pretentious garbage, explaining to me why “defense in depth” is wrong and how we need to OODA faster. I’d rather nip this in the bud, pointing out if you found anything interesting from that article, you are wrong.
Elections serve two purposes. The first, and obvious, purpose is to accurately choose the winner. But the second is equally important: to convince the loser. To the extent that an election system is not transparently and auditably accurate, it fails in that second purpose. Our election systems are failing, and we need to fix them.
Today, we conduct our elections on computers. Our registration lists are in computer databases. We vote on computerized voting machines. And our tabulation and reporting is done on computers. We do this for a lot of good reasons, but a side effect is that elections now have all the insecurities inherent in computers. The only way to reliably protect elections from both malice and accident is to use something that is not hackable or unreliable at scale; the best way to do that is to back up as much of the system as possible with paper.
Recently, there have been two graphic demonstrations of how bad our computerized voting system is. In 2007, the states of California and Ohio conducted audits of their electronic voting machines. Expert review teams found exploitable vulnerabilities in almost every component they examined. The researchers were able to undetectably alter vote tallies, erase audit logs, and load malware on to the systems. Some of their attacks could be implemented by a single individual with no greater access than a normal poll worker; others could be done remotely.
Last year, the Defcon hackers’ conference sponsored a Voting Village. Organizers collected 25 pieces of voting equipment, including voting machines and electronic poll books. By the end of the weekend, conference attendees had found ways to compromise every piece of test equipment: to load malicious software, compromise vote tallies and audit logs, or cause equipment to fail.
It’s important to understand that these were not well-funded nation-state attackers. These were not even academics who had been studying the problem for weeks. These were bored hackers, with no experience with voting machines, playing around between parties one weekend.
It shouldn’t be any surprise that voting equipment, including voting machines, voter registration databases, and vote tabulation systems, are that hackable. They’re computers — often ancient computers running operating systems no longer supported by the manufacturers — and they don’t have any magical security technology that the rest of the industry isn’t privy to. If anything, they’re less secure than the computers we generally use, because their manufacturers hide any flaws behind the proprietary nature of their equipment.
We’re not just worried about altering the vote. Sometimes causing widespread failures, or even just sowing mistrust in the system, is enough. And an election whose results are not trusted or believed is a failed election.
Voting systems have another requirement that makes security even harder to achieve: the requirement for a secret ballot. Because we have to securely separate the election-roll system that determines who can vote from the system that collects and tabulates the votes, we can’t use the security systems available to banking and other high-value applications.
We can securely bank online, but can’t securely vote online. If we could do away with anonymity — if everyone could check that their vote was counted correctly — then it would be easy to secure the vote. But that would lead to other problems. Before the US had the secret ballot, voter coercion and vote-buying were widespread.
We can’t, so we need to accept that our voting systems are insecure. We need an election system that is resilient to the threats. And for many parts of the system, that means paper.
Let’s start with the voter rolls. We know they’ve already been targeted. In 2016, someone changed the party affiliation of hundreds of voters before the Republican primary. That’s just one possibility. A well-executed attack that deletes, for example, one in five voters at random — or changes their addresses — would cause chaos on election day.
Yes, we need to shore up the security of these systems. We need better computer, network, and database security for the various state voter organizations. We also need to better secure the voterregistration websites, with better design and better internet security. We need better security for the companies that build and sell all this equipment.
Multiple, unchangeable backups are essential. A record of every addition, deletion, and change needs to be stored on a separate system, on write-only media like a DVD. Copies of that DVD, or — even better — a paper printout of the voter rolls, should be available at every polling place on election day. We need to be ready for anything.
Next, the voting machines themselves. Security researchers agree that the gold standard is a voter-verified paper ballot. The easiest (and cheapest) way to achieve this is through optical-scan voting. Voters mark paper ballots by hand; they are fed into a machine and counted automatically. That paper ballot is saved, and serves as a final true record in a recount in case of problems. Touch-screen machines that print a paper ballot to drop in a ballot box can also work for voters with disabilities, as long as the ballot can be easily read and verified by the voter.
Finally, the tabulation and reporting systems. Here again we need more security in the process, but we must always use those paper ballots as checks on the computers. A manual, post-election, risk-limiting audit varies the number of ballots examined according to the margin of victory. Conducting this audit after every election, before the results are certified, gives us confidence that the election outcome is correct, even if the voting machines and tabulation computers have been tampered with. Additionally, we need better coordination and communications when incidents occur.
It’s vital to agree on these procedures and policies before an election. Before the fact, when anyone can win and no one knows whose votes might be changed, it’s easy to agree on strong security. But after the vote, someone is the presumptive winner — and then everything changes. Half of the country wants the result to stand, and half wants it reversed. At that point, it’s too late to agree on anything.
The politicians running in the election shouldn’t have to argue their challenges in court. Getting elections right is in the interest of all citizens. Many countries have independent election commissions that are charged with conducting elections and ensuring their security. We don’t do that in the US.
Instead, we have representatives from each of our two parties in the room, keeping an eye on each other. That provided acceptable security against 20th-century threats, but is totally inadequate to secure our elections in the 21st century. And the belief that the diversity of voting systems in the US provides a measure of security is a dangerous myth, because few districts can be decisive and there are so few voting-machine vendors.
We candobetter. In 2017, the Department of Homeland Security declared elections to be critical infrastructure, allowing the department to focus on securing them. On 23 March, Congress allocated $380m to states to upgrade election security.
These are good starts, but don’t go nearly far enough. The constitution delegates elections to the states but allows Congress to “make or alter such Regulations”. In 1845, Congress set a nationwide election day. Today, we need it to set uniform and strict election standards.
The Center for Democracy and Technology has a good summary of the current state of the DMCA’s chilling effects on security research.
To underline the nature of chilling effects on hacking and security research, CDT has worked to describe how tinkerers, hackers, and security researchers of all types both contribute to a baseline level of security in our digital environment and, in turn, are shaped themselves by this environment, most notably when things they do upset others and result in threats, potential lawsuits, and prosecution. We’ve published two reports (sponsored by the Hewlett Foundation and MacArthur Foundation) about needed reforms to the law and the myriad of ways that security research directly improves people’s lives. To get a more complete picture, we wanted to talk to security researchers themselves and gauge the forces that shape their work; essentially, we wanted to “take the pulse” of the security research community.
Today, we are releasing a third report in service of this effort: “Taking the Pulse of Hacking: A Risk Basis for Security Research.” We report findings after having interviewed a set of 20 security researchers and hackers — half academic and half non-academic — about what considerations they take into account when starting new projects or engaging in new work, as well as to what extent they or their colleagues have faced threats in the past that chilled their work. The results in our report show that a wide variety of constraints shape the work they do, from technical constraints to ethical boundaries to legal concerns, including the DMCA and especially the CFAA.
Note: I am a signatory on the letter supporting unrestricted security research.
The collective thoughts of the interwebz
By continuing to use the site, you agree to the use of cookies. more information
The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.