Tag Archives: lfi

ЕСПЧ: твърдения за факти и отговорната журналистика

Post Syndicated from nellyo original https://nellyo.wordpress.com/2017/09/21/echr_journ/

В решение по делото Halldorsson v. Iceland   Европейският съд по правата на човека (ЕКПЧ) заявява, че журналист, отговорен за телевизионна новина, която засяга доброто име на идентифицируемо публично лице, трябва да може да докаже, че е действал добросъвестно, що се отнася до точността на твърденията в новината. Журналистът не може да се позовава на тайна на източниците на информация, когато не може да представи доказателства за сериозни обвинения. И в по-ранни решения ЕСПЧ вече е посочвал, че правата на журналистите могат да ползват тези, които действат добросъвестно и според стандартите на отговорната журналистика (вж Pentikainen v Finland).

Жалбоподателят е журналист, работещ в новинарската редакция на Исландската национална телевизия (RUV). Телевизията  излъчва серия от новинарски предавания за сделка  от около 20 милиона евро между исландско дружество и компания   в Панама. Съобщава се, че са замесени трима исландски бизнесмени (A, B и C). Показани са техни снимки заедно с текст  „разследва се”, придружен от съобщението, че властите разследват случая. В друга новина  снимки на А, Б и С са показани над карта на света, като купчинка пари се прехвърлят визуално върху снимките на мъжете, като се споменава, че парите са в “джобовете на тройката”. Обобщение на съдържанието на излъчваните новинарски материали е публикувано и на интернет страницата на RUV. След излъчването на новините единият от засегнатите А   отрича всяка връзка с предполагаемата заподозряна сделка.  По-късно А подава дело срещу клевета срещу Свавар Халдорсон,  автор на новините.    Халдорсон е осъден да заплати на А около 2,600 евро като обезщетение за неимуществени вреди.

Пред Европейския съд по правата на човека Халдорсон поддържа, че изявленията в новините не са  засегнали  А,    не са клеветнически и не се твърди, че А е виновен за финансово престъпление или други действия, наказуеми от закона.
Стандартите

В съответствие с констатациите на националните съдилища ЕСПЧ потвърждава, че новините действително съдържат сериозно обвинение за незаконни и престъпни деяния; следователно ЕСПЧ е на мнение, че спорът изисква проучване на справедливото равновесие между правото на зачитане на личния живот и правото на свобода на изразяване

Принципите, които се отнасят до въпроса дали “в демократичното общество е необходима намеса в свободата на изразяване”, са добре установени в практиката на Съда (вж Delfi AS срещу Естония). [37].

Съдът е постановил, че доброто име  на дадено лице, дори ако е критикувано в рамките на обществен дебат, е част от неговата лична самоличност и психологическа неприкосновеност и следователно попада в приложното поле на неговия “личен живот” “. За да влезе в действие член 8, атаката срещу личната чест и доброто име  трябва да е достигнала определено ниво на сериозност.  [38].

Тъй като многократно е трябвало да разглежда спорове, изискващи проверка на справедливото равновесие между правото на зачитане на личния живот и правото на свобода на изразяване, Съдът е разработил общи принципи, произтичащи от богата съдебна практика в тази  област. [39].

Критериите, които са от значение за балансирането на правото на свобода на изразяване срещу правото на зачитане на личния живот, са inter alia: приносът към дебатите от общ интерес; колко добре е известно заинтересованото лице и какъв е предметът на публикацията; предишното му поведение; метода за получаване на информацията и нейната достоверност; съдържанието, формата и последствията от публикацията; строгостта на наложената санкция (вж. например Axel Springer AG срещу Германия и Von Hannover срещу Германия (№ 2 ).

Накрая, Съдът напомня, че в зоната на преценка на националните власти   са необходими сериозни мотиви, за да не се приеме  становището на националните съдилища.   [40].

Решението

ЕСПЧ е съгласен, че А трябва да се смята за публична фигура и че предметът на спорните новинарски материали е въпрос от обществен интерес.

Съдът потвърждава   заключенията на Върховния съд на Исландия, че Халдорсон не е действал добросъвестно. Не е потърсил информация от А, докато подготвя новината. ЕСПЧ отново заявява, че защитата, предоставена от член 10 от ЕКПЧ на журналистите по отношение на докладването по въпроси от общ интерес, зависи от условието те да действат добросъвестно и на точна фактическа основа и да предоставят  надеждна и точна  информация в съответствие с етиката на журналистиката.

Съдът посочва, че не намира  основания журналистът да се отклони от   задължението си  да проверява фактическите изявления, които засягат доброто име.

Отхвърлени са аргументите на Халдорсон, които се отнасят до правото  да запази поверителните си източници и документацията, послужили за изготвяне на новините. ЕСПЧ потвърждава, че защитата на журналистическите източници е едно от основните условия за свободата на медиите, липсата на защита ги демотивира да оказват помощ на пресата при информирането на обществеността по въпроси от обществено значение.   ЕСПЧ пояснява обаче, че  простото позоваване на защитата на източниците не може да освободи журналист от задължението да докаже достоверността на твърденията, или да има достатъчно основания за сериозни обвинения от фактически характер – задължение, което може да бъде изпълнено, без непременно да се налага да се разкриват източниците.[51]

И накрая, ЕСПЧ не смята, че финансовата компенсация и изплащането на разноските по вътрешното производство са прекомерни или  с възспиращ ефект  върху упражняването на свободата на медиите. Според Съда потенциалното въздействие на медията е важен фактор при отчитането на пропорционалността на намесата. В това отношение ЕСПЧ напомня становището си, че аудиовизуалните медии имат по-непосредствен и мощен ефект от печатните медии.

Върховният съд на Исландия е уравновесил правото на свобода на изразяване с правото на зачитане на личния живот, взел е предвид критериите, определени в съдебната практика на ЕСПЧ,  действал е в рамките на предоставената му преценка и е постигнал разумен баланс между наложените мерки, ограничаващи правото на свобода на изразяване.

 

Поради това ЕКПЧ заключава с единодушие, че не е налице нарушение на чл. 10 от ЕКПЧ.

 

 

Filed under: Media Law Tagged: еспч

Catching Up on Some Recent AWS Launches and Publications

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/catching-up-on-some-recent-aws-launches-and-publications/

As I have noted in the past, the AWS Blog Team is working hard to make sure that you know about as many AWS launches and publications as possible, without totally burying you in content! As part of our balancing act, we will occasionally publish catch-up posts to clear our queues and to bring more information to your attention. Here’s what I have in store for you today:

  • Monitoring for Cross-Region Replication of S3 Objects
  • Tags for Spot Fleet Instances
  • PCI DSS Compliance for 12 More Services
  • HIPAA Eligibility for WorkDocs
  • VPC Resizing
  • AppStream 2.0 Graphics Design Instances
  • AMS Connector App for ServiceNow
  • Regtech in the Cloud
  • New & Revised Quick Starts

Let’s jump right in!

Monitoring for Cross-Region Replication of S3 Objects
I told you about cross-region replication for S3 a couple of years ago. As I showed you at the time, you simply enable versioning for the source bucket and then choose a destination region and bucket. You can check the replication status manually, or you can create an inventory (daily or weekly) of the source and destination buckets.

The Cross-Region Replication Monitor (CRR Monitor for short) solution checks the replication status of objects across regions and gives you metrics and failure notifications in near real-time.

To learn more, read the CRR Monitor Implementation Guide and then use the AWS CloudFormation template to Deploy the CRR Monitor.

Tags for Spot Instances
Spot Instances and Spot Fleets (collections of Spot Instances) give you access to spare compute capacity. We recently gave you the ability to enter tags (key/value pairs) as part of your spot requests and to have those tags applied to the EC2 instances launched to fulfill the request:

To learn more, read Tag Your Spot Fleet EC2 Instances.

PCI DSS Compliance for 12 More Services
As first announced on the AWS Security Blog, we recently added 12 more services to our PCI DSS compliance program, raising the total number of in-scope services to 42. To learn more, check out our Compliance Resources.

HIPAA Eligibility for WorkDocs
In other compliance news, we announced that Amazon WorkDocs has achieved HIPAA eligibility and PCI DSS compliance in all AWS Regions where WorkDocs is available.

VPC Resizing
This feature allows you to extend an existing Virtual Private Cloud (VPC) by adding additional blocks of addresses. This gives you more flexibility and should help you to deal with growth. You can add up to four secondary /16 CIDRs per VPC. You can also edit the secondary CIDRs by deleting them and adding new ones. Simply select the VPC and choose Edit CIDRs from the menu:

Then add or remove CIDR blocks as desired:

To learn more, read about VPCs and Subnets.

AppStream 2.0 Graphics Design Instances
Powered by AMD FirePro S7150x2 Server GPUs and equipped with AMD Multiuser GPU technology, the new Graphics Design instances for Amazon AppStream 2.0 will let you run and stream graphics applications more cost-effectively than ever. The instances are available in four sizes, with 2-16 vCPUs and 7.5 GB to 61 GB of memory.

To learn more, read Introducing Amazon AppStream 2.0 Graphics Design, a New Lower Costs Instance Type for Streaming Graphics Applications.

AMS Connector App for ServiceNow
AWS Managed Services (AMS) provides Infrastructure Operations Management for the Enterprise. Designed to accelerate cloud adoption, it automates common operations such as change requests, patch management, security and backup.

The new AMS integration App for ServiceNow lets you interact with AMS from within ServiceNow, with no need for any custom development or API integration.

To learn more, read Cloud Management Made Easier: AWS Managed Services Now Integrates with ServiceNow.

Regtech in the Cloud
Regtech (as I learned while writing this), is short for regulatory technology, and is all about using innovative technology such as cloud computing, analytics, and machine learning to address regulatory challenges.

Working together with APN Consulting Partner Cognizant, TABB Group recently published a thought leadership paper that explains why regulations and compliance pose huge challenges for our customers in the financial services, and shows how AWS can help!

New & Revised Quick Starts
Our Quick Starts team has been cranking out new solutions and making significant updates to the existing ones. Here’s a roster:

Alfresco Content Services (v2) Atlassian Confluence Confluent Platform Data Lake
Datastax Enterprise GitHub Enterprise Hashicorp Nomad HIPAA
Hybrid Data Lake with Wandisco Fusion IBM MQ IBM Spectrum Scale Informatica EIC
Magento (v2) Linux Bastion (v2) Modern Data Warehouse with Tableau MongoDB (v2)
NetApp ONTAP NGINX (v2) RD Gateway Red Hat Openshift
SAS Grid SIOS Datakeeper StorReduce SQL Server (v2)

And that’s all I have for today!

Jeff;

A Million ‘Pirate’ Boxes Sold in the UK During The Last Two Years

Post Syndicated from Andy original https://torrentfreak.com/a-million-pirate-boxes-sold-in-the-uk-during-the-last-two-years-170919/

With the devices hitting the headlines on an almost weekly basis, it probably comes as no surprise that ‘pirate’ set-top boxes are quickly becoming public enemy number one with video rightsholders.

Typically loaded with the legal Kodi software but augmented with third-party addons, these often Android-based pieces of hardware drag piracy out of the realm of the computer savvy and into the living rooms of millions.

One of the countries reportedly most affected by this boom is the UK. The consumption of these devices among the general public is said to have reached epidemic proportions, and anecdotal evidence suggests that terms like Kodi and Showbox are now household terms.

Today we have another report to digest, this time from the Federation Against Copyright Theft, or FACT as they’re often known. Titled ‘Cracking Down on Digital Piracy,’ the report provides a general overview of the piracy scene, tackling well-worn topics such as how release groups and site operators work, among others.

The report is produced by FACT after consultation with the Police Intellectual Property Crime Unit, Intellectual Property Office, Police Scotland, and anti-piracy outfit Entura International. It begins by noting that the vast majority of the British public aren’t involved in the consumption of infringing content.

“The most recent stats show that 75% of Brits who look at content online abide by the law and don’t download or stream it illegally – up from 70% in 2013. However, that still leaves 25% who do access material illegally,” the report reads.

The report quickly heads to the topic of ‘pirate’ set-top boxes which is unsurprising, not least due to FACT’s current focus as a business entity.

While it often positions itself alongside government bodies (which no doubt boosts its status with the general public), FACT is a private limited company serving The Premier League, another company desperate to stamp out the use of infringing devices.

Nevertheless, it’s difficult to argue with some of the figures cited in the report.

“At a conservative estimate, we believe a million set-top boxes with software added
to them to facilitate illegal downloads have been sold in the UK in the last couple
of years,” the Intellectual Property Office reveals.

Interestingly, given a growing tech-savvy public, FACT’s report notes that ready-configured boxes are increasingly coming into the country.

“Historically, individuals and organized gangs have added illegal apps and add-ons onto the boxes once they have been imported, to allow illegal access to premium channels. However more recently, more boxes are coming into the UK complete with illegal access to copyrighted content via apps and add-ons already installed,” FACT notes.

“Boxes are often stored in ‘fulfillment houses’ along with other illegal electrical items and sold on social media. The boxes are either sold as one-off purchases, or with a monthly subscription to access paid-for channels.”

While FACT press releases regularly blur the lines when people are prosecuted for supplying set-top boxes in general, it’s important to note that there are essentially two kinds of products on offer to the public.

The first relies on Kodi-type devices which provide on-going free access to infringing content. The second involves premium IPTV subscriptions which are a whole different level of criminality. Separating the two when reading news reports can be extremely difficult, but it’s a hugely important to recognize the difference when assessing the kinds of sentences set-top box suppliers are receiving in the UK.

Nevertheless, FACT correctly highlights that the supply of both kinds of product are on the increase, with various parties recognizing the commercial opportunities.

“A significant number of home-grown British criminals are now involved in this type of crime. Some of them import the boxes wholesale through entirely legal channels, and modify them with illegal software at home. Others work with sophisticated criminal networks across Europe to bring the boxes into the UK.

“They then sell these boxes online, for example through eBay or Facebook, sometimes managing to sell hundreds or thousands of boxes before being caught,” the company adds.

The report notes that in some cases the sale of infringing set-top boxes occurs through cottage industry, with suppliers often working on their own or with small groups of friends and family. Invetiably, perhaps, larger scale operations are reported to be part of networks with connections to other kinds of crime, such as dealing in drugs.

“In contrast to drugs, streaming devices provide a relatively steady and predictable revenue stream for these criminals – while still being lucrative, often generating hundreds of thousands of pounds a year, they are seen as a lower risk activity with less likelihood of leading to arrest or imprisonment,” FACT reports.

While there’s certainly the potential to earn large sums from ‘pirate’ boxes and premium IPTV services, operating on the “hundreds of thousands of pounds a year” scale in the UK would attract a lot of unwanted attention. That’s not saying that it isn’t already, however.

Noting that digital piracy has evolved hugely over the past three or four years, the report says that the cases investigated so far are just the “tip of the iceberg” and that many other cases are in the early stages and will only become known to the public in the months and years ahead.

Indeed, the Intellectual Property Office hints that some kind of large-scale enforcement action may be on the horizon.

“We have identified a significant criminal business model which we have discussed and shared with key law enforcement partners. I can’t go into detail on this, but as investigations take their course, you will see the scale,” an IPO spokesperson reveals.

While details are necessarily scarce, a source familiar with this area told TF that he would be very surprised if the targets aren’t the growing handful of commercial UK-based IPTV re-sellers who offer full subscription TV services for a few pounds per month.

“They’re brazen. Watch this space,” he said.

FACT’s full report, Cracking Down on Digital Piracy, can be downloaded here (pdf)

Source: TF, for the latest info on copyright, file-sharing, torrent sites and ANONYMOUS VPN services.

Prime Day 2017 – Powered by AWS

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/prime-day-2017-powered-by-aws/

The third annual Prime Day set another round of records for global orders, topping Black Friday and Cyber Monday, making it the biggest day in Amazon retail history. Over the course of the 30 hour event, tens of millions of Prime members purchased things like Echo Dots, Fire tablets, programmable pressure cookers, espresso machines, rechargeable batteries, and much more! July 11th also set a record for the number of new Prime memberships, as people signed up in order to take advantage of hundreds of thousands of deals. Amazon customers shopped online and made heavy use of the Amazon App, with mobile orders more than doubling from last Prime Day.

Powered by AWS
Last year I told you about How AWS Powered Amazon’s Biggest Day Ever, and shared what the team had learned with regard to preparation, automation, monitoring, and thinking big. All of those lessons still apply and you can read that post to learn more. Preparation for this year’s Prime Day (which started just days after Prime Day 2016 wrapped up) started by collecting and sharing best practices and identifying areas for improvement, proceeding to implementation and stress testing as the big day approached. Two of the best practices involve auditing and GameDay:

Auditing – This is a formal way for us to track preparations, identify risks, and to track progress against our objectives. Each team must respond to a series of detailed technical and operational questions that are designed to help them determine their readiness. On the technical side, questions could revolve around time to recovery after a database failure, including the all-important check of the TTL (time to live) for the CNAME. Operational questions address schedules for on-call personnel, points of contact, and ownership of services & instances.

GameDay – This practice (which I believe originated with former Amazonian Jesse Robbins), is intended to validate all of the capacity planning & preparation and to verify that all of the necessary operational practices are in place and work as expected. It introduces simulated failures and helps to train the team to identify and quickly resolve issues, building muscle memory in the process. It also tests failover and recovery capabilities, and can expose latent defects that are lurking under the covers. GameDays help teams to understand scaling drivers (page views, orders, and so forth) and gives them an opportunity to test their scaling practices. To learn more, read Resilience Engineering: Learning to Embrace Failure or watch the video: GameDay: Creating Resiliency Through Destruction.

Prime Day 2017 Metrics
So, how did we do this year?

The AWS teams checked their dashboards and log files, and were happy to share their metrics with me. Here are a few of the most interesting ones:

Block Storage – Use of Amazon Elastic Block Store (EBS) grew by 40% year-over-year, with aggregate data transfer jumping to 52 petabytes (a 50% increase) for the day and total I/O requests rising to 835 million (a 30% increase). The team told me that they loved the elasticity of EBS, and that they were able to ramp down on capacity after Prime Day concluded instead of being stuck with it.

NoSQL Database – Amazon DynamoDB requests from Alexa, the Amazon.com sites, and the Amazon fulfillment centers totaled 3.34 trillion, peaking at 12.9 million per second. According to the team, the extreme scale, consistent performance, and high availability of DynamoDB let them meet needs of Prime Day without breaking a sweat.

Stack Creation – Nearly 31,000 AWS CloudFormation stacks were created for Prime Day in order to bring additional AWS resources on line.

API Usage – AWS CloudTrail processed over 50 billion events and tracked more than 419 billion calls to various AWS APIs, all in support of Prime Day.

Configuration TrackingAWS Config generated over 14 million Configuration items for AWS resources.

You Can Do It
Running an event that is as large, complex, and mission-critical as Prime Day takes a lot of planning. If you have an event of this type in mind, please take a look at our new Infrastructure Event Readiness white paper. Inside, you will learn how to design and provision your applications to smoothly handle planned scaling events such as product launches or seasonal traffic spikes, with sections on automation, resiliency, cost optimization, event management, and more.

Jeff;

 

Russia Blocks 4,000 Pirate Sites Plus 41,000 Innocent as Collateral Damage

Post Syndicated from Andy original https://torrentfreak.com/russia-blocks-4000-pirate-sites-plus-41000-innocent-as-collateral-damage-170905/

After years of criticism from both international and local rightsholders, in 2013 the Russian government decided to get tough on Internet piracy.

Under new legislation, sites engaged in Internet piracy could find themselves blocked by ISPs, rendering them inaccessible to local citizens and solving the piracy problem. Well, that was the theory, at least.

More than four years on, Russia is still grappling with a huge piracy problem that refuses to go away. It has been blocking thousands of sites at a steady rate, including RuTracker, the country’s largest torrent platform, but still the problem persists.

Now, a new report produced by Roskomsvoboda, the Center for the Protection of Digital Rights, and the Pirate Party of Russia, reveals a system that has not only failed to reach its stated aims but is also having a negative effect on the broader Internet.

“It’s already been four years since the creation of this ‘anti-piracy machine’ in Russia. The first amendments related to the fight against ‘piracy’ in the network came into force on August 1, 2013, and since then this mechanism has been twice revised,” Roskomsvoboda said in a statement.

“[These include] the emergence of additional responsibilities to restrict access to network resources and increase the number of subjects who are responsible for removing and blocking content. Since that time, several ‘purely Russian’ trends in ‘anti-piracy’ and trade in rights have also emerged.”

These revisions, which include the permanent blocking of persistently infringing sites and the planned blocking of mirror sites and anonymizers, have been widely documented. However, the researchers say that they want to shine a light on the effects of blocking procedures and subsequent actions that are causing significant issues for third-parties.

As part of the study, the authors collected data on the cases presented to the Moscow City Court by the most active plaintiffs in anti-piracy actions (mainly TV show distributors and music outfits including Sony Music Entertainment and Universal Music). They describe the court process and system overall as lacking.

“The court does not conduct a ‘triple test’ and ignores the position, rights and interests of respondents and third parties. It does not check the availability of illegal information on sites and appeals against decisions of the Moscow City Court do not bring any results,” the researchers write.

“Furthermore, the cancellation of the unlimited blocking of a site is simply impossible and in respect of hosting providers and security services, those web services are charged with all the legal costs of the case.”

The main reason behind this situation is that ‘pirate’ site operators rarely (if ever) turn up to defend themselves. If at some point they are found liable for infringement under the Criminal Code, they can be liable for up to six years in prison, hardly an incentive to enter into a copyright process voluntarily. As a result, hosts and other providers act as respondents.

This means that these third-party companies appear as defendants in the majority of cases, a position they find both “unfair and illogical.” They’re also said to be confused about how they are supposed to fulfill the blocking demands placed upon them by the Court.

“About 90% of court cases take place without the involvement of the site owner, since the requirements are imposed on the hosting provider, who is not responsible for the content of the site,” the report says.

Nevertheless, hosts and other providers have been ordered to block huge numbers of pirate sites.

According to the researchers, the total has now gone beyond 4,000 domains, but the knock on effect is much more expansive. Due to the legal requirement to block sites by both IP address and other means, third-party sites with shared IP addresses get caught up as collateral damage. The report states that more than 41,000 innocent sites have been blocked as the result of supposedly targeted court orders.

But with collateral damage mounting, the main issue as far as copyright holders are concerned is whether piracy is decreasing as a result. The report draws few conclusions on that front but notes that blocks are a blunt instrument. While they may succeed in stopping some people from accessing ‘pirate’ domains, the underlying infringement carries on regardless.

“Blocks create restrictions only for Internet users who are denied access to sites, but do not lead to the removal of illegal information or prevent intellectual property violations,” the researchers add.

With no sign of the system being overhauled to tackle the issues raised in the study (pdf, Russian), Russia is now set to introduce yet new anti-piracy measures.

As recently reported, new laws requiring search engines to remove listings for ‘pirate’ mirror sites comes into effect October 1. Exactly a month later on November 1, VPNs and anonymization tools will have to be removed too, if they fail to meet the standards required under state regulation.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and ANONYMOUS VPN services.

The Pronunciation Training Machine

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/pronunciation-training-machine/

Using a Raspberry Pi, an Arduino, an Adafruit NeoPixel Ring and a servomotor, Japanese makers HomeMadeGarbage produced this Pronunciation Training Machine to help their parents distinguish ‘L’s and ‘R’s when speaking English.

L R 発音矯正ギブス お母ちゃん編 Pronunciation training machine #right #light #raspberrypi #arduino #neopixel

23 Likes, 1 Comments – Home Made Garbage (@homemadegarbage) on Instagram: “L R 発音矯正ギブス お母ちゃん編 Pronunciation training machine #right #light #raspberrypi #arduino #neopixel”

How does an Pronunciation Training Machine work?

As you can see in the video above, the machine utilises the Google Cloud Speech API to recognise their parents’ pronunciation of the words ‘right’ and ‘light’. Correctly pronounce the former, and the servo-mounted arrow points to the right. Pronounce the later and the NeoPixel Ring illuminates because, well, you just said “light”.

An image showing how the project works - English Pronunciation TrainingYou can find the full code for the project on its hackster page here.

Variations on the idea

It’s a super-cute project with great potential, and the concept could easily be amended for other training purposes. How about using motion sensors to help someone learn their left from their right?

A photo of hands with left and right written on them - English Pronunciation Training

Wait…your left or my left?
image c/o tattly

Or use random.choice to switch on LEDs over certain images, and speech recognition to reward a correct answer? Light up a picture of a cat, for example, and when the player says “cat”, they receive a ‘purr’ or a treat?

A photo of a kitten - English Pronunciation Training

Obligatory kitten picture
image c/o somewhere on the internet!

Raspberry Pi-based educational aids do not have to be elaborate builds. They can use components as simple as a servo and an LED, and still have the potential to make great improvements in people’s day-to-day lives.

Your own projects

If you’ve created an educational tool using a Raspberry Pi, we’d love to see it. The Raspberry Pi itself is an educational tool, so you’re helping it to fulfil its destiny! Make sure you share your projects with us on social media, or pop a link in the comments below. We’d also love to see people using the Pronunciation Training Machine (or similar projects), so make sure you share those too!

A massive shout out to Artie at hackster.io for this heads-up, and for all the other Raspberry Pi projects he sends my way. What a star!

The post The Pronunciation Training Machine appeared first on Raspberry Pi.

Announcing the Winners of the AWS Chatbot Challenge – Conversational, Intelligent Chatbots using Amazon Lex and AWS Lambda

Post Syndicated from Tara Walker original https://aws.amazon.com/blogs/aws/announcing-the-winners-of-the-aws-chatbot-challenge-conversational-intelligent-chatbots-using-amazon-lex-and-aws-lambda/

A couple of months ago on the blog, I announced the AWS Chatbot Challenge in conjunction with Slack. The AWS Chatbot Challenge was an opportunity to build a unique chatbot that helped to solve a problem or that would add value for its prospective users. The mission was to build a conversational, natural language chatbot using Amazon Lex and leverage Lex’s integration with AWS Lambda to execute logic or data processing on the backend.

I know that you all have been anxiously waiting to hear announcements of who were the winners of the AWS Chatbot Challenge as much as I was. Well wait no longer, the winners of the AWS Chatbot Challenge have been decided.

May I have the Envelope Please? (The Trumpets sound)

The winners of the AWS Chatbot Challenge are:

  • First Place: BuildFax Counts by Joe Emison
  • Second Place: Hubsy by Andrew Riess, Andrew Puch, and John Wetzel
  • Third Place: PFMBot by Benny Leong and his team from MoneyLion.
  • Large Organization Winner: ADP Payroll Innovation Bot by Eric Liu, Jiaxing Yan, and Fan Yang

 

Diving into the Winning Chatbot Projects

Let’s take a walkthrough of the details for each of the winning projects to get a view of what made these chatbots distinctive, as well as, learn more about the technologies used to implement the chatbot solution.

 

BuildFax Counts by Joe Emison

The BuildFax Counts bot was created as a real solution for the BuildFax company to decrease the amount the time that sales and marketing teams can get answers on permits or properties with permits meet certain criteria.

BuildFax, a company co-founded by bot developer Joe Emison, has the only national database of building permits, which updates data from approximately half of the United States on a monthly basis. In order to accommodate the many requests that come in from the sales and marketing team regarding permit information, BuildFax has a technical sales support team that fulfills these requests sent to a ticketing system by manually writing SQL queries that run across the shards of the BuildFax databases. Since there are a large number of requests received by the internal sales support team and due to the manual nature of setting up the queries, it may take several days for getting the sales and marketing teams to receive an answer.

The BuildFax Counts chatbot solves this problem by taking the permit inquiry that would normally be sent into a ticket from the sales and marketing team, as input from Slack to the chatbot. Once the inquiry is submitted into Slack, a query executes and the inquiry results are returned immediately.

Joe built this solution by first creating a nightly export of the data in their BuildFax MySQL RDS database to CSV files that are stored in Amazon S3. From the exported CSV files, an Amazon Athena table was created in order to run quick and efficient queries on the data. He then used Amazon Lex to create a bot to handle the common questions and criteria that may be asked by the sales and marketing teams when seeking data from the BuildFax database by modeling the language used from the BuildFax ticketing system. He added several different sample utterances and slot types; both custom and Lex provided, in order to correctly parse every question and criteria combination that could be received from an inquiry.  Using Lambda, Joe created a Javascript Lambda function that receives information from the Lex intent and used it to build a SQL statement that runs against the aforementioned Athena database using the AWS SDK for JavaScript in Node.js library to return inquiry count result and SQL statement used.

The BuildFax Counts bot is used today for the BuildFax sales and marketing team to get back data on inquiries immediately that previously took up to a week to receive results.

Not only is BuildFax Counts bot our 1st place winner and wonderful solution, but its creator, Joe Emison, is a great guy.  Joe has opted to donate his prize; the $5,000 cash, the $2,500 in AWS Credits, and one re:Invent ticket to the Black Girls Code organization. I must say, you rock Joe for helping these kids get access and exposure to technology.

 

Hubsy by Andrew Riess, Andrew Puch, and John Wetzel

Hubsy bot was created to redefine and personalize the way users traditionally manage their HubSpot account. HubSpot is a SaaS system providing marketing, sales, and CRM software. Hubsy allows users of HubSpot to create engagements and log engagements with customers, provide sales teams with deals status, and retrieves client contact information quickly. Hubsy uses Amazon Lex’s conversational interface to execute commands from the HubSpot API so that users can gain insights, store and retrieve data, and manage tasks directly from Facebook, Slack, or Alexa.

In order to implement the Hubsy chatbot, Andrew and the team members used AWS Lambda to create a Lambda function with Node.js to parse the users request and call the HubSpot API, which will fulfill the initial request or return back to the user asking for more information. Terraform was used to automatically setup and update Lambda, CloudWatch logs, as well as, IAM profiles. Amazon Lex was used to build the conversational piece of the bot, which creates the utterances that a person on a sales team would likely say when seeking information from HubSpot. To integrate with Alexa, the Amazon Alexa skill builder was used to create an Alexa skill which was tested on an Echo Dot. Cloudwatch Logs are used to log the Lambda function information to CloudWatch in order to debug different parts of the Lex intents. In order to validate the code before the Terraform deployment, ESLint was additionally used to ensure the code was linted and proper development standards were followed.

 

PFMBot by Benny Leong and his team from MoneyLion

PFMBot, Personal Finance Management Bot,  is a bot to be used with the MoneyLion finance group which offers customers online financial products; loans, credit monitoring, and free credit score service to improve the financial health of their customers. Once a user signs up an account on the MoneyLion app or website, the user has the option to link their bank accounts with the MoneyLion APIs. Once the bank account is linked to the APIs, the user will be able to login to their MoneyLion account and start having a conversation with the PFMBot based on their bank account information.

The PFMBot UI has a web interface built with using Javascript integration. The chatbot was created using Amazon Lex to build utterances based on the possible inquiries about the user’s MoneyLion bank account. PFMBot uses the Lex built-in AMAZON slots and parsed and converted the values from the built-in slots to pass to AWS Lambda. The AWS Lambda functions interacting with Amazon Lex are Java-based Lambda functions which call the MoneyLion Java-based internal APIs running on Spring Boot. These APIs obtain account data and related bank account information from the MoneyLion MySQL Database.

 

ADP Payroll Innovation Bot by Eric Liu, Jiaxing Yan, and Fan Yang

ADP PI (Payroll Innovation) bot is designed to help employees of ADP customers easily review their own payroll details and compare different payroll data by just asking the bot for results. The ADP PI Bot additionally offers issue reporting functionality for employees to report payroll issues and aids HR managers in quickly receiving and organizing any reported payroll issues.

The ADP Payroll Innovation bot is an ecosystem for the ADP payroll consisting of two chatbots, which includes ADP PI Bot for external clients (employees and HR managers), and ADP PI DevOps Bot for internal ADP DevOps team.


The architecture for the ADP PI DevOps bot is different architecture from the ADP PI bot shown above as it is deployed internally to ADP. The ADP PI DevOps bot allows input from both Slack and Alexa. When input comes into Slack, Slack sends the request to Lex for it to process the utterance. Lex then calls the Lambda backend, which obtains ADP data sitting in the ADP VPC running within an Amazon VPC. When input comes in from Alexa, a Lambda function is called that also obtains data from the ADP VPC running on AWS.

The architecture for the ADP PI bot consists of users entering in requests and/or entering issues via Slack. When requests/issues are entered via Slack, the Slack APIs communicate via Amazon API Gateway to AWS Lambda. The Lambda function either writes data into one of the Amazon DynamoDB databases for recording issues and/or sending issues or it sends the request to Lex. When sending issues, DynamoDB integrates with Trello to keep HR Managers abreast of the escalated issues. Once the request data is sent from Lambda to Lex, Lex processes the utterance and calls another Lambda function that integrates with the ADP API and it calls ADP data from within the ADP VPC, which runs on Amazon Virtual Private Cloud (VPC).

Python and Node.js were the chosen languages for the development of the bots.

The ADP PI bot ecosystem has the following functional groupings:

Employee Functionality

  • Summarize Payrolls
  • Compare Payrolls
  • Escalate Issues
  • Evolve PI Bot

HR Manager Functionality

  • Bot Management
  • Audit and Feedback

DevOps Functionality

  • Reduce call volume in service centers (ADP PI Bot).
  • Track issues and generate reports (ADP PI Bot).
  • Monitor jobs for various environment (ADP PI DevOps Bot)
  • View job dashboards (ADP PI DevOps Bot)
  • Query job details (ADP PI DevOps Bot)

 

Summary

Let’s all wish all the winners of the AWS Chatbot Challenge hearty congratulations on their excellent projects.

You can review more details on the winning projects, as well as, all of the submissions to the AWS Chatbot Challenge at: https://awschatbot2017.devpost.com/submissions. If you are curious on the details of Chatbot challenge contest including resources, rules, prizes, and judges, you can review the original challenge website here:  https://awschatbot2017.devpost.com/.

Hopefully, you are just as inspired as I am to build your own chatbot using Lex and Lambda. For more information, take a look at the Amazon Lex developer guide or the AWS AI blog on Building Better Bots Using Amazon Lex (Part 1)

Chat with you soon!

Tara

What’s the Diff: Programs, Processes, and Threads

Post Syndicated from Roderick Bauer original https://www.backblaze.com/blog/whats-the-diff-programs-processes-and-threads/

let's talk about Threads

How often have you heard the term threading in relation to a computer program, but you weren’t exactly sure what it meant? How about processes? You likely understand that a thread is somehow closely related to a program and a process, but if you’re not a computer science major, maybe that’s as far as your understanding goes.

Knowing what these terms mean is absolutely essential if you are a programmer, but an understanding of them also can be useful to the average computer user. Being able to look at and understand the Activity Monitor on the Macintosh, the Task Manager on Windows, or Top on Linux can help you troubleshoot which programs are causing problems on your computer, or whether you might need to install more memory to make your system run better.

Let’s take a few minutes to delve into the world of computer programs and sort out what these terms mean. We’ll simplify and generalize some of the ideas, but the general concepts we cover should help clarify the difference between the terms.

Programs

First of all, you probably are aware that a program is the code that is stored on your computer that is intended to fulfill a certain task. There are many types of programs, including programs that help your computer function and are part of the operating system, and other programs that fulfill a particular job. These task-specific programs are also known as “applications,” and can include programs such as word processing, web browsing, or emailing a message to another computer.

Program

Programs are typically stored on disk or in non-volatile memory in a form that can be executed by your computer. Prior to that, they are created using a programming language such as C, Lisp, Pascal, or many others using instructions that involve logic, data and device manipulation, recurrence, and user interaction. The end result is a text file of code that is compiled into binary form (1’s and 0’s) in order to run on the computer. Another type of program is called “interpreted,” and instead of being compiled in advance in order to run, is interpreted into executable code at the time it is run. Some common, typically interpreted programming languages, are Python, PHP, JavaScript, and Ruby.

The end result is the same, however, in that when a program is run, it is loaded into memory in binary form. The computer’s CPU (Central Processing Unit) understands only binary instructions, so that’s the form the program needs to be in when it runs.

Perhaps you’ve heard the programmer’s joke, “There are only 10 types of people in the world, those who understand binary, and those who don’t.”

Binary is the native language of computers because an electrical circuit at its basic level has two states, on or off, represented by a one or a zero. In the common numbering system we use every day, base 10, each digit position can be anything from 0 to 9. In base 2 (or binary), each position is either a 0 or a 1. (In a future blog post we might cover quantum computing, which goes beyond the concept of just 1’s and 0’s in computing.)

Decimal—Base 10 Binary—Base 2
0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001

How Processes Work

The program has been loaded into the computer’s memory in binary form. Now what?

An executing program needs more than just the binary code that tells the computer what to do. The program needs memory and various operating system resources that it needs in order to run. A “process” is what we call a program that has been loaded into memory along with all the resources it needs to operate. The “operating system” is the brains behind allocating all these resources, and comes in different flavors such as macOS, iOS, Microsoft Windows, Linux, and Android. The OS handles the task of managing the resources needed to turn your program into a running process.

Some essential resources every process needs are registers, a program counter, and a stack. The “registers” are data holding places that are part of the computer processor (CPU). A register may hold an instruction, a storage address, or other kind of data needed by the process. The “program counter,” also called the “instruction pointer,” keeps track of where a computer is in its program sequence. The “stack” is a data structure that stores information about the active subroutines of a computer program and is used as scratch space for the process. It is distinguished from dynamically allocated memory for the process that is known as “the heap.”

diagram of how processes work

There can be multiple instances of a single program, and each instance of that running program is a process. Each process has a separate memory address space, which means that a process runs independently and is isolated from other processes. It cannot directly access shared data in other processes. Switching from one process to another requires some time (relatively) for saving and loading registers, memory maps, and other resources.

This independence of processes is valuable because the operating system tries its best to isolate processes so that a problem with one process doesn’t corrupt or cause havoc with another process. You’ve undoubtedly run into the situation in which one application on your computer freezes or has a problem and you’ve been able to quit that program without affecting others.

How Threads Work

So, are you still with us? We finally made it to threads!

A thread is the unit of execution within a process. A process can have anywhere from just one thread to many threads.

Process vs. Thread

diagram of threads in a process over time

When a process starts, it is assigned memory and resources. Each thread in the process shares that memory and resources. In single-threaded processes, the process contains one thread. The process and the thread are one and the same, and there is only one thing happening.

In multithreaded processes, the process contains more than one thread, and the process is accomplishing a number of things at the same time (technically, it’s almost at the same time—read more on that in the “What about Parallelism and Concurrency?” section below).

diagram of single and multi-treaded process

We talked about the two types of memory available to a process or a thread, the stack and the heap. It is important to distinguish between these two types of process memory because each thread will have its own stack, but all the threads in a process will share the heap.

Threads are sometimes called lightweight processes because they have their own stack but can access shared data. Because threads share the same address space as the process and other threads within the process, the operational cost of communication between the threads is low, which is an advantage. The disadvantage is that a problem with one thread in a process will certainly affect other threads and the viability of the process itself.

Threads vs. Processes

So to review:

  1. The program starts out as a text file of programming code,
  2. The program is compiled or interpreted into binary form,
  3. The program is loaded into memory,
  4. The program becomes one or more running processes.
  5. Processes are typically independent of each other,
  6. While threads exist as the subset of a process.
  7. Threads can communicate with each other more easily than processes can,
  8. But threads are more vulnerable to problems caused by other threads in the same process.

Processes vs. Threads — Advantages and Disadvantages

Process Thread
Processes are heavyweight operations Threads are lighter weight operations
Each process has its own memory space Threads use the memory of the process they belong to
Inter-process communication is slow as processes have different memory addresses Inter-thread communication can be faster than inter-process communication because threads of the same process share memory with the process they belong to
Context switching between processes is more expensive Context switching between threads of the same process is less expensive
Processes don’t share memory with other processes Threads share memory with other threads of the same process

What about Concurrency and Parallelism?

A question you might ask is whether processes or threads can run at the same time. The answer is: it depends. On a system with multiple processors or CPU cores (as is common with modern processors), multiple processes or threads can be executed in parallel. On a single processor, though, it is not possible to have processes or threads truly executing at the same time. In this case, the CPU is shared among running processes or threads using a process scheduling algorithm that divides the CPU’s time and yields the illusion of parallel execution. The time given to each task is called a “time slice.” The switching back and forth between tasks happens so fast it is usually not perceptible. The terms parallelism (true operation at the same time) and concurrency (simulated operation at the same time), distinguish between the two type of real or approximate simultaneous operation.

diagram of concurrency and parallelism

Why Choose Process over Thread, or Thread over Process?

So, how would a programmer choose between a process and a thread when creating a program in which she wants to execute multiple tasks at the same time? We’ve covered some of the differences above, but let’s look at a real world example with a program that many of us use, Google Chrome.

When Google was designing the Chrome browser, they needed to decide how to handle the many different tasks that needed computer, communications, and network resources at the same time. Each browser window or tab communicates with multiple servers on the internet to retrieve text, programs, graphics, audio, video, and other resources, and renders that data for display and interaction with the user. In addition, the browser can open many windows, each with many tasks.

Google had to decide how to handle that separation of tasks. They chose to run each browser window in Chrome as a separate process rather than a thread or many threads, as is common with other browsers. Doing that brought Google a number of benefits. Running each window as a process protects the overall application from bugs and glitches in the rendering engine and restricts access from each rendering engine process to others and to the rest of the system. Isolating JavaScript programs in a process prevents them from running away with too much CPU time and memory, and making the entire browser non-responsive.

Google made the calculated trade-off with a multi-processing design as starting a new process for each browser window has a higher fixed cost in memory and resources than using threads. They were betting that their approach would end up with less memory bloat overall.

Using processes instead of threads provides better memory usage when memory gets low. An inactive window is treated as a lower priority by the operating system and becomes eligible to be swapped to disk when memory is needed for other processes, helping to keep the user-visible windows more responsive. If the windows were threaded, it would be more difficult to separate the used and unused memory as cleanly, wasting both memory and performance.

You can read more about Google’s design decisions on Google’s Chromium Blog or on the Chrome Introduction Comic.

The screen capture below shows the Google Chrome processes running on a MacBook Air with many tabs open. Some Chrome processes are using a fair amount of CPU time and resources, and some are using very little. You can see that each process also has many threads running as well.

activity monitor of Google Chrome

The Activity Monitor or Task Manager on your system can be a valuable ally in helping fine-tune your computer or troubleshooting problems. If your computer is running slowly, or a program or browser window isn’t responding for a while, you can check its status using the system monitor. Sometimes you’ll see a process marked as “Not Responding.” Try quitting that process and see if your system runs better. If an application is a memory hog, you might consider choosing a different application that will accomplish the same task.

Windows Task Manager view

Made it This Far?

We hope this Tron-like dive into the fascinating world of computer programs, processes, and threads has helped clear up some questions you might have had.

The next time your computer is running slowly or an application is acting up, you know your assignment. Fire up the system monitor and take a look under the hood to see what’s going on. You’re in charge now.

We love to hear from you

Are you still confused? Have questions? If so, please let us know in the comments. And feel free to suggest topics for future blog posts.

The post What’s the Diff: Programs, Processes, and Threads appeared first on Backblaze Blog | Cloud Storage & Cloud Backup.

Nazis, are bad

Post Syndicated from Eevee original https://eev.ee/blog/2017/08/13/nazis-are-bad/

Anonymous asks:

Could you talk about something related to the management/moderation and growth of online communities? IOW your thoughts on online community management, if any.

I think you’ve tweeted about this stuff in the past so I suspect you have thoughts on this, but if not, again, feel free to just blog about … anything 🙂

Oh, I think I have some stuff to say about community management, in light of recent events. None of it hasn’t already been said elsewhere, but I have to get this out.

Hopefully the content warning is implicit in the title.


I am frustrated.

I’ve gone on before about a particularly bothersome phenomenon that hurts a lot of small online communities: often, people are willing to tolerate the misery of others in a community, but then get up in arms when someone pushes back. Someone makes a lot of off-hand, off-color comments about women? Uses a lot of dog-whistle terms? Eh, they’re not bothering anyone, or at least not bothering me. Someone else gets tired of it and tells them to knock it off? Whoa there! Now we have the appearance of conflict, which is unacceptable, and people will turn on the person who’s pissed off — even though they’ve been at the butt end of an invisible conflict for who knows how long. The appearance of peace is paramount, even if it means a large chunk of the population is quietly miserable.

Okay, so now, imagine that on a vastly larger scale, and also those annoying people who know how to skirt the rules are Nazis.


The label “Nazi” gets thrown around a lot lately, probably far too easily. But when I see a group of people doing the Hitler salute, waving large Nazi flags, wearing Nazi armbands styled after the SS, well… if the shoe fits, right? I suppose they might have flown across the country to join a torch-bearing mob ironically, but if so, the joke is going way over my head. (Was the murder ironic, too?) Maybe they’re not Nazis in the sense that the original party doesn’t exist any more, but for ease of writing, let’s refer to “someone who espouses Nazi ideology and deliberately bears a number of Nazi symbols” as, well, “a Nazi”.

This isn’t a new thing, either; I’ve stumbled upon any number of Twitter accounts that are decorated in Nazi regalia. I suppose the trouble arises when perfectly innocent members of the alt-right get unfairly labelled as Nazis.

But hang on; this march was called “Unite the Right” and was intended to bring together various far right sub-groups. So what does their choice of aesthetic say about those sub-groups? I haven’t heard, say, alt-right coiner Richard Spencer denounce the use of Nazi symbology — extra notable since he was fucking there and apparently didn’t care to discourage it.


And so begins the rule-skirting. “Nazi” is definitely overused, but even using it to describe white supremacists who make not-so-subtle nods to Hitler is likely to earn you some sarcastic derailment. A Nazi? Oh, so is everyone you don’t like and who wants to establish a white ethno state a Nazi?

Calling someone a Nazi — or even a white supremacist — is an attack, you see. Merely expressing the desire that people of color not exist is perfectly peaceful, but identifying the sentiment for what it is causes visible discord, which is unacceptable.

These clowns even know this sort of thing and strategize around it. Or, try, at least. Maybe it wasn’t that successful this weekend — though flicking through Charlottesville headlines now, they seem to be relatively tame in how they refer to the ralliers.

I’m reminded of a group of furries — the alt-furries — who have been espousing white supremacy and wearing red armbands with a white circle containing a black… pawprint. Ah, yes, that’s completely different.


So, what to do about this?

Ignore them” is a popular option, often espoused to bullied children by parents who have never been bullied, shortly before they resume complaining about passive-aggressive office politics. The trouble with ignoring them is that, just like in smaller communitiest, they have a tendency to fester. They take over large chunks of influential Internet surface area like 4chan and Reddit; they help get an inept buffoon elected; and then they start to have torch-bearing rallies and run people over with cars.

4chan illustrates a kind of corollary here. Anyone who’s steeped in Internet Culture™ is surely familiar with 4chan; I was never a regular visitor, but it had enough influence that I was still aware of it and some of its culture. It was always thick with irony, which grew into a sort of ironic detachment — perhaps one of the major sources of the recurring online trope that having feelings is bad — which proceeded into ironic racism.

And now the ironic racism is indistinguishable from actual racism, as tends to be the case. Do they “actually” “mean it”, or are they just trying to get a rise out of people? What the hell is unironic racism if not trying to get a rise out of people? What difference is there to onlookers, especially as they move to become increasingly involved with politics?

It’s just a joke” and “it was just a thoughtless comment” are exceptionally common defenses made by people desperate to preserve the illusion of harmony, but the strain of overt white supremacy currently running rampant through the US was built on those excuses.


The other favored option is to debate them, to defeat their ideas with better ideas.

Well, hang on. What are their ideas, again? I hear they were chanting stuff like “go back to Africa” and “fuck you, faggots”. Given that this was an overtly political rally (and again, the Nazi fucking regalia), I don’t think it’s a far cry to describe their ideas as “let’s get rid of black people and queer folks”.

This is an underlying proposition: that white supremacy is inherently violent. After all, if the alt-right seized total political power, what would they do with it? If I asked the same question of Democrats or Republicans, I’d imagine answers like “universal health care” or “screw over poor people”. But people whose primary goal is to have a country full of only white folks? What are they going to do, politely ask everyone else to leave? They’re invoking the memory of people who committed genocide and also tried to take over the fucking world. They are outright saying, these are the people we look up to, this is who we think had a great idea.

How, precisely, does one defeat these ideas with rational debate?

Because the underlying core philosophy beneath all this is: “it would be good for me if everything were about me”. And that’s true! (Well, it probably wouldn’t work out how they imagine in practice, but it’s true enough.) Consider that slavery is probably fantastic if you’re the one with the slaves; the issue is that it’s reprehensible, not that the very notion contains some kind of 101-level logical fallacy. That’s probably why we had a fucking war over it instead of hashing it out over brunch.

…except we did hash it out over brunch once, and the result was that slavery was still allowed but slaves only counted as 60% of a person for the sake of counting how much political power states got. So that’s how rational debate worked out. I’m sure the slaves were thrilled with that progress.


That really only leaves pushing back, which raises the question of how to push back.

And, I don’t know. Pushing back is much harder in spaces you don’t control, spaces you’re already struggling to justify your own presence in. For most people, that’s most spaces. It’s made all the harder by that tendency to preserve illusory peace; even the tamest request that someone knock off some odious behavior can be met by pushback, even by third parties.

At the same time, I’m aware that white supremacists prey on disillusioned young white dudes who feel like they don’t fit in, who were promised the world and inherited kind of a mess. Does criticism drive them further away? The alt-right also opposes “political correctness”, i.e. “not being a fucking asshole”.

God knows we all suck at this kind of behavior correction, even within our own in-groups. Fandoms have become almost ridiculously vicious as platforms like Twitter and Tumblr amplify individual anger to deafening levels. It probably doesn’t help that we’re all just exhausted, that every new fuck-up feels like it bears the same weight as the last hundred combined.

This is the part where I admit I don’t know anything about people and don’t have any easy answers. Surprise!


The other alternative is, well, punching Nazis.

That meme kind of haunts me. It raises really fucking complicated questions about when violence is acceptable, in a culture that’s completely incapable of answering them.

America’s relationship to violence is so bizarre and two-faced as to be almost incomprehensible. We worship it. We have the biggest military in the world by an almost comical margin. It’s fairly mainstream to own deadly weapons for the express stated purpose of armed revolution against the government, should that become necessary, where “necessary” is left ominously undefined. Our movies are about explosions and beating up bad guys; our video games are about explosions and shooting bad guys. We fantasize about solving foreign policy problems by nuking someone — hell, our talking heads are currently in polite discussion about whether we should nuke North Korea and annihilate up to twenty-five million people, as punishment for daring to have the bomb that only we’re allowed to have.

But… violence is bad.

That’s about as far as the other side of the coin gets. It’s bad. We condemn it in the strongest possible terms. Also, guess who we bombed today?

I observe that the one time Nazis were a serious threat, America was happy to let them try to take over the world until their allies finally showed up on our back porch.

Maybe I don’t understand what “violence” means. In a quest to find out why people are talking about “leftist violence” lately, I found a National Review article from May that twice suggests blocking traffic is a form of violence. Anarchists have smashed some windows and set a couple fires at protests this year — and, hey, please knock that crap off? — which is called violence against, I guess, Starbucks. Black Lives Matter could be throwing a birthday party and Twitter would still be abuzz with people calling them thugs.

Meanwhile, there’s a trend of murderers with increasingly overt links to the alt-right, and everyone is still handling them with kid gloves. First it was murders by people repeating their talking points; now it’s the culmination of a torches-and-pitchforks mob. (Ah, sorry, not pitchforks; assault rifles.) And we still get this incredibly bizarre both-sides-ism, a White House that refers to the people who didn’t murder anyone as “just as violent if not more so“.


Should you punch Nazis? I don’t know. All I know is that I’m extremely dissatisfied with discourse that’s extremely alarmed by hypothetical punches — far more mundane than what you’d see after a sporting event — but treats a push for ethnic cleansing as a mere difference of opinion.

The equivalent to a punch in an online space is probably banning, which is almost laughable in comparison. It doesn’t cause physical harm, but it is a use of concrete force. Doesn’t pose quite the same moral quandary, though.

Somewhere in the middle is the currently popular pastime of doxxing (doxxxxxxing) people spotted at the rally in an attempt to get them fired or whatever. Frankly, that skeeves me out, though apparently not enough that I’m directly chastizing anyone for it.


We aren’t really equipped, as a society, to deal with memetic threats. We aren’t even equipped to determine what they are. We had a fucking world war over this, and now people are outright saying “hey I’m like those people we went and killed a lot in that world war” and we give them interviews and compliment their fashion sense.

A looming question is always, what if they then do it to you? What if people try to get you fired, to punch you for your beliefs?

I think about that a lot, and then I remember that it’s perfectly legal to fire someone for being gay in half the country. (Courts are currently wrangling whether Title VII forbids this, but with the current administration, I’m not optimistic.) I know people who’ve been fired for coming out as trans. I doubt I’d have to look very far to find someone who’s been punched for either reason.

And these aren’t even beliefs; they’re just properties of a person. You can stop being a white supremacist, one of those people yelling “fuck you, faggots”.

So I have to recuse myself from this asinine question, because I can’t fairly judge the risk of retaliation when it already happens to people I care about.

Meanwhile, if a white supremacist does get punched, I absolutely still want my tax dollars to pay for their universal healthcare.


The same wrinkle comes up with free speech, which is paramount.

The ACLU reminds us that the First Amendment “protects vile, hateful, and ignorant speech”. I think they’ve forgotten that that’s a side effect, not the goal. No one sat down and suggested that protecting vile speech was some kind of noble cause, yet that’s how we seem to be treating it.

The point was to avoid a situation where the government is arbitrarily deciding what qualifies as vile, hateful, and ignorant, and was using that power to eliminate ideas distasteful to politicians. You know, like, hypothetically, if they interrogated and jailed a bunch of people for supporting the wrong economic system. Or convicted someone under the Espionage Act for opposing the draft. (Hey, that’s where the “shouting fire in a crowded theater” line comes from.)

But these are ideas that are already in the government. Bannon, a man who was chair of a news organization he himself called “the platform for the alt-right”, has the President’s ear! How much more mainstream can you get?

So again I’m having a little trouble balancing “we need to defend the free speech of white supremacists or risk losing it for everyone” against “we fairly recently were ferreting out communists and the lingering public perception is that communists are scary, not that the government is”.


This isn’t to say that freedom of speech is bad, only that the way we talk about it has become fanatical to the point of absurdity. We love it so much that we turn around and try to apply it to corporations, to platforms, to communities, to interpersonal relationships.

Look at 4chan. It’s completely public and anonymous; you only get banned for putting the functioning of the site itself in jeopardy. Nothing is stopping a larger group of people from joining its politics board and tilting sentiment the other way — except that the current population is so odious that no one wants to be around them. Everyone else has evaporated away, as tends to happen.

Free speech is great for a government, to prevent quashing politics that threaten the status quo (except it’s a joke and they’ll do it anyway). People can’t very readily just bail when the government doesn’t like them, anyway. It’s also nice to keep in mind to some degree for ubiquitous platforms. But the smaller you go, the easier it is for people to evaporate away, and the faster pure free speech will turn the place to crap. You’ll be left only with people who care about nothing.


At the very least, it seems clear that the goal of white supremacists is some form of destabilization, of disruption to the fabric of a community for purely selfish purposes. And those are the kinds of people you want to get rid of as quickly as possible.

Usually this is hard, because they act just nicely enough to create some plausible deniability. But damn, if someone is outright telling you they love Hitler, maybe skip the principled hand-wringing and eject them.

Growing up alongside tech

Post Syndicated from Eevee original https://eev.ee/blog/2017/08/09/growing-up-alongside-tech/

IndustrialRobot asks… or, uh, asked last month:

industrialrobot: How has your views on tech changed as you’ve got older?

This is so open-ended that it’s actually stumped me for a solid month. I’ve had a surprisingly hard time figuring out where to even start.


It’s not that my views of tech have changed too much — it’s that they’ve changed very gradually. Teasing out and explaining any one particular change is tricky when it happened invisibly over the course of 10+ years.

I think a better framework for this is to consider how my relationship to tech has changed. It’s gone through three pretty distinct phases, each of which has strongly colored how I feel and talk about technology.

Act I

In which I start from nothing.

Nothing is an interesting starting point. You only really get to start there once.

Learning something on my own as a kid was something of a magical experience, in a way that I don’t think I could replicate as an adult. I liked computers; I liked toying with computers; so I did that.

I don’t know how universal this is, but when I was a kid, I couldn’t even conceive of how incredible things were made. Buildings? Cars? Paintings? Operating systems? Where does any of that come from? Obviously someone made them, but it’s not the sort of philosophical point I lingered on when I was 10, so in the back of my head they basically just appeared fully-formed from the æther.

That meant that when I started trying out programming, I had no aspirations. I couldn’t imagine how far I would go, because all the examples of how far I would go were completely disconnected from any idea of human achievement. I started out with BASIC on a toy computer; how could I possibly envision a connection between that and something like a mainstream video game? Every new thing felt like a new form of magic, so I couldn’t conceive that I was even in the same ballpark as whatever process produced real software. (Even seeing the source code for GORILLAS.BAS, it didn’t quite click. I didn’t think to try reading any of it until years after I’d first encountered the game.)

This isn’t to say I didn’t have goals. I invented goals constantly, as I’ve always done; as soon as I learned about a new thing, I’d imagine some ways to use it, then try to build them. I produced a lot of little weird goofy toys, some of which entertained my tiny friend group for a couple days, some of which never saw the light of day. But none of it felt like steps along the way to some mountain peak of mastery, because I didn’t realize the mountain peak was even a place that could be gone to. It was pure, unadulterated (!) playing.

I contrast this to my art career, which started only a couple years ago. I was already in my late 20s, so I’d already spend decades seeing a very broad spectrum of art: everything from quick sketches up to painted masterpieces. And I’d seen the people who create that art, sometimes seen them create it in real-time. I’m even in a relationship with one of them! And of course I’d already had the experience of advancing through tech stuff and discovering first-hand that even the most amazing software is still just code someone wrote.

So from the very beginning, from the moment I touched pencil to paper, I knew the possibilities. I knew that the goddamn Sistine Chapel was something I could learn to do, if I were willing to put enough time in — and I knew that I’m not, so I’d have to settle somewhere a ways before that. I knew that I’d have to put an awful lot of work in before I’d be producing anything very impressive.

I did it anyway (though perhaps waited longer than necessary to start), but those aren’t things I can un-know, and so I can never truly explore art from a place of pure ignorance. On the other hand, I’ve probably learned to draw much more quickly and efficiently than if I’d done it as a kid, precisely because I know those things. Now I can decide I want to do something far beyond my current abilities, then go figure out how to do it. When I was just playing, that kind of ambition was impossible.


So, I played.

How did this affect my views on tech? Well, I didn’t… have any. Learning by playing tends to teach you things in an outward sprawl without many abrupt jumps to new areas, so you don’t tend to run up against conflicting information. The whole point of opinions is that they’re your own resolution to a conflict; without conflict, I can’t meaningfully say I had any opinions. I just accepted whatever I encountered at face value, because I didn’t even know enough to suspect there could be alternatives yet.

Act II

That started to seriously change around, I suppose, the end of high school and beginning of college. I was becoming aware of this whole “open source” concept. I took classes that used languages I wouldn’t otherwise have given a second thought. (One of them was Python!) I started to contribute to other people’s projects. Eventually I even got a job, where I had to work with other people. It probably also helped that I’d had to maintain my own old code a few times.

Now I was faced with conflicting subjective ideas, and I had to form opinions about them! And so I did. With gusto. Over time, I developed an idea of what was Right based on experience I’d accrued. And then I set out to always do things Right.

That’s served me decently well with some individual problems, but it also led me to inflict a lot of unnecessary pain on myself. Several endeavors languished for no other reason than my dissatisfaction with the architecture, long before the basic functionality was done. I started a number of “pure” projects around this time, generic tools like imaging libraries that I had no direct need for. I built them for the sake of them, I guess because I felt like I was improving some niche… but of course I never finished any. It was always in areas I didn’t know that well in the first place, which is a fine way to learn if you have a specific concrete goal in mind — but it turns out that building a generic library for editing images means you have to know everything about images. Perhaps that ambition went a little haywire.

I’ve said before that this sort of (self-inflicted!) work was unfulfilling, in part because the best outcome would be that a few distant programmers’ lives are slightly easier. I do still think that, but I think there’s a deeper point here too.

In forgetting how to play, I’d stopped putting any of myself in most of the work I was doing. Yes, building an imaging library is kind of a slog that someone has to do, but… I assume the people who work on software like PIL and ImageMagick are actually interested in it. The few domains I tried to enter and revolutionize weren’t passions of mine; I just happened to walk through the neighborhood one day and decided I could obviously do it better.

Not coincidentally, this was the same era of my life that led me to write stuff like that PHP post, which you may notice I am conspicuously not even linking to. I don’t think I would write anything like it nowadays. I could see myself approaching the same subject, but purely from the point of view of language design, with more contrasts and tradeoffs and less going for volume. I certainly wouldn’t lead off with inflammatory puffery like “PHP is a community of amateurs”.

Act III

I think I’ve mellowed out a good bit in the last few years.

It turns out that being Right is much less important than being Not Wrong — i.e., rather than trying to make something perfect that can be adapted to any future case, just avoid as many pitfalls as possible. Code that does something useful has much more practical value than unfinished code with some pristine architecture.

Nowhere is this more apparent than in game development, where all code is doomed to be crap and the best you can hope for is to stem the tide. But there’s also a fixed goal that’s completely unrelated to how the code looks: does the game work, and is it fun to play? Yes? Ship the damn thing and forget about it.

Games are also nice because it’s very easy to pour my own feelings into them and evoke feelings in the people who play them. They’re mine, something with my fingerprints on them — even the games I’ve built with glip have plenty of my own hallmarks, little touches I added on a whim or attention to specific details that I care about.

Maybe a better example is the Doom map parser I started writing. It sounds like a “pure” problem again, except that I actually know an awful lot about the subject already! I also cleverly (accidentally) released some useful results of the work I’ve done thusfar — like statistics about Doom II maps and a few screenshots of flipped stock maps — even though I don’t think the parser itself is far enough along to release yet. The tool has served a purpose, one with my fingerprints on it, even without being released publicly. That keeps it fresh in my mind as something interesting I’d like to keep working on, eventually. (When I run into an architecture question, I step back for a while, or I do other work in the hopes that the solution will reveal itself.)

I also made two simple Pokémon ROM hacks this year, despite knowing nothing about Game Boy internals or assembly when I started. I just decided I wanted to do an open-ended thing beyond my reach, and I went to do it, not worrying about cleanliness and willing to accept a bumpy ride to get there. I played, but in a more experienced way, invoking the stuff I know (and the people I’ve met!) to help me get a running start in completely unfamiliar territory.


This feels like a really fine distinction that I’m not sure I’m doing justice. I don’t know if I could’ve appreciated it three or four years ago. But I missed making toys, and I’m glad I’m doing it again.

In short, I forgot how to have fun with programming for a little while, and I’ve finally started to figure it out again. And that’s far more important than whether you use PHP or not.

New – Amazon Connect and Amazon Lex Integration

Post Syndicated from Randall Hunt original https://aws.amazon.com/blogs/aws/new-amazon-connect-and-amazon-lex-integration/

I’m really excited to share some recent enhancements to two of my favorite services: Amazon Connect and Amazon Lex. Amazon Connect is a self-service, cloud-based contact center service that makes it easy for any business to deliver better customer service at lower cost. Amazon Lex is a service for building conversational interfaces using voice and text. By integrating these two services you can take advantage of Lex‘s automatic speech recognition (ASR) and natural language processing/understading (NLU) capabilities to create great self-service experiences for your customers. To enable this integration the Lex team added support for 8kHz speech input – more on that later. Why should you care about this? Well, if the a bot can solve the majority of your customer’s requests your customers spend less time waiting on hold and more time using your products.

If you need some more background on Amazon Connect or Lex I strongly recommend Jeff’s previous posts[1][2] on these services – especially if you like LEGOs.


Let’s dive in and learn to use this new integration. We’ll take an application that we built on our Twitch channel and modify it for this blog. At the application’s core a user calls an Amazon Connect number which connects them to an Lex bot which invokes an AWS Lambda function based on an intent from Lex. So what does our little application do?

I want to finally settle the question of what the best code editor is: I like vim, it’s a spectacular editor that does one job exceptionally well – editing code (it’s the best). My colleague Jeff likes emacs, a great operating system editor… if you were born with extra joints in your fingers. My colleague Tara loves Visual Studio and sublime. Rather than fighting over what the best editor is I thought we might let you, dear reader, vote. Don’t worry you can even vote for butterflies.

Interested in voting? Call +1 614-569-4019 and tell us which editor you’re voting for! We don’t store your number or record your voice so feel free to vote more than once for vim. Want to see the votes live? http://best-editor-ever.s3-website-us-east-1.amazonaws.com/.

Now, how do we build this little contraption? We’ll cover each component but since we’ve talked about Lex and Lambda before we’ll focus mostly on the Amazon Connect component. I’m going to assume you already have a connect instance running.

Amazon Lex

Let’s start with the Lex side of things. We’ll create a bot named VoteEditor with two intents: VoteEditor with a single slot called editor and ConnectToAgent with no slots. We’ll populate our editor slot full of different code editor names (maybe we’ll leave out emacs).

AWS Lambda

Our Lambda function will also be fairly simple. First we’ll create a Amazon DynamoDB table to store our votes. Then we’ll make a helper method to respond to Lex (build_response) – it will just wrap our message in a Lex friendly response format. Now we just have to figure out our flow logic.


def lambda_handler(event, context):
    if 'ConnectToAgent' == event['currentIntent']['name']:
        return build_response("Ok, connecting you to an agent.")
    elif 'VoteEditor' == event['currentIntent']['name']:
        editor = event['currentIntent']['slots']['editor']
        resp = ddb.update_item(
            Key={"name": editor.lower()},
            UpdateExpression="SET votes = :incr + if_not_exists(votes, :default)",
            ExpressionAttributeValues={":incr": 1, ":default": 0},
            ReturnValues="ALL_NEW"
        )
        msg = "Awesome, now {} has {} votes!".format(
            resp['Attributes']['name'],
            resp['Attributes']['votes'])
        return build_response(msg)

Let’s make sure we understand the code. So, if we got a vote for an editor and it doesn’t exist yet then we add that editor with 1 vote. Otherwise we increase the number of votes on that editor by 1. If we get a request for an agent, we terminate the flow with a nice message. Easy. Now we just tell our Lex bot to use our Lambda function to fulfill our intents. We can test that everything is working over text in the Lex console before moving on.

Amazon Connect

Before we can use our Lex bot in a Contact Flow we have to make sure our Amazon Connect instance has access to it. We can do this by hopping over to the Amazon Connect service console, selecting our instance, and navigating to “Contact Flows”. There should be a section called Lex where you can add your bots!

Now that our Amazon Connect instance can invoke our Lex bot we can create a new Contact Flow that contains our Lex bot. We add the bot to our flow through the “Get customer input” widget from the “Interact” category.

Once we’re on the widget we have a “DTMF” tab for taking input from number keys on a phone or the “Amazon Lex” tab for taking voiceinput and passing it to the Lex service. We’ll use the Lex tab and put in some configuration.

Lots of options, but in short we add the bot we want to use (including the version of the bot), the intents we want to use from our bot, and a short prompt to introduce the bot (and mayb prompt the customer for input).

Our final contact flow looks like this:

A real world example might allow a customer to perform many transactions through a Lex bot. Then on an error or ConnectToAgent intent put the customer into a queue where they could talk to a real person. It could collect and store information about users and populate a rich interface for an agent to use so they could jump right into the conversation with all the context they need.

I want to especially highlight the advantage of 8kHz audio support in Lex. Lex originally only supported speech input that was sampled at a higher rate than the 8 kHz input from the phone. Modern digital communication appliations typically use audio signals sampled at a minimum of 16 kHz. This higher fidelity recroding makes it easier differentiate between sounds like “ess” (/s/) and “eff” (/f/) – or so the audio experts tell me. Phones, however, use a much lower quality recording. Humans, and their ears, are pretty good at using surrounding words to figure out what a voice is saying from a lower quality recording (just check the NASA apollo recordings for proof of this). Most digital phone systems are setup to use 8 kHz sampling by default – it’s a nice tradeoff in bandwidth and fidelity. That’s why your voice sometimes sounds different on the phone. On top of this fundmental sampling rate issue you also have to deal with the fact that a lot of phone call data is already lossy (can you hear me now?). There are thousands of different devices from hundreds of different manufacturers, and tons of different software implentations. So… how do you solve this recognition issue?

The Lex team decided that the best way to address this was to expand the set of models they were using for speech recognition to include an 8kHz model. Support for an 8 kHz telephony audio sampling rate provides increased speech recognition accuracy and fidelity for your contact center interactions. This was a great effort by the team that enables a lot of customers to do more with Amazon Connect.

One final note is that Amazon Connect uses the exact same PostContent endpoint that you can use as an external developer so you don’t have to be a Amazon Connect user to take advantage of this 8kHz feature in Lex.

I hope you guys enjoyed this post and as always the real details are in the docs and API Reference.

Randall

Concerns About The Blockchain Technology

Post Syndicated from Bozho original https://techblog.bozho.net/concerns-blockchain-technology/

The so-called (and marketing-branded) “blockchain technology” is promised to revolutionize every industry. Anything, they say, will become decentralized, free from middle men or government control. Services will thrive on various installments of the blockchain, and smart contracts will automatically enforce any logic that is related to the particular domain.

I don’t mind having another technological leap (after the internet), and given that I’m technically familiar with the blockchain, I may even be part of it. But I’m not convinced it will happen, and I’m not convinced it’s going to be the next internet.

If we strip the hype, the technology behind Bitcoin is indeed a technical masterpiece. It combines existing techniques (likes hash chains and merkle trees) with a very good proof-of-work based consensus algorithm. And it creates a digital currency, which ontop of being worth billions now, is simply cool.

But will this technology be mass-adopted, and will mass adoption allow it to retain the technological benefits it has?

First, I’d like to nitpick a little bit – if anyone is speaking about “decentralized software” when referring to “the blockchain”, be suspicious. Bitcon and other peer-to-peer overlay networks are in fact “distributed” (see the pictures here). “Decentralized” means having multiple providers, but doesn’t mean each user will be full-featured nodes on the network. This nitpicking is actually part of another argument, but we’ll get to that.

If blockchain-based applications want to reach mass adoption, they have to be user-friendly. I know I’m being captain obvious here (and fortunately some of the people in the area have realized that), but with the current state of the technology, it’s impossible for end users to even get it, let alone use it.

My first serious concern is usability. To begin with, you need to download the whole blockchain on your machine. When I got my first bitcoin several years ago (when it was still 10 euro), the blockchain was kind of small and I didn’t notice that problem. Nowadays both the Bitcoin and Ethereum blockchains take ages to download. I still haven’t managed to download the ethereum one – after several bugs and reinstalls of the client, I’m still at 15%. And we are just at the beginning. A user just will not wait for days to download something in order to be able to start using a piece of technology.

I recently proposed downloading snapshots of the blockchain via bittorrent to be included in the Ethereum protocol itself. I know that snapshots of the Bitcoin blockchain have been distributed that way, but it has been a manual process. If a client can quickly download the huge file up to a recent point, and then only donwload the latest ones in the the traditional way, starting up may be easier. Of course, the whole chain would have to be verified, but maybe that can be a background process that doesn’t stop you from using whatever is built ontop of the particular blockchain. (I’m not sure if that will be secure enough, and that, say potential Sybil attacks on the bittorrent part won’t make it undesirable, it’s just an idea).

But even if such an approach works and is adopted, that would still mean that for every service you’d have to download a separate blockchain. Of course, projects like Ethereum may seem like the “one stop shop” for cool blockchain-based applications, but fragmentation is already happening – there are alt-coins bundled with various services like file storage, DNS, etc. That will not be workable for end-users. And it’s certainly not an option for mobile, which is the dominant client now. If instead of downloading the entire chain, something like consistent hashing is used to distribute the content in small portions among clients, it might be workable. But how will trust work in that case, I don’t know. Maybe it’s possible, maybe not.

And yes, I know that you don’t necessarily have to install a wallet/client in order to make use of a given blockchain – you can just have a cloud-based wallet. Which is fairly convenient, but that gets me to my nitpicking from a few paragraphs above and to may second concern – this effectively turns a distributed system into a decentralized one – a limited number of cloud providers hold most of the data (just as a limited number of miners hold most of the processing power). And then, even though the underlying technology allows for a distributed deployment, we’ll end-up again with simply decentralized or even de-facto cenetralized, if mergers and acquisitions lead us there (and they probably will). And in order to be able to access our wallets/accounts from multiple devices, we’d use a convenient cloud service where we’d login with our username and password (because the private key is just too technical and hard for regular users). And that seems to defeat the whole idea.

Not only that, but there is an inevitable centralization of decisions (who decides on the size of the block, who has commit rights to the client repository) as well as a hidden centralization of power – how much GPU power does the Chinese mining “farms” control and can they influence the network significantly? And will the average user ever know that or care (as they don’t care that Google is centralized). I think that overall, distributed technologies will follow the power law, and the majority of data/processing power/decision power will be controller by a minority of actors. And so our distributed utopia will not happen in its purest form we dream of.

My third concern is incentive. Distributed technologies that have been successful so far have a pretty narrow set of incentives. The internet was promoted by large public institutions, including government agencies and big universitives. Bittorrent was successful mainly because it allowed free movies and songs with 2 clicks of the mouse. And Bitcoin was successful because it offered financial benefits. I’m oversimplifying of course, but “government effort”, “free & easy” and “source of more money” seem to have been the successful incentives. On the other side of the fence there are dozens of failed distributed technologies. I’ve tried many of them – alternative search engines, alternative file storage, alternative ride-sharings, alternative social networks, alternative “internets” even. None have gained traction. Because they are not easier to use than their free competitors and you can’t make money out of them (and no government bothers promoting them).

Will blockchain-based services have sufficient incentives to drive customers? Will centralized competitors just easily crush the distributed alternatives by being cheaper, more-user friendly, having sales departments that can target more than hardcore geeks who have no problem syncing their blockchain via the command line? The utopian slogans seem very cool to idealists and futurists, but don’t sell. “Free from centralized control, full control over your data” – we’d have to go through a long process of cultural change before these things make sense to more than a handful of people.

Speaking of services, often examples include “the sharing economy”, where one stranger offers a service to another stranger. Blockchain technology seems like a good fit here indeed – the services are by nature distributed, why should the technology be centralized? Here comes my fourth concern – identity. While for the cryptocurrencies it’s actually beneficial to be anonymous, for most of the real-world services (i.e. the industries that ought to be revolutionized) this is not an option. You can’t just go in the car of publicKey=5389BC989A342…. “But there are already distributed reputation systems”, you may say. Yes, and they are based on technical, not real-world identities. That doesn’t build trust. I don’t trust that publicKey=5389BC989A342… is the same person that got the high reputation. There may be five people behind that private key. The private key may have been stolen (e.g. in a cloud-provider breach).

The values of companies like Uber and AirBNB is that they serve as trust brokers. They verify and vouch for their drivers and hosts (and passengers and guests). They verify their identity through government-issued documents, skype calls, selfies, compare pictures to documents, get access to government databases, credit records, etc. Can a fully distributed service do that? No. You’d need a centralized provider to do it. And how would the blockchain make any difference then? Well, I may not be entirely correct here. I’ve actually been thinking quite a lot about decentralized identity. E.g. a way to predictably generate a private key based on, say biometrics+password+government-issued-documents, and use the corresponding public key as your identifier, which is then fed into reputation schemes and ultimately – real-world services. But we’re not there yet.

And that is part of my fifth concern – the technology itself. We are not there yet. There are bugs, there are thefts and leaks. There are hard-forks. There isn’t sufficient understanding of the technology (I confess I don’t fully grasp all the implementation details, and they are always the key). Often the technology is advertised as “just working”, but it isn’t. The other day I read an article (lost the link) that clarifies a common misconception about smart contracts – they cannot interact with the outside world – they can’t call APIs (e.g. stock market prices, bank APIs), they can’t push or fetch data from anywhere but the blockchain. That mandates the need, again, for a centralized service that pushes the relevant information before smart contracts can pick it up. I’m pretty sure that all cool-sounding applications are not possible without extensive research. And even if/when they are, writing distributed code is hard. Debugging a smart contract is hard. Yes, hard is cool, but that doesn’t drive economic value.

I have mostly been referring to public blockchains so far. Private blockchains may have their practical application, but there’s one catch – they are not exactly the cool distributed technology that the Bitcoin uses. They may be called “blockchains” because they…chain blocks, but they usually centralize trust. For example the Hyperledger project uses PKI, with all its benefits and risks. In these cases, a centralized authority issues the identity “tokens”, and then nodes communicate and form a shared ledger. That’s a bit easier problem to solve, and the nodes would usually be on actual servers in real datacenters, and not on your uncle’s Windows XP.

That said, hash chaining has been around for quite a long time. I did research on the matter because of a side-project of mine and it seems providing a tamper-proof/tamper-evident log/database on semi-trusted machines has been discussed in many computer science papers since the 90s. That alone is not “the magic blockchain” that will solve all of our problems, no matter what gossip protocols you sprinkle ontop. I’m not saying that’s bad, on the contrary – any variation and combinations of the building blocks of the blockchain (the hash chain, the consensus algorithm, the proof-of-work (or stake), possibly smart contracts), has potential for making useful products.

I know I sound like the a naysayer here, but I hope I’ve pointed out particular issues, rather than aimlessly ranting at the hype (though that’s tempting as well). I’m confident that blockchain-like technologies will have their practical applications, and we will see some successful, widely-adopted services and solutions based on that, just as pointed out in this detailed report. But I’m not convinced it will be revolutionizing.

I hope I’m proven wrong, though, because watching a revolutionizing technology closely and even being part of it would be quite cool.

The post Concerns About The Blockchain Technology appeared first on Bozho's tech blog.

Intel kills Curie module and Arduino 101 SBC (LinuxGizmos.com)

Post Syndicated from ris original https://lwn.net/Articles/728801/rss

LinuxGizmos reports
that Intel is discontinuing its Curie wearables module and its
Curie-enabled Arduino 101 SBC. “Intel will no longer update the Curie’s Open Developer Kit, and will continue forum support only through Sep. 15. After that, “Intel will make its online resources available for review only and maintain availability to the Intel Curie community until June 15, 2020,” according to the July 18 Intel forum post.

Intel says it is “actively working with alternative manufacturers to continue to make the Arduino 101 development board available to the market.” The chipmaker will support orders of the Arduino 101 through Sep. 17, and will fulfill those orders through Dec. 17. Arduino.cc will continue to offer Arduino IDE support for the 101.”

IoT Sleepbuddy, the robotic babysitter

Post Syndicated from Janina Ander original https://www.raspberrypi.org/blog/sleepbuddy-robotic-babysitter/

You’re watching the new episode of Game of Thrones, and suddenly you hear your children, up and about after their bedtime! Now you’ll probably miss a crucial moment of the show because you have to put them to bed again. Or you’re out to dinner with friends and longing for the sight of your sleeping small humans. What do you do? Text the babysitter to check on them? Well, luckily for you these issues could soon be things of the past, thanks to Bert Vuylsteke and his Pi-powered Sleepbuddy. This IoT-controlled social robot could fulfil all your remote babysitting needs!

IoT Sleepbuddy – babyphone – Design concept

This is the actual concept of my robot and in what context it can be used.

A social robot?

A social robot fulfils a role normally played by a person, and interacts with humans via human language, gestures, and facial expressions. This is what Bert says about the role of the Sleepbuddy:

[For children, it] is a friend or safeguard from nightmares, but it is so much more for the babysitters or parents. The babysitters or parents connect their smartphone/tablet/PC to the Sleepbuddy. This will give them access to control all his emotions, gestures, microphone, speaker and camera. In the eye is a hidden camera to see the kids sleeping. The speaker and microphone allow communication with the kids through WiFi.

The roots of the Sleepbuddy

As a student at Ghent University, Bert had to build a social robot using OPSORO, the university’s open-source robotics platform. The developers of this platform create social robots for research purposes. They are also making all software, as well as hardware design plans, available on GitHub. In addition, you will soon be able to purchase their robot kits via a Kickstarter. OPSORO robots are designed around the Raspberry Pi, and controlled via a web interface. The interface allows you to customise your robot’s behaviour, using visual or text-based programming languages.

Sleepbuddy Bert Vuylsteke components

The Sleepbuddy’s components

Building the Sleepbuddy

Bert has provided a detailed Instructable describing the process of putting the Sleepbuddy together, complete with video walk-throughs. However, the making techniques he has used include thermoforming, laser cutting, and 3D printing. If you want to recreate this build, you may need to contact your local makerspace to find out whether they have the necessary equipment.

Sleepbuddy Bert Vuylsteke assembly

Assembling the Sleepbuddy

Finally, Bert added an especially cute touch to this project by covering the Sleepbuddy in blackboard paint. Therefore, kids can draw on the robot to really make it their own!

So many robots!

At Pi Towers we are partial to all kinds of robots, be they ones that test medical devices, play chess or Connect 4, or fight other robots. If they twerk, or are cute, tiny, or shoddy, we maybe even like them a tiny bit more.

Do you share our love of robots? Would you like to make your own? Then check out our resource for building a simple robot buggy. Maybe it will kick-start your career as the general of a robot army. A robot army that does good, of course! Let us know your benevolent robot overlord plans in the comments.

The post IoT Sleepbuddy, the robotic babysitter appeared first on Raspberry Pi.

How to Use Batch References in Amazon Cloud Directory to Refer to New Objects in a Batch Request

Post Syndicated from Vineeth Harikumar original https://aws.amazon.com/blogs/security/how-to-use-batch-references-in-amazon-cloud-directory-to-refer-to-new-objects-in-a-batch-request/

In Amazon Cloud Directory, it’s often necessary to add new objects or add relationships between new objects and existing objects to reflect changes in a real-world hierarchy. With Cloud Directory, you can make these changes efficiently by using batch references within batch operations.

Let’s say I want to take an existing child object in a hierarchy, detach it from its parent, and reattach it to another part of the hierarchy. A simple way to do this would be to make a call to get the object’s unique identifier, another call to detach the object from its parent using the unique identifier, and a third call to attach it to a new parent. However, if I use batch references within a batch write operation, I can perform all three of these actions in the same request, greatly simplifying my code and reducing the round trips required to make such changes.

In this post, I demonstrate how to use batch references in a single write request to simplify adding and restructuring a Cloud Directory hierarchy. I have used the AWS SDK for Java for all the sample code in this post, but you can use other language SDKs or the AWS CLI in a similar way.

Using batch references

In my previous post, I demonstrated how to add AnyCompany’s North American warehouses to a global network of warehouses. As time passes and demand grows, AnyCompany launches multiple warehouses in North American cities to fulfill customer orders with continued efficiency. This requires the company to restructure the network to group warehouses in the same region so that the company can apply similar standards to them, such as delivery times, delivery areas, and types of products sold.

For instance, in the NorthAmerica object (see the following diagram), AnyCompany has launched two new warehouses in the Phoenix (PHX) area: PHX_2 and PHX_3. AnyCompany wants to add these new warehouses to the network and regroup them with existing warehouse PHX_1 under the new node, PHX.

The state of the hierarchy before this regrouping is shown in the following diagram, where I added the NorthAmerica warehouses (also represented as NA in the diagram) to the larger network of AnyCompany’s warehouses.

Diagram showing the state of the hierarchy before this post's regrouping

Adding and grouping new warehouses in the NorthAmerica network

I want to add and group the new warehouses with a single request, and using batch references in a batch write lets me do that. A batch reference is just another way of using object references that you are allowed to define arbitrarily. This allows you to chain operations, which means using the return value from one operation in a subsequent operation within the same batch write request

Let’s say I have a batch write request with two batch operations: operation A and operation B. Both batch operations operate on the same object X. In operation A, I use the object X found at /NorthAmerica/Phoenix, and I assign it to a batch reference that I call referencePhoenix. In operation B, I want to modify the same object X, so I use referencePhoenix as the object reference that points to the same unique object X used in operation A. I also will use the same helper method implementation from my previous post for getBatchCreateOperation. To learn more about batch references, see the ObjectReference documentation.

To add and group the new warehouses, I will take advantage of batch references to sequentially:

  1. Detach PHX_1 from the NA node and maintain a reference to PHX_1.
  2. Create a new child node, PHX, and attach it to the NA node.
  3. Create PHX_2 and PHX_3 nodes for the new warehouses.
  4. Link all three nodes—PHX_1 (using the batch reference), PHX_2, and PHX_3—to the PHX node.

The following code example achieves these changes in a single batch by using references. First, the code sets up a createObjectPHX operation to create the PHX parent object and attach it to the parent NorthAmerica object. It then sets up createObjectPHX_2 and createObjectPHX_3 and attaches these new objects to the new PHX object. The code then sets up a detachObject to detach the current PHX_1 object from its parent and assign it to a batch reference. The last operation uses that same batch reference to attach the PHX_1 object to the newly created PHX object. The code example orders these steps sequentially in a batch write operation.

   BatchWriteOperation createObjectPHX = getBatchCreateOperation(
        "PHX",
        directorySchemaARN,
        "/NorthAmerica",
        "Phoenix");
   BatchWriteOperation createObjectPHX_2 = getBatchCreateOperation(
        "PHX_2",
        directorySchemaARN,
        "/NorthAmerica/Phoenix",
        "PHX_2");
   BatchWriteOperation createObjectPHX_3 = getBatchCreateOperation(
        "PHX_3",
        directorySchemaARN,
        "/NorthAmerica/Phoenix",
        "PHX_3");


   BatchDetachObject detachObject = new BatchDetachObject()
        .withBatchReferenceName("referenceToPHX_1")
        .withLinkName("Phoenix")
        .withParentReference(new ObjectReference()
             .withSelector("/NorthAmerica"));

   BatchAttachObject attachObject = new BatchAttachObject()
        .withChildReference(new ObjectReference().withSelector("#referenceToPHX_1"))
        .withLinkName("PHX_1")
        .withParentReference(new ObjectReference()
            .withSelector("/NorthAmerica/Phoenix"));

   BatchWriteOperation detachOperation = new BatchWriteOperation()
       .withDetachObject(detachObject);
   BatchWriteOperation attachOperation = new BatchWriteOperation()
       .withAttachObject(attachObject);


   BatchWriteRequest request = new BatchWriteRequest();
   request.setDirectoryArn(directoryARN);
   request.setOperations(Lists.newArrayList(
       detachOperation,
       createObjectPHX,
       createObjectPHX_2,
       createObjectPHX_3,
       attachOperation));

   client.batchWrite(request);

In the preceding code example, I use the batch reference, referenceToPHX_1, in the same batch write operation because I do not have to know the object identifier of that object. If I couldn’t use such a batch reference, I would have to use separate requests to get the PHX_1 identifier, detach it from the NA node, and then attach it to the new PHX node.

I now have the network configuration I want, as shown in the following diagram. I have used a combination of batch operations with batch references to bring new warehouses into the network and regroup them within the same local group of warehouses.

Diagram showing the desired network configuration

Summary

In this post, I have shown how you can use batch references in a single batch write request to simplify adding and restructuring your existing hierarchies in Cloud Directory. You can use batch references in scenarios where you want to get an object identifier, but don’t want the overhead of using a read operation before a write operation. Instead, you can use a batch reference to refer to an object as part of the intermediate batch operation. To learn more about batch operations, see Batches, BatchWrite, and BatchRead.

If you have comments about this post, submit them in the “Comments” section below. If you have implementation questions, start a new thread on the Directory Service forum.

– Vineeth

End of the line for Remix OS

Post Syndicated from ris original https://lwn.net/Articles/728192/rss

Remix OS was an effort to bring Android to the PC, which included a
kickstarter campaign to build products using Remix OS. Now Jide Technology, makers of Remix OS, have
announced a change in focus that leaves Remix OS out of the picture. “We’ll be restructuring our approach to Remix OS and transitioning away from the consumer space. As a result, development on all existing products such as Remix OS for PC as well as products in our pipeline such as Remix IO and IO+ will be discontinued. Full refunds will be issued to ALL BACKERS via Kickstarter for both Remix IO and Remix IO+. In addition any purchases made via our online store that has remained unfulfilled will also be fully refunded. This requires no action from you as we will begin issuing refunds starting August 15th.

Analyze OpenFDA Data in R with Amazon S3 and Amazon Athena

Post Syndicated from Ryan Hood original https://aws.amazon.com/blogs/big-data/analyze-openfda-data-in-r-with-amazon-s3-and-amazon-athena/

One of the great benefits of Amazon S3 is the ability to host, share, or consume public data sets. This provides transparency into data to which an external data scientist or developer might not normally have access. By exposing the data to the public, you can glean many insights that would have been difficult with a data silo.

The openFDA project creates easy access to the high value, high priority, and public access data of the Food and Drug Administration (FDA). The data has been formatted and documented in consumer-friendly standards. Critical data related to drugs, devices, and food has been harmonized and can easily be called by application developers and researchers via API calls. OpenFDA has published two whitepapers that drill into the technical underpinnings of the API infrastructure as well as how to properly analyze the data in R. In addition, FDA makes openFDA data available on S3 in raw format.

In this post, I show how to use S3, Amazon EMR, and Amazon Athena to analyze the drug adverse events dataset. A drug adverse event is an undesirable experience associated with the use of a drug, including serious drug side effects, product use errors, product quality programs, and therapeutic failures.

Data considerations

Keep in mind that this data does have limitations. In addition, in the United States, these adverse events are submitted to the FDA voluntarily from consumers so there may not be reports for all events that occurred. There is no certainty that the reported event was actually due to the product. The FDA does not require that a causal relationship between a product and event be proven, and reports do not always contain the detail necessary to evaluate an event. Because of this, there is no way to identify the true number of events. The important takeaway to all this is that the information contained in this data has not been verified to produce cause and effect relationships. Despite this disclaimer, many interesting insights and value can be derived from the data to accelerate drug safety research.

Data analysis using SQL

For application developers who want to perform targeted searching and lookups, the API endpoints provided by the openFDA project are “ready to go” for software integration using a standard API powered by Elasticsearch, NodeJS, and Docker. However, for data analysis purposes, it is often easier to work with the data using SQL and statistical packages that expect a SQL table structure. For large-scale analysis, APIs often have query limits, such as 5000 records per query. This can cause extra work for data scientists who want to analyze the full dataset instead of small subsets of data.

To address the concern of requiring all the data in a single dataset, the openFDA project released the full 100 GB of harmonized data files that back the openFDA project onto S3. Athena is an interactive query service that makes it easy to analyze data in S3 using standard SQL. It’s a quick and easy way to answer your questions about adverse events and aspirin that does not require you to spin up databases or servers.

While you could point tools directly at the openFDA S3 files, you can find greatly improved performance and use of the data by following some of the preparation steps later in this post.

Architecture

This post explains how to use the following architecture to take the raw data provided by openFDA, leverage several AWS services, and derive meaning from the underlying data.

Steps:

  1. Load the openFDA /drug/event dataset into Spark and convert it to gzip to allow for streaming.
  2. Transform the data in Spark and save the results as a Parquet file in S3.
  3. Query the S3 Parquet file with Athena.
  4. Perform visualization and analysis of the data in R and Python on Amazon EC2.

Optimizing public data sets: A primer on data preparation

Those who want to jump right into preparing the files for Athena may want to skip ahead to the next section.

Transforming, or pre-processing, files is a common task for using many public data sets. Before you jump into the specific steps for transforming the openFDA data files into a format optimized for Athena, I thought it would be worthwhile to provide a quick exploration on the problem.

Making a dataset in S3 efficiently accessible with minimal transformation for the end user has two key elements:

  1. Partitioning the data into objects that contain a complete part of the data (such as data created within a specific month).
  2. Using file formats that make it easy for applications to locate subsets of data (for example, gzip, Parquet, ORC, etc.).

With these two key elements in mind, you can now apply transformations to the openFDA adverse event data to prepare it for Athena. You might find the data techniques employed in this post to be applicable to many of the questions you might want to ask of the public data sets stored in Amazon S3.

Before you get started, I encourage those who are interested in doing deeper healthcare analysis on AWS to make sure that you first read the AWS HIPAA Compliance whitepaper. This covers the information necessary for processing and storing patient health information (PHI).

Also, the adverse event analysis shown for aspirin is strictly for demonstration purposes and should not be used for any real decision or taken as anything other than a demonstration of AWS capabilities. However, there have been robust case studies published that have explored a causal relationship between aspirin and adverse reactions using OpenFDA data. If you are seeking research on aspirin or its risks, visit organizations such as the Centers for Disease Control and Prevention (CDC) or the Institute of Medicine (IOM).

Preparing data for Athena

For this walkthrough, you will start with the FDA adverse events dataset, which is stored as JSON files within zip archives on S3. You then convert it to Parquet for analysis. Why do you need to convert it? The original data download is stored in objects that are partitioned by quarter.

Here is a small sample of what you find in the adverse events (/drugs/event) section of the openFDA website.

If you were looking for events that happened in a specific quarter, this is not a bad solution. For most other scenarios, such as looking across the full history of aspirin events, it requires you to access a lot of data that you won’t need. The zip file format is not ideal for using data in place because zip readers must have random access to the file, which means the data can’t be streamed. Additionally, the zip files contain large JSON objects.

To read the data in these JSON files, a streaming JSON decoder must be used or a computer with a significant amount of RAM must decode the JSON. Opening up these files for public consumption is a great start. However, you still prepare the data with a few lines of Spark code so that the JSON can be streamed.

Step 1:  Convert the file types

Using Apache Spark on EMR, you can extract all of the zip files and pull out the events from the JSON files. To do this, use the Scala code below to deflate the zip file and create a text file. In addition, compress the JSON files with gzip to improve Spark’s performance and reduce your overall storage footprint. The Scala code can be run in either the Spark Shell or in an Apache Zeppelin notebook on your EMR cluster.

If you are unfamiliar with either Apache Zeppelin or the Spark Shell, the following posts serve as great references:

 

import scala.io.Source
import java.util.zip.ZipInputStream
import org.apache.spark.input.PortableDataStream
import org.apache.hadoop.io.compress.GzipCodec

// Input Directory
val inputFile = "s3://download.open.fda.gov/drug/event/2015q4/*.json.zip";

// Output Directory
val outputDir = "s3://{YOUR OUTPUT BUCKET HERE}/output/2015q4/";

// Extract zip files from 
val zipFiles = sc.binaryFiles(inputFile);

// Process zip file to extract the json as text file and save it
// in the output directory 
val rdd = zipFiles.flatMap((file: (String, PortableDataStream)) => {
    val zipStream = new ZipInputStream(file.2.open)
    val entry = zipStream.getNextEntry
    val iter = Source.fromInputStream(zipStream).getLines
    iter
}).map(.replaceAll("\s+","")).saveAsTextFile(outputDir, classOf[GzipCodec])

Step 2:  Transform JSON into Parquet

With just a few more lines of Scala code, you can use Spark’s abstractions to convert the JSON into a Spark DataFrame and then export the data back to S3 in Parquet format.

Spark requires the JSON to be in JSON Lines format to be parsed correctly into a DataFrame.

// Output Parquet directory
val outputDir = "s3://{YOUR OUTPUT BUCKET NAME}/output/drugevents"
// Input json file
val inputJson = "s3://{YOUR OUTPUT BUCKET NAME}/output/2015q4/*”
// Load dataframe from json file multiline 
val df = spark.read.json(sc.wholeTextFiles(inputJson).values)
// Extract results from dataframe
val results = df.select("results")
// Save it to Parquet
results.write.parquet(outputDir)

Step 3:  Create an Athena table

With the data cleanly prepared and stored in S3 using the Parquet format, you can now place an Athena table on top of it to get a better understanding of the underlying data.

Because the openFDA data structure incorporates several layers of nesting, it can be a complex process to try to manually derive the underlying schema in a Hive-compatible format. To shorten this process, you can load the top row of the DataFrame from the previous step into a Hive table within Zeppelin and then extract the “create  table” statement from SparkSQL.

results.createOrReplaceTempView("data")

val top1 = spark.sql("select * from data tablesample(1 rows)")

top1.write.format("parquet").mode("overwrite").saveAsTable("drugevents")

val show_cmd = spark.sql("show create table drugevents”).show(1, false)

This returns a “create table” statement that you can almost paste directly into the Athena console. Make some small modifications (adding the word “external” and replacing “using with “stored as”), and then execute the code in the Athena query editor. The table is created.

For the openFDA data, the DDL returns all string fields, as the date format used in your dataset does not conform to the yyy-mm-dd hh:mm:ss[.f…] format required by Hive. For your analysis, the string format works appropriately but it would be possible to extend this code to use a Presto function to convert the strings into time stamps.

CREATE EXTERNAL TABLE  drugevents (
   companynumb  string, 
   safetyreportid  string, 
   safetyreportversion  string, 
   receiptdate  string, 
   patientagegroup  string, 
   patientdeathdate  string, 
   patientsex  string, 
   patientweight  string, 
   serious  string, 
   seriousnesscongenitalanomali  string, 
   seriousnessdeath  string, 
   seriousnessdisabling  string, 
   seriousnesshospitalization  string, 
   seriousnesslifethreatening  string, 
   seriousnessother  string, 
   actiondrug  string, 
   activesubstancename  string, 
   drugadditional  string, 
   drugadministrationroute  string, 
   drugcharacterization  string, 
   drugindication  string, 
   drugauthorizationnumb  string, 
   medicinalproduct  string, 
   drugdosageform  string, 
   drugdosagetext  string, 
   reactionoutcome  string, 
   reactionmeddrapt  string, 
   reactionmeddraversionpt  string)
STORED AS parquet
LOCATION
  's3://{YOUR TARGET BUCKET}/output/drugevents'

With the Athena table in place, you can start to explore the data by running ad hoc queries within Athena or doing more advanced statistical analysis in R.

Using SQL and R to analyze adverse events

Using the openFDA data with Athena makes it very easy to translate your questions into SQL code and perform quick analysis on the data. After you have prepared the data for Athena, you can begin to explore the relationship between aspirin and adverse drug events, as an example. One of the most common metrics to measure adverse drug events is the Proportional Reporting Ratio (PRR). It is defined as:

PRR = (m/n)/( (M-m)/(N-n) )
Where
m = #reports with drug and event
n = #reports with drug
M = #reports with event in database
N = #reports in database

Gastrointestinal haemorrhage has the highest PRR of any reaction to aspirin when viewed in aggregate. One question you may want to ask is how the PRR has trended on a yearly basis for gastrointestinal haemorrhage since 2005.

Using the following query in Athena, you can see the PRR trend of “GASTROINTESTINAL HAEMORRHAGE” reactions with “ASPIRIN” since 2005:

with drug_and_event as 
(select rpad(receiptdate, 4, 'NA') as receipt_year
    , reactionmeddrapt
    , count(distinct (concat(safetyreportid,receiptdate,reactionmeddrapt))) as reports_with_drug_and_event 
from fda.drugevents
where rpad(receiptdate,4,'NA') 
     between '2005' and '2015' 
     and medicinalproduct = 'ASPIRIN'
     and reactionmeddrapt= 'GASTROINTESTINAL HAEMORRHAGE'
group by reactionmeddrapt, rpad(receiptdate, 4, 'NA') 
), reports_with_drug as 
(
select rpad(receiptdate, 4, 'NA') as receipt_year
    , count(distinct (concat(safetyreportid,receiptdate,reactionmeddrapt))) as reports_with_drug 
 from fda.drugevents 
 where rpad(receiptdate,4,'NA') 
     between '2005' and '2015' 
     and medicinalproduct = 'ASPIRIN'
group by rpad(receiptdate, 4, 'NA') 
), reports_with_event as 
(
   select rpad(receiptdate, 4, 'NA') as receipt_year
    , count(distinct (concat(safetyreportid,receiptdate,reactionmeddrapt))) as reports_with_event 
   from fda.drugevents
   where rpad(receiptdate,4,'NA') 
     between '2005' and '2015' 
     and reactionmeddrapt= 'GASTROINTESTINAL HAEMORRHAGE'
   group by rpad(receiptdate, 4, 'NA')
), total_reports as 
(
   select rpad(receiptdate, 4, 'NA') as receipt_year
    , count(distinct (concat(safetyreportid,receiptdate,reactionmeddrapt))) as total_reports 
   from fda.drugevents
   where rpad(receiptdate,4,'NA') 
     between '2005' and '2015' 
   group by rpad(receiptdate, 4, 'NA')
)
select  drug_and_event.receipt_year, 
(1.0 * drug_and_event.reports_with_drug_and_event/reports_with_drug.reports_with_drug)/ (1.0 * (reports_with_event.reports_with_event- drug_and_event.reports_with_drug_and_event)/(total_reports.total_reports-reports_with_drug.reports_with_drug)) as prr
, drug_and_event.reports_with_drug_and_event
, reports_with_drug.reports_with_drug
, reports_with_event.reports_with_event
, total_reports.total_reports
from drug_and_event
    inner join reports_with_drug on  drug_and_event.receipt_year = reports_with_drug.receipt_year   
    inner join reports_with_event on  drug_and_event.receipt_year = reports_with_event.receipt_year
    inner join total_reports on  drug_and_event.receipt_year = total_reports.receipt_year
order by  drug_and_event.receipt_year


One nice feature of Athena is that you can quickly connect to it via R or any other tool that can use a JDBC driver to visualize the data and understand it more clearly.

With this quick R script that can be run in R Studio either locally or on an EC2 instance, you can create a visualization of the PRR and Reporting Odds Ratio (RoR) for “GASTROINTESTINAL HAEMORRHAGE” reactions from “ASPIRIN” since 2005 to better understand these trends.

# connect to ATHENA
conn <- dbConnect(drv, '<Your JDBC URL>',s3_staging_dir="<Your S3 Location>",user=Sys.getenv(c("USER_NAME"),password=Sys.getenv(c("USER_PASSWORD"))

# Declare Adverse Event
adverseEvent <- "'GASTROINTESTINAL HAEMORRHAGE'"

# Build SQL Blocks
sqlFirst <- "SELECT rpad(receiptdate, 4, 'NA') as receipt_year, count(DISTINCT safetyreportid) as event_count FROM fda.drugsflat WHERE rpad(receiptdate,4,'NA') between '2005' and '2015'"
sqlEnd <- "GROUP BY rpad(receiptdate, 4, 'NA') ORDER BY receipt_year"

# Extract Aspirin with adverse event counts
sql <- paste(sqlFirst,"AND medicinalproduct ='ASPIRIN' AND reactionmeddrapt=",adverseEvent, sqlEnd,sep=" ")
aspirinAdverseCount = dbGetQuery(conn,sql)

# Extract Aspirin counts
sql <- paste(sqlFirst,"AND medicinalproduct ='ASPIRIN'", sqlEnd,sep=" ")
aspirinCount = dbGetQuery(conn,sql)

# Extract adverse event counts
sql <- paste(sqlFirst,"AND reactionmeddrapt=",adverseEvent, sqlEnd,sep=" ")
adverseCount = dbGetQuery(conn,sql)

# All Drug Adverse event Counts
sql <- paste(sqlFirst, sqlEnd,sep=" ")
allDrugCount = dbGetQuery(conn,sql)

# Select correct rows
selAll =  allDrugCount$receipt_year == aspirinAdverseCount$receipt_year
selAspirin = aspirinCount$receipt_year == aspirinAdverseCount$receipt_year
selAdverse = adverseCount$receipt_year == aspirinAdverseCount$receipt_year

# Calculate Numbers
m <- c(aspirinAdverseCount$event_count)
n <- c(aspirinCount[selAspirin,2])
M <- c(adverseCount[selAdverse,2])
N <- c(allDrugCount[selAll,2])

# Calculate proptional reporting ratio
PRR = (m/n)/((M-m)/(N-n))

# Calculate reporting Odds Ratio
d = n-m
D = N-M
ROR = (m/d)/(M/D)

# Plot the PRR and ROR
g_range <- range(0, PRR,ROR)
g_range[2] <- g_range[2] + 3
yearLen = length(aspirinAdverseCount$receipt_year)
axis(1,1:yearLen,lab=ax)
plot(PRR, type="o", col="blue", ylim=g_range,axes=FALSE, ann=FALSE)
axis(1,1:yearLen,lab=ax)
axis(2, las=1, at=1*0:g_range[2])
box()
lines(ROR, type="o", pch=22, lty=2, col="red")

As you can see, the PRR and RoR have both remained fairly steady over this time range. With the R Script above, all you need to do is change the adverseEvent variable from GASTROINTESTINAL HAEMORRHAGE to another type of reaction to analyze and compare those trends.

Summary

In this walkthrough:

  • You used a Scala script on EMR to convert the openFDA zip files to gzip.
  • You then transformed the JSON blobs into flattened Parquet files using Spark on EMR.
  • You created an Athena DDL so that you could query these Parquet files residing in S3.
  • Finally, you pointed the R package at the Athena table to analyze the data without pulling it into a database or creating your own servers.

If you have questions or suggestions, please comment below.


Next Steps

Take your skills to the next level. Learn how to optimize Amazon S3 for an architecture commonly used to enable genomic data analysis. Also, be sure to read more about running R on Amazon Athena.

 

 

 

 

 


About the Authors

Ryan Hood is a Data Engineer for AWS. He works on big data projects leveraging the newest AWS offerings. In his spare time, he enjoys watching the Cubs win the World Series and attempting to Sous-vide anything he can find in his refrigerator.

 

 

Vikram Anand is a Data Engineer for AWS. He works on big data projects leveraging the newest AWS offerings. In his spare time, he enjoys playing soccer and watching the NFL & European Soccer leagues.

 

 

Dave Rocamora is a Solutions Architect at Amazon Web Services on the Open Data team. Dave is based in Seattle and when he is not opening data, he enjoys biking and drinking coffee outside.

 

 

 

 

AWS Adds 12 More Services to Its PCI DSS Compliance Program

Post Syndicated from Sara Duffer original https://aws.amazon.com/blogs/security/aws-adds-12-more-services-to-its-pci-dss-compliance-program/

Twelve more AWS services have obtained Payment Card Industry Data Security Standard (PCI DSS) compliance, giving you more options, flexibility, and functionality to process and store sensitive payment card data in the AWS Cloud. The services were audited by Coalfire to ensure that they meet strict PCI DSS standards.

The newly compliant AWS services are:

AWS now offers 42 services that meet PCI DSS standards, putting administrators in better control of their frameworks and making workloads more efficient and cost effective.

For more information about the AWS PCI DSS compliance program, see Compliance Resources, AWS Services in Scope by Compliance Program, and PCI DSS Compliance.

– Sara