Tag Archives: making

The mkosi OS generation tool

Post Syndicated from ris original https://lwn.net/Articles/726655/rss

Last week Lennart Poettering introduced
, a tool for distributing system images. This week he introduces
, a tool for making OS images. “mkosi is definitely a tool with a focus on developer’s needs for building OS images, for testing and debugging, but also for generating production images with cryptographic protection. A typical use-case would be to add a mkosi.default file to an existing project (for example, one written in C or Python), and thus making it easy to generate an OS image for it. mkosi will put together the image with development headers and tools, compile your code in it, run your test suite, then throw away the image again, and build a new one, this time without development headers and tools, and install your build artifacts in it. This final image is then “production-ready”, and only contains your built program and the minimal set of packages you configured otherwise. Such an image could then be deployed with casync (or any other tool of course) to be delivered to your set of servers, or IoT devices or whatever you are building.

The Code Club International movement

Post Syndicated from Katherine Leadbetter original https://www.raspberrypi.org/blog/code-club-international/

Over the past few years, Code Club has made strides toward world domination! There are now more than 10,000 Code Clubs running in 125 countries. More than 140,000 kids have taken part in our clubs in places as diverse as the northernmost tip of Canada and the favelas of Rio de Janeiro.

In the first video from our Code Club International network, we find out about Code Clubs around the world from the people supporting these communities.

Global communities

Code Club currently has official local partners in twelve countries. Our passionate and motivated partner organisations are responsible for championing their countries’ Code Clubs. In March we brought the partners together for the first time, and they shared what it means to be part of the Code Club community:

You can help Code Club make a difference around the world

We invited our international Code Club partners to join us in London and discuss why we think Code Club is so special. Whether you’re a seasoned pro, a budding educator, or simply want to give back to your local community, there’s a place for you among our incredible Code Club volunteers.

Of course, Code Clubs aren’t restricted to countries with official partner communities – they can be started anywhere in the world! Code Clubs are up and running in a number of unexpected places, from Kosovo to Kazakhstan.

Code Club International

Code Club partners gathered together at the International Meetup

The geographical spread of Code Clubs means we hear of clubs overcoming a range of different challenges. One club in Zambia, run by volunteer Mwiza Simbeye, started as a way to get kids off the streets of Lusaka and teach them useful skills. Many children attending had hardly used a computer before writing their first line of code at the club. And it’s making a difference! As Mwiza told us, ‘you only need to see the light shine in the eyes of [Code Club] participants to see how much they enjoy these sessions.’

Code Club International

Student Joyce codes in Scratch at her Code Club in Nunavut, Canada

In the Nunavut region of Canada, Talia Metuq was first introduced to coding at a Code Club. In an area comprised of 25 Inuit communities that are inaccessible via roads and currently combating severe social and economic deprivation, computer science was not on the school timetable. Code Club, along with club volunteer Ryan Oliver, is starting to change that. After graduating from Code Club, Talia went on to study 3D modelling in Vancouver. She has now returned to Nunavut and is helping inspire more children to pursue digital making.

Start a Code Club

Code Clubs are volunteer-led extra-curricular coding clubs for children age 9 to 13. Children that attend learn to code games, animations, and websites using the projects we provide. Working with volunteers and with other children in their club, they grow their digital skillset.

You can run a Code Club anywhere if you have a venue, volunteers, and kids ready to learn coding. Help us achieve our goal of having a Code Club in every community in the world!

To find out how to start a Code Club outside of the UK, you can visit the Code Club International website. If you are in the UK, head to the Code Club UK website for more information.

Code Club International

Help the Code Club International community grow

On the Code Club site, we currently have projects in 28 languages, allowing more young people than ever to learn programming in their native language. But that’s not enough! We are always on the lookout for volunteers to translate projects and resources. If you are proficient in translating from English and would like to help, please visit the website to find out more.

We are also looking for official local partners in Italy and Germany to join our international network – if you know of, or are a part of an enthusiastic non-profit organisation who might be interested to join us, you can learn more here.

The post The Code Club International movement appeared first on Raspberry Pi.

Milestone: 100 Million Certificates Issued

Post Syndicated from Let's Encrypt - Free SSL/TLS Certificates original https://letsencrypt.org//2017/06/28/hundred-million-certs.html

Let’s Encrypt has reached a milestone: we’ve now issued more than 100,000,000 certificates. This number reflects at least a few things:

First, it illustrates the strong demand for our services. We’d like to thank all of the sysadmins, web developers, and everyone else managing servers for prioritizing protecting your visitors with HTTPS.

Second, it illustrates our ability to scale. I’m incredibly proud of the work our engineering teams have done to make this volume of issuance possible. I’m also very grateful to our operational partners, including IdenTrust, Akamai, and Sumo Logic.

Third, it illustrates the power of automated certificate management. If getting and managing certificates from Let’s Encrypt always required manual steps there is simply no way we’d be able to serve as many sites as we do. We’d like to thank our community for creating a wide range of clients for automating certificate issuance and management.

The total number of certificates we’ve issued is an interesting number, but it doesn’t reflect much about tangible progress towards our primary goal: a 100% HTTPS Web. To understand that progress we need to look at this graph:

Percentage of HTTPS Page Loads in Firefox.

When Let’s Encrypt’s service first became available, less than 40% of page loads on the Web used HTTPS. It took the Web 20 years to get to that point. In the 19 months since we launched, encrypted page loads have gone up by 18%, to nearly 58%. That’s an incredible rate of change for the Web. Contributing to this trend is what we’re most proud of.

If you’re as excited about the potential for a 100% HTTPS Web as we are, please consider getting involved, making a donation, or sponsoring Let’s Encrypt.

Here’s to the next 100,000,000 certificates, and a more secure and privacy-respecting Web for everyone!

mkosi — A Tool for Generating OS Images

Post Syndicated from Lennart Poettering original http://0pointer.net/blog/mkosi-a-tool-for-generating-os-images.html

Introducing mkosi

After blogging about
I realized I never blogged about the
mkosi tool that combines nicely
with it. mkosi has been around for a while already, and its time to
make it a bit better known. mkosi stands for Make Operating System
, and is a tool for precisely that: generating an OS tree or
image that can be booted.

Yes, there are many tools like mkosi, and a number of them are quite
well known and popular. But mkosi has a number of features that I
think make it interesting for a variety of use-cases that other tools
don’t cover that well.

What is mkosi?

What are those use-cases, and what does mkosi precisely set apart?
mkosi is definitely a tool with a focus on developer’s needs for
building OS images, for testing and debugging, but also for generating
production images with cryptographic protection. A typical use-case
would be to add a mkosi.default file to an existing project (for
example, one written in C or Python), and thus making it easy to
generate an OS image for it. mkosi will put together the image with
development headers and tools, compile your code in it, run your test
suite, then throw away the image again, and build a new one, this time
without development headers and tools, and install your build
artifacts in it. This final image is then “production-ready”, and only
contains your built program and the minimal set of packages you
configured otherwise. Such an image could then be deployed with
casync (or any other tool of course) to be delivered to your set of
servers, or IoT devices or whatever you are building.

mkosi is supposed to be legacy-free: the focus is clearly on
today’s technology, not yesteryear’s. Specifically this means that
we’ll generate GPT partition tables, not MBR/DOS ones. When you tell
mkosi to generate a bootable image for you, it will make it bootable
on EFI, not on legacy BIOS. The GPT images generated follow
specifications such as the Discoverable Partitions
so that /etc/fstab can remain unpopulated and tools such as
systemd-nspawn can automatically dissect the image and boot from

So, let’s have a look on the specific images it can generate:

  1. Raw GPT disk image, with ext4 as root
  2. Raw GPT disk image, with btrfs as root
  3. Raw GPT disk image, with a read-only squashfs as root
  4. A plain directory on disk containing the OS tree directly (this is useful for creating generic container images)
  5. A btrfs subvolume on disk, similar to the plain directory
  6. A tarball of a plain directory

When any of the GPT choices above are selected, a couple of additional
options are available:

  1. A swap partition may be added in
  2. The system may be made bootable on EFI systems
  3. Separate partitions for /home and /srv may be added in
  4. The root, /home and /srv partitions may be optionally encrypted with LUKS
  5. The root partition may be protected using dm-verity, thus making offline attacks on the generated system hard
  6. If the image is made bootable, the dm-verity root hash is automatically added to the kernel command line, and the kernel together with its initial RAM disk and the kernel command line is optionally cryptographically signed for UEFI SecureBoot

Note that mkosi is distribution-agnostic. It currently can build
images based on the following Linux distributions:

  1. Fedora
  2. Debian
  3. Ubuntu
  4. ArchLinux
  5. openSUSE

Note though that not all distributions are supported at the same
feature level currently. Also, as mkosi is based on dnf
, debootstrap, pacstrap and zypper, and those
packages are not packaged universally on all distributions, you might
not be able to build images for all those distributions on arbitrary
host distributions. For example, Fedora doesn’t package zypper,
hence you cannot build an openSUSE image easily on Fedora, but you can
still build Fedora (obviously…), Debian, Ubuntu and ArchLinux images
on it just fine.

The GPT images are put together in a way that they aren’t just
compatible with UEFI systems, but also with VM and container managers
(that is, at least the smart ones, i.e. VM managers that know UEFI,
and container managers that grok GPT disk images) to a large
degree. In fact, the idea is that you can use mkosi to build a
single GPT image that may be used to:

  1. Boot on bare-metal boxes
  2. Boot in a VM
  3. Boot in a systemd-nspawn container
  4. Directly run a systemd service off, using systemd’s RootImage= unit file setting

Note that in all four cases the dm-verity data is automatically used
if available to ensure the image is not tempered with (yes, you read
that right, systemd-nspawn and systemd’s RootImage= setting
automatically do dm-verity these days if the image has it.)

Mode of Operation

The simplest usage of mkosi is by simply invoking it without
parameters (as root):

# mkosi

Without any configuration this will create a GPT disk image for you,
will call it image.raw and drop it in the current directory. The
distribution used will be the same one as your host runs.

Of course in most cases you want more control about how the image is
put together, i.e. select package sets, select the distribution, size
partitions and so on. Most of that you can actually specify on the
command line, but it is recommended to instead create a couple of
mkosi.$SOMETHING files and directories in some directory. Then,
simply change to that directory and run mkosi without any further
arguments. The tool will then look in the current working directory
for these files and directories and make use of them (similar to how
make looks for a Makefile…). Every single file/directory is
optional, but if they exist they are honored. Here’s a list of the
files/directories mkosi currently looks for:

  1. mkosi.default — This is the main configuration file, here you
    can configure what kind of image you want, which distribution, which
    packages and so on.

  2. mkosi.extra/ — If this directory exists, then mkosi will copy
    everything inside it into the images built. You can place arbitrary
    directory hierarchies in here, and they’ll be copied over whatever is
    already in the image, after it was put together by the distribution’s
    package manager. This is the best way to drop additional static files
    into the image, or override distribution-supplied ones.

  3. mkosi.build — This executable file is supposed to be a build
    script. When it exists, mkosi will build two images, one after the
    other in the mode already mentioned above: the first version is the
    build image, and may include various build-time dependencies such as
    a compiler or development headers. The build script is also copied
    into it, and then run inside it. The script should then build
    whatever shall be built and place the result in $DESTDIR (don’t
    worry, popular build tools such as Automake or Meson all honor
    $DESTDIR anyway, so there’s not much to do here explicitly). It may
    also run a test suite, or anything else you like. After the script
    finished, the build image is removed again, and a second image (the
    final image) is built. This time, no development packages are
    included, and the build script is not copied into the image again —
    however, the build artifacts from the first run (i.e. those placed in
    $DESTDIR) are copied into the image.

  4. mkosi.postinst — If this executable script exists, it is invoked
    inside the image (inside a systemd-nspawn invocation) and can
    adjust the image as it likes at a very late point in the image
    preparation. If mkosi.build exists, i.e. the dual-phased
    development build process used, then this script will be invoked
    twice: once inside the build image and once inside the final
    image. The first parameter passed to the script clarifies which phase
    it is run in.

  5. mkosi.nspawn — If this file exists, it should contain a
    container configuration file for systemd-nspawn (see
    for details), which shall be shipped along with the final image and
    shall be included in the check-sum calculations (see below).

  6. mkosi.cache/ — If this directory exists, it is used as package
    cache directory for the builds. This directory is effectively bind
    mounted into the image at build time, in order to speed up building
    images. The package installers of the various distributions will
    place their package files here, so that subsequent runs can reuse

  7. mkosi.passphrase — If this file exists, it should contain a
    pass-phrase to use for the LUKS encryption (if that’s enabled for the
    image built). This file should not be readable to other users.

  8. mkosi.secure-boot.crt and mkosi.secure-boot.key should be an
    X.509 key pair to use for signing the kernel and initrd for UEFI
    SecureBoot, if that’s enabled.

How to use it

So, let’s come back to our most trivial example, without any of the
mkosi.$SOMETHING files around:

# mkosi

As mentioned, this will create a build file image.raw in the current
directory. How do we use it? Of course, we could dd it onto some USB
stick and boot it on a bare-metal device. However, it’s much simpler
to first run it in a container for testing:

# systemd-nspawn -bi image.raw

And there you go: the image should boot up, and just work for you.

Now, let’s make things more interesting. Let’s still not use any of
the mkosi.$SOMETHING files around:

# mkosi -t raw_btrfs --bootable -o foobar.raw
# systemd-nspawn -bi foobar.raw

This is similar as the above, but we made three changes: it’s no
longer GPT + ext4, but GPT + btrfs. Moreover, the system is made
bootable on UEFI systems, and finally, the output is now called

Because this system is bootable on UEFI systems, we can run it in KVM:

qemu-kvm -m 512 -smp 2 -bios /usr/share/edk2/ovmf/OVMF_CODE.fd -drive format=raw,file=foobar.raw

This will look very similar to the systemd-nspawn invocation, except
that this uses full VM virtualization rather than container
virtualization. (Note that the way to run a UEFI qemu/kvm instance
appears to change all the time and is different on the various
distributions. It’s quite annoying, and I can’t really tell you what
the right qemu command line is to make this work on your system.)

Of course, it’s not all raw GPT disk images with mkosi. Let’s try
a plain directory image:

# mkosi -d fedora -t directory -o quux
# systemd-nspawn -bD quux

Of course, if you generate the image as plain directory you can’t boot
it on bare-metal just like that, nor run it in a VM.

A more complex command line is the following:

# mkosi -d fedora -t raw_squashfs --checksum --xz --package=openssh-clients --package=emacs

In this mode we explicitly pick Fedora as the distribution to use, ask
mkosi to generate a compressed GPT image with a root squashfs,
compress the result with xz, and generate a SHA256SUMS file with
the hashes of the generated artifacts. The package will contain the
SSH client as well as everybody’s favorite editor.

Now, let’s make use of the various mkosi.$SOMETHING files. Let’s
say we are working on some Automake-based project and want to make it
easy to generate a disk image off the development tree with the
version you are hacking on. Create a configuration file:

# cat > mkosi.default <<EOF


# The packages to appear in both the build and the final image
Packages=openssh-clients httpd
# The packages to appear in the build image, but absent from the final image
BuildPackages=make gcc libcurl-devel

And let’s add a build script:

# cat > mkosi.build <<EOF
./configure --prefix=/usr
make -j `nproc`
make install
# chmod +x mkosi.build

And with all that in place we can now build our project into a disk image, simply by typing:

# mkosi

Let’s try it out:

# systemd-nspawn -bi image.raw

Of course, if you do this you’ll notice that building an image like
this can be quite slow. And slow build times are actively hurtful to
your productivity as a developer. Hence let’s make things a bit
faster. First, let’s make use of a package cache shared between runs:

# mkdir mkosi.chache

Building images now should already be substantially faster (and
generate less network traffic) as the packages will now be downloaded
only once and reused. However, you’ll notice that unpacking all those
packages and the rest of the work is still quite slow. But mkosi can
help you with that. Simply use mkosi‘s incremental build feature. In
this mode mkosi will make a copy of the build and final images
immediately before dropping in your build sources or artifacts, so
that building an image becomes a lot quicker: instead of always
starting totally from scratch a build will now reuse everything it can
reuse from a previous run, and immediately begin with building your
sources rather than the build image to build your sources in. To
enable the incremental build feature use -i:

# mkosi -i

Note that if you use this option, the package list is not updated
anymore from your distribution’s servers, as the cached copy is made
after all packages are installed, and hence until you actually delete
the cached copy the distribution’s network servers aren’t contacted
again and no RPMs or DEBs are downloaded. This means the distribution
you use becomes “frozen in time” this way. (Which might be a bad
thing, but also a good thing, as it makes things kinda reproducible.)

Of course, if you run mkosi a couple of times you’ll notice that it
won’t overwrite the generated image when it already exists. You can
either delete the file yourself first (rm image.raw) or let mkosi
do it for you right before building a new image, with mkosi -f. You
can also tell mkosi to not only remove any such pre-existing images,
but also remove any cached copies of the incremental feature, by using
-f twice.

I wrote mkosi originally in order to test systemd, and quickly
generate a disk image of various distributions with the most current
systemd version from git, without all that affecting my host system. I
regularly use mkosi for that today, in incremental mode. The two
commands I use most in that context are:

# mkosi -if && systemd-nspawn -bi image.raw

And sometimes:

# mkosi -iff && systemd-nspawn -bi image.raw

The latter I use only if I want to regenerate everything based on the
very newest set of RPMs provided by Fedora, instead of a cached
snapshot of it.

BTW, the mkosi files for systemd are included in the systemd git
mkosi.build. This
way, any developer who wants to quickly test something with current
systemd git, or wants to prepare a patch based on it and test it can
check out the systemd repository and simply run mkosi in it and a
few minutes later he has a bootable image he can test in
systemd-nspawn or KVM. casync has similar files:

Random Interesting Features

  1. As mentioned already, mkosi will generate dm-verity enabled
    disk images if you ask for it. For that use the --verity switch on
    the command line or Verity= setting in mkosi.default. Of course,
    dm-verity implies that the root volume is read-only. In this mode
    the top-level dm-verity hash will be placed along-side the output
    disk image in a file named the same way, but with the .roothash
    suffix. If the image is to be created bootable, the root hash is also
    included on the kernel command line in the roothash= parameter,
    which current systemd versions can use to both find and activate the
    root partition in a dm-verity protected way. BTW: it’s a good idea
    to combine this dm-verity mode with the raw_squashfs image mode,
    to generate a genuinely protected, compressed image suitable for
    running in your IoT device.

  2. As indicated above, mkosi can automatically create a check-sum
    file SHA256SUMS for you (--checksum) covering all the files it
    outputs (which could be the image file itself, a matching .nspawn
    file using the mkosi.nspawn file mentioned above, as well as the
    .roothash file for the dm-verity root hash.) It can then
    optionally sign this with gpg (--sign). Note that systemd‘s
    machinectl pull-tar and machinectl pull-raw command can download
    these files and the SHA256SUMS file automatically and verify things
    on download. With other words: what mkosi outputs is perfectly
    ready for downloads using these two systemd commands.

  3. As mentioned, mkosi is big on supporting UEFI SecureBoot. To
    make use of that, place your X.509 key pair in two files
    mkosi.secureboot.crt and mkosi.secureboot.key, and set
    SecureBoot= or --secure-boot. If so, mkosi will sign the
    kernel/initrd/kernel command line combination during the build. Of
    course, if you use this mode, you should also use
    Verity=/--verity=, otherwise the setup makes only partial
    sense. Note that mkosi will not help you with actually enrolling
    the keys you use in your UEFI BIOS.

  4. mkosi has minimal support for GIT checkouts: when it recognizes
    it is run in a git checkout and you use the mkosi.build script
    stuff, the source tree will be copied into the build image, but will
    all files excluded by .gitignore removed.

  5. There’s support for encryption in place. Use --encrypt= or
    Encrypt=. Note that the UEFI ESP is never encrypted though, and the
    root partition only if explicitly requested. The /home and /srv
    partitions are unconditionally encrypted if that’s enabled.

  6. Images may be built with all documentation removed.

  7. The password for the root user and additional kernel command line
    arguments may be configured for the image to generate.

Minimum Requirements

Current mkosi requires Python 3.5, and has a number of dependencies,
listed in the
notably you need a somewhat recent systemd version to make use of its
full feature set: systemd 233. Older versions are already packaged for
various distributions, but much of what I describe above is only
available in the most recent release mkosi 3.

The UEFI SecureBoot support requires sbsign which currently isn’t
available in Fedora, but there’s a


It is my intention to continue turning mkosi into a tool suitable

  1. Testing and debugging projects
  2. Building images for secure devices
  3. Building portable service images
  4. Building images for secure VMs and containers

One of the biggest goals I have for the future is to teach mkosi and
systemd/sd-boot native support for A/B IoT style partition
setups. The idea is that the combination of systemd, casync and
mkosi provides generic building blocks for building secure,
auto-updating devices in a generic way from, even though all pieces
may be used individually, too.


  1. Why are you reinventing the wheel again? This is exactly like
    — Well, to my knowledge there’s no tool that
    integrates this nicely with your project’s development tree, and can
    do dm-verity and UEFI SecureBoot and all that stuff for you. So
    nope, I don’t think this exactly like $SOMEOTHERPROJECT, thank you
    very much.

  2. What about creating MBR/DOS partition images? — That’s really
    out of focus to me. This is an exercise in figuring out how generic
    OSes and devices in the future should be built and an attempt to
    commoditize OS image building. And no, the future doesn’t speak MBR,
    sorry. That said, I’d be quite interested in adding support for
    booting on Raspberry Pi, possibly using a hybrid approach, i.e. using
    a GPT disk label, but arranging things in a way that the Raspberry Pi
    boot protocol (which is built around DOS partition tables), can still

  3. Is this portable? — Well, depends what you mean by
    portable. No, this tool runs on Linux only, and as it uses
    systemd-nspawn during the build process it doesn’t run on
    non-systemd systems either. But then again, you should be able to
    create images for any architecture you like with it, but of course if
    you want the image bootable on bare-metal systems only systems doing
    UEFI are supported (but systemd-nspawn should still work fine on

  4. Where can I get this stuff? — Try
    GitHub. And some distributions
    carry packaged versions, but I think none of them the current v3

  5. Is this a systemd project? — Yes, it’s hosted under the
    systemd GitHub umbrella. And yes,
    during run-time systemd-nspawn in a current version is required. But
    no, the code-bases are separate otherwise, already because systemd
    is a C project, and mkosi Python.

  6. Requiring systemd 233 is a pretty steep requirement, no?
    Yes, but the feature we need kind of matters (systemd-nspawn‘s
    --overlay= switch), and again, this isn’t supposed to be a tool for
    legacy systems.

  7. Can I run the resulting images in LXC or Docker? — Humm, I am
    not an LXC nor Docker guy. If you select directory or subvolume
    as image type, LXC should be able to boot the generated images just
    fine, but I didn’t try. Last time I looked, Docker doesn’t permit
    running proper init systems as PID 1 inside the container, as they
    define their own run-time without intention to emulate a proper
    system. Hence, no I don’t think it will work, at least not with an
    unpatched Docker version. That said, again, don’t ask me questions
    about Docker, it’s not precisely my area of expertise, and quite
    frankly I am not a fan. To my knowledge neither LXC nor Docker are
    able to run containers directly off GPT disk images, hence the
    various raw_xyz image types are definitely not compatible with
    either. That means if you want to generate a single raw disk image
    that can be booted unmodified both in a container and on bare-metal,
    then systemd-nspawn is the container manager to go for
    (specifically, its -i/--image= switch).

Should you care? Is this a tool for you?

Well, that’s up to you really.

If you hack on some complex project and need a quick way to compile
and run your project on a specific current Linux distribution, then
mkosi is an excellent way to do that. Simply drop the mkosi.default
and mkosi.build files in your git tree and everything will be
easy. (And of course, as indicated above: if the project you are
hacking on happens to be called systemd or casync be aware that
those files are already part of the git tree — you can just use them.)

If you hack on some embedded or IoT device, then mkosi is a great
choice too, as it will make it reasonably easy to generate secure
images that are protected against offline modification, by using
dm-verity and UEFI SecureBoot.

If you are an administrator and need a nice way to build images for a
VM or systemd-nspawn container, or a portable service then mkosi
is an excellent choice too.

If you care about legacy computers, old distributions, non-systemd
init systems, old VM managers, Docker, … then no, mkosi is not for
you, but there are plenty of well-established alternatives around that
cover that nicely.

And never forget: mkosi is an Open Source project. We are happy to
accept your patches and other contributions.

Oh, and one unrelated last thing: don’t forget to submit your talk

and/or buy a ticket for
All Systems Go! 2017 in Berlin — the
conference where things like systemd, casync and mkosi are
discussed, along with a variety of other Linux userspace projects used
for building systems.

[$] CentOS and ARM

Post Syndicated from jake original https://lwn.net/Articles/726441/rss

The CentOS distribution has long been
a boon to those who want an enterprise-level operating system without an
enterprise-level support contract—and the costs that go with it. In
keeping with its server orientation, CentOS has been largely focused on
x86 systems, but that has been changing over the last few
years. Jim Perrin has been with the project since 2004 and his talk at Open
Source Summit Japan
(OSSJ) described the process of making CentOS
available for the ARM server market; he also discussed the status of that
project and some plans for the future.

Backblaze B2, Cloud Storage on a Budget: One Year Later

Post Syndicated from Andy Klein original https://www.backblaze.com/blog/backblaze-b2-cloud-storage-on-a-budget-one-year-later/

B2 Cloud Storage Review

A year ago, Backblaze B2 Cloud Storage came out of beta and became available for everyone to use. We were pretty excited, even though it seemed like everyone and their brother had a cloud storage offering. Now that we are a year down the road let’s see how B2 has fared in the real world of tight budgets, maxed-out engineering schedules, insanely funded competition, and more. Spoiler alert: We’re still pretty excited…

Cloud Storage on a Budget

There are dozens of companies offering cloud storage and the landscape is cluttered with incomprehensible pricing models, cleverly disguised transfer and download charges, and differing levels of service that seem to be driven more by marketing departments than customer needs.

Backblaze B2 keeps things simple: A single performant level of service, a single affordable price for storage ($0.005/GB/month), a single affordable price for downloads ($0.02/GB), and a single list of transaction charges – all on a single pricing page.

Who’s Using B2?

By making cloud storage affordable, companies and organizations now have a way to store their data in the cloud and still be able to access and restore it as quickly as needed. You don’t have to choose between price and performance. Here are a few examples:

  • Media & Entertainment: KLRU-TV, Austin PBS, is using B2 to preserve their video catalog of the world renown musical anthology series, Austin City Limits.
  • LTO Migration: The Girl Scouts San Diego, were able to move their daily incremental backups from LTO tape to the cloud, saving money and time, while helping automate their entire backup process.
  • Cloud Migration: Vintage Aerial found it cost effective to discard their internal data server and store their unique hi-resolution images in B2 Cloud Storage.
  • Backup: Ahuja and Clark, a boutique accounting firm, was able to save over 80% on the cost to backup all their corporate and client data.

How is B2 Being Used?

B2 Cloud Storage can be accessed in four ways: using the Web GUI, using the CLI, using the API library, and using a product or service integrated with B2. While many customers are using the Web GUI, CLI and API to store and retrieve data, the most prolific use of B2 occurs via our integration partners. Each integration partner has certified they have met our best practices for integrating to B2 and we’ve tested each of the integrations submitted to us. Here are a few of the highlights.

  • NAS Devices – Synology and QNAP have integrations which allow their NAS devices to sync their data to/from B2.
  • Backup and Sync – CloudBerry, GoodSync, and Retrospect are just a few of the services that can backup and/or sync data to/from B2.
  • Hybrid Cloud – 45 Drives and OpenIO are solutions that allow you to setup and operate a hybrid data storage cloud environment.
  • Desktop Apps – CyberDuck, MountainDuck, Dropshare, and more allow users an easy way to store and use data in B2 right from your desktop.
  • Digital Asset Management – Cantemo, Cubix, CatDV, and axle Video, let you catalog your digital assets and then store them in B2 for fast retrieval when they are needed.

If you have an application or service that stores data in the cloud and it isn’t integrated with Backblaze B2, then your customers are probably paying too much for cloud storage.

What’s New in B2?

B2 Fireball – our rapid data ingest service. We send you a storage device, and you load it up with up to 40 TB of data and send it back, then we load the data into your B2 account. The cost is $550 per trip plus shipping. Save your network bandwidth with the B2 Fireball.

Lowered the download price – When we introduced B2, we set the price to download a gigabyte of data to be $0.05/GB – the same as most competitors. A year in, we reevaluated the price based on usage and decided to lower the price to $0.02/GB.

B2 User Groups – Backblaze Groups functionality is now available in B2. An administrator can invite users to a B2 centric Group to centralize the storage location for that group of users. For example, multiple members of a department working on a project will be able to archive their work-in-process activities into a single B2 bucket.

Time Machine backup – You may know that you can use your Synology NAS as the destination for your Time Machine backup. With B2 you can also sync your Synology NAS to B2 for a true 3-2-1 backup solution. If your system crashes or is lost, you can restore your Time Machine image directly from B2 to your new machine.

Life Cycle Rules – Create rules that allow you to manage the length of time deleted files will remain in your B2 bucket before they are deleted. A great option for managing the cleanup of outdated file versions to save on storage costs.

Large Files – In the B2 Web GUI you can upload files as large as 500 MB using either the upload or drag-and-drop functionality. The B2 CLI and API support the ability to upload/download files as large as 10 TB.

5 MB file part size – When working with large files, the minimum file part size can now be set as low as 5 MB versus the previous low setting of 100 MB. Now the range of a file part when working with large files can be from 5 MB to 5GB. This increases the throughput of your data uploads and downloads.

SHA-1 at the end – This feature allows you to compute the SHA-1 checksum and append it to the end of the request body versus doing the computation before the file is sent. This is especially useful for those applications which stream data to/from B2.

Cache-Control – When data is downloaded from B2 into a browser, the length of time the file remains in the browser cache can be set at the bucket level using the b2_create_bucket and b2_update_bucket API calls. Setting this policy is optional.

Customized delimiters – Used in the API, this allows you to specify a delimiter to use for a given purpose. A common use is to set a delimiter in the file name string. Then use that delimiter to detect a folder name within the string.

Looking Ahead

Over the past year we added nearly 30,000 new B2 customers to the fold and are welcoming more and more each day as B2 continues to grow. We have plans to expand our storage footprint by adding more data centers as we look forward to moving towards a multi-region environment.

For those of you who are B2 customers – thank you for helping build B2. If you have an interesting way you are using B2, tell us in the comments below.

The post Backblaze B2, Cloud Storage on a Budget: One Year Later appeared first on Backblaze Blog | Cloud Storage & Cloud Backup.

Introducing the Raspberry Pi Integrator Programme

Post Syndicated from Roger Thornton original https://www.raspberrypi.org/blog/raspberry-pi-integrator-programme/

An ever-growing number of companies take advantage of Raspberry Pi technology and use our boards as part of their end products. Raspberry Pis are now essential components of everything from washing machines to underwater exploration vehicles. We love seeing these commercial applications, and are committed to helping bring Raspberry Pi-powered products to market. With this in mind, we are excited to announce our new Raspberry Pi Integrator Programme!

Raspberry Pi Integrator Programme

Product compliance testing

Whenever a company wants to sell a product on a market, it first has to prove that selling it is safe and legal. Compliance requirements vary between different products; rules that would apply to a complicated machine like a car will, naturally, not be the same as those that apply to a pair of trainers (although there is some overlap in the Venn diagram of rules).

Raspberry Pi Integrator Programme

Regions of the world within each of which products have to be separately tested

Different countries usually have slightly different sets of regulations, and testing has to be conducted at an accredited facility for the region the company intends to sell the product in. Companies have to put a vast amount of work into getting their product through compliance testing and certification to meet country-specific requirements. This is especially taxing for smaller enterprises.

Making testing easier

Raspberry Pi has assisted various companies that use Pi technology in their end products through this testing and certification process, and over time it has become clear that we can do even more to help. This realisation led us to work with our compliance testing and certification partner UL to create a system that simplifies and speeds up compliance processes. Thus we have started the Raspberry Pi Integrator Programme, designed to help anyone get their Raspberry Pi-based product tested and on the market quickly and efficiently.

The Raspberry Pi Integrator Programme

The programme provides access to the same test engineers who worked on our Raspberry Pis during their compliance testing. It connects the user to a dedicated team at UL who assess and test the user’s product, facilitated by their in-depth knowledge of Raspberry Pi. The team at UL work closely with the Raspberry Pi engineering team, so any unexpected issues that may arise during testing can be resolved quickly. Through the programme, UL will streamline the testing and certification process, which will in turn decrease the amount of time necessary to launch the product. Our Integrator Programme is openly available, it comes with no added cost beyond the usual testing fees at UL, and there are companies already taking advantage of it.

Get your product on the market more quickly

We have put the Integrator Programme in place in the hope of eliminating the burden of navigating complicated compliance issues and making it easier for companies to bring new, exciting products to consumers. With simplified testing, companies and individuals can get products to market in less time and with lower overhead costs.

The programme is now up and running, and ready to accept new clients. UL and Raspberry Pi hope that it will be an incredibly useful tool for creators of Raspberry Pi-powered commercial products. For more information, please email [email protected].

Powered by Raspberry Pi

As a producer of a Pi-based device, you can also apply to use our ‘Powered by Raspberry Pi’ logo on your product and its packaging. Doing so indicates to customers that a portion of their payment supports the educational work of the Raspberry Pi Foundation.

Powered by Pi Logo

You’ll find more information about the ‘Powered by Raspberry Pi’ logo and our simple approval process for using it here.

The post Introducing the Raspberry Pi Integrator Programme appeared first on Raspberry Pi.

Court Hands Internet Textbook Pirates Suspended Sentences

Post Syndicated from Andy original https://torrentfreak.com/court-hands-internet-textbook-pirates-suspended-sentences-170624/

All types of media content can be exploited online with movies, TV shows, and music among the most popular among pirates. However, in recent years books have proven desirable, especially those that otherwise have hefty price tags.

Textbooks are particularly well known for their stiff pricing, something which presents a thorn in the side for thousands of students every year. Making matters worse, books are often marginally tweaked per revision, ensuring that second owner books lose their value. This isn’t something that affects pirates though.

Over the years, many file-sharing sites have catered to people seeking textbooks for free, with many building up a dedicated following. Others, however, have seen the opportunity to make some money, offering broad but illegal access to textbooks for a nominal fee.

That was the case with Denmark-based website LendStudy. It provided students with access to hundreds of textbooks for a comparatively reasonable price of 300 kroner ($45.00) per semester. Unfortunately, that attracted the attention of anti-piracy outfit Rights Alliance, who pursued a case against its operators.

In court this week, three men aged 26, 31 and 71 stood accused of scanning and then making available at least 198 copyrighted textbooks to paying members. Between August 2013 and October 2014 it was alleged the textbooks were downloaded from the site 2,574 times, netting the men revenues of around $3,500.

According to local media, all three men initially pleaded not guilty but later admitted being operators of the site.

The court heard how RightsAlliance tried to create an account on LendStudy but its request for membership was discovered and rejected by the site’s operators. Other evidence presented by the prosecution included photographs of the men loading computers, scanners, and other IT equipment into a car.

“It is expensive for students to acquire new knowledge. Lendstudy wanted to spread knowledge in the form of books that give students more opportunities for new knowledge,” the 31-year-old defendant said in court.

Unfortunately for the site’s operators, the desire to enrich the minds of students failed to persuade the court that piracy could be ignored. All three were found guilty of criminal copyright infringement and handed four-month conditional jail sentences. The LundStudy.dk domain was confiscated.

The notice on the LendStudy site

“If textbooks are made freely available or sold illegally, publishers have less incentive to produce textbooks,” said Martin Lindø Westeraaard from University Press of Southern Denmark.

“It will be detrimental both for publishers and for the students, who will lose the opportunity to read Danish-language textbooks.”

A claim for damages against the men will now be pursued by Rights Alliance in a civil case.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and ANONYMOUS VPN services.

Sci-Hub Ordered to Pay $15 Million in Piracy Damages

Post Syndicated from Ernesto original https://torrentfreak.com/sci-hub-ordered-to-pay-15-million-in-piracy-damages-170623/

Two years ago, academic publisher Elsevier filed a complaint against Sci-Hub and several related “pirate” sites.

It accused the websites of making academic papers widely available to the public, without permission.

While Sci-Hub is nothing like the average pirate site, it is just as illegal according to Elsevier’s legal team, who obtained a preliminary injunction from a New York District Court last fall.

The injunction ordered Sci-Hub’s founder Alexandra Elbakyan to quit offering access to any Elsevier content. However, this didn’t happen.

Instead of taking Sci-Hub down, the lawsuit achieved the opposite. Sci-Hub grew bigger and bigger up to a point where its users were downloading hundreds of thousands of papers per day.

Although Elbakyan sent a letter to the court earlier, she opted not engage in the US lawsuit any further. The same is true for her fellow defendants, associated with Libgen. As a result, Elsevier asked the court for a default judgment and a permanent injunction which were issued this week.

Following a hearing on Wednesday, the Court awarded Elsevier $15,000,000 in damages, the maximum statutory amount for the 100 copyrighted works that were listed in the complaint. In addition, the injunction, through which Sci-Hub and LibGen lost several domain names, was made permanent.

Sci-Hub founder Alexandra Elbakyan says that even if she wanted to pay the millions of dollars in revenue, she doesn’t have the money to do so.

“The money project received and spent in about six years of its operation do not add up to 15 million,” Elbakyan tells torrentFreak.

“More interesting, Elsevier says: the Sci-Hub activity ’causes irreparable injury to Elsevier, its customers and the public’ and US court agreed. That feels like a perfect crime. If you want to cause an irreparable injury to American public, what do you have to do? Now we know the answer: establish a website where they can read research articles for free,” she adds.

Previously, Elbakyan already confirmed to us that, lawsuit or not, the site is not going anywhere.

“The Sci-Hub will continue as usual. In case of problems with the domain names, users can rely on TOR scihub22266oqcxt.onion,” Elbakyan added.

Sci-Hub is regularly referred to as the “Pirate Bay for science,” and based on the site’s resilience and its response to legal threats, it can certainly live up to this claim.

The Association of American Publishers (AAP) is happy with the outcome of the case.

“As the final judgment shows, the Court has not mistaken illegal activity for a public good,” AAP President and CEO Maria A. Pallante says.

“On the contrary, it has recognized the defendants’ operation for the flagrant and sweeping infringement that it really is and affirmed the critical role of copyright law in furthering scientific research and the public interest.”

Matt McKay, a spokesperson for the International Association of Scientific, Technical and Medical Publishers (STM) in Oxford went even further, telling Nature that the site doesn’t offer any value to the scientific comunity.

“Sci-Hub does not add any value to the scholarly community. It neither fosters scientific advancement nor does it value researchers’ achievements. It is simply a place for someone to go to download stolen content and then leave.”

Hundreds of thousands of academics, who regularly use the site to download papers, might contest this though.

With no real prospect of recouping the damages and an ever-resilient Elbakyan, Elsevier’s legal battle could just be a win on paper. Sci-Hub and Libgen are not going anywhere, it seems, and the lawsuit has made them more popular than ever before.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and ANONYMOUS VPN services.

AWS Bill Simplification – Consolidated CloudWatch Charges

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/aws-bill-simplification-consolidated-cloudwatch-charges/

The bill that you receive for your use of AWS in July will include a change in the way that Amazon CloudWatch charges are presented. The CloudWatch team made this change in order to make your bill simpler and easier to understand.

Consolidating Charges
In the past, charges for your usage of CloudWatch were split between two sections of your bill. For historical reasons, the charges for CloudWatch Alarms, CloudWatch Metrics, and calls to the CloudWatch API were reported in the Elastic Compute Cloud (EC2) detail section, while charges for CloudWatch Logs and CloudWatch Dashboards were reported in the CloudWatch detail section, like this:

We have received feedback that splitting the charges across two sections of the bill made it difficult to locate and understand the entire set of monitoring charges. In order to address this issue, we are moving the charges that were formerly listed in the Elastic Compute Cloud (EC2) detail section to the CloudWatch detail section. We are making the same change to the detailed billing report, moving the affected charges from the AmazonEC2 product code to the AmazonCloudWatch product code and changing to the AmazonCloudWatch product name. This change does not affect your overall bill; it simply consolidates all of the charges for the use of CloudWatch in one section.

Billing Metric
The CloudWatch billing metric named Estimated Charges can be viewed as a Total Estimated Charge, or broken down By Service:

The total will not change. However, as noted above, the charges that formerly had AmazonEC2 as the ServiceName dimension will now have it set to AmazonCloudWatch:

You may need to adjust thresholds on your billing alarms as a result:

Once again, your total AWS bill will not change. You will begin to see the consolidated charges for CloudWatch in your AWS bill for July 2017.



CoderDojo Coolest Projects 2017

Post Syndicated from Ben Nuttall original https://www.raspberrypi.org/blog/coderdojo-coolest-projects-2017/

When I heard we were merging with CoderDojo, I was delighted. CoderDojo is a wonderful organisation with a spectacular community, and it’s going to be great to join forces with the team and work towards our common goal: making a difference to the lives of young people by making technology accessible to them.

You may remember that last year Philip and I went along to Coolest Projects, CoderDojo’s annual event at which their global community showcase their best makes. It was awesome! This year a whole bunch of us from the Raspberry Pi Foundation attended Coolest Projects with our new Irish colleagues, and as expected, the projects on show were as cool as can be.

Coolest Projects 2017 attendee

Crowd at Coolest Projects 2017

This year’s coolest projects!

Young maker Benjamin demoed his brilliant RGB LED table tennis ball display for us, and showed off his brilliant project tutorial website codemakerbuddy.com, which he built with Python and Flask. [Click on any of the images to enlarge them.]

Coolest Projects 2017 LED ping-pong ball display
Coolest Projects 2017 Benjamin and Oly

Next up, Aimee showed us a recipes app she’d made with the MIT App Inventor. It was a really impressive and well thought-out project.

Coolest Projects 2017 Aimee's cook book
Coolest Projects 2017 Aimee's setup

This very successful OpenCV face detection program with hardware installed in a teddy bear was great as well:

Coolest Projects 2017 face detection bear
Coolest Projects 2017 face detection interface
Coolest Projects 2017 face detection database

Helen’s and Oly’s favourite project involved…live bees!

Coolest Projects 2017 live bees


Its creator, 12-year-old Amy, said she wanted to do something to help the Earth. Her project uses various sensors to record data on the bee population in the hive. An adjacent monitor displays the data in a web interface:

Coolest Projects 2017 Aimee's bees

Coolest robots

I enjoyed seeing lots of GPIO Zero projects out in the wild, including this robotic lawnmower made by Kevin and Zach:

Raspberry Pi Lawnmower

Kevin and Zach’s Raspberry Pi lawnmower project with Python and GPIO Zero, showed at CoderDojo Coolest Projects 2017

Philip’s favourite make was a Pi-powered robot you can control with your mind! According to the maker, Laura, it worked really well with Philip because he has no hair.

Philip Colligan on Twitter

This is extraordinary. Laura from @CoderDojo Romania has programmed a mind controlled robot using @Raspberry_Pi @coolestprojects

And here are some pictures of even more cool robots we saw:

Coolest Projects 2017 coolest robot no.1
Coolest Projects 2017 coolest robot no.2
Coolest Projects 2017 coolest robot no.3

Games, toys, activities

Oly and I were massively impressed with the work of Mogamad, Daniel, and Basheerah, who programmed a (borrowed) Amazon Echo to make a voice-controlled text-adventure game using Java and the Alexa API. They’ve inspired me to try something similar using the AIY projects kit and adventurelib!

Coolest Projects 2017 Mogamad, Daniel, Basheerah, Oly
Coolest Projects 2017 Alexa text-based game

Christopher Hill did a brilliant job with his Home Alone LEGO house. He used sensors to trigger lights and sounds to make it look like someone’s at home, like in the film. I should have taken a video – seeing it in action was great!

Coolest Projects 2017 Lego home alone house
Coolest Projects 2017 Lego home alone innards
Coolest Projects 2017 Lego home alone innards closeup

Meanwhile, the Northern Ireland Raspberry Jam group ran a DOTS board activity, which turned their area into a conductive paint hazard zone.

Coolest Projects 2017 NI Jam DOTS activity 1
Coolest Projects 2017 NI Jam DOTS activity 2
Coolest Projects 2017 NI Jam DOTS activity 3
Coolest Projects 2017 NI Jam DOTS activity 4
Coolest Projects 2017 NI Jam DOTS activity 5
Coolest Projects 2017 NI Jam DOTS activity 6

Creativity and ingenuity

We really enjoyed seeing so many young people collaborating, experimenting, and taking full advantage of the opportunity to make real projects. And we loved how huge the range of technologies in use was: people employed all manner of hardware and software to bring their ideas to life.

Philip Colligan on Twitter

Wow! Look at that room full of awesome young people. @coolestprojects #coolestprojects @CoderDojo

Congratulations to the Coolest Projects 2017 prize winners, and to all participants. Here are some of the teams that won in the different categories:

Coolest Projects 2017 winning team 1
Coolest Projects 2017 winning team 2
Coolest Projects 2017 winning team 3

Take a look at the gallery of all winners over on Flickr.

The wow factor

Raspberry Pi co-founder and Foundation trustee Pete Lomas came along to the event as well. Here’s what he had to say:

It’s hard to describe the scale of the event, and photos just don’t do it justice. The first thing that hit me was the sheer excitement of the CoderDojo ninjas [the children attending Dojos]. Everyone was setting up for their time with the project judges, and their pure delight at being able to show off their creations was evident in both halls. Time and time again I saw the ninjas apply their creativity to help save the planet or make someone’s life better, and it’s truly exciting that we are going to help that continue and expand.

Even after 8 hours, enthusiasm wasn’t flagging – the awards ceremony was just brilliant, with ninjas high-fiving the winners on the way to the stage. This speaks volumes about the ethos and vision of the CoderDojo founders, where everyone is a winner just by being part of a community of worldwide friends. It was a brilliant introduction, and if this weekend was anything to go by, our merger certainly is a marriage made in Heaven.

Join this awesome community!

If all this inspires you as much as it did us, consider looking for a CoderDojo near you – and sign up as a volunteer! There’s plenty of time for young people to build up skills and start working on a project for next year’s event. Check out coolestprojects.com for more information.

The post CoderDojo Coolest Projects 2017 appeared first on Raspberry Pi.

Three Men Sentenced Following £2.5m Internet Piracy Case

Post Syndicated from Andy original https://torrentfreak.com/three-men-sentenced-following-2-5m-internet-piracy-case-170622/

While legal action against low-level individual file-sharers is extremely rare in the UK, the country continues to pose a risk for those engaged in larger-scale infringement.

That is largely due to the activities of the Police Intellectual Property Crime Unit and private anti-piracy outfits such as the Federation Against Copyright Theft (FACT). Investigations are often a joint effort which can take many years to complete, but the outcomes can often involve criminal sentences.

That was the profile of another Internet piracy case that concluded in London this week. It involved three men from the UK, Eric Brooks, 43, from Bolton, Mark Valentine, 44, from Manchester, and Craig Lloyd, 33, from Wolverhampton.

The case began when FACT became aware of potentially infringing activity back in February 2011. The anti-piracy group then investigated for more than a year before handing the case to police in March 2012.

On July 4, 2012, officers from City of London Police arrested Eric Brooks’ at his home in Bolton following a joint raid with FACT. Computer equipment was seized containing evidence that Brooks had been running a Netherlands-based server hosting more than £100,000 worth of pirated films, music, games, software and ebooks.

According to police, a spreadsheet on Brooks’ computer revealed he had hundreds of paying customers, all recruited from online forums. Using PayPal or utilizing bank transfers, each paid money to access the server. Police mentioned no group or site names in information released this week.

“Enquiries with PayPal later revealed that [Brooks] had made in excess of £500,000 in the last eight years from his criminal business and had in turn defrauded the film and TV industry alone of more than £2.5 million,” police said.

“As his criminal enterprise affected not only the film and TV but the wider entertainment industry including music, games, books and software it is thought that he cost the wider industry an amount much higher than £2.5 million.”

On the same day police arrested Brooks, Mark Valentine’s home in Manchester had a similar unwelcome visit. A day later, Craig Lloyd’s home in Wolverhampton become the third target for police.

Computer equipment was seized from both addresses which revealed that the pair had been paying for access to Brooks’ servers in order to service their own customers.

“They too had used PayPal as a means of taking payment and had earned thousands of pounds from their criminal actions; Valentine gaining £34,000 and Lloyd making over £70,000,” police revealed.

But after raiding the trio in 2012, it took more than four years to charge the men. In a feature common to many FACT cases, all three were charged with Conspiracy to Defraud rather than copyright infringement offenses. All three men pleaded guilty before trial.

On Monday, the men were sentenced at Inner London Crown Court. Brooks was sentenced to 24 months in prison, suspended for 12 months and ordered to complete 140 hours of unpaid work.

Valentine and Lloyd were each given 18 months in prison, suspended for 12 months. Each was ordered to complete 80 hours unpaid work.

Detective Constable Chris Glover, who led the investigation for the City of London Police, welcomed the sentencing.

“The success of this investigation is a result of co-ordinated joint working between the City of London Police and FACT. Brooks, Valentine and Lloyd all thought that they were operating under the radar and doing something which they thought was beyond the controls of law enforcement,” Glover said.

“Brooks, Valentine and Lloyd will now have time in prison to reflect on their actions and the result should act as deterrent for anyone else who is enticed by abusing the internet to the detriment of the entertainment industry.”

While even suspended sentences are a serious matter, none of the men will see the inside of a cell if they meet the conditions of their sentence for the next 12 months. For a case lasting four years involving such large sums of money, that is probably a disappointing result for FACT and the police.

Nevertheless, the men won’t be allowed to enjoy the financial proceeds of their piracy, if indeed any money is left. City of London Police say the trio will be subject to a future confiscation hearing to seize any proceeds of crime.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and ANONYMOUS VPN services.

DynamoDB Accelerator (DAX) Now Generally Available

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/dynamodb-accelerator-dax-now-generally-available/

Earlier this year I told you about Amazon DynamoDB Accelerator (DAX), a fully-managed caching service that sits in front of (logically speaking) your Amazon DynamoDB tables. DAX returns cached responses in microseconds, making it a great fit for eventually-consistent read-intensive workloads. DAX supports the DynamoDB API, and is seamless and easy to use. As a managed service, you simply create your DAX cluster and use it as the target for your existing reads and writes. You don’t have to worry about patching, cluster maintenance, replication, or fault management.

Now Generally Available
Today I am pleased to announce that DAX is now generally available. We have expanded DAX into additional AWS Regions and used the preview time to fine-tune performance and availability:

Now in Five Regions – DAX is now available in the US East (Northern Virginia), EU (Ireland), US West (Oregon), Asia Pacific (Tokyo), and US West (Northern California) Regions.

In Production – Our preview customers are reporting that they are using DAX in production, that they loved how easy it was to add DAX to their application, and have told us that their apps are now running 10x faster.

Getting Started with DAX
As I outlined in my earlier post, it is easy to use DAX to accelerate your existing DynamoDB applications. You simply create a DAX cluster in the desired region, update your application to reference the DAX SDK for Java (the calls are the same; this is a drop-in replacement), and configure the SDK to use the endpoint to your cluster. As a read-through/write-through cache, DAX seamlessly handles all of the DynamoDB read/write APIs.

We are working on SDK support for other languages, and I will share additional information as it becomes available.

DAX Pricing
You pay for each node in the cluster (see the DynamoDB Pricing page for more information) on a per-hour basis, with prices starting at $0.269 per hour in the US East (Northern Virginia) and US West (Oregon) regions. With DAX, each of the nodes in your cluster serves as a read target and as a failover target for high availability. The DAX SDK is cluster aware and will issue round-robin requests to all nodes in the cluster so that you get to make full use of the cluster’s cache resources.

Because DAX can easily handle sudden spikes in read traffic, you may be able to reduce the amount of provisioned throughput for your tables, resulting in an overall cost savings while still returning results in microseconds.



Is Continuing to Patch Windows XP a Mistake?

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2017/06/is_continuing_t.html

Last week, Microsoft issued a security patch for Windows XP, a 16-year-old operating system that Microsoft officially no longer supports. Last month, Microsoft issued a Windows XP patch for the vulnerability used in WannaCry.

Is this a good idea? This 2014 essay argues that it’s not:

The zero-day flaw and its exploitation is unfortunate, and Microsoft is likely smarting from government calls for people to stop using Internet Explorer. The company had three ways it could respond. It could have done nothing­ — stuck to its guns, maintained that the end of support means the end of support, and encouraged people to move to a different platform. It could also have relented entirely, extended Windows XP’s support life cycle for another few years and waited for attrition to shrink Windows XP’s userbase to irrelevant levels. Or it could have claimed that this case is somehow “special,” releasing a patch while still claiming that Windows XP isn’t supported.

None of these options is perfect. A hard-line approach to the end-of-life means that there are people being exploited that Microsoft refuses to help. A complete about-turn means that Windows XP will take even longer to flush out of the market, making it a continued headache for developers and administrators alike.

But the option Microsoft took is the worst of all worlds. It undermines efforts by IT staff to ditch the ancient operating system and undermines Microsoft’s assertion that Windows XP isn’t supported, while doing nothing to meaningfully improve the security of Windows XP users. The upside? It buys those users at best a few extra days of improved security. It’s hard to say how that was possibly worth it.

This is a hard trade-off, and it’s going to get much worse with the Internet of Things. Here’s me:

The security of our computers and phones also comes from the fact that we replace them regularly. We buy new laptops every few years. We get new phones even more frequently. This isn’t true for all of the embedded IoT systems. They last for years, even decades. We might buy a new DVR every five or ten years. We replace our refrigerator every 25 years. We replace our thermostat approximately never. Already the banking industry is dealing with the security problems of Windows 95 embedded in ATMs. This same problem is going to occur all over the Internet of Things.

At least Microsoft has security engineers on staff that can write a patch for Windows XP. There will be no one able to write patches for your 16-year-old thermostat and refrigerator, even assuming those devices can accept security patches.

MPAA & RIAA Demand Tough Copyright Standards in NAFTA Negotiations

Post Syndicated from Andy original https://torrentfreak.com/mpaa-riaa-demand-tough-copyright-standards-in-nafta-negotiations-170621/

The North American Free Trade Agreement (NAFTA) between the United States, Canada, and Mexico was negotiated more than 25 years ago. With a quarter of a decade of developments to contend with, the United States wants to modernize.

“While our economy and U.S. businesses have changed considerably over that period, NAFTA has not,” the government says.

With this in mind, the US requested comments from interested parties seeking direction for negotiation points. With those comments now in, groups like the MPAA and RIAA have been making their positions known. It’s no surprise that intellectual property enforcement is high on the agenda.

“Copyright is the lifeblood of the U.S. motion picture and television industry. As such, MPAA places high priority on securing strong protection and enforcement disciplines in the intellectual property chapters of trade agreements,” the MPAA writes in its submission.

“Strong IPR protection and enforcement are critical trade priorities for the music industry. With IPR, we can create good jobs, make significant contributions to U.S. economic growth and security, invest in artists and their creativity, and drive technological innovation,” the RIAA notes.

While both groups have numerous demands, it’s clear that each seeks an environment where not only infringers can be held liable, but also Internet platforms and services.

For the RIAA, there is a big focus on the so-called ‘Value Gap’, a phenomenon found on user-uploaded content sites like YouTube that are able to offer infringing content while avoiding liability due to Section 512 of the DMCA.

“Today, user-uploaded content services, which have developed sophisticated on-demand music platforms, use this as a shield to avoid licensing music on fair terms like other digital services, claiming they are not legally responsible for the music they distribute on their site,” the RIAA writes.

“Services such as Apple Music, TIDAL, Amazon, and Spotify are forced to compete with services that claim they are not liable for the music they distribute.”

But if sites like YouTube are exercising their rights while acting legally under current US law, how can partners Canada and Mexico do any better? For the RIAA, that can be achieved by holding them to standards envisioned by the group when the DMCA was passed, not how things have panned out since.

Demanding that negotiators “protect the original intent” of safe harbor, the RIAA asks that a “high-level and high-standard service provider liability provision” is pursued. This, the music group says, should only be available to “passive intermediaries without requisite knowledge of the infringement on their platforms, and inapplicable to services actively engaged in communicating to the public.”

In other words, make sure that YouTube and similar sites won’t enjoy the same level of safe harbor protection as they do today.

The RIAA also requires any negotiated safe harbor provisions in NAFTA to be flexible in the event that the DMCA is tightened up in response to the ongoing safe harbor rules study.

In any event, NAFTA should not “support interpretations that no longer reflect today’s digital economy and threaten the future of legitimate and sustainable digital trade,” the RIAA states.

For the MPAA, Section 512 is also perceived as a problem. While noting that the original intent was to foster a system of shared responsibility between copyright owners and service providers, the MPAA says courts have subsequently let copyright holders down. Like the RIAA, the MPAA also suggests that Canada and Mexico can be held to higher standards.

“We recommend a new approach to this important trade policy provision by moving to high-level language that establishes intermediary liability and appropriate limitations on liability. This would be fully consistent with U.S. law and avoid the same misinterpretations by policymakers and courts overseas,” the MPAA writes.

“In so doing, a modernized NAFTA would be consistent with Trade Promotion Authority’s negotiating objective of ‘ensuring that standards of protection and enforcement keep pace with technological developments’.”

The MPAA also has some specific problems with Mexico, including unauthorized camcording. The Hollywood group says that 85 illicit audio and video recordings of films were linked to Mexican theaters in 2016. However, recording is not currently a criminal offense in Mexico.

Another issue for the MPAA is that criminal sanctions for commercial scale infringement are only available if the infringement is for profit.

“This has hampered enforcement against the above-discussed camcording problem but also against online infringement, such as peer-to-peer piracy, that may be on a scale that is immensely harmful to U.S. rightsholders but nonetheless occur without profit by the infringer,” the MPAA writes.

“The modernized NAFTA like other U.S. bilateral free trade agreements must provide for criminal sanctions against commercial scale infringements without proof of profit motive.”

Also of interest are the MPAA’s complaints against Mexico’s telecoms laws. Unlike in the US and many countries in Europe, Mexico’s ISPs are forbidden to hand out their customers’ personal details to rights holders looking to sue. This, the MPAA says, needs to change.

The submissions from the RIAA and MPAA can be found here and here (pdf)

Source: TF, for the latest info on copyright, file-sharing, torrent sites and ANONYMOUS VPN services.

Building Loosely Coupled, Scalable, C# Applications with Amazon SQS and Amazon SNS

Post Syndicated from Tara Van Unen original https://aws.amazon.com/blogs/compute/building-loosely-coupled-scalable-c-applications-with-amazon-sqs-and-amazon-sns/

Stephen Liedig, Solutions Architect


One of the many challenges professional software architects and developers face is how to make cloud-native applications scalable, fault-tolerant, and highly available.

Fundamental to your project success is understanding the importance of making systems highly cohesive and loosely coupled. That means considering the multi-dimensional facets of system coupling to support the distributed nature of the applications that you are building for the cloud.

By that, I mean addressing not only the application-level coupling (managing incoming and outgoing dependencies), but also considering the impacts of of platform, spatial, and temporal coupling of your systems. Platform coupling relates to the interoperability, or lack thereof, of heterogeneous systems components. Spatial coupling deals with managing components at a network topology level or protocol level. Temporal, or runtime coupling, refers to the ability of a component within your system to do any kind of meaningful work while it is performing a synchronous, blocking operation.

The AWS messaging services, Amazon SQS and Amazon SNS, help you deal with these forms of coupling by providing mechanisms for:

  • Reliable, durable, and fault-tolerant delivery of messages between application components
  • Logical decomposition of systems and increased autonomy of components
  • Creating unidirectional, non-blocking operations, temporarily decoupling system components at runtime
  • Decreasing the dependencies that components have on each other through standard communication and network channels

Following on the recent topic, Building Scalable Applications and Microservices: Adding Messaging to Your Toolbox, in this post, I look at some of the ways you can introduce SQS and SNS into your architectures to decouple your components, and show how you can implement them using C#.


To illustrate some of these concepts, consider a web application that processes customer orders. As good architects and developers, you have followed best practices and made your application scalable and highly available. Your solution included implementing load balancing, dynamic scaling across multiple Availability Zones, and persisting orders in a Multi-AZ Amazon RDS database instance, as in the following diagram.

In this example, the application is responsible for handling and persisting the order data, as well as dealing with increases in traffic for popular items.

One potential point of vulnerability in the order processing workflow is in saving the order in the database. The business expects that every order has been persisted into the database. However, any potential deadlock, race condition, or network issue could cause the persistence of the order to fail. Then, the order is lost with no recourse to restore the order.

With good logging capability, you may be able to identify when an error occurred and which customer’s order failed. This wouldn’t allow you to “restore” the transaction, and by that stage, your customer is no longer your customer.

As illustrated in the following diagram, introducing an SQS queue helps improve your ordering application. Using the queue isolates the processing logic into its own component and runs it in a separate process from the web application. This, in turn, allows the system to be more resilient to spikes in traffic, while allowing work to be performed only as fast as necessary in order to manage costs.

In addition, you now have a mechanism for persisting orders as messages (with the queue acting as a temporary database), and have moved the scope of your transaction with your database further down the stack. In the event of an application exception or transaction failure, this ensures that the order processing can be retired or redirected to the Amazon SQS Dead Letter Queue (DLQ), for re-processing at a later stage. (See the recent post, Using Amazon SQS Dead-Letter Queues to Control Message Failure, for more information on dead-letter queues.)

Scaling the order processing nodes

This change allows you now to scale the web application frontend independently from the processing nodes. The frontend application can continue to scale based on metrics such as CPU usage, or the number of requests hitting the load balancer. Processing nodes can scale based on the number of orders in the queue. Here is an example of scale-in and scale-out alarms that you would associate with the scaling policy.

Scale-out Alarm

aws cloudwatch put-metric-alarm --alarm-name AddCapacityToCustomerOrderQueue --metric-name ApproximateNumberOfMessagesVisible --namespace "AWS/SQS" 
--statistic Average --period 300 --threshold 3 --comparison-operator GreaterThanOrEqualToThreshold --dimensions Name=QueueName,Value=customer-orders
--evaluation-periods 2 --alarm-actions <arn of the scale-out autoscaling policy>

Scale-in Alarm

aws cloudwatch put-metric-alarm --alarm-name RemoveCapacityFromCustomerOrderQueue --metric-name ApproximateNumberOfMessagesVisible --namespace "AWS/SQS" 
 --statistic Average --period 300 --threshold 1 --comparison-operator LessThanOrEqualToThreshold --dimensions Name=QueueName,Value=customer-orders
 --evaluation-periods 2 --alarm-actions <arn of the scale-in autoscaling policy>

In the above example, use the ApproximateNumberOfMessagesVisible metric to discover the queue length and drive the scaling policy of the Auto Scaling group. Another useful metric is ApproximateAgeOfOldestMessage, when applications have time-sensitive messages and developers need to ensure that messages are processed within a specific time period.

Scaling the order processing implementation

On top of scaling at an infrastructure level using Auto Scaling, make sure to take advantage of the processing power of your Amazon EC2 instances by using as many of the available threads as possible. There are several ways to implement this. In this post, we build a Windows service that uses the BackgroundWorker class to process the messages from the queue.

Here’s a closer look at the implementation. In the first section of the consuming application, use a loop to continually poll the queue for new messages, and construct a ReceiveMessageRequest variable.

public static void PollQueue()
    while (_running)
        Task<ReceiveMessageResponse> receiveMessageResponse;

        // Pull messages off the queue
        using (var sqs = new AmazonSQSClient())
            const int maxMessages = 10;  // 1-10

            //Receiving a message
            var receiveMessageRequest = new ReceiveMessageRequest
                // Get URL from Configuration
                QueueUrl = _queueUrl, 
                // The maximum number of messages to return. 
                // Fewer messages might be returned. 
                MaxNumberOfMessages = maxMessages, 
                // A list of attributes that need to be returned with message.
                AttributeNames = new List<string> { "All" },
                // Enable long polling. 
                // Time to wait for message to arrive on queue.
                WaitTimeSeconds = 5 

            receiveMessageResponse = sqs.ReceiveMessageAsync(receiveMessageRequest);

The WaitTimeSeconds property of the ReceiveMessageRequest specifies the duration (in seconds) that the call waits for a message to arrive in the queue before returning a response to the calling application. There are a few benefits to using long polling:

  • It reduces the number of empty responses by allowing SQS to wait until a message is available in the queue before sending a response.
  • It eliminates false empty responses by querying all (rather than a limited number) of the servers.
  • It returns messages as soon any message becomes available.

For more information, see Amazon SQS Long Polling.

After you have returned messages from the queue, you can start to process them by looping through each message in the response and invoking a new BackgroundWorker thread.

// Process messages
if (receiveMessageResponse.Result.Messages != null)
    foreach (var message in receiveMessageResponse.Result.Messages)
        Console.WriteLine("Received SQS message, starting worker thread");

        // Create background worker to process message
        BackgroundWorker worker = new BackgroundWorker();
        worker.DoWork += (obj, e) => ProcessMessage(message);
    Console.WriteLine("No messages on queue");

The event handler, ProcessMessage, is where you implement business logic for processing orders. It is important to have a good understanding of how long a typical transaction takes so you can set a message VisibilityTimeout that is long enough to complete your operation. If order processing takes longer than the specified timeout period, the message becomes visible on the queue. Other nodes may pick it and process the same order twice, leading to unintended consequences.

Handling Duplicate Messages

In order to manage duplicate messages, seek to make your processing application idempotent. In mathematics, idempotent describes a function that produces the same result if it is applied to itself:

f(x) = f(f(x))

No matter how many times you process the same message, the end result is the same (definition from Enterprise Integration Patterns: Designing, Building, and Deploying Messaging Solutions, Hohpe and Wolf, 2004).

There are several strategies you could apply to achieve this:

  • Create messages that have inherent idempotent characteristics. That is, they are non-transactional in nature and are unique at a specified point in time. Rather than saying “place new order for Customer A,” which adds a duplicate order to the customer, use “place order <orderid> on <timestamp> for Customer A,” which creates a single order no matter how often it is persisted.
  • Deliver your messages via an Amazon SQS FIFO queue, which provides the benefits of message sequencing, but also mechanisms for content-based deduplication. You can deduplicate using the MessageDeduplicationId property on the SendMessage request or by enabling content-based deduplication on the queue, which generates a hash for MessageDeduplicationId, based on the content of the message, not the attributes.
var sendMessageRequest = new SendMessageRequest
    QueueUrl = _queueUrl,
    MessageBody = JsonConvert.SerializeObject(order),
    MessageGroupId = Guid.NewGuid().ToString("N"),
    MessageDeduplicationId = Guid.NewGuid().ToString("N")
  • If using SQS FIFO queues is not an option, keep a message log of all messages attributes processed for a specified period of time, as an alternative to message deduplication on the receiving end. Verifying the existence of the message in the log before processing the message adds additional computational overhead to your processing. This can be minimized through low latency persistence solutions such as Amazon DynamoDB. Bear in mind that this solution is dependent on the successful, distributed transaction of the message and the message log.

Handling exceptions

Because of the distributed nature of SQS queues, it does not automatically delete the message. Therefore, you must explicitly delete the message from the queue after processing it, using the message ReceiptHandle property (see the following code example).

However, if at any stage you have an exception, avoid handling it as you normally would. The intention is to make sure that the message ends back on the queue, so that you can gracefully deal with intermittent failures. Instead, log the exception to capture diagnostic information, and swallow it.

By not explicitly deleting the message from the queue, you can take advantage of the VisibilityTimeout behavior described earlier. Gracefully handle the message processing failure and make the unprocessed message available to other nodes to process.

In the event that subsequent retries fail, SQS automatically moves the message to the configured DLQ after the configured number of receives has been reached. You can further investigate why the order process failed. Most importantly, the order has not been lost, and your customer is still your customer.

private static void ProcessMessage(Message message)
    using (var sqs = new AmazonSQSClient())
            Console.WriteLine("Processing message id: {0}", message.MessageId);

            // Implement messaging processing here
            // Ensure no downstream resource contention (parallel processing)
            // <your order processing logic in here…>
            Console.WriteLine("{0} Thread {1}: {2}", DateTime.Now.ToString("s"), Thread.CurrentThread.ManagedThreadId, message.MessageId);
            // Delete the message off the queue. 
            // Receipt handle is the identifier you must provide 
            // when deleting the message.
            var deleteRequest = new DeleteMessageRequest(_queueName, message.ReceiptHandle);
            Console.WriteLine("Processed message id: {0}", message.MessageId);

        catch (Exception ex)
            // Do nothing.
            // Swallow exception, message will return to the queue when 
            // visibility timeout has been exceeded.
            Console.WriteLine("Could not process message due to error. Exception: {0}", ex.Message);

Using SQS to adapt to changing business requirements

One of the benefits of introducing a message queue is that you can accommodate new business requirements without dramatically affecting your application.

If, for example, the business decided that all orders placed over $5000 are to be handled as a priority, you could introduce a new “priority order” queue. The way the orders are processed does not change. The only significant change to the processing application is to ensure that messages from the “priority order” queue are processed before the “standard order” queue.

The following diagram shows how this logic could be isolated in an “order dispatcher,” whose only purpose is to route order messages to the appropriate queue based on whether the order exceeds $5000. Nothing on the web application or the processing nodes changes other than the target queue to which the order is sent. The rates at which orders are processed can be achieved by modifying the poll rates and scalability settings that I have already discussed.

Extending the design pattern with Amazon SNS

Amazon SNS supports reliable publish-subscribe (pub-sub) scenarios and push notifications to known endpoints across a wide variety of protocols. It eliminates the need to periodically check or poll for new information and updates. SNS supports:

  • Reliable storage of messages for immediate or delayed processing
  • Publish / subscribe – direct, broadcast, targeted “push” messaging
  • Multiple subscriber protocols
  • Amazon SQS, HTTP, HTTPS, email, SMS, mobile push, AWS Lambda

With these capabilities, you can provide parallel asynchronous processing of orders in the system and extend it to support any number of different business use cases without affecting the production environment. This is commonly referred to as a “fanout” scenario.

Rather than your web application pushing orders to a queue for processing, send a notification via SNS. The SNS messages are sent to a topic and then replicated and pushed to multiple SQS queues and Lambda functions for processing.

As the diagram above shows, you have the development team consuming “live” data as they work on the next version of the processing application, or potentially using the messages to troubleshoot issues in production.

Marketing is consuming all order information, via a Lambda function that has subscribed to the SNS topic, inserting the records into an Amazon Redshift warehouse for analysis.

All of this, of course, is happening without affecting your order processing application.


While I haven’t dived deep into the specifics of each service, I have discussed how these services can be applied at an architectural level to build loosely coupled systems that facilitate multiple business use cases. I’ve also shown you how to use infrastructure and application-level scaling techniques, so you can get the most out of your EC2 instances.

One of the many benefits of using these managed services is how quickly and easily you can implement powerful messaging capabilities in your systems, and lower the capital and operational costs of managing your own messaging middleware.

Using Amazon SQS and Amazon SNS together can provide you with a powerful mechanism for decoupling application components. This should be part of design considerations as you architect for the cloud.

For more information, see the Amazon SQS Developer Guide and Amazon SNS Developer Guide. You’ll find tutorials on all the concepts covered in this post, and more. To can get started using the AWS console or SDK of your choice visit:

Happy messaging!

US Embassy Threatens to Close Domain Registry Over ‘Pirate Bay’ Domain

Post Syndicated from Andy original https://torrentfreak.com/us-embassy-threatens-to-close-domain-registry-over-pirate-bay-domain-170620/

Domains have become an integral part of the piracy wars and no one knows this better than The Pirate Bay.

The site has burned through numerous domains over the years, with copyright holders and authorities successfully pressurizing registries to destabilize the site.

The latest news on this front comes from the Central American country of Costa Rica, where the local domain registry is having problems with the United States government.

The drama is detailed in a letter to ICANN penned by Dr. Pedro León Azofeifa, President of the Costa Rican Academy of Science, which operates NIC Costa Rica, the registry in charge of local .CR domain names.

Azofeifa’s letter is addressed to ICANN board member Thomas Schneider and pulls no punches. It claims that for the past two years the United States Embassy in Costa Rica has been pressuring NIC Costa Rica to take action against a particular domain.

“Since 2015, the United Estates Embassy in Costa Rica, who represents the interests of the United States Department of Commerce, has frequently contacted our organization regarding the domain name thepiratebay.cr,” the letter to ICANN reads.

“These interactions with the United States Embassy have escalated with time and include great pressure since 2016 that is exemplified by several phone calls, emails, and meetings urging our ccTLD to take down the domain, even though this would go against our domain name policies.”

The letter states that following pressure from the US, the Costa Rican Ministry of Commerce carried out an investigation which concluded that not taking down the domain was in line with best practices that only require suspensions following a local court order. That didn’t satisfy the United States though, far from it.

“The representative of the United States Embassy, Mr. Kevin Ludeke, Economic Specialist, who claims to represent the interests of the US Department of
Commerce, has mentioned threats to close our registry, with repeated harassment
regarding our practices and operation policies,” the letter to ICANN reads.

Ludeke is indeed listed on the US Embassy site for Costa Rica. He’s also referenced in a 2008 diplomatic cable leaked previously by Wikileaks. Contacted via email, Ludeke did not immediately respond to TorrentFreak’s request for comment.

Extract from the letter to ICANN

Surprisingly, Azofeifa says the US representative then got personal, making negative comments towards his Executive Director, “based on no clear evidence or statistical data to support his claims, as a way to pressure our organization to take down the domain name without following our current policies.”

Citing the Tunis Agenda for the Information Society of 2005, Azofeifa asserts that “policy authority for Internet-related public policy issues is the sovereign right of the States,” which in Costa Rica’s case means that there must be “a final judgment from the Courts of Justice of the Republic of Costa Rica” before the registry will suspend a domain.

But it seems legal action was not the preferred route of the US Embassy. Demanding that NIC Costa Rica take unilateral action, Mr. Ludeke continued with “pressure and harassment to take down the domain name without its proper process and local court order.”

Azofeifa’s letter to ICANN, which is cc’d to Stafford Fitzgerald Haney, United States Ambassador to Costa Rica and various people in the Costa Rican Ministry of Commerce, concludes with a request for suggestions on how to deal with the matter.

While the response should prove very interesting, none of the parties involved appear to have noticed that ThePirateBay.cr isn’t officially connected to The Pirate Bay

The domain and associated site appeared in the wake of the December 2014 shut down of The Pirate Bay, claiming to be the real deal and even going as far as making fake accounts in the names of famous ‘pirate’ groups including ettv and YIFY.

Today it acts as an unofficial and unaffiliated reverse proxy to The Pirate Bay while presenting the site’s content as its own. It’s also affiliated with a fake KickassTorrents site, Kickass.cd, which to this day claims that it’s a reincarnation of the defunct torrent giant.

But perhaps the most glaring issue in this worrying case is the apparent willingness of the United States to call out Costa Rica for not doing anything about a .CR domain run by third parties, when the real Pirate Bay’s .org domain is under United States’ jurisdiction.

Registered by the Public Interest Registry in Reston, Virginia, ThePirateBay.org is the famous site’s main domain. TorrentFreak asked PIR if anyone from the US government had ever requested action against the domain but at the time of publication, we had received no response.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and ANONYMOUS VPN services.

Shelfchecker Smart Shelf: build a home library system

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/smart-shelf-home-library/

Are you tired of friends borrowing your books and never returning them? Maybe you’re sure you own 1984 but can’t seem to locate it? Do you find a strange satisfaction in using the supermarket self-checkout simply because of the barcode beep? With the ShelfChecker smart shelf from maker Annelynn described on Instructables, you can be your own librarian and never misplace your books again! Beep!

Shelfchecker smart shelf annelynn Raspberry Pi

Harry Potter and the Aesthetically Pleasing Smart Shelf

The ShelfChecker smart shelf

Annelynn built her smart shelf utilising a barcode scanner, LDR light sensors, a Raspberry Pi, plus a few other peripherals and some Python scripts. She has created a fully integrated library checkout system with accompanying NeoPixel location notification for your favourite books.

This build allows you to issue your book-borrowing friends their own IDs and catalogue their usage of your treasured library. On top of that, you’ll be able to use LED NeoPixels to highlight your favourite books, registering their removal and return via light sensor tracking.

Using light sensors for book cataloguing

Once Annelynn had built the shelf, she drilled holes to fit the eight LDRs that would guard her favourite books, and separated them with corner brackets to prevent confusion.

Shelfchecker smart shelf annelynn Raspberry Pi

Corner brackets keep the books in place without confusion between their respective light sensors

Due to the limitations of the MCP3008 Adafruit microchip, the smart shelf can only keep track of eight of your favourite books. But this limitation won’t stop you from cataloguing your entire home library; it simply means you get to pick your ultimate favourites that will occupy the prime real estate on your wall.

Obviously, the light sensors sense light. So when you remove or insert a book, light floods or is blocked from that book’s sensor. The sensor sends this information to the Raspberry Pi. In response, an Arduino controls the NeoPixel strip along the ‘favourites’ shelf to indicate the book’s status.

Shelfchecker smart shelf annelynn Raspberry Pi

The book you are looking for is temporarily unavailable

Code your own library

While keeping a close eye on your favourite books, the system also allows creation of a complete library catalogue system with the help of a MySQL database. Users of the library can log into the system with a barcode scanner, and take out or return books recorded in the database guided by an LCD screen attached to the Pi.

Shelfchecker smart shelf annelynn Raspberry Pi


I won’t go into an extensive how-to on creating MySQL databases here on the blog, because my glamourous assistant Janina has pulled up these MySQL tutorials to help you get started. Annelynn’s Github scripts are also packed with useful comments to keep you on track.

Raspberry Pi and books

We love books and libraries. And considering the growing number of Code Clubs and makespaces into libraries across the world, and the host of book-based Pi builds we’ve come across, the love seems to be mutual.

We’ve seen the Raspberry Pi introduced into the Wordery bookseller warehouse, a Pi-powered page-by-page book scanner by Jonathon Duerig, and these brilliant text-to-speech and page turner projects that use our Pis!

Did I say we love books? In fact we love them so much that members of our team have even written a few.*

If you’ve set up any sort of digital making event in a library, have in some way incorporated Raspberry Pi into your own personal book collection, or even managed to recreate the events of your favourite story using digital making, make sure to let us know in the comments below.

* Shameless plug**

Fancy adding some Pi to your home library? Check out these publications from the Raspberry Pi staff:

A Beginner’s Guide to Coding by Marc Scott

Adventures in Raspberry Pi by Carrie Anne Philbin

Getting Started with Raspberry Pi by Matt Richardson

Raspberry Pi User Guide by Eben Upton

The MagPi Magazine, Essentials Guides and Project Books

Make Your Own Game and Build Your Own Website by CoderDojo

** Shameless Pug


The post Shelfchecker Smart Shelf: build a home library system appeared first on Raspberry Pi.