Tag Archives: mars

Join us at Raspberry Fields 2018!

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/raspberry-fields-2018/

This summer, the Raspberry Pi Foundation is bringing you an all-new community event taking place in Cambridge, UK!

Raspberry Fields 2018 Raspberry Pi festival

Raspberry Fields

On the weekend of Saturday 30 June and Sunday 1 July 2018, the Pi Towers team, with lots of help from our community of young people, educators, hobbyists, and tech enthusiasts, will be running Raspberry Fields, our brand-new annual festival of digital making!

Raspberry Fields 2018 Raspberry Pi festival

It will be a chance for people of all ages and skill levels to have a go at getting creative with tech, and it will be a celebration of all that our digital makers have already learnt and achieved, whether through taking part in Code Clubs, CoderDojos, or Raspberry Jams, or through trying our resources at home.

Dive into digital making

At Raspberry Fields, you will have the chance to inspire your inner inventor! Learn about amazing projects others in the community are working on, such as cool robots and wearable technology; have a go at a variety of hands-on activities, from home automation projects to remote-controlled vehicles and more; see fascinating science- and technology-related talks and musical performances. After your visit, you’ll be excited to go home and get making!

Raspberry Fields 2018 Raspberry Pi festivalIf you’re wondering about bringing along young children or less technologically minded family members or friends, there’ll be plenty for them to enjoy — with lots of festival-themed activities such as face painting, fun performances, free giveaways, and delicious food, Raspberry Fields will have something for everyone!

Get your tickets

This two-day ticketed event will be taking place at Cambridge Junction, the city’s leading arts centre. Tickets are £5 if you are aged 16 or older, and free for everyone under 16. Get your tickets by clicking the button on the Raspberry Fields web page!

Where: Cambridge Junction, Clifton Way, Cambridge, CB1 7GX, UK
When: Saturday 30 June 2018, 10:30 – 18:00 and Sunday 1 July 2018, 10:00 – 17:30

Get involved

We are currently looking for people who’d like to contribute activities, talks, or performances with digital themes to the festival. This could be something like live music, dance, or other show acts; talks; or drop-in Raspberry Fields 2018 Raspberry Pi festivalmaking activities. In addition, we’re looking for artists who’d like to showcase interactive digital installations, for proud makers who are keen to exhibit their projects, and for vendors who’d like to join in. We particularly encourage young people to showcase projects they’ve created or deliver talks on their digital making journey!Raspberry Fields 2018 Raspberry Pi festival

Your contribution to Raspberry Fields should focus on digital making and be fun and engaging for an audience of various ages. However, it doesn’t need to be specific to Raspberry Pi. You might be keen to demonstrate a project you’ve built, do a short Q&A session on what you’ve learnt, or present something more in-depth in the auditorium; maybe you’re one of our approved resellers wanting to showcase in our market area. We’re also looking for digital makers to run drop-in activity sessions, as well as for people who’d like to be marshals with smiling faces who will ensure that everyone has a wonderful time!

If you’d like to take part in Raspberry Fields, let us know via this form, and we’ll be in touch with you soon.

The post Join us at Raspberry Fields 2018! appeared first on Raspberry Pi.

Pirate Site Admins Receive Suspended Sentences, Still Face €60m Damages Claim

Post Syndicated from Andy original https://torrentfreak.com/pirate-site-admins-receive-suspended-sentences-still-face-e60m-damages-claim-180313/

After being founded in 2009, French site Liberty Land (LL) made its home in Canada. At the time listed among France’s top 200 sites, Liberty Land carried an estimated 30,000 links to a broad range of unlicensed content.

Like many other indexes of its type, LL carried no content itself but hosted links to content hosted elsewhere, on sites like Megaupload and Rapidshare, for example. This didn’t save the operation from an investigation carried out by rightsholder groups SACEM and ALPA, which filed a complaint against Liberty Land with the French authorities in 2010.

Liberty Land

In May 2011 and alongside complaints from police that the people behind Liberty Land had taken extreme measures to hide themselves away, authorities arrested several men linked to the site in Marseille, near Le Havre, and in the Paris suburb of Montreuil.

Despite the men facing a possible five years in jail and fines of up to $700,000, the inquiry dragged on for nearly seven years. The trial of its alleged operators, now aged between 29 and 36-years-old, finally went ahead January 30 in Rennes.

The men faced charges that they unlawfully helped to distribute movies, TV series, games, software, music albums and e-books without permission from rightsholders. In court, one defended the site as being just like Google.

“For me, we had the same role as Google,” he said. “We were an SEO site. There is a difference between what we were doing and the distribution of pirated copies on the street.”

According to the prosecution, the site made considerable revenues from advertising, estimated at more than 300,000 euros between January 2009 and May 2011. The site’s two main administrators reportedly established an offshore company in the British Virgin Islands and a bank account in Latvia where they deposited between 100,000 and 150,000 euros each.

The prosecutor demanded fines for the former site admins and sentences of between six and 12 months in prison. Last week the Rennes Criminal Court rendered its decision, sentencing the four men to suspended sentences of between two and three months. More than 176,000 euros generated by the site was also confiscated by the Court.

While the men will no doubt be relieved that this extremely long case has reached a conclusion of sorts, it’s not over yet. 20minutes reports that the claims for damages filed by copyright groups including SACEM won’t be decided until September and they are significant, totaling 60 million euros.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and more. We also have VPN discounts, offers and coupons

Tromey: JIT Compilation for Emacs

Post Syndicated from jake original https://lwn.net/Articles/747019/rss

On his blog, Tom Tromey looks at just-in-time (JIT) compilation for Emacs and what he has done differently in his implementation from what was done in earlier efforts. He also looks at potential enhancements to his JIT: “Calling a function in Emacs Lisp is quite expensive. A call from the JIT requires marshalling the arguments into an array, then calling Ffuncall; which then might dispatch to a C function (a “subr”), the bytecode interpreter, or the ordinary interpreter. In some cases this may require allocation.

This overhead applies to nearly every call — but the C implementation of Emacs is free to call various primitive functions directly, without using Ffuncall to indirect through some Lisp symbol.

Now, these direct calls aren’t without a cost: they prevent the modification of some functions from Lisp. Sometimes this is a pain (it might be handy to hack on load from Lisp), but in many cases it is unimportant.

So, one idea for the JIT is to keep a list of such functions and then emit direct calls rather than indirect ones.”

Reactive Microservices Architecture on AWS

Post Syndicated from Sascha Moellering original https://aws.amazon.com/blogs/architecture/reactive-microservices-architecture-on-aws/

Microservice-application requirements have changed dramatically in recent years. These days, applications operate with petabytes of data, need almost 100% uptime, and end users expect sub-second response times. Typical N-tier applications can’t deliver on these requirements.

Reactive Manifesto, published in 2014, describes the essential characteristics of reactive systems including: responsiveness, resiliency, elasticity, and being message driven.

Being message driven is perhaps the most important characteristic of reactive systems. Asynchronous messaging helps in the design of loosely coupled systems, which is a key factor for scalability. In order to build a highly decoupled system, it is important to isolate services from each other. As already described, isolation is an important aspect of the microservices pattern. Indeed, reactive systems and microservices are a natural fit.

Implemented Use Case
This reference architecture illustrates a typical ad-tracking implementation.

Many ad-tracking companies collect massive amounts of data in near-real-time. In many cases, these workloads are very spiky and heavily depend on the success of the ad-tech companies’ customers. Typically, an ad-tracking-data use case can be separated into a real-time part and a non-real-time part. In the real-time part, it is important to collect data as fast as possible and ask several questions including:,  “Is this a valid combination of parameters?,””Does this program exist?,” “Is this program still valid?”

Because response time has a huge impact on conversion rate in advertising, it is important for advertisers to respond as fast as possible. This information should be kept in memory to reduce communication overhead with the caching infrastructure. The tracking application itself should be as lightweight and scalable as possible. For example, the application shouldn’t have any shared mutable state and it should use reactive paradigms. In our implementation, one main application is responsible for this real-time part. It collects and validates data, responds to the client as fast as possible, and asynchronously sends events to backend systems.

The non-real-time part of the application consumes the generated events and persists them in a NoSQL database. In a typical tracking implementation, clicks, cookie information, and transactions are matched asynchronously and persisted in a data store. The matching part is not implemented in this reference architecture. Many ad-tech architectures use frameworks like Hadoop for the matching implementation.

The system can be logically divided into the data collection partand the core data updatepart. The data collection part is responsible for collecting, validating, and persisting the data. In the core data update part, the data that is used for validation gets updated and all subscribers are notified of new data.

Components and Services

Main Application
The main application is implemented using Java 8 and uses Vert.x as the main framework. Vert.x is an event-driven, reactive, non-blocking, polyglot framework to implement microservices. It runs on the Java virtual machine (JVM) by using the low-level IO library Netty. You can write applications in Java, JavaScript, Groovy, Ruby, Kotlin, Scala, and Ceylon. The framework offers a simple and scalable actor-like concurrency model. Vert.x calls handlers by using a thread known as an event loop. To use this model, you have to write code known as “verticles.” Verticles share certain similarities with actors in the actor model. To use them, you have to implement the verticle interface. Verticles communicate with each other by generating messages in  a single event bus. Those messages are sent on the event bus to a specific address, and verticles can register to this address by using handlers.

With only a few exceptions, none of the APIs in Vert.x block the calling thread. Similar to Node.js, Vert.x uses the reactor pattern. However, in contrast to Node.js, Vert.x uses several event loops. Unfortunately, not all APIs in the Java ecosystem are written asynchronously, for example, the JDBC API. Vert.x offers a possibility to run this, blocking APIs without blocking the event loop. These special verticles are called worker verticles. You don’t execute worker verticles by using the standard Vert.x event loops, but by using a dedicated thread from a worker pool. This way, the worker verticles don’t block the event loop.

Our application consists of five different verticles covering different aspects of the business logic. The main entry point for our application is the HttpVerticle, which exposes an HTTP-endpoint to consume HTTP-requests and for proper health checking. Data from HTTP requests such as parameters and user-agent information are collected and transformed into a JSON message. In order to validate the input data (to ensure that the program exists and is still valid), the message is sent to the CacheVerticle.

This verticle implements an LRU-cache with a TTL of 10 minutes and a capacity of 100,000 entries. Instead of adding additional functionality to a standard JDK map implementation, we use Google Guava, which has all the features we need. If the data is not in the L1 cache, the message is sent to the RedisVerticle. This verticle is responsible for data residing in Amazon ElastiCache and uses the Vert.x-redis-client to read data from Redis. In our example, Redis is the central data store. However, in a typical production implementation, Redis would just be the L2 cache with a central data store like Amazon DynamoDB. One of the most important paradigms of a reactive system is to switch from a pull- to a push-based model. To achieve this and reduce network overhead, we’ll use Redis pub/sub to push core data changes to our main application.

Vert.x also supports direct Redis pub/sub-integration, the following code shows our subscriber-implementation:

vertx.eventBus().<JsonObject>consumer(REDIS_PUBSUB_CHANNEL_VERTX, received -> {

JsonObject value = received.body().getJsonObject("value");

String message = value.getString("message");

JsonObject jsonObject = new JsonObject(message);



redis.subscribe(Constants.REDIS_PUBSUB_CHANNEL, res -> {

if (res.succeeded()) {

LOGGER.info("Subscribed to " + Constants.REDIS_PUBSUB_CHANNEL);

} else {




The verticle subscribes to the appropriate Redis pub/sub-channel. If a message is sent over this channel, the payload is extracted and forwarded to the cache-verticle that stores the data in the L1-cache. After storing and enriching data, a response is sent back to the HttpVerticle, which responds to the HTTP request that initially hit this verticle. In addition, the message is converted to ByteBuffer, wrapped in protocol buffers, and send to an Amazon Kinesis Data Stream.

The following example shows a stripped-down version of the KinesisVerticle:

public class KinesisVerticle extends AbstractVerticle {

private static final Logger LOGGER = LoggerFactory.getLogger(KinesisVerticle.class);

private AmazonKinesisAsync kinesisAsyncClient;

private String eventStream = "EventStream";


public void start() throws Exception {

EventBus eb = vertx.eventBus();

kinesisAsyncClient = createClient();

eventStream = System.getenv(STREAM_NAME) == null ? "EventStream" : System.getenv(STREAM_NAME);

eb.consumer(Constants.KINESIS_EVENTBUS_ADDRESS, message -> {

try {

TrackingMessage trackingMessage = Json.decodeValue((String)message.body(), TrackingMessage.class);

String partitionKey = trackingMessage.getMessageId();

byte [] byteMessage = createMessage(trackingMessage);

ByteBuffer buf = ByteBuffer.wrap(byteMessage);

sendMessageToKinesis(buf, partitionKey);



catch (KinesisException exc) {





Kinesis Consumer
This AWS Lambda function consumes data from an Amazon Kinesis Data Stream and persists the data in an Amazon DynamoDB table. In order to improve testability, the invocation code is separated from the business logic. The invocation code is implemented in the class KinesisConsumerHandler and iterates over the Kinesis events pulled from the Kinesis stream by AWS Lambda. Each Kinesis event is unwrapped and transformed from ByteBuffer to protocol buffers and converted into a Java object. Those Java objects are passed to the business logic, which persists the data in a DynamoDB table. In order to improve duration of successive Lambda calls, the DynamoDB-client is instantiated lazily and reused if possible.

Redis Updater
From time to time, it is necessary to update core data in Redis. A very efficient implementation for this requirement is using AWS Lambda and Amazon Kinesis. New core data is sent over the AWS Kinesis stream using JSON as data format and consumed by a Lambda function. This function iterates over the Kinesis events pulled from the Kinesis stream by AWS Lambda. Each Kinesis event is unwrapped and transformed from ByteBuffer to String and converted into a Java object. The Java object is passed to the business logic and stored in Redis. In addition, the new core data is also sent to the main application using Redis pub/sub in order to reduce network overhead and converting from a pull- to a push-based model.

The following example shows the source code to store data in Redis and notify all subscribers:

public void updateRedisData(final TrackingMessage trackingMessage, final Jedis jedis, final LambdaLogger logger) {

try {

ObjectMapper mapper = new ObjectMapper();

String jsonString = mapper.writeValueAsString(trackingMessage);

Map<String, String> map = marshal(jsonString);

String statusCode = jedis.hmset(trackingMessage.getProgramId(), map);


catch (Exception exc) {

if (null == logger)






public void notifySubscribers(final TrackingMessage trackingMessage, final Jedis jedis, final LambdaLogger logger) {

try {

ObjectMapper mapper = new ObjectMapper();

String jsonString = mapper.writeValueAsString(trackingMessage);

jedis.publish(Constants.REDIS_PUBSUB_CHANNEL, jsonString);


catch (final IOException e) {

log(e.getMessage(), logger);



Similarly to our Kinesis Consumer, the Redis-client is instantiated somewhat lazily.

Infrastructure as Code
As already outlined, latency and response time are a very critical part of any ad-tracking solution because response time has a huge impact on conversion rate. In order to reduce latency for customers world-wide, it is common practice to roll out the infrastructure in different AWS Regions in the world to be as close to the end customer as possible. AWS CloudFormation can help you model and set up your AWS resources so that you can spend less time managing those resources and more time focusing on your applications that run in AWS.

You create a template that describes all the AWS resources that you want (for example, Amazon EC2 instances or Amazon RDS DB instances), and AWS CloudFormation takes care of provisioning and configuring those resources for you. Our reference architecture can be rolled out in different Regions using an AWS CloudFormation template, which sets up the complete infrastructure (for example, Amazon Virtual Private Cloud (Amazon VPC), Amazon Elastic Container Service (Amazon ECS) cluster, Lambda functions, DynamoDB table, Amazon ElastiCache cluster, etc.).

In this blog post we described reactive principles and an example architecture with a common use case. We leveraged the capabilities of different frameworks in combination with several AWS services in order to implement reactive principles—not only at the application-level but also at the system-level. I hope I’ve given you ideas for creating your own reactive applications and systems on AWS.

About the Author

Sascha Moellering is a Senior Solution Architect. Sascha is primarily interested in automation, infrastructure as code, distributed computing, containers and JVM. He can be reached at [email protected]



Instrumenting Web Apps Using AWS X-Ray

Post Syndicated from Bharath Kumar original https://aws.amazon.com/blogs/devops/instrumenting-web-apps-using-aws-x-ray/

This post was written by James Bowman, Software Development Engineer, AWS X-Ray

AWS X-Ray helps developers analyze and debug distributed applications and underlying services in production. You can identify and analyze root-causes of performance issues and errors, understand customer impact, and extract statistical aggregations (such as histograms) for optimization.

In this blog post, I will provide a step-by-step walkthrough for enabling X-Ray tracing in the Go programming language. You can use these steps to add X-Ray tracing to any distributed application.

Revel: A web framework for the Go language

This section will assist you with designing a guestbook application. Skip to “Instrumenting with AWS X-Ray” section below if you already have a Go language application.

Revel is a web framework for the Go language. It facilitates the rapid development of web applications by providing a predefined framework for controllers, views, routes, filters, and more.

To get started with Revel, run revel new github.com/jamesdbowman/guestbook. A project base is then copied to $GOPATH/src/github.com/jamesdbowman/guestbook.

$ tree -L 2
├── README.md
├── app
│ ├── controllers
│ ├── init.go
│ ├── routes
│ ├── tmp
│ └── views
├── conf
│ ├── app.conf
│ └── routes
├── messages
│ └── sample.en
├── public
│ ├── css
│ ├── fonts
│ ├── img
│ └── js
└── tests
└── apptest.go

Writing a guestbook application

A basic guestbook application can consist of just two routes: one to sign the guestbook and another to list all entries.
Let’s set up these routes by adding a Book controller, which can be routed to by modifying ./conf/routes.

package controllers

import (


const TABLE_NAME = "guestbook"
const SUCCESS = "Success.\n"
const DAY = 86400


func init() {

// randString returns a random string of len n, used for DynamoDB Hash key.
func randString(n int) string {
    b := make([]rune, n)
    for i := range b {
        b[i] = letters[rand.Intn(len(letters))]
    return string(b)

// Book controls interactions with the guestbook.
type Book struct {
    ddbClient *dynamodb.DynamoDB

// Signature represents a user's signature.
type Signature struct {
    Message string
    Epoch   int64
    ID      string

// ddb returns the controller's DynamoDB client, instatiating a new client if necessary.
func (c Book) ddb() *dynamodb.DynamoDB {
    if c.ddbClient == nil {
        sess := session.Must(session.NewSession(&aws.Config{
            Region: aws.String(endpoints.UsWest2RegionID),
        c.ddbClient = dynamodb.New(sess)
    return c.ddbClient

// Sign allows users to sign the book.
// The message is to be passed as application/json typed content, listed under the "message" top level key.
func (c Book) Sign() revel.Result {
    var s Signature

    err := c.Params.BindJSON(&s)
    if err != nil {
        return c.RenderError(err)
    now := time.Now()
    s.Epoch = now.Unix()
    s.ID = randString(20)

    item, err := dynamodbattribute.MarshalMap(s)
    if err != nil {
        return c.RenderError(err)

    putItemInput := &dynamodb.PutItemInput{
        TableName: aws.String(TABLE_NAME),
        Item:      item,
    _, err = c.ddb().PutItem(putItemInput)
    if err != nil {
        return c.RenderError(err)

    return c.RenderText(SUCCESS)

// List allows users to list all signatures in the book.
func (c Book) List() revel.Result {
    scanInput := &dynamodb.ScanInput{
        TableName: aws.String(TABLE_NAME),
        Limit:     aws.Int64(100),
    res, err := c.ddb().Scan(scanInput)
    if err != nil {
        return c.RenderError(err)

    messages := make([]string, 0)
    for _, v := range res.Items {
        messages = append(messages, *(v["Message"].S))
    return c.RenderJSON(messages)

POST /sign Book.Sign
GET /list Book.List

Creating the resources and testing

For the purposes of this blog post, the application will be run and tested locally. We will store and retrieve messages from an Amazon DynamoDB table. Use the following AWS CLI command to create the guestbook table:

aws dynamodb create-table --region us-west-2 --table-name "guestbook" --attribute-definitions AttributeName=ID,AttributeType=S AttributeName=Epoch,AttributeType=N --key-schema AttributeName=ID,KeyType=HASH AttributeName=Epoch,KeyType=RANGE --provisioned-throughput ReadCapacityUnits=5,WriteCapacityUnits=5

Now, let’s test our sign and list routes. If everything is working correctly, the following result appears:

$ curl -d '{"message":"Hello from cURL!"}' -H "Content-Type: application/json" http://localhost:9000/book/sign
$ curl http://localhost:9000/book/list
  "Hello from cURL!"

Integrating with AWS X-Ray

Download and run the AWS X-Ray daemon

The AWS SDKs emit trace segments over UDP on port 2000. (This port can be configured.) In order for the trace segments to make it to the X-Ray service, the daemon must listen on this port and batch the segments in calls to the PutTraceSegments API.
For information about downloading and running the X-Ray daemon, see the AWS X-Ray Developer Guide.

Installing the AWS X-Ray SDK for Go

To download the SDK from GitHub, run go get -u github.com/aws/aws-xray-sdk-go/... The SDK will appear in the $GOPATH.

Enabling the incoming request filter

The first step to instrumenting an application with AWS X-Ray is to enable the generation of trace segments on incoming requests. The SDK conveniently provides an implementation of http.Handler which does exactly that. To ensure incoming web requests travel through this handler, we can modify app/init.go, adding a custom function to be run on application start.

import (


func init() {

func installXRayHandler() {
    revel.Server.Handler = xray.Handler(xray.NewFixedSegmentNamer("GuestbookApp"), revel.Server.Handler)

The application will now emit a segment for each incoming web request. The service graph appears:

You can customize the name of the segment to make it more descriptive by providing an alternate implementation of SegmentNamer to xray.Handler. For example, you can use xray.NewDynamicSegmentNamer(fallback, pattern) in place of the fixed namer. This namer will use the host name from the incoming web request (if it matches pattern) as the segment name. This is often useful when you are trying to separate different instances of the same application.

In addition, HTTP-centric information such as method and URL is collected in the segment’s http subsection:

"http": {
    "request": {
        "url": "/book/list",
        "method": "GET",
        "user_agent": "curl/7.54.0",
        "client_ip": "::1"
    "response": {
        "status": 200

Instrumenting outbound calls

To provide detailed performance metrics for distributed applications, the AWS X-Ray SDK needs to measure the time it takes to make outbound requests. Trace context is passed to downstream services using the X-Amzn-Trace-Id header. To draw a detailed and accurate representation of a distributed application, outbound call instrumentation is required.

AWS SDK calls

The AWS X-Ray SDK for Go provides a one-line AWS client wrapper that enables the collection of detailed per-call metrics for any AWS client. We can modify the DynamoDB client instantiation to include this line:

// ddb returns the controller's DynamoDB client, instatiating a new client if necessary.
func (c Book) ddb() *dynamodb.DynamoDB {
    if c.ddbClient == nil {
        sess := session.Must(session.NewSession(&aws.Config{
            Region: aws.String(endpoints.UsWest2RegionID),
        c.ddbClient = dynamodb.New(sess)
        xray.AWS(c.ddbClient.Client) // add subsegment-generating X-Ray handlers to this client
    return c.ddbClient

We also need to ensure that the segment generated by our xray.Handler is passed to these AWS calls so that the X-Ray SDK knows to which segment these generated subsegments belong. In Go, the context.Context object is passed throughout the call path to achieve this goal. (In most other languages, some variant of ThreadLocal is used.) AWS clients provide a *WithContext method variant for each AWS operation, which we need to switch to:

_, err = c.ddb().PutItemWithContext(c.Request.Context(), putItemInput)
    res, err := c.ddb().ScanWithContext(c.Request.Context(), scanInput)

We now see much more detail in the Timeline view of the trace for the sign and list operations:

We can use this detail to help diagnose throttling on our DynamoDB table. In the following screenshot, the purple in the DynamoDB service graph node indicates that our table is underprovisioned. The red in the GuestbookApp node indicates that the application is throwing faults due to this throttling.

HTTP calls

Although the guestbook application does not make any non-AWS outbound HTTP calls in its current state, there is a similar one-liner to wrap HTTP clients that make outbound requests. xray.Client(c *http.Client) wraps an existing http.Client (or nil if you want to use a default HTTP client). For example:

resp, err := ctxhttp.Get(ctx, xray.Client(nil), "https://aws.amazon.com/")

Instrumenting local operations

X-Ray can also assist in measuring the performance of local compute operations. To see this in action, let’s create a custom subsegment inside the randString method:

// randString returns a random string of len n, used for DynamoDB Hash key.
func randString(ctx context.Context, n int) string {
    xray.Capture(ctx, "randString", func(innerCtx context.Context) {
        b := make([]rune, n)
        for i := range b {
            b[i] = letters[rand.Intn(len(letters))]
        s := string(b)
    return s

// we'll also need to change the callsite

s.ID = randString(c.Request.Context(), 20)


By now, you are an expert on how to instrument X-Ray for your Go applications. Instrumenting X-Ray with your applications is an easy way to analyze and debug performance issues and understand customer impact. Please feel free to give any feedback or comments below.

For more information about advanced configuration of the AWS X-Ray SDK for Go, see the AWS X-Ray SDK for Go in the AWS X-Ray Developer Guide and the aws/aws-xray-sdk-go GitHub repository.

For more information about some of the advanced X-Ray features such as histograms, annotations, and filter expressions, see the Analyzing Performance for Amazon Rekognition Apps Written on AWS Lambda Using AWS X-Ray blog post.

Now Open AWS EU (Paris) Region

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/now-open-aws-eu-paris-region/

Today we are launching our 18th AWS Region, our fourth in Europe. Located in the Paris area, AWS customers can use this Region to better serve customers in and around France.

The Details
The new EU (Paris) Region provides a broad suite of AWS services including Amazon API Gateway, Amazon Aurora, Amazon CloudFront, Amazon CloudWatch, CloudWatch Events, Amazon CloudWatch Logs, Amazon DynamoDB, Amazon Elastic Compute Cloud (EC2), EC2 Container Registry, Amazon ECS, Amazon Elastic Block Store (EBS), Amazon EMR, Amazon ElastiCache, Amazon Elasticsearch Service, Amazon Glacier, Amazon Kinesis Streams, Polly, Amazon Redshift, Amazon Relational Database Service (RDS), Amazon Route 53, Amazon Simple Notification Service (SNS), Amazon Simple Queue Service (SQS), Amazon Simple Storage Service (S3), Amazon Simple Workflow Service (SWF), Amazon Virtual Private Cloud, Auto Scaling, AWS Certificate Manager (ACM), AWS CloudFormation, AWS CloudTrail, AWS CodeDeploy, AWS Config, AWS Database Migration Service, AWS Direct Connect, AWS Elastic Beanstalk, AWS Identity and Access Management (IAM), AWS Key Management Service (KMS), AWS Lambda, AWS Marketplace, AWS OpsWorks Stacks, AWS Personal Health Dashboard, AWS Server Migration Service, AWS Service Catalog, AWS Shield Standard, AWS Snowball, AWS Snowball Edge, AWS Snowmobile, AWS Storage Gateway, AWS Support (including AWS Trusted Advisor), Elastic Load Balancing, and VM Import.

The Paris Region supports all sizes of C5, M5, R4, T2, D2, I3, and X1 instances.

There are also four edge locations for Amazon Route 53 and Amazon CloudFront: three in Paris and one in Marseille, all with AWS WAF and AWS Shield. Check out the AWS Global Infrastructure page to learn more about current and future AWS Regions.

The Paris Region will benefit from three AWS Direct Connect locations. Telehouse Voltaire is available today. AWS Direct Connect will also become available at Equinix Paris in early 2018, followed by Interxion Paris.

All AWS infrastructure regions around the world are designed, built, and regularly audited to meet the most rigorous compliance standards and to provide high levels of security for all AWS customers. These include ISO 27001, ISO 27017, ISO 27018, SOC 1 (Formerly SAS 70), SOC 2 and SOC 3 Security & Availability, PCI DSS Level 1, and many more. This means customers benefit from all the best practices of AWS policies, architecture, and operational processes built to satisfy the needs of even the most security sensitive customers.

AWS is certified under the EU-US Privacy Shield, and the AWS Data Processing Addendum (DPA) is GDPR-ready and available now to all AWS customers to help them prepare for May 25, 2018 when the GDPR becomes enforceable. The current AWS DPA, as well as the AWS GDPR DPA, allows customers to transfer personal data to countries outside the European Economic Area (EEA) in compliance with European Union (EU) data protection laws. AWS also adheres to the Cloud Infrastructure Service Providers in Europe (CISPE) Code of Conduct. The CISPE Code of Conduct helps customers ensure that AWS is using appropriate data protection standards to protect their data, consistent with the GDPR. In addition, AWS offers a wide range of services and features to help customers meet the requirements of the GDPR, including services for access controls, monitoring, logging, and encryption.

From Our Customers
Many AWS customers are preparing to use this new Region. Here’s a small sample:

Societe Generale, one of the largest banks in France and the world, has accelerated their digital transformation while working with AWS. They developed SG Research, an application that makes reports from Societe Generale’s analysts available to corporate customers in order to improve the decision-making process for investments. The new AWS Region will reduce latency between applications running in the cloud and in their French data centers.

SNCF is the national railway company of France. Their mobile app, powered by AWS, delivers real-time traffic information to 14 million riders. Extreme weather, traffic events, holidays, and engineering works can cause usage to peak at hundreds of thousands of users per second. They are planning to use machine learning and big data to add predictive features to the app.

Radio France, the French public radio broadcaster, offers seven national networks, and uses AWS to accelerate its innovation and stay competitive.

Les Restos du Coeur, a French charity that provides assistance to the needy, delivering food packages and participating in their social and economic integration back into French society. Les Restos du Coeur is using AWS for its CRM system to track the assistance given to each of their beneficiaries and the impact this is having on their lives.

AlloResto by JustEat (a leader in the French FoodTech industry), is using AWS to to scale during traffic peaks and to accelerate their innovation process.

AWS Consulting and Technology Partners
We are already working with a wide variety of consulting, technology, managed service, and Direct Connect partners in France. Here’s a partial list:

AWS Premier Consulting PartnersAccenture, Capgemini, Claranet, CloudReach, DXC, and Edifixio.

AWS Consulting PartnersABC Systemes, Atos International SAS, CoreExpert, Cycloid, Devoteam, LINKBYNET, Oxalide, Ozones, Scaleo Information Systems, and Sopra Steria.

AWS Technology PartnersAxway, Commerce Guys, MicroStrategy, Sage, Software AG, Splunk, Tibco, and Zerolight.

AWS in France
We have been investing in Europe, with a focus on France, for the last 11 years. We have also been developing documentation and training programs to help our customers to improve their skills and to accelerate their journey to the AWS Cloud.

As part of our commitment to AWS customers in France, we plan to train more than 25,000 people in the coming years, helping them develop highly sought after cloud skills. They will have access to AWS training resources in France via AWS Academy, AWSome days, AWS Educate, and webinars, all delivered in French by AWS Technical Trainers and AWS Certified Trainers.

Use it Today
The EU (Paris) Region is open for business now and you can start using it today!



Community Profile: Matthew Timmons-Brown

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/community-profile-matthew-timmons-brown/

This column is from The MagPi issue 57. You can download a PDF of the full issue for free, or subscribe to receive the print edition in your mailbox or the digital edition on your tablet. All proceeds from the print and digital editions help the Raspberry Pi Foundation achieve its charitable goals.

“I first set up my YouTube channel because I noticed a massive lack of video tutorials for the Raspberry Pi,” explains Matthew Timmons-Brown, known to many as The Raspberry Pi Guy. At 18 years old, the Cambridge-based student has more than 60 000 subscribers to his channel, making his account the most successful Raspberry Pi–specific YouTube account to date.

Matthew Timmons-Brown

Matt gives a talk at the Raspberry Pi 5th Birthday weekend event

The Raspberry Pi Guy

If you’ve attended a Raspberry Pi event, there’s a good chance you’ve already met Matt. And if not, you’ll have no doubt come across one or more of his tutorials and builds online. On more than one occasion, his work has featured on the Raspberry Pi blog, with his yearly Raspberry Pi roundup videos being a staple of the birthday celebrations.

Matthew Timmons-Brown

With his website, Matt aimed to collect together “the many strands of The Raspberry Pi Guy” into one, neat, cohesive resource — and it works. From newcomers to the credit card-sized computer to hardened Pi veterans, The Raspberry Pi Guy offers aid and inspiration for many. Looking for a review of the Raspberry Pi Zero W? He’s filmed one. Looking for a step-by-step guide to building a Pi-powered Amazon Alexa? No problem, there’s one of those too.

Make your Raspberry Pi artificially intelligent! – Amazon Alexa Personal Assistant Tutorial

Artificial Intelligence. A hefty topic that has dominated the field since computers were first conceived. What if I told you that you could put an artificial intelligence service on your own $30 computer?! That’s right! In this tutorial I will show you how to create your own artificially intelligent personal assistant, using Amazon’s Alexa voice recognition and information service!

Raspberry Pi electric skateboard

Last summer, Matt introduced the world to his Raspberry Pi-controlled electric skateboard, soon finding himself plastered over local press as well as the BBC and tech sites like Adafruit and geek.com. And there’s no question as to why the build was so popular. With YouTubers such as Casey Neistat increasing the demand for electric skateboards on a near-daily basis, the call for a cheaper, home-brew version has quickly grown.


Over the summer, I made my own electric skateboard using a £4 Raspberry Pi Zero. Controlled with a Nintendo Wiimote, capable of going 30km/h, and with a range of over 10km, this project has been pretty darn fun. In this video, you see me racing around Cambridge and I explain the ins and outs of this project.

Using a Raspberry Pi Zero, a Nintendo Wii Remote, and a little help from members of the Cambridge Makespace community, Matt built a board capable of reaching 30km/h, with a battery range of 10km per charge. Alongside Neistat, Matt attributes the project inspiration to Australian student Tim Maier, whose build we previously covered in The MagPi.

Matthew Timmons-Brown and Eben Upton standing in a car park looking at a smartphone


Despite the success and the fun of the electric skateboard (including convincing Raspberry Pi Trading CEO Eben Upton to have a go for local television news coverage), the project Matt is most proud of is his wireless LiDAR system for theoretical use on the Mars rovers.

Matthew Timmons-Brown's LiDAR project for scanning terrains with lasers

Using a tablet app to define the angles, Matt’s A Level coursework LiDAR build scans the surrounding area, returning the results to the touchscreen, where they can be manipulated by the user. With his passion for the cosmos and the International Space Station, it’s no wonder that this is Matt’s proudest build.

Built for his A Level Computer Science coursework, the build demonstrates Matt’s passion for space and physics. Used as a means of surveying terrain, LiDAR uses laser light to measure distance, allowing users to create 3D-scanned, high-resolution maps of a specific area. It is a perfect technology for exploring unknown worlds.

Matthew Timmons-Brown and two other young people at a reception in the Houses of Parliament

Matt was invited to St James’s Palace and the Houses of Parliament as part of the Raspberry Pi community celebrations in 2016

Joining the community

In a recent interview at Hills Road Sixth Form College, where he is studying mathematics, further mathematics, physics, and computer science, Matt revealed where his love of electronics and computer science started. “I originally became interested in computer science in 2012, when I read a tiny magazine article about a computer that I would be able to buy with pocket money. This was a pretty exciting thing for a 12-year-old! Your own computer… for less than £30?!” He went on to explain how it became his mission to learn all he could on the subject and how, months later, his YouTube channel came to life, cementing him firmly into the Raspberry Pi community

The post Community Profile: Matthew Timmons-Brown appeared first on Raspberry Pi.

Turtle, the earthbound crowdfunded rover

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/turtle-rover/

With ten days to go until the end of their crowdfunding campaign, the team behind the Turtle Rover are waiting eagerly for their project to become a reality for earthbound explorers across the globe.

Turtle Rover

Turtle is the product of the Mars Rover prototype engineers at Wroclaw University of Technology, Poland. Their waterproof land rover can be controlled via your tablet or smartphone, and allows you to explore hidden worlds too small or dangerous for humans. The team says this about their project:

NASA and ESA plan to send another rover to Mars in 2020. SpaceX wants to send one million people to Mars in the next 100 years. However, before anyone sends a rover to another planet, we designed Turtle — a robot to remind you about how beautiful the Earth is.

With a Raspberry Pi at its core, Turtle is an open-source, modular device to which you can attach new, interesting features such as extra cameras, lights, and a DSLR adapter. Depending on the level at which you back the Kickstarter, you might also receive a robotic arm as a reward for your support.

Turtle Rover Kickstarter Raspberry Pi

The Turtle can capture photos and video, and even live-stream video to your device. Moreover, its emergency stop button offers peace of mind whenever your explorations takes your Turtle to cliff edges or other unsafe locations.

Constructed of aerospace-grade aluminium, plastics, and stainless steel, its robust form, watertight and dust-proof body, and 4-hour battery life make the Turtle a great tool for education and development, as well as a wonderful addition to recreational activities such as Airsoft.

Back the Turtle

If you want to join in the Turtle Rover revolution, you have ten days left to back the team on Kickstarter. Pledge €1497 for an unassembled kit (you’ll need your own Raspberry Pi, battery, and servos), or €1549 for a complete rover. The team plan to send your Turtle to you by June 2018 — so get ready to explore!

Turtle Rover Kickstarter Raspberry Pi

For more information on the build, including all crowdfunding rewards, check out their Kickstarter page. And if you’d like to follow their journey, be sure to follow them on Twitter.

Your Projects

Are you running a Raspberry Pi-based crowdfunding campaign? Or maybe you’ve got your idea, and you’re soon going to unleash it on the world? Whatever your plans, we’d love to see what you’re up to, so make sure to let us know via our social media channels or an email to [email protected]


The post Turtle, the earthbound crowdfunded rover appeared first on Raspberry Pi.

Hunting for life on Mars assisted by high-altitude balloons

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/eclipse-high-altitude-balloons/

Will bacteria-laden high-altitude balloons help us find life on Mars? Today’s eclipse should bring us closer to an answer.

NASA Bacteria Balloons Raspberry Pi HAB Life on Mars

image c/o NASA / Ames Research Center / Tristan Caro

The Eclipse Ballooning Project

Having learned of the Eclipse Ballooning Project set to take place today across the USA, a team at NASA couldn’t miss the opportunity to harness the high-flying project for their own experiments.

NASA Bacteria Balloons Raspberry Pi HAB Life on Mars

The Eclipse Ballooning Project invited students across the USA to aid in the launch of 50+ high-altitude balloons during today’s eclipse. Each balloon is equipped with its own Raspberry Pi and camera for data collection and live video-streaming.

High-altitude ballooning, or HAB as it’s often referred to, has become a popular activity within the Raspberry Pi community. The lightweight nature of the device allows for high ascent, and its Camera Module enables instant visual content collection.

Life on Mars

image c/o Montana State University

The Eclipse Ballooning Project team, headed by Angela Des Jardins of Montana State University, was contacted by Jim Green, Director of Planetary Science at NASA, who hoped to piggyback on the project to run tests on bacteria in the Mars-like conditions the balloons would encounter near space.

Into the stratosphere

At around -35 degrees Fahrenheit, with thinner air and harsher ultraviolet radiation, the conditions in the upper part of the earth’s stratosphere are comparable to those on the surface of Mars. And during the eclipse, the moon will block some UV rays, making the environment in our stratosphere even more similar to the martian oneideal for NASA’s experiment.

So the students taking part in the Eclipse Ballooning Project could help the scientists out, NASA sent them some small metal tags.

NASA Bacteria Balloons Raspberry Pi HAB Life on Mars

These tags contain samples of a kind of bacterium known as Paenibacillus xerothermodurans. Upon their return to ground, the bacteria will be tested to see whether and how the high-altitude conditions affected them.

Life on Mars

Paenibacillus xerothermodurans is one of the most resilient bacterial species we know. The team at NASA wants to discover how the bacteria react to their flight in order to learn more about whether life on Mars could possibly exist. If the low temperature, UV rays, and air conditions cause the bacteria to mutate or indeed die, we can be pretty sure that the existence of living organisms on the surface of Mars is very unlikely.

Life on Mars

What happens to the bacteria on the spacecraft and rovers we send to space? This experiment should provide some answers.

The eclipse

If you’re in the US, you might have a chance to witness the full solar eclipse today. And if you’re planning to watch, please make sure to take all precautionary measures. In a nutshell, don’t look directly at the sun. Not today, not ever.

If you’re in the UK, you can observe a partial eclipse, if the clouds decide to vanish. And again, take note of safety measures so you don’t damage your eyes.

Life on Mars

You can also watch a live-stream of the eclipse via the NASA website.

If you’ve created an eclipse-viewing Raspberry Pi project, make sure to share it with us. And while we’re talking about eclipses and balloons, check here for our coverage of the 2015 balloon launches coinciding with the UK’s partial eclipse.

The post Hunting for life on Mars assisted by high-altitude balloons appeared first on Raspberry Pi.