Tag Archives: NCR

EC2 Instance Update – M5 Instances with Local NVMe Storage (M5d)

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/ec2-instance-update-m5-instances-with-local-nvme-storage-m5d/

Earlier this month we launched the C5 Instances with Local NVMe Storage and I told you that we would be doing the same for additional instance types in the near future!

Today we are introducing M5 instances equipped with local NVMe storage. Available for immediate use in 5 regions, these instances are a great fit for workloads that require a balance of compute and memory resources. Here are the specs:

Instance NamevCPUsRAMLocal StorageEBS-Optimized BandwidthNetwork Bandwidth
m5d.large28 GiB1 x 75 GB NVMe SSDUp to 2.120 GbpsUp to 10 Gbps
m5d.xlarge416 GiB1 x 150 GB NVMe SSDUp to 2.120 GbpsUp to 10 Gbps
m5d.2xlarge832 GiB1 x 300 GB NVMe SSDUp to 2.120 GbpsUp to 10 Gbps
m5d.4xlarge1664 GiB1 x 600 GB NVMe SSD2.210 GbpsUp to 10 Gbps
m5d.12xlarge48192 GiB2 x 900 GB NVMe SSD5.0 Gbps10 Gbps
m5d.24xlarge96384 GiB4 x 900 GB NVMe SSD10.0 Gbps25 Gbps

The M5d instances are powered by Custom Intel® Xeon® Platinum 8175M series processors running at 2.5 GHz, including support for AVX-512.

You can use any AMI that includes drivers for the Elastic Network Adapter (ENA) and NVMe; this includes the latest Amazon Linux, Microsoft Windows (Server 2008 R2, Server 2012, Server 2012 R2 and Server 2016), Ubuntu, RHEL, SUSE, and CentOS AMIs.

Here are a couple of things to keep in mind about the local NVMe storage on the M5d instances:

Naming – You don’t have to specify a block device mapping in your AMI or during the instance launch; the local storage will show up as one or more devices (/dev/nvme*1 on Linux) after the guest operating system has booted.

Encryption – Each local NVMe device is hardware encrypted using the XTS-AES-256 block cipher and a unique key. Each key is destroyed when the instance is stopped or terminated.

Lifetime – Local NVMe devices have the same lifetime as the instance they are attached to, and do not stick around after the instance has been stopped or terminated.

Available Now
M5d instances are available in On-Demand, Reserved Instance, and Spot form in the US East (N. Virginia), US West (Oregon), EU (Ireland), US East (Ohio), and Canada (Central) Regions. Prices vary by Region, and are just a bit higher than for the equivalent M5 instances.

Jeff;

 

Build your own weather station with our new guide!

Post Syndicated from Richard Hayler original https://www.raspberrypi.org/blog/build-your-own-weather-station/

One of the most common enquiries I receive at Pi Towers is “How can I get my hands on a Raspberry Pi Oracle Weather Station?” Now the answer is: “Why not build your own version using our guide?”

Build Your Own weather station kit assembled

Tadaaaa! The BYO weather station fully assembled.

Our Oracle Weather Station

In 2016 we sent out nearly 1000 Raspberry Pi Oracle Weather Station kits to schools from around the world who had applied to be part of our weather station programme. In the original kit was a special HAT that allows the Pi to collect weather data with a set of sensors.

The original Raspberry Pi Oracle Weather Station HAT – Build Your Own Raspberry Pi weather station

The original Raspberry Pi Oracle Weather Station HAT

We designed the HAT to enable students to create their own weather stations and mount them at their schools. As part of the programme, we also provide an ever-growing range of supporting resources. We’ve seen Oracle Weather Stations in great locations with a huge differences in climate, and they’ve even recorded the effects of a solar eclipse.

Our new BYO weather station guide

We only had a single batch of HATs made, and unfortunately we’ve given nearly* all the Weather Station kits away. Not only are the kits really popular, we also receive lots of questions about how to add extra sensors or how to take more precise measurements of a particular weather phenomenon. So today, to satisfy your demand for a hackable weather station, we’re launching our Build your own weather station guide!

Build Your Own Raspberry Pi weather station

Fun with meteorological experiments!

Our guide suggests the use of many of the sensors from the Oracle Weather Station kit, so can build a station that’s as close as possible to the original. As you know, the Raspberry Pi is incredibly versatile, and we’ve made it easy to hack the design in case you want to use different sensors.

Many other tutorials for Pi-powered weather stations don’t explain how the various sensors work or how to store your data. Ours goes into more detail. It shows you how to put together a breadboard prototype, it describes how to write Python code to take readings in different ways, and it guides you through recording these readings in a database.

Build Your Own Raspberry Pi weather station on a breadboard

There’s also a section on how to make your station weatherproof. And in case you want to move past the breadboard stage, we also help you with that. The guide shows you how to solder together all the components, similar to the original Oracle Weather Station HAT.

Who should try this build

We think this is a great project to tackle at home, at a STEM club, Scout group, or CoderDojo, and we’re sure that many of you will be chomping at the bit to get started. Before you do, please note that we’ve designed the build to be as straight-forward as possible, but it’s still fairly advanced both in terms of electronics and programming. You should read through the whole guide before purchasing any components.

Build Your Own Raspberry Pi weather station – components

The sensors and components we’re suggesting balance cost, accuracy, and easy of use. Depending on what you want to use your station for, you may wish to use different components. Similarly, the final soldered design in the guide may not be the most elegant, but we think it is achievable for someone with modest soldering experience and basic equipment.

You can build a functioning weather station without soldering with our guide, but the build will be more durable if you do solder it. If you’ve never tried soldering before, that’s OK: we have a Getting started with soldering resource plus video tutorial that will walk you through how it works step by step.

Prototyping HAT for Raspberry Pi weather station sensors

For those of you who are more experienced makers, there are plenty of different ways to put the final build together. We always like to hear about alternative builds, so please post your designs in the Weather Station forum.

Our plans for the guide

Our next step is publishing supplementary guides for adding extra functionality to your weather station. We’d love to hear which enhancements you would most like to see! Our current ideas under development include adding a webcam, making a tweeting weather station, adding a light/UV meter, and incorporating a lightning sensor. Let us know which of these is your favourite, or suggest your own amazing ideas in the comments!

*We do have a very small number of kits reserved for interesting projects or locations: a particularly cool experiment, a novel idea for how the Oracle Weather Station could be used, or places with specific weather phenomena. If have such a project in mind, please send a brief outline to [email protected], and we’ll consider how we might be able to help you.

The post Build your own weather station with our new guide! appeared first on Raspberry Pi.

Storing Encrypted Credentials In Git

Post Syndicated from Bozho original https://techblog.bozho.net/storing-encrypted-credentials-in-git/

We all know that we should not commit any passwords or keys to the repo with our code (no matter if public or private). Yet, thousands of production passwords can be found on GitHub (and probably thousands more in internal company repositories). Some have tried to fix that by removing the passwords (once they learned it’s not a good idea to store them publicly), but passwords have remained in the git history.

Knowing what not to do is the first and very important step. But how do we store production credentials. Database credentials, system secrets (e.g. for HMACs), access keys for 3rd party services like payment providers or social networks. There doesn’t seem to be an agreed upon solution.

I’ve previously argued with the 12-factor app recommendation to use environment variables – if you have a few that might be okay, but when the number of variables grow (as in any real application), it becomes impractical. And you can set environment variables via a bash script, but you’d have to store it somewhere. And in fact, even separate environment variables should be stored somewhere.

This somewhere could be a local directory (risky), a shared storage, e.g. FTP or S3 bucket with limited access, or a separate git repository. I think I prefer the git repository as it allows versioning (Note: S3 also does, but is provider-specific). So you can store all your environment-specific properties files with all their credentials and environment-specific configurations in a git repo with limited access (only Ops people). And that’s not bad, as long as it’s not the same repo as the source code.

Such a repo would look like this:

project
└─── production
|   |   application.properites
|   |   keystore.jks
└─── staging
|   |   application.properites
|   |   keystore.jks
└─── on-premise-client1
|   |   application.properites
|   |   keystore.jks
└─── on-premise-client2
|   |   application.properites
|   |   keystore.jks

Since many companies are using GitHub or BitBucket for their repositories, storing production credentials on a public provider may still be risky. That’s why it’s a good idea to encrypt the files in the repository. A good way to do it is via git-crypt. It is “transparent” encryption because it supports diff and encryption and decryption on the fly. Once you set it up, you continue working with the repo as if it’s not encrypted. There’s even a fork that works on Windows.

You simply run git-crypt init (after you’ve put the git-crypt binary on your OS Path), which generates a key. Then you specify your .gitattributes, e.g. like that:

secretfile filter=git-crypt diff=git-crypt
*.key filter=git-crypt diff=git-crypt
*.properties filter=git-crypt diff=git-crypt
*.jks filter=git-crypt diff=git-crypt

And you’re done. Well, almost. If this is a fresh repo, everything is good. If it is an existing repo, you’d have to clean up your history which contains the unencrypted files. Following these steps will get you there, with one addition – before calling git commit, you should call git-crypt status -f so that the existing files are actually encrypted.

You’re almost done. We should somehow share and backup the keys. For the sharing part, it’s not a big issue to have a team of 2-3 Ops people share the same key, but you could also use the GPG option of git-crypt (as documented in the README). What’s left is to backup your secret key (that’s generated in the .git/git-crypt directory). You can store it (password-protected) in some other storage, be it a company shared folder, Dropbox/Google Drive, or even your email. Just make sure your computer is not the only place where it’s present and that it’s protected. I don’t think key rotation is necessary, but you can devise some rotation procedure.

git-crypt authors claim to shine when it comes to encrypting just a few files in an otherwise public repo. And recommend looking at git-remote-gcrypt. But as often there are non-sensitive parts of environment-specific configurations, you may not want to encrypt everything. And I think it’s perfectly fine to use git-crypt even in a separate repo scenario. And even though encryption is an okay approach to protect credentials in your source code repo, it’s still not necessarily a good idea to have the environment configurations in the same repo. Especially given that different people/teams manage these credentials. Even in small companies, maybe not all members have production access.

The outstanding questions in this case is – how do you sync the properties with code changes. Sometimes the code adds new properties that should be reflected in the environment configurations. There are two scenarios here – first, properties that could vary across environments, but can have default values (e.g. scheduled job periods), and second, properties that require explicit configuration (e.g. database credentials). The former can have the default values bundled in the code repo and therefore in the release artifact, allowing external files to override them. The latter should be announced to the people who do the deployment so that they can set the proper values.

The whole process of having versioned environment-speific configurations is actually quite simple and logical, even with the encryption added to the picture. And I think it’s a good security practice we should try to follow.

The post Storing Encrypted Credentials In Git appeared first on Bozho's tech blog.

DNS over HTTPS in Firefox

Post Syndicated from corbet original https://lwn.net/Articles/756262/rss

The Mozilla blog has an
article
describing the addition of DNS over HTTPS (DoH) as an optional
feature in the Firefox browser. “DoH support has been added to
Firefox 62 to improve the way Firefox interacts with DNS. DoH uses
encrypted networking to obtain DNS information from a server that is
configured within Firefox. This means that DNS requests sent to the DoH
cloud server are encrypted while old style DNS requests are not
protected.
” The configured server is hosted by Cloudflare, which
has posted this
privacy agreement
about the service.

Amazon Neptune Generally Available

Post Syndicated from Randall Hunt original https://aws.amazon.com/blogs/aws/amazon-neptune-generally-available/

Amazon Neptune is now Generally Available in US East (N. Virginia), US East (Ohio), US West (Oregon), and EU (Ireland). Amazon Neptune is a fast, reliable, fully-managed graph database service that makes it easy to build and run applications that work with highly connected datasets. At the core of Neptune is a purpose-built, high-performance graph database engine optimized for storing billions of relationships and querying the graph with millisecond latencies. Neptune supports two popular graph models, Property Graph and RDF, through Apache TinkerPop Gremlin and SPARQL, allowing you to easily build queries that efficiently navigate highly connected datasets. Neptune can be used to power everything from recommendation engines and knowledge graphs to drug discovery and network security. Neptune is fully-managed with automatic minor version upgrades, backups, encryption, and fail-over. I wrote about Neptune in detail for AWS re:Invent last year and customers have been using the preview and providing great feedback that the team has used to prepare the service for GA.

Now that Amazon Neptune is generally available there are a few changes from the preview:

Launching an Amazon Neptune Cluster

Launching a Neptune cluster is as easy as navigating to the AWS Management Console and clicking create cluster. Of course you can also launch with CloudFormation, the CLI, or the SDKs.

You can monitor your cluster health and the health of individual instances through Amazon CloudWatch and the console.

Additional Resources

We’ve created two repos with some additional tools and examples here. You can expect continuous development on these repos as we add additional tools and examples.

  • Amazon Neptune Tools Repo
    This repo has a useful tool for converting GraphML files into Neptune compatible CSVs for bulk loading from S3.
  • Amazon Neptune Samples Repo
    This repo has a really cool example of building a collaborative filtering recommendation engine for video game preferences.

Purpose Built Databases

There’s an industry trend where we’re moving more and more onto purpose-built databases. Developers and businesses want to access their data in the format that makes the most sense for their applications. As cloud resources make transforming large datasets easier with tools like AWS Glue, we have a lot more options than we used to for accessing our data. With tools like Amazon Redshift, Amazon Athena, Amazon Aurora, Amazon DynamoDB, and more we get to choose the best database for the job or even enable entirely new use-cases. Amazon Neptune is perfect for workloads where the data is highly connected across data rich edges.

I’m really excited about graph databases and I see a huge number of applications. Looking for ideas of cool things to build? I’d love to build a web crawler in AWS Lambda that uses Neptune as the backing store. You could further enrich it by running Amazon Comprehend or Amazon Rekognition on the text and images found and creating a search engine on top of Neptune.

As always, feel free to reach out in the comments or on twitter to provide any feedback!

Randall

Getting Rid of Your Mac? Here’s How to Securely Erase a Hard Drive or SSD

Post Syndicated from Roderick Bauer original https://www.backblaze.com/blog/how-to-wipe-a-mac-hard-drive/

erasing a hard drive and a solid state drive

What do I do with a Mac that still has personal data on it? Do I take out the disk drive and smash it? Do I sweep it with a really strong magnet? Is there a difference in how I handle a hard drive (HDD) versus a solid-state drive (SSD)? Well, taking a sledgehammer or projectile weapon to your old machine is certainly one way to make the data irretrievable, and it can be enormously cathartic as long as you follow appropriate safety and disposal protocols. But there are far less destructive ways to make sure your data is gone for good. Let me introduce you to secure erasing.

Which Type of Drive Do You Have?

Before we start, you need to know whether you have a HDD or a SSD. To find out, or at least to make sure, you click on the Apple menu and select “About this Mac.” Once there, select the “Storage” tab to see which type of drive is in your system.

The first example, below, shows a SATA Disk (HDD) in the system.

SATA HDD

In the next case, we see we have a Solid State SATA Drive (SSD), plus a Mac SuperDrive.

Mac storage dialog showing SSD

The third screen shot shows an SSD, as well. In this case it’s called “Flash Storage.”

Flash Storage

Make Sure You Have a Backup

Before you get started, you’ll want to make sure that any important data on your hard drive has moved somewhere else. OS X’s built-in Time Machine backup software is a good start, especially when paired with Backblaze. You can learn more about using Time Machine in our Mac Backup Guide.

With a local backup copy in hand and secure cloud storage, you know your data is always safe no matter what happens.

Once you’ve verified your data is backed up, roll up your sleeves and get to work. The key is OS X Recovery — a special part of the Mac operating system since OS X 10.7 “Lion.”

How to Wipe a Mac Hard Disk Drive (HDD)

NOTE: If you’re interested in wiping an SSD, see below.

    1. Make sure your Mac is turned off.
    2. Press the power button.
    3. Immediately hold down the command and R keys.
    4. Wait until the Apple logo appears.
    5. Select “Disk Utility” from the OS X Utilities list. Click Continue.
    6. Select the disk you’d like to erase by clicking on it in the sidebar.
    7. Click the Erase button.
    8. Click the Security Options button.
    9. The Security Options window includes a slider that enables you to determine how thoroughly you want to erase your hard drive.

There are four notches to that Security Options slider. “Fastest” is quick but insecure — data could potentially be rebuilt using a file recovery app. Moving that slider to the right introduces progressively more secure erasing. Disk Utility’s most secure level erases the information used to access the files on your disk, then writes zeroes across the disk surface seven times to help remove any trace of what was there. This setting conforms to the DoD 5220.22-M specification.

  1. Once you’ve selected the level of secure erasing you’re comfortable with, click the OK button.
  2. Click the Erase button to begin. Bear in mind that the more secure method you select, the longer it will take. The most secure methods can add hours to the process.

Once it’s done, the Mac’s hard drive will be clean as a whistle and ready for its next adventure: a fresh installation of OS X, being donated to a relative or a local charity, or just sent to an e-waste facility. Of course you can still drill a hole in your disk or smash it with a sledgehammer if it makes you happy, but now you know how to wipe the data from your old computer with much less ruckus.

The above instructions apply to older Macintoshes with HDDs. What do you do if you have an SSD?

Securely Erasing SSDs, and Why Not To

Most new Macs ship with solid state drives (SSDs). Only the iMac and Mac mini ship with regular hard drives anymore, and even those are available in pure SSD variants if you want.

If your Mac comes equipped with an SSD, Apple’s Disk Utility software won’t actually let you zero the hard drive.

Wait, what?

In a tech note posted to Apple’s own online knowledgebase, Apple explains that you don’t need to securely erase your Mac’s SSD:

With an SSD drive, Secure Erase and Erasing Free Space are not available in Disk Utility. These options are not needed for an SSD drive because a standard erase makes it difficult to recover data from an SSD.

In fact, some folks will tell you not to zero out the data on an SSD, since it can cause wear and tear on the memory cells that, over time, can affect its reliability. I don’t think that’s nearly as big an issue as it used to be — SSD reliability and longevity has improved.

If “Standard Erase” doesn’t quite make you feel comfortable that your data can’t be recovered, there are a couple of options.

FileVault Keeps Your Data Safe

One way to make sure that your SSD’s data remains secure is to use FileVault. FileVault is whole-disk encryption for the Mac. With FileVault engaged, you need a password to access the information on your hard drive. Without it, that data is encrypted.

There’s one potential downside of FileVault — if you lose your password or the encryption key, you’re screwed: You’re not getting your data back any time soon. Based on my experience working at a Mac repair shop, losing a FileVault key happens more frequently than it should.

When you first set up a new Mac, you’re given the option of turning FileVault on. If you don’t do it then, you can turn on FileVault at any time by clicking on your Mac’s System Preferences, clicking on Security & Privacy, and clicking on the FileVault tab. Be warned, however, that the initial encryption process can take hours, as will decryption if you ever need to turn FileVault off.

With FileVault turned on, you can restart your Mac into its Recovery System (by restarting the Mac while holding down the command and R keys) and erase the hard drive using Disk Utility, once you’ve unlocked it (by selecting the disk, clicking the File menu, and clicking Unlock). That deletes the FileVault key, which means any data on the drive is useless.

FileVault doesn’t impact the performance of most modern Macs, though I’d suggest only using it if your Mac has an SSD, not a conventional hard disk drive.

Securely Erasing Free Space on Your SSD

If you don’t want to take Apple’s word for it, if you’re not using FileVault, or if you just want to, there is a way to securely erase free space on your SSD. It’s a little more involved but it works.

Before we get into the nitty-gritty, let me state for the record that this really isn’t necessary to do, which is why Apple’s made it so hard to do. But if you’re set on it, you’ll need to use Apple’s Terminal app. Terminal provides you with command line interface access to the OS X operating system. Terminal lives in the Utilities folder, but you can access Terminal from the Mac’s Recovery System, as well. Once your Mac has booted into the Recovery partition, click the Utilities menu and select Terminal to launch it.

From a Terminal command line, type:

diskutil secureErase freespace VALUE /Volumes/DRIVE

That tells your Mac to securely erase the free space on your SSD. You’ll need to change VALUE to a number between 0 and 4. 0 is a single-pass run of zeroes; 1 is a single-pass run of random numbers; 2 is a 7-pass erase; 3 is a 35-pass erase; and 4 is a 3-pass erase. DRIVE should be changed to the name of your hard drive. To run a 7-pass erase of your SSD drive in “JohnB-Macbook”, you would enter the following:

diskutil secureErase freespace 2 /Volumes/JohnB-Macbook

And remember, if you used a space in the name of your Mac’s hard drive, you need to insert a leading backslash before the space. For example, to run a 35-pass erase on a hard drive called “Macintosh HD” you enter the following:

diskutil secureErase freespace 3 /Volumes/Macintosh\ HD

Something to remember is that the more extensive the erase procedure, the longer it will take.

When Erasing is Not Enough — How to Destroy a Drive

If you absolutely, positively need to be sure that all the data on a drive is irretrievable, see this Scientific American article (with contributions by Gleb Budman, Backblaze CEO), How to Destroy a Hard Drive — Permanently.

The post Getting Rid of Your Mac? Here’s How to Securely Erase a Hard Drive or SSD appeared first on Backblaze Blog | Cloud Storage & Cloud Backup.

Use Slack ChatOps to Deploy Your Code – How to Integrate Your Pipeline in AWS CodePipeline with Your Slack Channel

Post Syndicated from Rumi Olsen original https://aws.amazon.com/blogs/devops/use-slack-chatops-to-deploy-your-code-how-to-integrate-your-pipeline-in-aws-codepipeline-with-your-slack-channel/

Slack is widely used by DevOps and development teams to communicate status. Typically, when a build has been tested and is ready to be promoted to a staging environment, a QA engineer or DevOps engineer kicks off the deployment. Using Slack in a ChatOps collaboration model, the promotion can be done in a single click from a Slack channel. And because the promotion happens through a Slack channel, the whole development team knows what’s happening without checking email.

In this blog post, I will show you how to integrate AWS services with a Slack application. I use an interactive message button and incoming webhook to promote a stage with a single click.

To follow along with the steps in this post, you’ll need a pipeline in AWS CodePipeline. If you don’t have a pipeline, the fastest way to create one for this use case is to use AWS CodeStar. Go to the AWS CodeStar console and select the Static Website template (shown in the screenshot). AWS CodeStar will create a pipeline with an AWS CodeCommit repository and an AWS CodeDeploy deployment for you. After the pipeline is created, you will need to add a manual approval stage.

You’ll also need to build a Slack app with webhooks and interactive components, write two Lambda functions, and create an API Gateway API and a SNS topic.

As you’ll see in the following diagram, when I make a change and merge a new feature into the master branch in AWS CodeCommit, the check-in kicks off my CI/CD pipeline in AWS CodePipeline. When CodePipeline reaches the approval stage, it sends a notification to Amazon SNS, which triggers an AWS Lambda function (ApprovalRequester).

The Slack channel receives a prompt that looks like the following screenshot. When I click Yes to approve the build promotion, the approval result is sent to CodePipeline through API Gateway and Lambda (ApprovalHandler). The pipeline continues on to deploy the build to the next environment.

Create a Slack app

For App Name, type a name for your app. For Development Slack Workspace, choose the name of your workspace. You’ll see in the following screenshot that my workspace is AWS ChatOps.

After the Slack application has been created, you will see the Basic Information page, where you can create incoming webhooks and enable interactive components.

To add incoming webhooks:

  1. Under Add features and functionality, choose Incoming Webhooks. Turn the feature on by selecting Off, as shown in the following screenshot.
  2. Now that the feature is turned on, choose Add New Webhook to Workspace. In the process of creating the webhook, Slack lets you choose the channel where messages will be posted.
  3. After the webhook has been created, you’ll see its URL. You will use this URL when you create the Lambda function.

If you followed the steps in the post, the pipeline should look like the following.

Write the Lambda function for approval requests

This Lambda function is invoked by the SNS notification. It sends a request that consists of an interactive message button to the incoming webhook you created earlier.  The following sample code sends the request to the incoming webhook. WEBHOOK_URL and SLACK_CHANNEL are the environment variables that hold values of the webhook URL that you created and the Slack channel where you want the interactive message button to appear.

# This function is invoked via SNS when the CodePipeline manual approval action starts.
# It will take the details from this approval notification and sent an interactive message to Slack that allows users to approve or cancel the deployment.

import os
import json
import logging
import urllib.parse

from base64 import b64decode
from urllib.request import Request, urlopen
from urllib.error import URLError, HTTPError

# This is passed as a plain-text environment variable for ease of demonstration.
# Consider encrypting the value with KMS or use an encrypted parameter in Parameter Store for production deployments.
SLACK_WEBHOOK_URL = os.environ['SLACK_WEBHOOK_URL']
SLACK_CHANNEL = os.environ['SLACK_CHANNEL']

logger = logging.getLogger()
logger.setLevel(logging.INFO)

def lambda_handler(event, context):
    print("Received event: " + json.dumps(event, indent=2))
    message = event["Records"][0]["Sns"]["Message"]
    
    data = json.loads(message) 
    token = data["approval"]["token"]
    codepipeline_name = data["approval"]["pipelineName"]
    
    slack_message = {
        "channel": SLACK_CHANNEL,
        "text": "Would you like to promote the build to production?",
        "attachments": [
            {
                "text": "Yes to deploy your build to production",
                "fallback": "You are unable to promote a build",
                "callback_id": "wopr_game",
                "color": "#3AA3E3",
                "attachment_type": "default",
                "actions": [
                    {
                        "name": "deployment",
                        "text": "Yes",
                        "style": "danger",
                        "type": "button",
                        "value": json.dumps({"approve": True, "codePipelineToken": token, "codePipelineName": codepipeline_name}),
                        "confirm": {
                            "title": "Are you sure?",
                            "text": "This will deploy the build to production",
                            "ok_text": "Yes",
                            "dismiss_text": "No"
                        }
                    },
                    {
                        "name": "deployment",
                        "text": "No",
                        "type": "button",
                        "value": json.dumps({"approve": False, "codePipelineToken": token, "codePipelineName": codepipeline_name})
                    }  
                ]
            }
        ]
    }

    req = Request(SLACK_WEBHOOK_URL, json.dumps(slack_message).encode('utf-8'))

    response = urlopen(req)
    response.read()
    
    return None

 

Create a SNS topic

Create a topic and then create a subscription that invokes the ApprovalRequester Lambda function. You can configure the manual approval action in the pipeline to send a message to this SNS topic when an approval action is required. When the pipeline reaches the approval stage, it sends a notification to this SNS topic. SNS publishes a notification to all of the subscribed endpoints. In this case, the Lambda function is the endpoint. Therefore, it invokes and executes the Lambda function. For information about how to create a SNS topic, see Create a Topic in the Amazon SNS Developer Guide.

Write the Lambda function for handling the interactive message button

This Lambda function is invoked by API Gateway. It receives the result of the interactive message button whether or not the build promotion was approved. If approved, an API call is made to CodePipeline to promote the build to the next environment. If not approved, the pipeline stops and does not move to the next stage.

The Lambda function code might look like the following. SLACK_VERIFICATION_TOKEN is the environment variable that contains your Slack verification token. You can find your verification token under Basic Information on Slack manage app page. When you scroll down, you will see App Credential. Verification token is found under the section.

# This function is triggered via API Gateway when a user acts on the Slack interactive message sent by approval_requester.py.

from urllib.parse import parse_qs
import json
import os
import boto3

SLACK_VERIFICATION_TOKEN = os.environ['SLACK_VERIFICATION_TOKEN']

#Triggered by API Gateway
#It kicks off a particular CodePipeline project
def lambda_handler(event, context):
	#print("Received event: " + json.dumps(event, indent=2))
	body = parse_qs(event['body'])
	payload = json.loads(body['payload'][0])

	# Validate Slack token
	if SLACK_VERIFICATION_TOKEN == payload['token']:
		send_slack_message(json.loads(payload['actions'][0]['value']))
		
		# This will replace the interactive message with a simple text response.
		# You can implement a more complex message update if you would like.
		return  {
			"isBase64Encoded": "false",
			"statusCode": 200,
			"body": "{\"text\": \"The approval has been processed\"}"
		}
	else:
		return  {
			"isBase64Encoded": "false",
			"statusCode": 403,
			"body": "{\"error\": \"This request does not include a vailid verification token.\"}"
		}


def send_slack_message(action_details):
	codepipeline_status = "Approved" if action_details["approve"] else "Rejected"
	codepipeline_name = action_details["codePipelineName"]
	token = action_details["codePipelineToken"] 

	client = boto3.client('codepipeline')
	response_approval = client.put_approval_result(
							pipelineName=codepipeline_name,
							stageName='Approval',
							actionName='ApprovalOrDeny',
							result={'summary':'','status':codepipeline_status},
							token=token)
	print(response_approval)

 

Create the API Gateway API

  1. In the Amazon API Gateway console, create a resource called InteractiveMessageHandler.
  2. Create a POST method.
    • For Integration type, choose Lambda Function.
    • Select Use Lambda Proxy integration.
    • From Lambda Region, choose a region.
    • In Lambda Function, type a name for your function.
  3.  Deploy to a stage.

For more information, see Getting Started with Amazon API Gateway in the Amazon API Developer Guide.

Now go back to your Slack application and enable interactive components.

To enable interactive components for the interactive message (Yes) button:

  1. Under Features, choose Interactive Components.
  2. Choose Enable Interactive Components.
  3. Type a request URL in the text box. Use the invoke URL in Amazon API Gateway that will be called when the approval button is clicked.

Now that all the pieces have been created, run the solution by checking in a code change to your CodeCommit repo. That will release the change through CodePipeline. When the CodePipeline comes to the approval stage, it will prompt to your Slack channel to see if you want to promote the build to your staging or production environment. Choose Yes and then see if your change was deployed to the environment.

Conclusion

That is it! You have now created a Slack ChatOps solution using AWS CodeCommit, AWS CodePipeline, AWS Lambda, Amazon API Gateway, and Amazon Simple Notification Service.

Now that you know how to do this Slack and CodePipeline integration, you can use the same method to interact with other AWS services using API Gateway and Lambda. You can also use Slack’s slash command to initiate an action from a Slack channel, rather than responding in the way demonstrated in this post.

The devil wears Pravda

Post Syndicated from Robert Graham original https://blog.erratasec.com/2018/05/the-devil-wears-pravda.html

Classic Bond villain, Elon Musk, has a new plan to create a website dedicated to measuring the credibility and adherence to “core truth” of journalists. He is, without any sense of irony, going to call this “Pravda”. This is not simply wrong but evil.

Musk has a point. Journalists do suck, and many suck consistently. I see this in my own industry, cybersecurity, and I frequently criticize them for their suckage.

But what he’s doing here is not correcting them when they make mistakes (or what Musk sees as mistakes), but questioning their legitimacy. This legitimacy isn’t measured by whether they follow established journalism ethics, but whether their “core truths” agree with Musk’s “core truths”.

An example of the problem is how the press fixates on Tesla car crashes due to its “autopilot” feature. Pretty much every autopilot crash makes national headlines, while the press ignores the other 40,000 car crashes that happen in the United States each year. Musk spies on Tesla drivers (hello, classic Bond villain everyone) so he can see the dip in autopilot usage every time such a news story breaks. He’s got good reason to be concerned about this.

He argues that autopilot is safer than humans driving, and he’s got the statistics and government studies to back this up. Therefore, the press’s fixation on Tesla crashes is illegitimate “fake news”, titillating the audience with distorted truth.

But here’s the thing: that’s still only Musk’s version of the truth. Yes, on a mile-per-mile basis, autopilot is safer, but there’s nuance here. Autopilot is used primarily on freeways, which already have a low mile-per-mile accident rate. People choose autopilot only when conditions are incredibly safe and drivers are unlikely to have an accident anyway. Musk is therefore being intentionally deceptive comparing apples to oranges. Autopilot may still be safer, it’s just that the numbers Musk uses don’t demonstrate this.

And then there is the truth calling it “autopilot” to begin with, because it isn’t. The public is overrating the capabilities of the feature. It’s little different than “lane keeping” and “adaptive cruise control” you can now find in other cars. In many ways, the technology is behind — my Tesla doesn’t beep at me when a pedestrian walks behind my car while backing up, but virtually every new car on the market does.

Yes, the press unduly covers Tesla autopilot crashes, but Musk has only himself to blame by unduly exaggerating his car’s capabilities by calling it “autopilot”.

What’s “core truth” is thus rather difficult to obtain. What the press satisfies itself with instead is smaller truths, what they can document. The facts are in such cases that the accident happened, and they try to get Tesla or Musk to comment on it.

What you can criticize a journalist for is therefore not “core truth” but whether they did journalism correctly. When such stories criticize “autopilot”, but don’t do their diligence in getting Tesla’s side of the story, then that’s a violation of journalistic practice. When I criticize journalists for their poor handling of stories in my industry, I try to focus on which journalistic principles they get wrong. For example, the NYTimes reporters do a lot of stories quoting anonymous government sources in clear violation of journalistic principles.

If “credibility” is the concern, then it’s the classic Bond villain here that’s the problem: Musk himself. His track record on business statements is abysmal. For example, when he announced the Model 3 he claimed production targets that every Wall Street analyst claimed were absurd. He didn’t make those targets, he didn’t come close. Model 3 production is still lagging behind Musk’s twice adjusted targets.

https://www.bloomberg.com/graphics/2018-tesla-tracker/

So who has a credibility gap here, the press, or Musk himself?

Not only is Musk’s credibility problem ironic, so is the name he chose, “Pravada”, the Russian word for truth that was the name of the Soviet Union Communist Party’s official newspaper. This is so absurd this has to be a joke, yet Musk claims to be serious about all this.

Yes, the press has a lot of problems, and if Musk were some journalism professor concerned about journalists meeting the objective standards of their industry (e.g. abusing anonymous sources), then this would be a fine thing. But it’s not. It’s Musk who is upset the press’s version of “core truth” does not agree with his version — a version that he’s proven time and time again differs from “real truth”.

Just in case Musk is serious, I’ve already registered “www.antipravda.com” to start measuring the credibility of statements by billionaire playboy CEOs. Let’s see who blinks first.


I stole the title, with permission, from this tweet:

C is to low level

Post Syndicated from Robert Graham original https://blog.erratasec.com/2018/05/c-is-too-low-level.html

I’m in danger of contradicting myself, after previously pointing out that x86 machine code is a high-level language, but this article claiming C is a not a low level language is bunk. C certainly has some problems, but it’s still the closest language to assembly. This is obvious by the fact it’s still the fastest compiled language. What we see is a typical academic out of touch with the real world.

The author makes the (wrong) observation that we’ve been stuck emulating the PDP-11 for the past 40 years. C was written for the PDP-11, and since then CPUs have been designed to make C run faster. The author imagines a different world, such as where CPU designers instead target something like LISP as their preferred language, or Erlang. This misunderstands the state of the market. CPUs do indeed supports lots of different abstractions, and C has evolved to accommodate this.


The author criticizes things like “out-of-order” execution which has lead to the Spectre sidechannel vulnerabilities. Out-of-order execution is necessary to make C run faster. The author claims instead that those resources should be spent on having more slower CPUs, with more threads. This sacrifices single-threaded performance in exchange for a lot more threads executing in parallel. The author cites Sparc Tx CPUs as his ideal processor.

But here’s the thing, the Sparc Tx was a failure. To be fair, it’s mostly a failure because most of the time, people wanted to run old C code instead of new Erlang code. But it was still a failure at running Erlang.

Time after time, engineers keep finding that “out-of-order”, single-threaded performance is still the winner. A good example is ARM processors for both mobile phones and servers. All the theory points to in-order CPUs as being better, but all the products are out-of-order, because this theory is wrong. The custom ARM cores from Apple and Qualcomm used in most high-end phones are so deeply out-of-order they give Intel CPUs competition. The same is true on the server front with the latest Qualcomm Centriq and Cavium ThunderX2 processors, deeply out of order supporting more than 100 instructions in flight.

The Cavium is especially telling. Its ThunderX CPU had 48 simple cores which was replaced with the ThunderX2 having 32 complex, deeply out-of-order cores. The performance increase was massive, even on multithread-friendly workloads. Every competitor to Intel’s dominance in the server space has learned the lesson from Sparc Tx: many wimpy cores is a failure, you need fewer beefy cores. Yes, they don’t need to be as beefy as Intel’s processors, but they need to be close.

Even Intel’s “Xeon Phi” custom chip learned this lesson. This is their GPU-like chip, running 60 cores with 512-bit wide “vector” (sic) instructions, designed for supercomputer applications. Its first version was purely in-order. Its current version is slightly out-of-order. It supports four threads and focuses on basic number crunching, so in-order cores seems to be the right approach, but Intel found in this case that out-of-order processing still provided a benefit. Practice is different than theory.

As an academic, the author of the above article focuses on abstractions. The criticism of C is that it has the wrong abstractions which are hard to optimize, and that if we instead expressed things in the right abstractions, it would be easier to optimize.

This is an intellectually compelling argument, but so far bunk.

The reason is that while the theoretical base language has issues, everyone programs using extensions to the language, like “intrinsics” (C ‘functions’ that map to assembly instructions). Programmers write libraries using these intrinsics, which then the rest of the normal programmers use. In other words, if your criticism is that C is not itself low level enough, it still provides the best access to low level capabilities.

Given that C can access new functionality in CPUs, CPU designers add new paradigms, from SIMD to transaction processing. In other words, while in the 1980s CPUs were designed to optimize C (stacks, scaled pointers), these days CPUs are designed to optimize tasks regardless of language.

The author of that article criticizes the memory/cache hierarchy, claiming it has problems. Yes, it has problems, but only compared to how well it normally works. The author praises the many simple cores/threads idea as hiding memory latency with little caching, but misses the point that caches also dramatically increase memory bandwidth. Intel processors are optimized to read a whopping 256 bits every clock cycle from L1 cache. Main memory bandwidth is orders of magnitude slower.

The author goes onto criticize cache coherency as a problem. C uses it, but other languages like Erlang don’t need it. But that’s largely due to the problems each languages solves. Erlang solves the problem where a large number of threads work on largely independent tasks, needing to send only small messages to each other across threads. The problems C solves is when you need many threads working on a huge, common set of data.

For example, consider the “intrusion prevention system”. Any thread can process any incoming packet that corresponds to any region of memory. There’s no practical way of solving this problem without a huge coherent cache. It doesn’t matter which language or abstractions you use, it’s the fundamental constraint of the problem being solved. RDMA is an important concept that’s moved from supercomputer applications to the data center, such as with memcached. Again, we have the problem of huge quantities (terabytes worth) shared among threads rather than small quantities (kilobytes).

The fundamental issue the author of the the paper is ignoring is decreasing marginal returns. Moore’s Law has gifted us more transistors than we can usefully use. We can’t apply those additional registers to just one thing, because the useful returns we get diminish.

For example, Intel CPUs have two hardware threads per core. That’s because there are good returns by adding a single additional thread. However, the usefulness of adding a third or fourth thread decreases. That’s why many CPUs have only two threads, or sometimes four threads, but no CPU has 16 threads per core.

You can apply the same discussion to any aspect of the CPU, from register count, to SIMD width, to cache size, to out-of-order depth, and so on. Rather than focusing on one of these things and increasing it to the extreme, CPU designers make each a bit larger every process tick that adds more transistors to the chip.

The same applies to cores. It’s why the “more simpler cores” strategy fails, because more cores have their own decreasing marginal returns. Instead of adding cores tied to limited memory bandwidth, it’s better to add more cache. Such cache already increases the size of the cores, so at some point it’s more effective to add a few out-of-order features to each core rather than more cores. And so on.

The question isn’t whether we can change this paradigm and radically redesign CPUs to match some academic’s view of the perfect abstraction. Instead, the goal is to find new uses for those additional transistors. For example, “message passing” is a useful abstraction in languages like Go and Erlang that’s often more useful than sharing memory. It’s implemented with shared memory and atomic instructions, but I can’t help but think it couldn’t better be done with direct hardware support.

Of course, as soon as they do that, it’ll become an intrinsic in C, then added to languages like Go and Erlang.

Summary

Academics live in an ideal world of abstractions, the rest of us live in practical reality. The reality is that vast majority of programmers work with the C family of languages (JavaScript, Go, etc.), whereas academics love the epiphanies they learned using other languages, especially function languages. CPUs are only superficially designed to run C and “PDP-11 compatibility”. Instead, they keep adding features to support other abstractions, abstractions available to C. They are driven by decreasing marginal returns — they would love to add new abstractions to the hardware because it’s a cheap way to make use of additional transitions. Academics are wrong believing that the entire system needs to be redesigned from scratch. Instead, they just need to come up with new abstractions CPU designers can add.

EC2 Instance Update – C5 Instances with Local NVMe Storage (C5d)

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/ec2-instance-update-c5-instances-with-local-nvme-storage-c5d/

As you can see from my EC2 Instance History post, we add new instance types on a regular and frequent basis. Driven by increasingly powerful processors and designed to address an ever-widening set of use cases, the size and diversity of this list reflects the equally diverse group of EC2 customers!

Near the bottom of that list you will find the new compute-intensive C5 instances. With a 25% to 50% improvement in price-performance over the C4 instances, the C5 instances are designed for applications like batch and log processing, distributed and or real-time analytics, high-performance computing (HPC), ad serving, highly scalable multiplayer gaming, and video encoding. Some of these applications can benefit from access to high-speed, ultra-low latency local storage. For example, video encoding, image manipulation, and other forms of media processing often necessitates large amounts of I/O to temporary storage. While the input and output files are valuable assets and are typically stored as Amazon Simple Storage Service (S3) objects, the intermediate files are expendable. Similarly, batch and log processing runs in a race-to-idle model, flushing volatile data to disk as fast as possible in order to make full use of compute resources.

New C5d Instances with Local Storage
In order to meet this need, we are introducing C5 instances equipped with local NVMe storage. Available for immediate use in 5 regions, these instances are a great fit for the applications that I described above, as well as others that you will undoubtedly dream up! Here are the specs:

Instance NamevCPUsRAMLocal StorageEBS BandwidthNetwork Bandwidth
c5d.large24 GiB1 x 50 GB NVMe SSDUp to 2.25 GbpsUp to 10 Gbps
c5d.xlarge48 GiB1 x 100 GB NVMe SSDUp to 2.25 GbpsUp to 10 Gbps
c5d.2xlarge816 GiB1 x 225 GB NVMe SSDUp to 2.25 GbpsUp to 10 Gbps
c5d.4xlarge1632 GiB1 x 450 GB NVMe SSD2.25 GbpsUp to 10 Gbps
c5d.9xlarge3672 GiB1 x 900 GB NVMe SSD4.5 Gbps10 Gbps
c5d.18xlarge72144 GiB2 x 900 GB NVMe SSD9 Gbps25 Gbps

Other than the addition of local storage, the C5 and C5d share the same specs. Both are powered by 3.0 GHz Intel Xeon Platinum 8000-series processors, optimized for EC2 and with full control over C-states on the two largest sizes, giving you the ability to run two cores at up to 3.5 GHz using Intel Turbo Boost Technology.

You can use any AMI that includes drivers for the Elastic Network Adapter (ENA) and NVMe; this includes the latest Amazon Linux, Microsoft Windows (Server 2008 R2, Server 2012, Server 2012 R2 and Server 2016), Ubuntu, RHEL, SUSE, and CentOS AMIs.

Here are a couple of things to keep in mind about the local NVMe storage:

Naming – You don’t have to specify a block device mapping in your AMI or during the instance launch; the local storage will show up as one or more devices (/dev/nvme*1 on Linux) after the guest operating system has booted.

Encryption – Each local NVMe device is hardware encrypted using the XTS-AES-256 block cipher and a unique key. Each key is destroyed when the instance is stopped or terminated.

Lifetime – Local NVMe devices have the same lifetime as the instance they are attached to, and do not stick around after the instance has been stopped or terminated.

Available Now
C5d instances are available in On-Demand, Reserved Instance, and Spot form in the US East (N. Virginia), US West (Oregon), EU (Ireland), US East (Ohio), and Canada (Central) Regions. Prices vary by Region, and are just a bit higher than for the equivalent C5 instances.

Jeff;

PS – We will be adding local NVMe storage to other EC2 instance types in the months to come, so stay tuned!

AWS IoT 1-Click – Use Simple Devices to Trigger Lambda Functions

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/aws-iot-1-click-use-simple-devices-to-trigger-lambda-functions/

We announced a preview of AWS IoT 1-Click at AWS re:Invent 2017 and have been refining it ever since, focusing on simplicity and a clean out-of-box experience. Designed to make IoT available and accessible to a broad audience, AWS IoT 1-Click is now generally available, along with new IoT buttons from AWS and AT&T.

I sat down with the dev team a month or two ago to learn about the service so that I could start thinking about my blog post. During the meeting they gave me a pair of IoT buttons and I started to think about some creative ways to put them to use. Here are a few that I came up with:

Help Request – Earlier this month I spent a very pleasant weekend at the HackTillDawn hackathon in Los Angeles. As the participants were hacking away, they occasionally had questions about AWS, machine learning, Amazon SageMaker, and AWS DeepLens. While we had plenty of AWS Solution Architects on hand (decked out in fashionable & distinctive AWS shirts for easy identification), I imagined an IoT button for each team. Pressing the button would alert the SA crew via SMS and direct them to the proper table.

Camera ControlTim Bray and I were in the AWS video studio, prepping for the first episode of Tim’s series on AWS Messaging. Minutes before we opened the Twitch stream I realized that we did not have a clean, unobtrusive way to ask the camera operator to switch to a closeup view. Again, I imagined that a couple of IoT buttons would allow us to make the request.

Remote Dog Treat Dispenser – My dog barks every time a stranger opens the gate in front of our house. While it is great to have confirmation that my Ring doorbell is working, I would like to be able to press a button and dispense a treat so that Luna stops barking!

Homes, offices, factories, schools, vehicles, and health care facilities can all benefit from IoT buttons and other simple IoT devices, all managed using AWS IoT 1-Click.

All About AWS IoT 1-Click
As I said earlier, we have been focusing on simplicity and a clean out-of-box experience. Here’s what that means:

Architects can dream up applications for inexpensive, low-powered devices.

Developers don’t need to write any device-level code. They can make use of pre-built actions, which send email or SMS messages, or write their own custom actions using AWS Lambda functions.

Installers don’t have to install certificates or configure cloud endpoints on newly acquired devices, and don’t have to worry about firmware updates.

Administrators can monitor the overall status and health of each device, and can arrange to receive alerts when a device nears the end of its useful life and needs to be replaced, using a single interface that spans device types and manufacturers.

I’ll show you how easy this is in just a moment. But first, let’s talk about the current set of devices that are supported by AWS IoT 1-Click.

Who’s Got the Button?
We’re launching with support for two types of buttons (both pictured above). Both types of buttons are pre-configured with X.509 certificates, communicate to the cloud over secure connections, and are ready to use.

The AWS IoT Enterprise Button communicates via Wi-Fi. It has a 2000-click lifetime, encrypts outbound data using TLS, and can be configured using BLE and our mobile app. It retails for $19.99 (shipping and handling not included) and can be used in the United States, Europe, and Japan.

The AT&T LTE-M Button communicates via the LTE-M cellular network. It has a 1500-click lifetime, and also encrypts outbound data using TLS. The device and the bundled data plan is available an an introductory price of $29.99 (shipping and handling not included), and can be used in the United States.

We are very interested in working with device manufacturers in order to make even more shapes, sizes, and types of devices (badge readers, asset trackers, motion detectors, and industrial sensors, to name a few) available to our customers. Our team will be happy to tell you about our provisioning tools and our facility for pushing OTA (over the air) updates to large fleets of devices; you can contact them at [email protected].

AWS IoT 1-Click Concepts
I’m eager to show you how to use AWS IoT 1-Click and the buttons, but need to introduce a few concepts first.

Device – A button or other item that can send messages. Each device is uniquely identified by a serial number.

Placement Template – Describes a like-minded collection of devices to be deployed. Specifies the action to be performed and lists the names of custom attributes for each device.

Placement – A device that has been deployed. Referring to placements instead of devices gives you the freedom to replace and upgrade devices with minimal disruption. Each placement can include values for custom attributes such as a location (“Building 8, 3rd Floor, Room 1337”) or a purpose (“Coffee Request Button”).

Action – The AWS Lambda function to invoke when the button is pressed. You can write a function from scratch, or you can make use of a pair of predefined functions that send an email or an SMS message. The actions have access to the attributes; you can, for example, send an SMS message with the text “Urgent need for coffee in Building 8, 3rd Floor, Room 1337.”

Getting Started with AWS IoT 1-Click
Let’s set up an IoT button using the AWS IoT 1-Click Console:

If I didn’t have any buttons I could click Buy devices to get some. But, I do have some, so I click Claim devices to move ahead. I enter the device ID or claim code for my AT&T button and click Claim (I can enter multiple claim codes or device IDs if I want):

The AWS buttons can be claimed using the console or the mobile app; the first step is to use the mobile app to configure the button to use my Wi-Fi:

Then I scan the barcode on the box and click the button to complete the process of claiming the device. Both of my buttons are now visible in the console:

I am now ready to put them to use. I click on Projects, and then Create a project:

I name and describe my project, and click Next to proceed:

Now I define a device template, along with names and default values for the placement attributes. Here’s how I set up a device template (projects can contain several, but I just need one):

The action has two mandatory parameters (phone number and SMS message) built in; I add three more (Building, Room, and Floor) and click Create project:

I’m almost ready to ask for some coffee! The next step is to associate my buttons with this project by creating a placement for each one. I click Create placements to proceed. I name each placement, select the device to associate with it, and then enter values for the attributes that I established for the project. I can also add additional attributes that are peculiar to this placement:

I can inspect my project and see that everything looks good:

I click on the buttons and the SMS messages appear:

I can monitor device activity in the AWS IoT 1-Click Console:

And also in the Lambda Console:

The Lambda function itself is also accessible, and can be used as-is or customized:

As you can see, this is the code that lets me use {{*}}include all of the placement attributes in the message and {{Building}} (for example) to include a specific placement attribute.

Now Available
I’ve barely scratched the surface of this cool new service and I encourage you to give it a try (or a click) yourself. Buy a button or two, build something cool, and let me know all about it!

Pricing is based on the number of enabled devices in your account, measured monthly and pro-rated for partial months. Devices can be enabled or disabled at any time. See the AWS IoT 1-Click Pricing page for more info.

To learn more, visit the AWS IoT 1-Click home page or read the AWS IoT 1-Click documentation.

Jeff;

 

Connect Veeam to the B2 Cloud: Episode 3 — Using OpenDedup

Post Syndicated from Roderick Bauer original https://www.backblaze.com/blog/opendedup-for-cloud-storage/

Veeam backup to Backblaze B2 logo

In this, the third post in our series on connecting Veeam with Backblaze B2 Cloud Storage, we discuss how to back up your VMs to B2 using Veeam and OpenDedup. In our previous posts, we covered how to connect Veeam to the B2 cloud using Synology, and how to connect Veeam with B2 using StarWind VTL.

Deduplication and OpenDedup

Deduplication is simply the process of eliminating redundant data on disk. Deduplication reduces storage space requirements, improves backup speed, and lowers backup storage costs. The dedup field used to be dominated by a few big-name vendors who sold dedup systems that were too expensive for most of the SMB market. Then an open-source challenger came along in OpenDedup, a project that produced the Space Deduplication File System (SDFS). SDFS provides many of the features of commercial dedup products without their cost.

OpenDedup provides inline deduplication that can be used with applications such as Veeam, Veritas Backup Exec, and Veritas NetBackup.

Features Supported by OpenDedup:

  • Variable Block Deduplication to cloud storage
  • Local Data Caching
  • Encryption
  • Bandwidth Throttling
  • Fast Cloud Recovery
  • Windows and Linux Support

Why use Veeam with OpenDedup to Backblaze B2?

With your VMs backed up to B2, you have a number of options to recover from a disaster. If the unexpected occurs, you can quickly restore your VMs from B2 to the location of your choosing. You also have the option to bring up cloud compute through B2’s compute partners, thereby minimizing any loss of service and ensuring business continuity.

Veeam logo + OpenDedup logo + Backblaze B2 logo

Backblaze’s B2 is an ideal solution for backing up Veeam’s backup repository due to B2’s combination of low-cost and high availability. Users of B2 save up to 75% compared to other cloud solutions such as Microsoft Azure, Amazon AWS, or Google Cloud Storage. When combined with OpenDedup’s no-cost deduplication, you’re got an efficient and economical solution for backing up VMs to the cloud.

How to Use OpenDedup with B2

For step-by-step instructions for how to set up OpenDedup for use with B2 on Windows or Linux, see Backblaze B2 Enabled on the OpenDedup website.

Are you backing up Veeam to B2 using one of the solutions we’ve written about in this series? If you have, we’d love to hear from you in the comments.

View all posts in the Veeam series.

The post Connect Veeam to the B2 Cloud: Episode 3 — Using OpenDedup appeared first on Backblaze Blog | Cloud Storage & Cloud Backup.

Canonical on trust and security in the Snap Store

Post Syndicated from corbet original https://lwn.net/Articles/754502/rss

Here’s a
posting from Canonical
concerning the cryptocurrency-mining app that
was discovered in its Snap Store. “Several years ago when we started
the work on snap packages, we understood that we could not instantly
implement an alternative that was completely safe from all perspectives. In
addition to being safe, it had to be useful. So the challenge we gave
ourselves was to significantly improve the situation immediately, and then
pave the road for incremental improvements that could be rolled out
gradually.

Brutus 2: the gaming PC case of your dreams

Post Syndicated from Janina Ander original https://www.raspberrypi.org/blog/brutus-2-gaming-pc-case/

Attention, case modders: take a look at the Brutus 2, an extremely snazzy computer case with a partly transparent, animated side panel that’s powered by a Pi. Daniel Otto and Carsten Lehman have a current crowdfunder for the case; their video is in German, but the looks of the build speak for themselves. There are some truly gorgeous effects here.

der BRUTUS 2 by 3nb Gaming

Vorbestellungen ab sofort auf https://www.startnext.com/brutus2 Weitere Infos zu uns auf: https://3nb.de https://www.facebook.com/3nb.de https://www.instagram.com/3nb.de Über 3nb: – GbR aus Leipzig, gegründet 2017 – wir kommen aus den Bereichen Elektronik und Informatik – erstes Produkt: der Brutus One ein Gaming PC mit transparentem Display in der Seite Kurzinfo Brutus 2: – Markencomputergehäuse für Gaming- /Casemoddingszene – Besonderheit: animiertes Seitenfenster angesteuert mit einem Raspberry Pi – Vorteile von unserem Case: o Case ist einzeln lieferbar und nicht nur als komplett-PC o kein Leistungsverbrauch der Grafikkarte dank integriertem Raspberry Pi o bessere Darstellung von Texten und Grafiken durch unscharfen Hintergrund

What’s case modding?

Case modding just means modifying your computer or gaming console’s case, and it’s very popular in the gaming community. Some mods are functional, while others improve the way the case looks. Lots of dedicated gamers don’t only want a powerful computer, they also want it to look amazing — at home, or at LAN parties and games tournaments.

The Brutus 2 case

The Brutus 2 case is made by Daniel and Carsten’s startup, 3nb electronics, and it’s a product that is officially Powered by Raspberry Pi. Its standout feature is the semi-transparent TFT screen, which lets you play any video clip you choose while keeping your gaming hardware on display. It looks incredibly cool. All the graphics for the case’s screen are handled by a Raspberry Pi, so it doesn’t use any of your main PC’s GPU power and your gaming won’t suffer.

Brutus 2 PC case powered by Raspberry Pi

The software

To use Brutus 2, you just need to run a small desktop application on your PC to choose what you want to display on the case. A number of neat animations are included, and you can upload your own if you want.

So far, the app only runs on Windows, but 3nb electronics are planning to make the code open-source, so you can modify it for other operating systems, or to display other file types. This is true to the spirit of the case modding and Raspberry Pi communities, who love adapting, retrofitting, and overhauling projects and code to fit their needs.

Brutus 2 PC case powered by Raspberry Pi

Daniel and Carsten say that one of their campaign’s stretch goals is to implement more functionality in the Brutus 2 app. So in the future, the case could also show things like CPU temperature, gaming stats, and in-game messages. Of course, there’s nothing stopping you from integrating features like that yourself.

If you have any questions about the case, you can post them directly to Daniel and Carsten here.

The crowdfunding campaign

The Brutus 2 campaign on Startnext is currently halfway to its first funding goal of €10000, with over three weeks to go until it closes. If you’re quick, you still be may be able to snatch one of the early-bird offers. And if your whole guild NEEDS this, that’s OK — there are discounts for bulk orders.

The post Brutus 2: the gaming PC case of your dreams appeared first on Raspberry Pi.

Solving Complex Ordering Challenges with Amazon SQS FIFO Queues

Post Syndicated from Christie Gifrin original https://aws.amazon.com/blogs/compute/solving-complex-ordering-challenges-with-amazon-sqs-fifo-queues/

Contributed by Shea Lutton, AWS Cloud Infrastructure Architect

Amazon Simple Queue Service (Amazon SQS) is a fully managed queuing service that helps decouple applications, distributed systems, and microservices to increase fault tolerance. SQS queues come in two distinct types:

  • Standard SQS queues are able to scale to enormous throughput with at-least-once delivery.
  • FIFO queues are designed to guarantee that messages are processed exactly once in the exact order that they are received and have a default rate of 300 transactions per second.

As customers explore SQS FIFO queues, they often have questions about how the behavior works when messages arrive and are consumed. This post walks through some common situations to identify the exact behavior that you can expect. It also covers the behavior of message groups in depth and explains why message groups are key to understanding how FIFO queues work.

The simple case

Suppose that you run a major auction platform where people buy and sell a wide range of products. Your platform requires that transactions from buyers and sellers get processed in exactly the order received. Here’s how a FIFO queue helps you keep all your transactions in one straight flow.

A seller currently is holding an auction for a laptop, and three different bids are received for the same price. Ties are awarded to the first bidder at that price so it is important to track which arrived first. Your auction platform receives the three bids and sends them to a FIFO queue before they are processed.

Now observe how messages leave the queue. When your consumer asks for a batch of up to 10 messages, SQS starts filling the batch with the oldest message (bid A1). It keeps filling until either the batch is full or the queue is empty. In this case, the batch contains the three messages and the queue is now empty. After a batch has left the queue, SQS considers that batch of messages to be “in-flight” until the consumer either deletes them or the batch’s visibility timer expires.

 

When you have a single consumer, this is easy to envision. The consumer gets a batch of messages (now in-flight), does its processing, and deletes the messages. That consumer is then ready to ask for the next batch of messages.

The critical thing to keep in mind is that SQS won’t release the next batch of messages until the first batch has been deleted. By adding more messages to the queue, you can see more interesting behaviors. Imagine that a burst of 11 bids is sent to your FIFO queue, with two bids for Auction A arriving last.

The FIFO queue now has at least two batches of messages in it. When your single consumer requests the first batch of 10 messages, it receives a batch starting with B1 and ending with A1. Later, after the first batch has been deleted, the consumer can get the second batch of messages containing the final A2 message from the queue.

Adding complexity with multiple message groups

A new challenge arises. Your auction platform is getting busier and your dev team added a number of new features. The combination of increased messages and extra processing time for the new features means that a single consumer is too slow. The solution is to scale to have more consumers and process messages in parallel.

To work in parallel, your team realized that only the messages related to a single auction must be kept in order. All transactions for Auction A need to be kept in order and so do all transactions for Auction B. But the two auctions are independent and it does not matter which auctions transactions are processed first.

FIFO can handle that case with a feature called message groups. Each transaction related to Auction A is placed by your producer into message group A, and so on. In the diagram below, Auction A and Auction B each received three bid transactions, with bid B1 arriving first. The FIFO queue always keeps transactions within a message group in the order in which they arrived.

How is this any different than earlier examples? The consumer now gets the messages ordered by message groups, all the B group messages followed by all the A group messages. Multiple message groups create the possibility of using multiple consumers, which I explain in a moment. If FIFO can’t fill up a batch of messages with a single message group, FIFO can place more than one message group in a batch of messages. But whenever possible, the queue gives you a full batch of messages from the same group.

The order of messages leaving a FIFO queue is governed by three rules:

  1. Return the oldest message where no other message in the same message group is currently in-flight.
  2. Return as many messages from the same message group as possible.
  3. If a message batch is still not full, go back to rule 1.

To see this behavior, add a second consumer and insert many more messages into the queue. For simplicity, the delete message action has been omitted in these diagrams but it is assumed that all messages in a batch are processed successfully by the consumer and the batch is properly deleted immediately after.

In this example, there are 11 Group A and 11 Group B transactions arriving in interleaved order and a second consumer has been added. Consumer 1 asks for a group of 10 messages and receives 10 Group A messages. Consumer 2 then asks for 10 messages but SQS knows that Group A is in flight, so it releases 10 Group B messages. The two consumers are now processing two batches of messages in parallel, speeding up throughput and then deleting their batches. When Consumer 1 requests the next batch of messages, it receives the remaining two messages, one from Group A and one from Group B.

Consider this nuanced detail from the example above. What would happen if Consumer 1 was on a faster server and processed its first batch of messages before Consumer 2 could mark its messages for deletion? See if you can predict the behavior before looking at the answer.

If Consumer 2 has not deleted its Group B messages yet when Consumer 1 asks for the next batch, then the FIFO queue considers Group B to still be in flight. It does not release any more Group B messages. Consumer 1 gets only the remaining Group A message. Later, after Consumer 2 has deleted its first batch, the remaining Group B message is released.

Conclusion

I hope this post answered your questions about how Amazon SQS FIFO queues work and why message groups are helpful. If you’re interested in exploring SQS FIFO queues further, here are a few ideas to get you started:

Details on a New PGP Vulnerability

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2018/05/details_on_a_ne.html

A new PGP vulnerability was announced today. Basically, the vulnerability makes use of the fact that modern e-mail programs allow for embedded HTML objects. Essentially, if an attacker can intercept and modify a message in transit, he can insert code that sends the plaintext in a URL to a remote website. Very clever.

The EFAIL attacks exploit vulnerabilities in the OpenPGP and S/MIME standards to reveal the plaintext of encrypted emails. In a nutshell, EFAIL abuses active content of HTML emails, for example externally loaded images or styles, to exfiltrate plaintext through requested URLs. To create these exfiltration channels, the attacker first needs access to the encrypted emails, for example, by eavesdropping on network traffic, compromising email accounts, email servers, backup systems or client computers. The emails could even have been collected years ago.

The attacker changes an encrypted email in a particular way and sends this changed encrypted email to the victim. The victim’s email client decrypts the email and loads any external content, thus exfiltrating the plaintext to the attacker.

A few initial comments:

1. Being able to intercept and modify e-mails in transit is the sort of thing the NSA can do, but is hard for the average hacker. That being said, there are circumstances where someone can modify e-mails. I don’t mean to minimize the seriousness of this attack, but that is a consideration.

2. The vulnerability isn’t with PGP or S/MIME itself, but in the way they interact with modern e-mail programs. You can see this in the two suggested short-term mitigations: “No decryption in the e-mail client,” and “disable HTML rendering.”

3. I’ve been getting some weird press calls from reporters wanting to know if this demonstrates that e-mail encryption is impossible. No, this just demonstrates that programmers are human and vulnerabilities are inevitable. PGP almost certainly has fewer bugs than your average piece of software, but it’s not bug free.

3. Why is anyone using encrypted e-mail anymore, anyway? Reliably and easily encrypting e-mail is an insurmountably hard problem for reasons having nothing to do with today’s announcement. If you need to communicate securely, use Signal. If having Signal on your phone will arouse suspicion, use WhatsApp.

I’ll post other commentaries and analyses as I find them.

EDITED TO ADD (5/14): News articles.

Slashdot thread.