Tag Archives: NEC

Validating AWS CloudFormation Templates

Post Syndicated from Remek Hetman original https://aws.amazon.com/blogs/devops/validating-aws-cloudformation-templates/

For their continuous integration and continuous deployment (CI/CD) pipeline path, many companies use tools like Jenkins, Chef, and AWS CloudFormation. Usually, the process is managed by two or more teams. One team is responsible for designing and developing an application, CloudFormation templates, and so on. The other team is generally responsible for integration and deployment.

One of the challenges that a CI/CD team has is to validate the CloudFormation templates provided by the development team. Validation provides early warning about any incorrect syntax and ensures that the development team follows company policies in terms of security and the resources created by CloudFormation templates.

In this post, I focus on the validation of AWS CloudFormation templates for syntax as well as in the context of business rules.

Scripted validation solution

For CloudFormation syntax validation, one option is to use the AWS CLI to call the validate-template command. For security and resource management, another approach is to run a Jenkins pipeline from an Amazon EC2 instance under an EC2 role that has been granted only the necessary permissions.

What if you need more control over your CloudFormation templates, such as managing parameters or attributes? What if you have many development teams where permissions to the AWS environment required by one team are either too open or not open enough for another team?

To have more control over the contents of your CloudFormation template, you can use the cf-validator Python script, which shows you how to validate different template aspects. With this script, you can validate:

  • JSON syntax
  • IAM capabilities
  • Root tags
  • Parameters
  • CloudFormation resources
  • Attributes
  • Reference resources

You can download this script from the cf-validator GitHub repo. Use the following command to run the script:

python cf-validator.py

The script takes the following parameters:

  • –cf_path [Required]

    The location of the CloudFormation template in JSON format. Supported location types:

    • File system – Path to the CloudFormation template on the file system
    • Web – URL, for example, https://my-file.com/my_cf.json
    • Amazon S3 – Amazon S3 bucket, for example, s3://my_bucket/my_cf.json
  • –cf_rules [Required]

    The location of the JSON file with the validation rules. This parameter supports the same locations as –cf_path. The next section of this post has more information about defining rules.

  • –cf_res [Optional]

    The location of the JSON file with the defined AWS resources, which need to be confirmed before launching the CloudFormation template. A later section of this post has more information about resource validation.

  • –allow_cap [Optional][yes/no]

    Controls whether you allow the creation of IAM resources by the CloudFormation template, such as policies, rules, or IAM users. The default value is no.

  • –region [Optional]

    The AWS region where the existing resources were created. The default value is us-east-1.

Defining rules

All rules are defined in the JSON format file. Rules consist of the following keys:

  • “allow_root_keys”

    Lists allowed root CloudFormation keys. Example of root keys are Parameters, Resources, Output, and so on. An empty list means that any key is allowed.

  • “allow_parameters”

    Lists allowed CloudFormation parameters. For instance, to force each CloudFormation template to use only the set of parameters defined in your pipeline, list them under this key. An empty list means that any parameter is allowed.

  • “allow_resources”

    Lists the AWS resources allowed for creation by a CloudFormation template. The format of the resource is the same as resource types in CloudFormation, but without the “AWS::” prefix. Examples:  EC2::Instance, EC2::Volume, and so on. If you allow the creation of all resources from the given group, you can use a wildcard. For instance, if you allow all resources related to CloudFormation, you can add CloudFormation::* to the list instead of typing CloudFormation::Init, CloudFormation:Stack, and so on. An empty list means that all resources are allowed.

  • “require_ref_attributes”

    Lists attributes (per resource) that have to be defined in CloudFormation. The value must be referenced and cannot be hardcoded. For instance, you can require that each EC2 instance must be created from a specific AMI where Image ID has to be a passed-in parameter. An empty list means that you are not requiring specific attributes to be present for a given resource.

  • “allow_additional_attributes”

    Lists additional attributes (per resource) that can be defined and have any value in the CloudFormation template. An empty list means that any additional attribute is allowed. If you specify additional attributes for this key, then any resource attribute defined in a CloudFormation template that is not listed in this key or in the require_ref_attributes key causes validation to fail.

  • “not_allow_attributes”

    Lists attributes (per resource) that are not allowed in the CloudFormation template. This key takes precedence over the require_ref_attributes and allow_additional_attributes keys.

Rule file example

The following is an example of a rule file:

{
  "allow_root_keys" : ["AWSTemplateFormatVersion", "Description", "Parameters", "Conditions", "Resources", "Outputs"],
  "allow_parameters" : [],
  "allow_resources" : [
    "CloudFormation::*",
    "CloudWatch::Alarm",
    "EC2::Instance",
    "EC2::Volume",
    "EC2::VolumeAttachment",
    "ElasticLoadBalancing::LoadBalancer",
    "IAM::Role",
    "IAM::Policy",
    "IAM::InstanceProfile"
  ],
  "require_ref_attributes" :
    {
      "EC2::Instance" : [ "InstanceType", "ImageId", "SecurityGroupIds", "SubnetId", "KeyName", "IamInstanceProfile" ],
      "ElasticLoadBalancing::LoadBalancer" : ["SecurityGroups", "Subnets"]
    },
  "allow_additional_attributes" : {},
  "not_allow_attributes" : {}
}

Validating resources

You can use the –cf_res parameter to validate that the resources you are planning to reference in the CloudFormation template exist and are available. As a value for this parameter, point to the JSON file with defined resources. The format should be as follows:

[
  { "Type" : "SG",
    "ID" : "sg-37c9b448A"
  },
  { "Type" : "AMI",
    "ID" : "ami-e7e523f1"
  },
  { "Type" : "Subnet",
    "ID" : "subnet-034e262e"
  }
]

Summary

At this moment, this CloudFormation template validation script supports only security groups, AMIs, and subnets. But anyone with some knowledge of Python and the boto3 package can add support for additional resources type, as needed.

For more tips please visit our AWS CloudFormation blog

Desert To Data in 7 Days – Our New Phoenix Data Center

Post Syndicated from Andy Klein original https://www.backblaze.com/blog/data-center-design/

We are pleased to announce that Backblaze is now storing some of our customers’ data in our newest data center in Phoenix. Our Sacramento facility was slated to store about 500 petabytes of data and was starting to fill up so it was time to expand. After visiting multiple locations in the US and Canada, we selected Phoenix as it had the right combination of power, networking, price and more that we were seeking. Let’s take you through the process of getting the Phoenix data center up and running.

Day 0 – Designing the Data Center

After we selected the Phoenix location as our next DC (data center), we had to negotiate the contract. We’re going to skip that part of the process because, unless you’re a lawyer, it’s a long, boring process. Let’s just say we wanted to be ready to move in once the contract was signed. That meant we had to gather up everything we needed and order a bunch of other things like networking equipment, racks, storage pods, cables, etc. We decided to use our Sacramento DC as the staging point and started gathering what was going to be needed in Phoenix.

In actuality, for some items we started the process several months ago as lead times for things like network switches, Storage Pods, and even hard drives can be measured in months and delays are normal. For example, depending on our move in date, the network providers we wanted would only be able to provide limited bandwidth, so we had to prepare for that possibility. It helps to have a procurement person who knows what they are doing, can work the schedule, and is creatively flexible – thanks Amanda.

So by Day 0, we had amassed multiple pallets of cabinets, network gear, PDUs, tools, hard drives, carts, Guido, and more. And yes, for all you Guido fans he is still with us and he now resides in Phoenix. Everything was wrapped and loaded into a 53-foot semi-truck that was driven the 755 miles (1,215 km) from Sacramento, California to Phoenix, Arizona.

Day 1 – Move In Day

We sent a crew of 5 people to Phoenix with the goal of going from empty space to being ready to accept data in one week. The truck from Sacramento arrived mid-morning and work started unloading and marshaling the pallets and boxes into one area, while the racks were placed near their permanent location on the DC floor.

Day 2 – Building the Racks

Day 2 was spent primarily working with the racks. First they were positioned to their precise location on the data center floor. They were then anchored down and tied together. We started with 2 rows of twenty-two racks each, with twenty being for storage pods and two being for networking equipment. By the end of the week there will be 4 rows of racks installed.

Day 3 – Networking and Power, Part 1

While one team continued to work on the racks, another team began the process a getting the racks connected to the electricty and running the network cables to the network distribution racks. Once that was done, networking gear and rack-based PDUs (Power Distribution Units) were installed in the racks.

Day 4 – Rack Storage Pods

The truck from Sacramento brought 100 Storage Pods, a combination of 45 drive and 60 drive systems. Why did we use 45 drives units here? It has to do with the size (in racks and power) of the initial installation commitment and the ramp (increase) of installations over time. Contract stuff: boring yes, important yes. Basically to optimize our spend we wanted to use as much of the initial space we were allotted as possible. Since we had a number of empty 45 drive chassis available in Sacramento we decided to put them to use.

Day 5 – Drive Day

Our initial set-up goal was to build out five Backblaze Vaults. Each Vault is comprised of twenty Storage Pods. Four of the Vaults were filled with 45 drive Storage Pods and one was filled with 60 drive Storage Pods. That’s 4,800 hard drives to install – thank goodness we don’t use those rubber bands around the drives anymore.

Day 6 – Networking and Power, Part 2

With the storage pods in place, Day 6 was spent routing network and power cables to the individual pods. A critical part of the process is to label every wire so you know where it comes from and where it goes too. Once labeled, wires are bundled together and secured to the racks in a standard pattern. Not only does this make things look neat, it standardizes where you’ll find each cable across the hundreds of racks that are in the DC.

Day 7 – Test, Repair, Test, Ready

With all the power and networking finished, it was time to test the installation. Most of the Storage Pods light up with no problem, but there were a few that failed. These failures are quickly dealt with, and one by one each Backblaze Vault is registered into our monitoring and administration systems. By the end of the day, all five Vaults were ready.

Moving Forward

The Phoenix data center was ready for operation except that the network carriers we wanted to use could only provide a limited amount of bandwidth to start. It would take a few more weeks before the final network lines would be provisioned and operational. Even with the limited bandwidth we kicked off the migration of customer data from Sacramento to Phoenix to help balance out the workload. A few weeks later, once the networking was sorted out, we started accepting external customer data.

We’d like to thank our data center build team for documenting their work in pictures and allowing us to share some of them with our readers.

















Questions About Our New Data Center

Now that we have a second DC, you might have a few questions, such as can you store your data there and so on. Here’s the status of things today…

    Q: Does the new DC mean Backblaze has multi-region storage?
    A: Not yet. Right now we consider the Phoenix DC and the Sacramento DC to be in the same region.

    Q: Will you ever provide multi-region support?
    A: Yes, we expect to provide multi-region support in the future, but we don’t have a date for that capability yet.

    Q: Can I pick which data center will store my data?
    A: Not yet. This capability is part of our plans when we provide multi-region support.

    Q: Which data center is my data being stored in?
    A: Chances are that your data is in the Sacramento data center given it currently stores about 90% of our customer’s data.

    Q: Will my data be split across the two data centers?
    A: It is possible that one portion of your data will be stored in the Sacramento DC and another portion of your data will be stored in the Phoenix DC. This will be completely invisible to you and you should see no difference in storage or data retrieval times.

    Q: Can my data be replicated from one DC to the other?
    A: Not today. As noted above, your data will be in one DC or the other. That said files uploaded to the Backblaze Vaults in either DC are stored redundantly across 20 Backblaze Storage Pods within that DC. This translates to 99.999999% durability for the data stored this way.

    Q: Do you plan on opening more data centers?
    A: Yes. We are actively looking for new locations.

If you have any additional questions, please let us know in the comments or on social media. Thanks.

The post Desert To Data in 7 Days – Our New Phoenix Data Center appeared first on Backblaze Blog | Cloud Storage & Cloud Backup.

mkosi — A Tool for Generating OS Images

Post Syndicated from Lennart Poettering original http://0pointer.net/blog/mkosi-a-tool-for-generating-os-images.html

Introducing mkosi

After blogging about
casync
I realized I never blogged about the
mkosi tool that combines nicely
with it. mkosi has been around for a while already, and its time to
make it a bit better known. mkosi stands for Make Operating System
Image
, and is a tool for precisely that: generating an OS tree or
image that can be booted.

Yes, there are many tools like mkosi, and a number of them are quite
well known and popular. But mkosi has a number of features that I
think make it interesting for a variety of use-cases that other tools
don’t cover that well.

What is mkosi?

What are those use-cases, and what does mkosi precisely set apart?
mkosi is definitely a tool with a focus on developer’s needs for
building OS images, for testing and debugging, but also for generating
production images with cryptographic protection. A typical use-case
would be to add a mkosi.default file to an existing project (for
example, one written in C or Python), and thus making it easy to
generate an OS image for it. mkosi will put together the image with
development headers and tools, compile your code in it, run your test
suite, then throw away the image again, and build a new one, this time
without development headers and tools, and install your build
artifacts in it. This final image is then “production-ready”, and only
contains your built program and the minimal set of packages you
configured otherwise. Such an image could then be deployed with
casync (or any other tool of course) to be delivered to your set of
servers, or IoT devices or whatever you are building.

mkosi is supposed to be legacy-free: the focus is clearly on
today’s technology, not yesteryear’s. Specifically this means that
we’ll generate GPT partition tables, not MBR/DOS ones. When you tell
mkosi to generate a bootable image for you, it will make it bootable
on EFI, not on legacy BIOS. The GPT images generated follow
specifications such as the Discoverable Partitions
Specification
,
so that /etc/fstab can remain unpopulated and tools such as
systemd-nspawn can automatically dissect the image and boot from
them.

So, let’s have a look on the specific images it can generate:

  1. Raw GPT disk image, with ext4 as root
  2. Raw GPT disk image, with btrfs as root
  3. Raw GPT disk image, with a read-only squashfs as root
  4. A plain directory on disk containing the OS tree directly (this is useful for creating generic container images)
  5. A btrfs subvolume on disk, similar to the plain directory
  6. A tarball of a plain directory

When any of the GPT choices above are selected, a couple of additional
options are available:

  1. A swap partition may be added in
  2. The system may be made bootable on EFI systems
  3. Separate partitions for /home and /srv may be added in
  4. The root, /home and /srv partitions may be optionally encrypted with LUKS
  5. The root partition may be protected using dm-verity, thus making offline attacks on the generated system hard
  6. If the image is made bootable, the dm-verity root hash is automatically added to the kernel command line, and the kernel together with its initial RAM disk and the kernel command line is optionally cryptographically signed for UEFI SecureBoot

Note that mkosi is distribution-agnostic. It currently can build
images based on the following Linux distributions:

  1. Fedora
  2. Debian
  3. Ubuntu
  4. ArchLinux
  5. openSUSE

Note though that not all distributions are supported at the same
feature level currently. Also, as mkosi is based on dnf
--installroot
, debootstrap, pacstrap and zypper, and those
packages are not packaged universally on all distributions, you might
not be able to build images for all those distributions on arbitrary
host distributions. For example, Fedora doesn’t package zypper,
hence you cannot build an openSUSE image easily on Fedora, but you can
still build Fedora (obviously…), Debian, Ubuntu and ArchLinux images
on it just fine.

The GPT images are put together in a way that they aren’t just
compatible with UEFI systems, but also with VM and container managers
(that is, at least the smart ones, i.e. VM managers that know UEFI,
and container managers that grok GPT disk images) to a large
degree. In fact, the idea is that you can use mkosi to build a
single GPT image that may be used to:

  1. Boot on bare-metal boxes
  2. Boot in a VM
  3. Boot in a systemd-nspawn container
  4. Directly run a systemd service off, using systemd’s RootImage= unit file setting

Note that in all four cases the dm-verity data is automatically used
if available to ensure the image is not tempered with (yes, you read
that right, systemd-nspawn and systemd’s RootImage= setting
automatically do dm-verity these days if the image has it.)

Mode of Operation

The simplest usage of mkosi is by simply invoking it without
parameters (as root):

# mkosi

Without any configuration this will create a GPT disk image for you,
will call it image.raw and drop it in the current directory. The
distribution used will be the same one as your host runs.

Of course in most cases you want more control about how the image is
put together, i.e. select package sets, select the distribution, size
partitions and so on. Most of that you can actually specify on the
command line, but it is recommended to instead create a couple of
mkosi.$SOMETHING files and directories in some directory. Then,
simply change to that directory and run mkosi without any further
arguments. The tool will then look in the current working directory
for these files and directories and make use of them (similar to how
make looks for a Makefile…). Every single file/directory is
optional, but if they exist they are honored. Here’s a list of the
files/directories mkosi currently looks for:

  1. mkosi.default — This is the main configuration file, here you
    can configure what kind of image you want, which distribution, which
    packages and so on.

  2. mkosi.extra/ — If this directory exists, then mkosi will copy
    everything inside it into the images built. You can place arbitrary
    directory hierarchies in here, and they’ll be copied over whatever is
    already in the image, after it was put together by the distribution’s
    package manager. This is the best way to drop additional static files
    into the image, or override distribution-supplied ones.

  3. mkosi.build — This executable file is supposed to be a build
    script. When it exists, mkosi will build two images, one after the
    other in the mode already mentioned above: the first version is the
    build image, and may include various build-time dependencies such as
    a compiler or development headers. The build script is also copied
    into it, and then run inside it. The script should then build
    whatever shall be built and place the result in $DESTDIR (don’t
    worry, popular build tools such as Automake or Meson all honor
    $DESTDIR anyway, so there’s not much to do here explicitly). It may
    also run a test suite, or anything else you like. After the script
    finished, the build image is removed again, and a second image (the
    final image) is built. This time, no development packages are
    included, and the build script is not copied into the image again —
    however, the build artifacts from the first run (i.e. those placed in
    $DESTDIR) are copied into the image.

  4. mkosi.postinst — If this executable script exists, it is invoked
    inside the image (inside a systemd-nspawn invocation) and can
    adjust the image as it likes at a very late point in the image
    preparation. If mkosi.build exists, i.e. the dual-phased
    development build process used, then this script will be invoked
    twice: once inside the build image and once inside the final
    image. The first parameter passed to the script clarifies which phase
    it is run in.

  5. mkosi.nspawn — If this file exists, it should contain a
    container configuration file for systemd-nspawn (see
    systemd.nspawn(5)
    for details), which shall be shipped along with the final image and
    shall be included in the check-sum calculations (see below).

  6. mkosi.cache/ — If this directory exists, it is used as package
    cache directory for the builds. This directory is effectively bind
    mounted into the image at build time, in order to speed up building
    images. The package installers of the various distributions will
    place their package files here, so that subsequent runs can reuse
    them.

  7. mkosi.passphrase — If this file exists, it should contain a
    pass-phrase to use for the LUKS encryption (if that’s enabled for the
    image built). This file should not be readable to other users.

  8. mkosi.secure-boot.crt and mkosi.secure-boot.key should be an
    X.509 key pair to use for signing the kernel and initrd for UEFI
    SecureBoot, if that’s enabled.

How to use it

So, let’s come back to our most trivial example, without any of the
mkosi.$SOMETHING files around:

# mkosi

As mentioned, this will create a build file image.raw in the current
directory. How do we use it? Of course, we could dd it onto some USB
stick and boot it on a bare-metal device. However, it’s much simpler
to first run it in a container for testing:

# systemd-nspawn -bi image.raw

And there you go: the image should boot up, and just work for you.

Now, let’s make things more interesting. Let’s still not use any of
the mkosi.$SOMETHING files around:

# mkosi -t raw_btrfs --bootable -o foobar.raw
# systemd-nspawn -bi foobar.raw

This is similar as the above, but we made three changes: it’s no
longer GPT + ext4, but GPT + btrfs. Moreover, the system is made
bootable on UEFI systems, and finally, the output is now called
foobar.raw.

Because this system is bootable on UEFI systems, we can run it in KVM:

qemu-kvm -m 512 -smp 2 -bios /usr/share/edk2/ovmf/OVMF_CODE.fd -drive format=raw,file=foobar.raw

This will look very similar to the systemd-nspawn invocation, except
that this uses full VM virtualization rather than container
virtualization. (Note that the way to run a UEFI qemu/kvm instance
appears to change all the time and is different on the various
distributions. It’s quite annoying, and I can’t really tell you what
the right qemu command line is to make this work on your system.)

Of course, it’s not all raw GPT disk images with mkosi. Let’s try
a plain directory image:

# mkosi -d fedora -t directory -o quux
# systemd-nspawn -bD quux

Of course, if you generate the image as plain directory you can’t boot
it on bare-metal just like that, nor run it in a VM.

A more complex command line is the following:

# mkosi -d fedora -t raw_squashfs --checksum --xz --package=openssh-clients --package=emacs

In this mode we explicitly pick Fedora as the distribution to use, ask
mkosi to generate a compressed GPT image with a root squashfs,
compress the result with xz, and generate a SHA256SUMS file with
the hashes of the generated artifacts. The package will contain the
SSH client as well as everybody’s favorite editor.

Now, let’s make use of the various mkosi.$SOMETHING files. Let’s
say we are working on some Automake-based project and want to make it
easy to generate a disk image off the development tree with the
version you are hacking on. Create a configuration file:

# cat > mkosi.default <<EOF
[Distribution]
Distribution=fedora
Release=24

[Output]
Format=raw_btrfs
Bootable=yes

[Packages]
# The packages to appear in both the build and the final image
Packages=openssh-clients httpd
# The packages to appear in the build image, but absent from the final image
BuildPackages=make gcc libcurl-devel
EOF

And let’s add a build script:

# cat > mkosi.build <<EOF
#!/bin/sh
cd $SRCDIR
./autogen.sh
./configure --prefix=/usr
make -j `nproc`
make install
EOF
# chmod +x mkosi.build

And with all that in place we can now build our project into a disk image, simply by typing:

# mkosi

Let’s try it out:

# systemd-nspawn -bi image.raw

Of course, if you do this you’ll notice that building an image like
this can be quite slow. And slow build times are actively hurtful to
your productivity as a developer. Hence let’s make things a bit
faster. First, let’s make use of a package cache shared between runs:

# mkdir mkosi.chache

Building images now should already be substantially faster (and
generate less network traffic) as the packages will now be downloaded
only once and reused. However, you’ll notice that unpacking all those
packages and the rest of the work is still quite slow. But mkosi can
help you with that. Simply use mkosi‘s incremental build feature. In
this mode mkosi will make a copy of the build and final images
immediately before dropping in your build sources or artifacts, so
that building an image becomes a lot quicker: instead of always
starting totally from scratch a build will now reuse everything it can
reuse from a previous run, and immediately begin with building your
sources rather than the build image to build your sources in. To
enable the incremental build feature use -i:

# mkosi -i

Note that if you use this option, the package list is not updated
anymore from your distribution’s servers, as the cached copy is made
after all packages are installed, and hence until you actually delete
the cached copy the distribution’s network servers aren’t contacted
again and no RPMs or DEBs are downloaded. This means the distribution
you use becomes “frozen in time” this way. (Which might be a bad
thing, but also a good thing, as it makes things kinda reproducible.)

Of course, if you run mkosi a couple of times you’ll notice that it
won’t overwrite the generated image when it already exists. You can
either delete the file yourself first (rm image.raw) or let mkosi
do it for you right before building a new image, with mkosi -f. You
can also tell mkosi to not only remove any such pre-existing images,
but also remove any cached copies of the incremental feature, by using
-f twice.

I wrote mkosi originally in order to test systemd, and quickly
generate a disk image of various distributions with the most current
systemd version from git, without all that affecting my host system. I
regularly use mkosi for that today, in incremental mode. The two
commands I use most in that context are:

# mkosi -if && systemd-nspawn -bi image.raw

And sometimes:

# mkosi -iff && systemd-nspawn -bi image.raw

The latter I use only if I want to regenerate everything based on the
very newest set of RPMs provided by Fedora, instead of a cached
snapshot of it.

BTW, the mkosi files for systemd are included in the systemd git
tree:
mkosi.default
and
mkosi.build. This
way, any developer who wants to quickly test something with current
systemd git, or wants to prepare a patch based on it and test it can
check out the systemd repository and simply run mkosi in it and a
few minutes later he has a bootable image he can test in
systemd-nspawn or KVM. casync has similar files:
mkosi.default,
mkosi.build.

Random Interesting Features

  1. As mentioned already, mkosi will generate dm-verity enabled
    disk images if you ask for it. For that use the --verity switch on
    the command line or Verity= setting in mkosi.default. Of course,
    dm-verity implies that the root volume is read-only. In this mode
    the top-level dm-verity hash will be placed along-side the output
    disk image in a file named the same way, but with the .roothash
    suffix. If the image is to be created bootable, the root hash is also
    included on the kernel command line in the roothash= parameter,
    which current systemd versions can use to both find and activate the
    root partition in a dm-verity protected way. BTW: it’s a good idea
    to combine this dm-verity mode with the raw_squashfs image mode,
    to generate a genuinely protected, compressed image suitable for
    running in your IoT device.

  2. As indicated above, mkosi can automatically create a check-sum
    file SHA256SUMS for you (--checksum) covering all the files it
    outputs (which could be the image file itself, a matching .nspawn
    file using the mkosi.nspawn file mentioned above, as well as the
    .roothash file for the dm-verity root hash.) It can then
    optionally sign this with gpg (--sign). Note that systemd‘s
    machinectl pull-tar and machinectl pull-raw command can download
    these files and the SHA256SUMS file automatically and verify things
    on download. With other words: what mkosi outputs is perfectly
    ready for downloads using these two systemd commands.

  3. As mentioned, mkosi is big on supporting UEFI SecureBoot. To
    make use of that, place your X.509 key pair in two files
    mkosi.secureboot.crt and mkosi.secureboot.key, and set
    SecureBoot= or --secure-boot. If so, mkosi will sign the
    kernel/initrd/kernel command line combination during the build. Of
    course, if you use this mode, you should also use
    Verity=/--verity=, otherwise the setup makes only partial
    sense. Note that mkosi will not help you with actually enrolling
    the keys you use in your UEFI BIOS.

  4. mkosi has minimal support for GIT checkouts: when it recognizes
    it is run in a git checkout and you use the mkosi.build script
    stuff, the source tree will be copied into the build image, but will
    all files excluded by .gitignore removed.

  5. There’s support for encryption in place. Use --encrypt= or
    Encrypt=. Note that the UEFI ESP is never encrypted though, and the
    root partition only if explicitly requested. The /home and /srv
    partitions are unconditionally encrypted if that’s enabled.

  6. Images may be built with all documentation removed.

  7. The password for the root user and additional kernel command line
    arguments may be configured for the image to generate.

Minimum Requirements

Current mkosi requires Python 3.5, and has a number of dependencies,
listed in the
README. Most
notably you need a somewhat recent systemd version to make use of its
full feature set: systemd 233. Older versions are already packaged for
various distributions, but much of what I describe above is only
available in the most recent release mkosi 3.

The UEFI SecureBoot support requires sbsign which currently isn’t
available in Fedora, but there’s a
COPR
.

Future

It is my intention to continue turning mkosi into a tool suitable
for:

  1. Testing and debugging projects
  2. Building images for secure devices
  3. Building portable service images
  4. Building images for secure VMs and containers

One of the biggest goals I have for the future is to teach mkosi and
systemd/sd-boot native support for A/B IoT style partition
setups. The idea is that the combination of systemd, casync and
mkosi provides generic building blocks for building secure,
auto-updating devices in a generic way from, even though all pieces
may be used individually, too.

FAQ

  1. Why are you reinventing the wheel again? This is exactly like
    $SOMEOTHERPROJECT!
    — Well, to my knowledge there’s no tool that
    integrates this nicely with your project’s development tree, and can
    do dm-verity and UEFI SecureBoot and all that stuff for you. So
    nope, I don’t think this exactly like $SOMEOTHERPROJECT, thank you
    very much.

  2. What about creating MBR/DOS partition images? — That’s really
    out of focus to me. This is an exercise in figuring out how generic
    OSes and devices in the future should be built and an attempt to
    commoditize OS image building. And no, the future doesn’t speak MBR,
    sorry. That said, I’d be quite interested in adding support for
    booting on Raspberry Pi, possibly using a hybrid approach, i.e. using
    a GPT disk label, but arranging things in a way that the Raspberry Pi
    boot protocol (which is built around DOS partition tables), can still
    work.

  3. Is this portable? — Well, depends what you mean by
    portable. No, this tool runs on Linux only, and as it uses
    systemd-nspawn during the build process it doesn’t run on
    non-systemd systems either. But then again, you should be able to
    create images for any architecture you like with it, but of course if
    you want the image bootable on bare-metal systems only systems doing
    UEFI are supported (but systemd-nspawn should still work fine on
    them).

  4. Where can I get this stuff? — Try
    GitHub. And some distributions
    carry packaged versions, but I think none of them the current v3
    yet.

  5. Is this a systemd project? — Yes, it’s hosted under the
    systemd GitHub umbrella. And yes,
    during run-time systemd-nspawn in a current version is required. But
    no, the code-bases are separate otherwise, already because systemd
    is a C project, and mkosi Python.

  6. Requiring systemd 233 is a pretty steep requirement, no?
    Yes, but the feature we need kind of matters (systemd-nspawn‘s
    --overlay= switch), and again, this isn’t supposed to be a tool for
    legacy systems.

  7. Can I run the resulting images in LXC or Docker? — Humm, I am
    not an LXC nor Docker guy. If you select directory or subvolume
    as image type, LXC should be able to boot the generated images just
    fine, but I didn’t try. Last time I looked, Docker doesn’t permit
    running proper init systems as PID 1 inside the container, as they
    define their own run-time without intention to emulate a proper
    system. Hence, no I don’t think it will work, at least not with an
    unpatched Docker version. That said, again, don’t ask me questions
    about Docker, it’s not precisely my area of expertise, and quite
    frankly I am not a fan. To my knowledge neither LXC nor Docker are
    able to run containers directly off GPT disk images, hence the
    various raw_xyz image types are definitely not compatible with
    either. That means if you want to generate a single raw disk image
    that can be booted unmodified both in a container and on bare-metal,
    then systemd-nspawn is the container manager to go for
    (specifically, its -i/--image= switch).

Should you care? Is this a tool for you?

Well, that’s up to you really.

If you hack on some complex project and need a quick way to compile
and run your project on a specific current Linux distribution, then
mkosi is an excellent way to do that. Simply drop the mkosi.default
and mkosi.build files in your git tree and everything will be
easy. (And of course, as indicated above: if the project you are
hacking on happens to be called systemd or casync be aware that
those files are already part of the git tree — you can just use them.)

If you hack on some embedded or IoT device, then mkosi is a great
choice too, as it will make it reasonably easy to generate secure
images that are protected against offline modification, by using
dm-verity and UEFI SecureBoot.

If you are an administrator and need a nice way to build images for a
VM or systemd-nspawn container, or a portable service then mkosi
is an excellent choice too.

If you care about legacy computers, old distributions, non-systemd
init systems, old VM managers, Docker, … then no, mkosi is not for
you, but there are plenty of well-established alternatives around that
cover that nicely.

And never forget: mkosi is an Open Source project. We are happy to
accept your patches and other contributions.

Oh, and one unrelated last thing: don’t forget to submit your talk
proposal

and/or buy a ticket for
All Systems Go! 2017 in Berlin — the
conference where things like systemd, casync and mkosi are
discussed, along with a variety of other Linux userspace projects used
for building systems.

Cox: Supreme Court Suggests That Pirates Shouldn’t Lose Internet Access

Post Syndicated from Ernesto original https://torrentfreak.com/cox-supreme-court-suggests-that-pirates-shouldnt-lose-internet-access-170627/

December 2015 a Virginia federal jury held Internet provider Cox Communications responsible for the copyright infringements of its subscribers.

The ISP refused to disconnect alleged pirates and was found guilty of willful contributory copyright infringement. In addition, it was ordered to pay music publisher BMG Rights Management $25 million in damages.

Cox has since filed an appeal and this week it submitted an additional piece of evidence from the US Supreme Court, stating that this strongly supports its side of the argument.

Last week the Supreme Court issued an important verdict in Packingham v. North Carolina, ruling that it’s unconstitutional to bar convicted sex offenders from social media. The Court described the Internet as an important tool for people to exercise free speech rights.

While nothing in the ruling refers to online piracy, it could turn out to be crucial in the case between Cox and BMG. The Internet provider now argues that if convicted criminals have the right to use the Internet, accused file-sharers should have it too.

“Packingham is directly relevant to what constitute ‘appropriate circumstances’ to terminate Internet access to Cox’s customers. The decision emphatically establishes the centrality of Internet access to protected First Amendment activity..,” Cox writes in its filing at the Court of Appeals.

“As the Court recognized, Internet sources are often ‘the principal sources for knowing current events, checking ads for employment, speaking and listening in the modern public square, and otherwise exploring the vast realms of human thought and knowledge’.”

Citing the Supreme Court ruling, Cox notes that the Government “may not suppress lawful speech as the means to suppress unlawful speech.” This would be the case if entire households lost Internet access because a copyright holder accused someone of repeated copyright infringements.

“The Court’s analysis strongly suggests that at least intermediate scrutiny must apply to any law that purports to restrict the ability of a class of persons to access the Internet,” ISP writes (pdf).

In its case against BMG, Cox was held liable because it failed to take appropriate action against frequent pirates, solely based on allegations of piracy monitoring outfit Rightscorp. Cox doesn’t believe these one-sided complaints should be enough for people to be disconnected from the Internet.

If convicted sex offenders still have the right to use social media, accused pirates should not be barred from the Internet on a whim, the argument goes.

“And if it offends the Constitution to cut off a portion of Internet access to convicted criminals, then the district court’s erroneous interpretation of Section 512(i) of the DMCA — which effectively invokes the state’s coercive power to require ISPs to terminate all Internet access to merely accused infringers — cannot stand,” Cox writes.

Whether the Court of Appeals will agree has yet to be seen, but with the stakes at hand this issue is far from resolved. In addition to the case between BMG and Cox, the MPAA recently filed a lawsuit against Grande Communications, which centers around the same issue.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and ANONYMOUS VPN services.

Scratch 2.0: all-new features for your Raspberry Pi

Post Syndicated from Rik Cross original https://www.raspberrypi.org/blog/scratch-2-raspberry-pi/

We’re very excited to announce that Scratch 2.0 is now available as an offline app for the Raspberry Pi! This new version of Scratch allows you to control the Pi’s GPIO (General Purpose Input and Output) pins, and offers a host of other exciting new features.

Offline accessibility

The most recent update to Raspbian includes the app, which makes Scratch 2.0 available offline on the Raspberry Pi. This is great news for clubs and classrooms, where children can now use Raspberry Pis instead of connected laptops or desktops to explore block-based programming and physical computing.

Controlling GPIO with Scratch 2.0

As with Scratch 1.4, Scratch 2.0 on the Raspberry Pi allows you to create code to control and respond to components connected to the Pi’s GPIO pins. This means that your Scratch projects can light LEDs, sound buzzers and use input from buttons and a range of sensors to control the behaviour of sprites. Interacting with GPIO pins in Scratch 2.0 is easier than ever before, as text-based broadcast instructions have been replaced with custom blocks for setting pin output and getting current pin state.

Scratch 2.0 GPIO blocks

To add GPIO functionality, first click ‘More Blocks’ and then ‘Add an Extension’. You should then select the ‘Pi GPIO’ extension option and click OK.

Scratch 2.0 GPIO extension

In the ‘More Blocks’ section you should now see the additional blocks for controlling and responding to your Pi GPIO pins. To give an example, the entire code for repeatedly flashing an LED connected to GPIO pin 2.0 is now:

Flashing an LED with Scratch 2.0

To react to a button connected to GPIO pin 2.0, simply set the pin as input, and use the ‘gpio (x) is high?’ block to check the button’s state. In the example below, the Scratch cat will say “Pressed” only when the button is being held down.

Responding to a button press on Scractch 2.0

Cloning sprites

Scratch 2.0 also offers some additional features and improvements over Scratch 1.4. One of the main new features of Scratch 2.0 is the ability to create clones of sprites. Clones are instances of a particular sprite that inherit all of the scripts of the main sprite.

The scripts below show how cloned sprites are used — in this case to allow the Scratch cat to throw a clone of an apple sprite whenever the space key is pressed. Each apple sprite clone then follows its ‘when i start as clone’ script.

Cloning sprites with Scratch 2.0

The cloning functionality avoids the need to create multiple copies of a sprite, for example multiple enemies in a game or multiple snowflakes in an animation.

Custom blocks

Scratch 2.0 also allows the creation of custom blocks, allowing code to be encapsulated and used (possibly multiple times) in a project. The code below shows a simple custom block called ‘jump’, which is used to make a sprite jump whenever it is clicked.

Custom 'jump' block on Scratch 2.0

These custom blocks can also optionally include parameters, allowing further generalisation and reuse of code blocks. Here’s another example of a custom block that draws a shape. This time, however, the custom block includes parameters for specifying the number of sides of the shape, as well as the length of each side.

Custom shape-drawing block with Scratch 2.0

The custom block can now be used with different numbers provided, allowing lots of different shapes to be drawn.

Drawing shapes with Scratch 2.0

Peripheral interaction

Another feature of Scratch 2.0 is the addition of code blocks to allow easy interaction with a webcam or a microphone. This opens up a whole new world of possibilities, and for some examples of projects that make use of this new functionality see Clap-O-Meter which uses the microphone to control a noise level meter, and a Keepie Uppies game that uses video motion to control a football. You can use the Raspberry Pi or USB cameras to detect motion in your Scratch 2.0 projects.

Other new features include a vector image editor and a sound editor, as well as lots of new sprites, costumes and backdrops.

Update your Raspberry Pi for Scratch 2.0

Scratch 2.0 is available in the latest Raspbian release, under the ‘Programming’ menu. We’ve put together a guide for getting started with Scratch 2.0 on the Raspberry Pi online (note that GPIO functionality is only available via the desktop version). You can also try out Scratch 2.0 on the Pi by having a go at a project from the Code Club projects site.

As always, we love to see the projects you create using the Raspberry Pi. Once you’ve upgraded to Scratch 2.0, tell us about your projects via Twitter, Instagram and Facebook, or by leaving us a comment below.

The post Scratch 2.0: all-new features for your Raspberry Pi appeared first on Raspberry Pi.

T411, France’s Most-Visited Torrent Site, Has Been Shut Down

Post Syndicated from Andy original https://torrentfreak.com/t411-frances-most-visited-torrent-site-has-disappeared-170627/

As the number one torrent site among French speakers and one of the most popular sites in France, T411’s rise to stardom is the product of more than a decade of twists and turns.

After a prolonged battle against 31 Canadian media organizations including the CRIA, the administrator of a torrent site known as QuebecTorrent closed its doors in 2008 after the handing down of a permanent injunction.

“I just wanna say thanks to all the people who supported the cause and me all along,” admin Sebastian Doditz told TorrentFreak at the time.

Initially, it was believed that the 109,000 members of the site would be left homeless but shortly after another torrent site appeared. Called Torrent411 with the slogan The Torrent Yellow Pages (411 is Canada’s version), it launched with around 109,000 members – the number that QuebecTorrent closed with.

No surprise then that all QuebecTorrent user accounts had been transferred to T411, including ratios and even some content categories that were previously excluded due to copyright holder disputes.

“Welcome to one and all!” a notice on the site read. “It is with great pleasure that we launch the Torrent411.com site today. All the team of Torrent411.com wishes you the most cordial of welcomes! Here you will find all the torrents imaginable which will be for you for thousands of hours to come! Filled with surprises that await you!”

Even following its resurrection, pressure on the site continued to build. In 2011, it was forced to move to T411.me, to avoid problems with its .com domain, but against the odds, it continued to grow.

As shown in the image to the right (courtesy OpenTrackers), in 2013 the site had more than 5.3 million members, 336,000 torrents, and 4.7m seeders. That made it a significant site indeed.

In early 2015, the site decided to move again, from .me to .io, following action to have the site blocked in France.

But later in the year, there was yet more trouble when the site found itself reported to the United States Trade Representative, identified as a “rogue site” by the RIAA.

With a number of copyright holders on its back, it’s clear that T411’s troubles weren’t going away anytime soon, but now there’s a crisis from which the site is unlikely to recover.

On Sunday, T411 simply stopped responding on its latest T411.al domain. No warning and no useful messages have been forthcoming from its operators. For a site of this scale and resilience, that’s not something one expects.

Message greeting site visitors

Even though the site itself has been down, there have been some very basic signs of life. For example, the site’s Wiki remained operational which indicates the T411.al domain is at least partially intact, at least for now. But for those hoping for good news, none will be forthcoming.

Moments ago, French journalist Tristan Brossat‏ confirmed that T411 has been shut down in a joint operation between French and Swedish police.

He reports that “the brains” behind the site (reportedly two Ukrainians) have been arrested. Servers hosted at a Swedish company have been seized.

Anti-piracy activity against France-connected torrent sites has been high during recent months. Last November, torrent icon What.cd shutdown following action by French authorities.

Soon after, the cybercrime unit of the French military police targeted the country’s largest pirate site, Zone-Telechargement (1,2).

Update: A source familiar with developments informs TF that a one of those arrested in Sweden was a developer. In France, he reports that moderators have been arrested.

Update2: The arrests in Sweden took place in the Huddinge Municipality in Stockholm County, east central Sweden. The men are said to be around 30-years-old and are suspected of copyright infringement and money laundering offenses.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and ANONYMOUS VPN services.

Introducing the Raspberry Pi Integrator Programme

Post Syndicated from Roger Thornton original https://www.raspberrypi.org/blog/raspberry-pi-integrator-programme/

An ever-growing number of companies take advantage of Raspberry Pi technology and use our boards as part of their end products. Raspberry Pis are now essential components of everything from washing machines to underwater exploration vehicles. We love seeing these commercial applications, and are committed to helping bring Raspberry Pi-powered products to market. With this in mind, we are excited to announce our new Raspberry Pi Integrator Programme!

Raspberry Pi Integrator Programme

Product compliance testing

Whenever a company wants to sell a product on a market, it first has to prove that selling it is safe and legal. Compliance requirements vary between different products; rules that would apply to a complicated machine like a car will, naturally, not be the same as those that apply to a pair of trainers (although there is some overlap in the Venn diagram of rules).

Raspberry Pi Integrator Programme

Regions of the world within each of which products have to be separately tested

Different countries usually have slightly different sets of regulations, and testing has to be conducted at an accredited facility for the region the company intends to sell the product in. Companies have to put a vast amount of work into getting their product through compliance testing and certification to meet country-specific requirements. This is especially taxing for smaller enterprises.

Making testing easier

Raspberry Pi has assisted various companies that use Pi technology in their end products through this testing and certification process, and over time it has become clear that we can do even more to help. This realisation led us to work with our compliance testing and certification partner UL to create a system that simplifies and speeds up compliance processes. Thus we have started the Raspberry Pi Integrator Programme, designed to help anyone get their Raspberry Pi-based product tested and on the market quickly and efficiently.

The Raspberry Pi Integrator Programme

The programme provides access to the same test engineers who worked on our Raspberry Pis during their compliance testing. It connects the user to a dedicated team at UL who assess and test the user’s product, facilitated by their in-depth knowledge of Raspberry Pi. The team at UL work closely with the Raspberry Pi engineering team, so any unexpected issues that may arise during testing can be resolved quickly. Through the programme, UL will streamline the testing and certification process, which will in turn decrease the amount of time necessary to launch the product. Our Integrator Programme is openly available, it comes with no added cost beyond the usual testing fees at UL, and there are companies already taking advantage of it.

Get your product on the market more quickly

We have put the Integrator Programme in place in the hope of eliminating the burden of navigating complicated compliance issues and making it easier for companies to bring new, exciting products to consumers. With simplified testing, companies and individuals can get products to market in less time and with lower overhead costs.

The programme is now up and running, and ready to accept new clients. UL and Raspberry Pi hope that it will be an incredibly useful tool for creators of Raspberry Pi-powered commercial products. For more information, please email [email protected].

Powered by Raspberry Pi

As a producer of a Pi-based device, you can also apply to use our ‘Powered by Raspberry Pi’ logo on your product and its packaging. Doing so indicates to customers that a portion of their payment supports the educational work of the Raspberry Pi Foundation.

Powered by Pi Logo

You’ll find more information about the ‘Powered by Raspberry Pi’ logo and our simple approval process for using it here.

The post Introducing the Raspberry Pi Integrator Programme appeared first on Raspberry Pi.

Synchronizing Amazon S3 Buckets Using AWS Step Functions

Post Syndicated from Andy Katz original https://aws.amazon.com/blogs/compute/synchronizing-amazon-s3-buckets-using-aws-step-functions/

Constantin Gonzalez is a Principal Solutions Architect at AWS

In my free time, I run a small blog that uses Amazon S3 to host static content and Amazon CloudFront to distribute it world-wide. I use a home-grown, static website generator to create and upload my blog content onto S3.

My blog uses two S3 buckets: one for staging and testing, and one for production. As a website owner, I want to update the production bucket with all changes from the staging bucket in a reliable and efficient way, without having to create and populate a new bucket from scratch. Therefore, to synchronize files between these two buckets, I use AWS Lambda and AWS Step Functions.

In this post, I show how you can use Step Functions to build a scalable synchronization engine for S3 buckets and learn some common patterns for designing Step Functions state machines while you do so.

Step Functions overview

Step Functions makes it easy to coordinate the components of distributed applications and microservices using visual workflows. Building applications from individual components that each perform a discrete function lets you scale and change applications quickly.

While this particular example focuses on synchronizing objects between two S3 buckets, it can be generalized to any other use case that involves coordinated processing of any number of objects in S3 buckets, or other, similar data processing patterns.

Bucket replication options

Before I dive into the details on how this particular example works, take a look at some alternatives for copying or replicating data between two Amazon S3 buckets:

  • The AWS CLI provides customers with a powerful aws s3 sync command that can synchronize the contents of one bucket with another.
  • S3DistCP is a powerful tool for users of Amazon EMR that can efficiently load, save, or copy large amounts of data between S3 buckets and HDFS.
  • The S3 cross-region replication functionality enables automatic, asynchronous copying of objects across buckets in different AWS regions.

In this use case, you are looking for a slightly different bucket synchronization solution that:

  • Works within the same region
  • Is more scalable than a CLI approach running on a single machine
  • Doesn’t require managing any servers
  • Uses a more finely grained cost model than the hourly based Amazon EMR approach

You need a scalable, serverless, and customizable bucket synchronization utility.

Solution architecture

Your solution needs to do three things:

  1. Copy all objects from a source bucket into a destination bucket, but leave out objects that are already present, for efficiency.
  2. Delete all "orphaned" objects from the destination bucket that aren’t present on the source bucket, because you don’t want obsolete objects lying around.
  3. Keep track of all objects for #1 and #2, regardless of how many objects there are.

In the beginning, you read in the source and destination buckets as parameters and perform basic parameter validation. Then, you operate two separate, independent loops, one for copying missing objects and one for deleting obsolete objects. Each loop is a sequence of Step Functions states that read in chunks of S3 object lists and use the continuation token to decide in a choice state whether to continue the loop or not.

This solution is based on the following architecture that uses Step Functions, Lambda, and two S3 buckets:

As you can see, this setup involves no servers, just two main building blocks:

  • Step Functions manages the overall flow of synchronizing the objects from the source bucket with the destination bucket.
  • A set of Lambda functions carry out the individual steps necessary to perform the work, such as validating input, getting lists of objects from source and destination buckets, copying or deleting objects in batches, and so on.

To understand the synchronization flow in more detail, look at the Step Functions state machine diagram for this example.

Walkthrough

Here’s a detailed discussion of how this works.

To follow along, use the code in the sync-buckets-state-machine GitHub repo. The code comes with a ready-to-run deployment script in Python that takes care of all the IAM roles, policies, Lambda functions, and of course the Step Functions state machine deployment using AWS CloudFormation, as well as instructions on how to use it.

Fine print: Use at your own risk

Before I start, here are some disclaimers:

  • Educational purposes only.

    The following example and code are intended for educational purposes only. Make sure that you customize, test, and review it on your own before using any of this in production.

  • S3 object deletion.

    In particular, using the code included below may delete objects on S3 in order to perform synchronization. Make sure that you have backups of your data. In particular, consider using the Amazon S3 Versioning feature to protect yourself against unintended data modification or deletion.

Step Functions execution starts with an initial set of parameters that contain the source and destination bucket names in JSON:

{
    "source":       "my-source-bucket-name",
    "destination":  "my-destination-bucket-name"
}

Armed with this data, Step Functions execution proceeds as follows.

Step 1: Detect the bucket region

First, you need to know the regions where your buckets reside. In this case, take advantage of the Step Functions Parallel state. This allows you to use a Lambda function get_bucket_location.py inside two different, parallel branches of task states:

  • FindRegionForSourceBucket
  • FindRegionForDestinationBucket

Each task state receives one bucket name as an input parameter, then detects the region corresponding to "their" bucket. The output of these functions is collected in a result array containing one element per parallel function.

Step 2: Combine the parallel states

The output of a parallel state is a list with all the individual branches’ outputs. To combine them into a single structure, use a Lambda function called combine_dicts.py in its own CombineRegionOutputs task state. The function combines the two outputs from step 1 into a single JSON dict that provides you with the necessary region information for each bucket.

Step 3: Validate the input

In this walkthrough, you only support buckets that reside in the same region, so you need to decide if the input is valid or if the user has given you two buckets in different regions. To find out, use a Lambda function called validate_input.py in the ValidateInput task state that tests if the two regions from the previous step are equal. The output is a Boolean.

Step 4: Branch the workflow

Use another type of Step Functions state, a Choice state, which branches into a Failure state if the comparison in step 3 yields false, or proceeds with the remaining steps if the comparison was successful.

Step 5: Execute in parallel

The actual work is happening in another Parallel state. Both branches of this state are very similar to each other and they re-use some of the Lambda function code.

Each parallel branch implements a looping pattern across the following steps:

  1. Use a Pass state to inject either the string value "source" (InjectSourceBucket) or "destination" (InjectDestinationBucket) into the listBucket attribute of the state document.

    The next step uses either the source or the destination bucket, depending on the branch, while executing the same, generic Lambda function. You don’t need two Lambda functions that differ only slightly. This step illustrates how to use Pass states as a way of injecting constant parameters into your state machine and as a way of controlling step behavior while re-using common step execution code.

  2. The next step UpdateSourceKeyList/UpdateDestinationKeyList lists objects in the given bucket.

    Remember that the previous step injected either "source" or "destination" into the state document’s listBucket attribute. This step uses the same list_bucket.py Lambda function to list objects in an S3 bucket. The listBucket attribute of its input decides which bucket to list. In the left branch of the main parallel state, use the list of source objects to work through copying missing objects. The right branch uses the list of destination objects, to check if they have a corresponding object in the source bucket and eliminate any orphaned objects. Orphans don’t have a source object of the same S3 key.

  3. This step performs the actual work. In the left branch, the CopySourceKeys step uses the copy_keys.py Lambda function to go through the list of source objects provided by the previous step, then copies any missing object into the destination bucket. Its sister step in the other branch, DeleteOrphanedKeys, uses its destination bucket key list to test whether each object from the destination bucket has a corresponding source object, then deletes any orphaned objects.

  4. The S3 ListObjects API action is designed to be scalable across many objects in a bucket. Therefore, it returns object lists in chunks of configurable size, along with a continuation token. If the API result has a continuation token, it means that there are more objects in this list. You can work from token to token to continue getting object list chunks, until you get no more continuation tokens.

By breaking down large amounts of work into chunks, you can make sure each chunk is completed within the timeframe allocated for the Lambda function, and within the maximum input/output data size for a Step Functions state.

This approach comes with a slight tradeoff: the more objects you process at one time in a given chunk, the faster you are done. There’s less overhead for managing individual chunks. On the other hand, if you process too many objects within the same chunk, you risk going over time and space limits of the processing Lambda function or the Step Functions state so the work cannot be completed.

In this particular case, use a Lambda function that maximizes the number of objects listed from the S3 bucket that can be stored in the input/output state data. This is currently up to 32,768 bytes, assuming (based on some experimentation) that the execution of the COPY/DELETE requests in the processing states can always complete in time.

A more sophisticated approach would use the Step Functions retry/catch state attributes to account for any time limits encountered and adjust the list size accordingly through some list site adjusting.

Step 6: Test for completion

Because the presence of a continuation token in the S3 ListObjects output signals that you are not done processing all objects yet, use a Choice state to test for its presence. If a continuation token exists, it branches into the UpdateSourceKeyList step, which uses the token to get to the next chunk of objects. If there is no token, you’re done. The state machine then branches into the FinishCopyBranch/FinishDeleteBranch state.

By using Choice states like this, you can create loops exactly like the old times, when you didn’t have for statements and used branches in assembly code instead!

Step 7: Success!

Finally, you’re done, and can step into your final Success state.

Lessons learned

When implementing this use case with Step Functions and Lambda, I learned the following things:

  • Sometimes, it is necessary to manipulate the JSON state of a Step Functions state machine with just a few lines of code that hardly seem to warrant their own Lambda function. This is ok, and the cost is actually pretty low given Lambda’s 100 millisecond billing granularity. The upside is that functions like these can be helpful to make the data more palatable for the following steps or for facilitating Choice states. An example here would be the combine_dicts.py function.
  • Pass states can be useful beyond debugging and tracing, they can be used to inject arbitrary values into your state JSON and guide generic Lambda functions into doing specific things.
  • Choice states are your friend because you can build while-loops with them. This allows you to reliably grind through large amounts of data with the patience of an engine that currently supports execution times of up to 1 year.

    Currently, there is an execution history limit of 25,000 events. Each Lambda task state execution takes up 5 events, while each choice state takes 2 events for a total of 7 events per loop. This means you can loop about 3500 times with this state machine. For even more scalability, you can split up work across multiple Step Functions executions through object key sharding or similar approaches.

  • It’s not necessary to spend a lot of time coding exception handling within your Lambda functions. You can delegate all exception handling to Step Functions and instead simplify your functions as much as possible.

  • Step Functions are great replacements for shell scripts. This could have been a shell script, but then I would have had to worry about where to execute it reliably, how to scale it if it went beyond a few thousand objects, etc. Think of Step Functions and Lambda as tools for scripting at a cloud level, beyond the boundaries of servers or containers. "Serverless" here also means "boundary-less".

Summary

This approach gives you scalability by breaking down any number of S3 objects into chunks, then using Step Functions to control logic to work through these objects in a scalable, serverless, and fully managed way.

To take a look at the code or tweak it for your own needs, use the code in the sync-buckets-state-machine GitHub repo.

To see more examples, please visit the Step Functions Getting Started page.

Enjoy!

Scammers Pick Up NYAA Torrents Domain Name

Post Syndicated from Ernesto original https://torrentfreak.com/scammers-pick-up-nyaa-torrents-domain-name-170624/

For years NYAA Torrents was heralded as one of the top sources for anime content, serving an audience of millions of users.

This changed abruptly early last month when the site’s domain names were deactivated and stopped working.

TorrentFreak heard from several people, including site moderators and other people close to the site, that NYAA’s owner decided to close the site voluntarily. However, no comments were made in public.

While many former users moved on to other sites, some started to see something familiar when they checked their old bookmarks this week. All of a sudden, NYAA.eu was loading just fine, albeit with a twist.

“Due to the regulation & security issues with Bittorrent, the Nyaa Team has decided to move from torrent to a faster & secure part of the internet!” a message posted on the site reads.

Instead, the site says it’s going underground, encouraging visitors to download the brand new free “binary client.” At the same time, it warns against ‘fake’ NYAA sites.

“We wish we could keep up the torrent tracker, but it is to risky for our torrent crew as well as for our fans. Nyaa.se has been shut down as well. All other sites claiming to be the new Nyaa are Fake!”

Fake NYAA

The truth is, however, that the site itself is “fake.” After the domain name was deactivated it was put back into rotation by the .EU registry, allowing outsiders to pick it up. These people are now trying to monetize it with their download offer.

According to the Whois information, NYAA.eu is registered to the German company Goodlabs, which specializes in domain name monetization.

The client download link on the site points to a Goo.gl shorturl, which in turn redirects to an affiliate link for a Usenet service. At least, last time we checked.

The people who registered the domain hope that people will sign up there, assuming that it’s somehow connected to the old NYAA crew.

Thus far, over 27,000 people have clicked on the link in just a few days. This means that the domain name still generates significant traffic, mostly from Japan, The United States, and France.

While it is likely new to former NYAA users, this type of scam is pretty common. There are a few file-sharing related domains with similar messages, including Demonoid.to, Isohunts.to, All4nothin.net, Torrenthounds.com, Proxyindex.net, Ddgamez.com and many others.

Some offer links to affiliate deals and others point to direct downloads of .exe files. It’s safe to say, that it’s best to stay far away from all of these.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and ANONYMOUS VPN services.

Banning VPNs and Proxies is Dangerous, IT Experts Warn

Post Syndicated from Andy original https://torrentfreak.com/banning-vpns-and-proxies-is-dangerous-it-experts-warn-170623/

In April, draft legislation was developed to crack down on systems and software that allow Russian Internet users to bypass website blockades approved by telecoms watchdog Roskomnadzor.

Earlier this month the draft bill was submitted to the State Duma, the lower house of the Russian parliament. If passed, the law will make it illegal for services to circumvent web blockades by “routing traffic of Russian Internet users through foreign servers, anonymous proxy servers, virtual private networks and other means.”

As the plans currently stand, anonymization services that fail to restrict access to sites listed by telecoms watchdog Rozcomnadzor face being blocked themselves. Sites offering circumvention software for download also face potential blacklisting.

This week the State Duma discussed the proposals with experts from the local Internet industry. In addition to the head of Rozcomnadzor, representatives from service providers, search engines and even anonymization services were in attendance. Novaya Gazeta has published comments (Russian) from some of the key people at the meeting and it’s fair to say there’s not a lot of support.

VimpelCom, the sixth largest mobile network operator in the world with more than 240 million subscribers, sent along Director for Relations with Government, Sergey Malyanov. He wondered where all this blocking will end up.

“First we banned certain information. Then this information was blocked with the responsibility placed on both owners of resources and services. Now there are blocks on top of blocks – so we already have a triple effort,” he said.

“It is now possible that there will be a fourth iteration: the block on the block to block those that were not blocked. And with that, we have significantly complicated the law and the activities of all the people affected by it.”

Malyanov said that these kinds of actions have the potential to close down the entire Internet by ruining what was once an open network running standard protocols. But amid all of this, will it even be effective?

“The question is not even about the losses that will be incurred by network operators, the owners of the resources and the search engines. The question is whether this bill addresses the goal its creators have set for themselves. In my opinion, it will not.”

Group-IB, one of the world’s leading cyber-security and threat intelligence providers, was represented CEO Ilya Sachkov. He told parliament that “ordinary respectable people” who use the Internet should always use a VPN for security. Nevertheless, he also believes that such services should be forced to filter sites deemed illegal by the state.

But in a warning about blocks in general, he warned that people who want to circumvent them will always be one step ahead.

“We have to understand that by the time the law is adopted the perpetrators will already find it very easy to circumvent,” he said.

Mobile operator giant MTS, which turns over billions of dollars and employs 50,000+ people, had their Vice-President of Corporate and Legal Affairs in attendance. Ruslan Ibragimov said that in dealing with a problem, the government should be cautious of not causing more problems, including disruption of a growing VPN market.

“We have an understanding that evil must be fought, but it’s not necessary to create a new evil, even more so – for those who are involved in this struggle,” he said.

“Broad wording of this law may pose a threat to our network, which could be affected by the new restrictive measures, as well as the VPN market, which we are currently developing, and whose potential market is estimated at 50 billion rubles a year.”

In its goal to maintain control of the Internet, it’s clear that Russia is determined to press ahead with legislative change. Unfortunately, it’s far from clear that there’s a technical solution to the problem, but if one is pursued regardless, there could be serious fallout.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and ANONYMOUS VPN services.

Kotlin and Groovy JVM Languages with AWS Lambda

Post Syndicated from Juan Villa original https://aws.amazon.com/blogs/compute/kotlin-and-groovy-jvm-languages-with-aws-lambda/


Juan Villa – Partner Solutions Architect

 

When most people hear “Java” they think of Java the programming language. Java is a lot more than a programming language, it also implies a larger ecosystem including the Java Virtual Machine (JVM). Java, the programming language, is just one of the many languages that can be compiled to run on the JVM. Some of the most popular JVM languages, other than Java, are Clojure, Groovy, Scala, Kotlin, JRuby, and Jython (see this link for a list of more JVM languages).

Did you know that you can compile and subsequently run all these languages on AWS Lambda?

AWS Lambda supports the Java 8 runtime, but this does not mean you are limited to the Java language. The Java 8 runtime is capable of running JVM languages such as Kotlin and Groovy once they have been compiled and packaged as a “fat” JAR (a JAR file containing all necessary dependencies and classes bundled in).

In this blog post we’ll work through building AWS Lambda functions in both Kotlin and Groovy programming languages. To compile and package our projects we will use Gradle build tool.

To follow along, please clone the Git repository available at GitHub here. Also, I recommend using an Integrated Development Environment (IDE) such as JetBrain’s IntelliJ IDEA, this is the IDE I used while working on these projects.

Kotlin

Kotlin is a statically-typed JVM language designed and developed by JetBrains (one of our Amazon Partner Network Technology partners) and the open source community. Compared to Java the programming language, Kotlin has additional powerful language features such as: Data Classes, Default Arguments, Extensions, Elvis Operator, and Destructuring Declarations. This is a just a short list of Kotlin’s powerful language features. For a more thorough list of features, and how to use them, refer to the full documentation of the Kotlin language.

Let’s jump right into the code and see what an AWS Lambda function looks like in Kotlin.

package com.aws.blog.jvmlangs.kotlin

import java.io.*
import com.fasterxml.jackson.module.kotlin.*

data class HandlerInput(val who: String)
data class HandlerOutput(val message: String)

class Main {
    val mapper = jacksonObjectMapper()

    fun handler(input: InputStream, output: OutputStream): Unit {
        val inputObj = mapper.readValue<HandlerInput>(input)
        mapper.writeValue(output, HandlerOutput("Hello ${inputObj.who}"))
    }
}

The above example is a very simple Hello World application that accepts as an input a JSON object containing a key called “who” and returns a JSON object containing a key called “message” with a value of “Hello {who}”.

AWS Lambda does not support serializing JSON objects into Kotlin data classes, but don’t worry! AWS Lambda supports passing an input object as a Stream, and also supports an output Stream for returning a result (see this link for more information). Combined with the Input/Output Stream form of the handler function, we are using the Jackson library with a Kotlin extension function to support serialization and deserialization of Kotlin data class types.

To get started with this example, let’s first compile and package the Kotlin project.

git clone https://github.com/awslabs/lambda-kotlin-groovy-example
cd lambda-kotlin-groovy-example/kotlin
./gradlew shadowJar

Once packaged, a JAR file containing all necessary dependencies will be available at “build/libs/ jvmlangs-kotlin-1.0-SNAPSHOT-all.jar”. Now let’s deploy this package to AWS Lambda.

To deploy the lambda function, we will be using the AWS Command Line Interface (CLI). You can find information on how to set up the AWS CLI here. This tool allows you to set up and manage AWS services via the command line.

aws lambda create-function --region us-east-1 --function-name kotlin-hello \
--zip-file fileb://build/libs/jvmlangs-kotlin-1.0-SNAPSHOT-all.jar \
--role arn:aws:iam::<account_id>:role/lambda_basic_execution \
--handler com.aws.blog.jvmlangs.kotlin.Main::handler --runtime java8 \
--timeout 15 --memory-size 128

Once deployed, we can test the function by invoking the lambda function from the CLI.

aws lambda invoke --function-name kotlin-hello --payload '{"who": "AWS Fan"}' output.txt
cat output.txt

If successful, you’ll see an output of “{"message":"Hello AWS Fan"}”.

Groovy

Groovy is an optionally typed JVM language with both dynamic and static typing capabilities. Groovy is currently being supported by the Apache Software Foundation. Like Kotlin, Groovy also packs a lot of powerful features such as: Closures, Dynamic Typing, Collection Literals, String Interpolation, and Elvis Operator. This is just a short list, see the full documentation for a list of features and how to use them.

Once again, let’s jump right into the code.

package com.aws.blog.jvmlangs.groovy

class HandlerInput {
    String who
}
class HandlerOutput {
    String message
}

class Main {
    def handler(HandlerInput input) {
        return new HandlerOutput(message: "Hello ${input.who}")
    }
}

Just like the Kotlin example, we have defined a function that takes a simple JSON object containing a “who” key value and build a response containing a “message” key. Note that in this case we are not using the Input/Output Stream form of the handler function, but rather we are letting AWS Lambda serialize the input JSON object into the type HandlerInput. To accomplish this, AWS Lambda uses the Jackson library and handles the serialization for us.

Let’s go ahead and compile and package this Groovy example.

git clone https://github.com/awslabs/lambda-kotlin-groovy-example
cd lambda-kotlin-groovy-example/groovy
./gradlew shadowJar

Once packaged, a JAR file containing all necessary dependencies will be available at “build/libs/ jvmlangs-groovy-1.0-SNAPSHOT-all.jar”. Now let’s deploy this package to AWS Lambda.

aws lambda create-function --region us-east-1 --function-name groovy-hello \
--zip-file fileb://build/libs/jvmlangs-groovy-1.0-SNAPSHOT-all.jar \
--role arn:aws:iam::<account_id>:role/lambda_basic_execution \
--handler com.aws.blog.jvmlangs.groovy.Main::handler --runtime java8 \
--timeout 15 --memory-size 128

Once deployed, we can test the function by invoking the lambda function from the CLI.

aws lambda invoke --function-name groovy-hello --payload '{"who": "AWS Fan"}' output.txt
cat output.txt

If successful, you’ll see an output of “{"message":"Hello AWS Fan"}”.

Gradle Build Tool

Finally, let’s touch up on how we built the JAR package from the Kotlin and Groovy sources above. To build the JARs we used the Gradle build tool. Gradle builds a project by reading instructions from a file called “build.gradle”. This is a file written in Gradle’s Groovy Domain Specific Langauge (DSL). You can find more information on the gradle build file by looking at their documentation. Let’s take a look at the Gradle build files we used for this post.

For the Kotlin example, this is the build file we used.

buildscript {
    repositories {
        mavenCentral()
        jcenter()
    }
    dependencies {
        classpath "org.jetbrains.kotlin:kotlin-gradle-plugin:$kotlin_version"
        classpath "com.github.jengelman.gradle.plugins:shadow:1.2.3"
    }
}

group 'com.aws.blog.jvmlangs.kotlin'
version '1.0-SNAPSHOT'

apply plugin: 'kotlin'
apply plugin: 'com.github.johnrengelman.shadow'

repositories {
    mavenCentral()
}

dependencies {
    compile "org.jetbrains.kotlin:kotlin-stdlib:$kotlin_version"
    compile "com.fasterxml.jackson.module:jackson-module-kotlin:2.8.2"
}

For the Groovy example this is the build file we used.

buildscript {
    repositories {
        jcenter()
    }
    dependencies {
        classpath 'com.github.jengelman.gradle.plugins:shadow:1.2.3'
    }
}

group 'com.aws.blog.jvmlangs.groovy'
version '1.0-SNAPSHOT'

apply plugin: 'groovy'
apply plugin: 'com.github.johnrengelman.shadow'

repositories {
    mavenCentral()
}

dependencies {
    compile 'org.codehaus.groovy:groovy-all:2.3.11'
    testCompile group: 'junit', name: 'junit', version: '4.11'
}

As you can see, the build files for both Kotlin and Groovy files are very similar. For the Kotlin project we define a dependency on the Jackson Kotlin module. Also, for each respective language we include the language supporting libraries (kotlin-stdlib and groovy-all respectively).

In addition, you will notice that we are using a plugin called “shadow”. We use this plugin to package all the project dependencies into one JAR by using the Gradle task “shadowJar”. You can find more information on Shadow in their documentation.

Final Words

Don’t stop here though! Take a look at other JVM languages and get them running on AWS Lambda with the Java 8 runtime. Maybe start with Clojure? or Scala?

Also take a look AWS Lambda Java libraries provided by AWS. They provide interfaces and models to make handling events from event sources easier to handle.

A Raspbian desktop update with some new programming tools

Post Syndicated from Simon Long original https://www.raspberrypi.org/blog/a-raspbian-desktop-update-with-some-new-programming-tools/

Today we’ve released another update to the Raspbian desktop. In addition to the usual small tweaks and bug fixes, the big new changes are the inclusion of an offline version of Scratch 2.0, and of Thonny (a user-friendly IDE for Python which is excellent for beginners). We’ll look at all the changes in this post, but let’s start with the biggest…

Scratch 2.0 for Raspbian

Scratch is one of the most popular pieces of software on Raspberry Pi. This is largely due to the way it makes programming accessible – while it is simple to learn, it covers many of the concepts that are used in more advanced languages. Scratch really does provide a great introduction to programming for all ages.

Raspbian ships with the original version of Scratch, which is now at version 1.4. A few years ago, though, the Scratch team at the MIT Media Lab introduced the new and improved Scratch version 2.0, and ever since we’ve had numerous requests to offer it on the Pi.

There was, however, a problem with this. The original version of Scratch was written in a language called Squeak, which could run on the Pi in a Squeak interpreter. Scratch 2.0, however, was written in Flash, and was designed to run from a remote site in a web browser. While this made Scratch 2.0 a cross-platform application, which you could run without installing any Scratch software, it also meant that you had to be able to run Flash on your computer, and that you needed to be connected to the internet to program in Scratch.

We worked with Adobe to include the Pepper Flash plugin in Raspbian, which enables Flash sites to run in the Chromium browser. This addressed the first of these problems, so the Scratch 2.0 website has been available on Pi for a while. However, it still needed an internet connection to run, which wasn’t ideal in many circumstances. We’ve been working with the Scratch team to get an offline version of Scratch 2.0 running on Pi.

Screenshot of Scratch on Raspbian

The Scratch team had created a website to enable developers to create hardware and software extensions for Scratch 2.0; this provided a version of the Flash code for the Scratch editor which could be modified to run locally rather than over the internet. We combined this with a program called Electron, which effectively wraps up a local web page into a standalone application. We ended up with the Scratch 2.0 application that you can find in the Programming section of the main menu.

Physical computing with Scratch 2.0

We didn’t stop there though. We know that people want to use Scratch for physical computing, and it has always been a bit awkward to access GPIO pins from Scratch. In our Scratch 2.0 application, therefore, there is a custom extension which allows the user to control the Pi’s GPIO pins without difficulty. Simply click on ‘More Blocks’, choose ‘Add an Extension’, and select ‘Pi GPIO’. This loads two new blocks, one to read and one to write the state of a GPIO pin.

Screenshot of new Raspbian iteration of Scratch 2, featuring GPIO pin control blocks.

The Scratch team kindly allowed us to include all the sprites, backdrops, and sounds from the online version of Scratch 2.0. You can also use the Raspberry Pi Camera Module to create new sprites and backgrounds.

This first release works well, although it can be slow for some operations; this is largely unavoidable for Flash code running under Electron. Bear in mind that you will need to have the Pepper Flash plugin installed (which it is by default on standard Raspbian images). As Pepper Flash is only compatible with the processor in the Pi 2.0 and Pi 3, it is unfortunately not possible to run Scratch 2.0 on the Pi Zero or the original models of the Pi.

We hope that this makes Scratch 2.0 a more practical proposition for many users than it has been to date. Do let us know if you hit any problems, though!

Thonny: a more user-friendly IDE for Python

One of the paths from Scratch to ‘real’ programming is through Python. We know that the transition can be awkward, and this isn’t helped by the tools available for learning Python. It’s fair to say that IDLE, the Python IDE, isn’t the most popular piece of software ever written…

Earlier this year, we reviewed every Python IDE that we could find that would run on a Raspberry Pi, in an attempt to see if there was something better out there than IDLE. We wanted to find something that was easier for beginners to use but still useful for experienced Python programmers. We found one program, Thonny, which stood head and shoulders above all the rest. It’s a really user-friendly IDE, which still offers useful professional features like single-stepping of code and inspection of variables.

Screenshot of Thonny IDE in Raspbian

Thonny was created at the University of Tartu in Estonia; we’ve been working with Aivar Annamaa, the lead developer, on getting it into Raspbian. The original version of Thonny works well on the Pi, but because the GUI is written using Python’s default GUI toolkit, Tkinter, the appearance clashes with the rest of the Raspbian desktop, most of which is written using the GTK toolkit. We made some changes to bring things like fonts and graphics into line with the appearance of our other apps, and Aivar very kindly took that work and converted it into a theme package that could be applied to Thonny.

Due to the limitations of working within Tkinter, the result isn’t exactly like a native GTK application, but it’s pretty close. It’s probably good enough for anyone who isn’t a picky UI obsessive like me, anyway! Have a look at the Thonny webpage to see some more details of all the cool features it offers. We hope that having a more usable environment will help to ease the transition from graphical languages like Scratch into ‘proper’ languages like Python.

New icons

Other than these two new packages, this release is mostly bug fixes and small version bumps. One thing you might notice, though, is that we’ve made some tweaks to our custom icon set. We wondered if the icons might look better with slightly thinner outlines. We tried it, and they did: we hope you prefer them too.

Downloading the new image

You can either download a new image from the Downloads page, or you can use apt to update:

sudo apt-get update
sudo apt-get dist-upgrade

To install Scratch 2.0:

sudo apt-get install scratch2

To install Thonny:

sudo apt-get install python3-thonny

One more thing…

Before Christmas, we released an experimental version of the desktop running on Debian for x86-based computers. We were slightly taken aback by how popular it turned out to be! This made us realise that this was something we were going to need to support going forward. We’ve decided we’re going to try to make all new desktop releases for both Pi and x86 from now on.

The version of this we released last year was a live image that could run from a USB stick. Many people asked if we could make it permanently installable, so this version includes an installer. This uses the standard Debian install process, so it ought to work on most machines. I should stress, though, that we haven’t been able to test on every type of hardware, so there may be issues on some computers. Please be sure to back up your hard drive before installing it. Unlike the live image, this will erase and reformat your hard drive, and you will lose anything that is already on it!

You can still boot the image as a live image if you don’t want to install it, and it will create a persistence partition on the USB stick so you can save data. Just select ‘Run with persistence’ from the boot menu. To install, choose either ‘Install’ or ‘Graphical install’ from the same menu. The Debian installer will then walk you through the install process.

You can download the latest x86 image (which includes both Scratch 2.0 and Thonny) from here or here for a torrent file.

One final thing

This version of the desktop is based on Debian Jessie. Some of you will be aware that a new stable version of Debian (called Stretch) was released last week. Rest assured – we have been working on porting everything across to Stretch for some time now, and we will have a Stretch release ready some time over the summer.

The post A Raspbian desktop update with some new programming tools appeared first on Raspberry Pi.

AWS Bill Simplification – Consolidated CloudWatch Charges

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/aws-bill-simplification-consolidated-cloudwatch-charges/

The bill that you receive for your use of AWS in July will include a change in the way that Amazon CloudWatch charges are presented. The CloudWatch team made this change in order to make your bill simpler and easier to understand.

Consolidating Charges
In the past, charges for your usage of CloudWatch were split between two sections of your bill. For historical reasons, the charges for CloudWatch Alarms, CloudWatch Metrics, and calls to the CloudWatch API were reported in the Elastic Compute Cloud (EC2) detail section, while charges for CloudWatch Logs and CloudWatch Dashboards were reported in the CloudWatch detail section, like this:

We have received feedback that splitting the charges across two sections of the bill made it difficult to locate and understand the entire set of monitoring charges. In order to address this issue, we are moving the charges that were formerly listed in the Elastic Compute Cloud (EC2) detail section to the CloudWatch detail section. We are making the same change to the detailed billing report, moving the affected charges from the AmazonEC2 product code to the AmazonCloudWatch product code and changing to the AmazonCloudWatch product name. This change does not affect your overall bill; it simply consolidates all of the charges for the use of CloudWatch in one section.

Billing Metric
The CloudWatch billing metric named Estimated Charges can be viewed as a Total Estimated Charge, or broken down By Service:

The total will not change. However, as noted above, the charges that formerly had AmazonEC2 as the ServiceName dimension will now have it set to AmazonCloudWatch:

You may need to adjust thresholds on your billing alarms as a result:

Once again, your total AWS bill will not change. You will begin to see the consolidated charges for CloudWatch in your AWS bill for July 2017.

Jeff;

 

From Idea to Launch: Getting Your First Customers

Post Syndicated from Gleb Budman original https://www.backblaze.com/blog/how-to-get-your-first-customers/

line outside of Apple

After deciding to build an unlimited backup service and developing our own storage platform, the next step was to get customers and feedback. Not all customers are created equal. Let’s talk about the types, and when and how to attract them.

How to Get Your First Customers

First Step – Don’t Launch Publicly
Launch when you’re ready for the judgments of people who don’t know you at all. Until then, don’t launch. Sign up users and customers either that you know, those you can trust to cut you some slack (while providing you feedback), or at minimum those for whom you can set expectations. For months the Backblaze website was a single page with no ability to get the product and minimal info on what it would be. This is not to counter the Lean Startup ‘iterate quickly with customer feedback’ advice. Rather, this is an acknowledgement that there are different types of feedback required based on your development stage.

Sign Up Your Friends
We knew all of our first customers; they were friends, family, and previous co-workers. Many knew what we were up to and were excited to help us. No magic marketing or tech savviness was required to reach them – we just asked that they try the service. We asked them to provide us feedback on their experience and collected it through email and conversations. While the feedback wasn’t unbiased, it was nonetheless wide-ranging, real, and often insightful. These people were willing to spend time carefully thinking about their feedback and delving deeper into the conversations.

Broaden to Beta
Unless you’re famous or your service costs $1 million per customer, you’ll probably need to expand quickly beyond your friends to build a business – and to get broader feedback. Our next step was to broaden the customer base to beta users.

Opening up the service in beta provides three benefits:

  1. Air cover for the early warts. There are going to be issues, bugs, unnecessarily complicated user flows, and poorly worded text. Beta tells people, “We don’t consider the product ‘done’ and you should expect some of these issues. Please be patient with us.”
  2. A request for feedback. Some people always provide feedback, but beta communicates that you want it.
  3. An awareness opportunity. Opening up in beta provides an early (but not only) opportunity to have an announcement and build awareness.

Pitching Beta to Press
Not all press cares about, or is even willing to cover, beta products. Much of the mainstream press wants to write about services that are fully live, have scale, and are important in the marketplace. However, there are a number of sites that like to cover the leading edge – and that means covering betas. Techcrunch, Ars Technica, and SimpleHelp covered our initial private beta launch. I’ll go into the details of how to work with the press to cover your announcements in a post next month.

Private vs. Public Beta
Both private and public beta provide all three of the benefits above. The difference between the two is that private betas are much more controlled, whereas public ones bring in more users. But this isn’t an either/or – I recommend doing both.

Private Beta
For our original beta in 2008, we decided that we were comfortable with about 1,000 users subscribing to our service. That would provide us with a healthy amount of feedback and get some early adoption, while not overwhelming us or our server capacity, and equally important not causing cash flow issues from having to buy more equipment. So we decided to limit the sign-up to only the first 1,000 people who signed up; then we would shut off sign-ups for a while.

But how do you even get 1,000 people to sign up for your service? In our case, get some major publications to write about our beta. (Note: In a future post I’ll explain exactly how to find and reach out to writers. Sign up to receive all of the entrepreneurial posts in this series.)

Public Beta
For our original service (computer backup), we did not have a public beta; but when we launched Backblaze B2, we had a private and then a public beta. The private beta allowed us to work out early kinks, while the public beta brought us a more varied set of use cases. In public beta, there is no cap on the number of users that may try the service.

While this is a first-class problem to have, if your service is flooded and stops working, it’s still a problem. Think through what you will do if that happens. In our early days, when our system could get overwhelmed by volume, we had a static web page hosted with a different registrar that wouldn’t let customers sign up but would tell them when our service would be open again. When we reached a critical volume level we would redirect to it in order to at least provide status for when we could accept more customers.

Collect Feedback
Since one of the goals of betas is to get feedback, we made sure that we had our email addresses clearly presented on the site so users could send us thoughts. We were most interested in broad qualitative feedback on users’ experience, so all emails went to an internal mailing list that would be read by everyone at Backblaze.

For our B2 public and private betas, we also added an optional short survey to the sign-up process. In order to be considered for the private beta you had to fill the survey out, though we found that 80% of users continued to fill out the survey even when it was not required. This survey had both closed-end questions (“how much data do you have”) and open-ended ones (“what do you want to use cloud storage for?”).

BTW, despite us getting a lot of feedback now via our support team, Twitter, and marketing surveys, we are always open to more – you can email me directly at gleb.budman {at} backblaze.com.

Don’t Throw Away Users
Initially our backup service was available only on Windows, but we had an email sign-up list for people who wanted it for their Mac. This provided us with a sense of market demand and a ready list of folks who could be beta users and early adopters when we had a Mac version. Have a service targeted at doctors but lawyers are expressing interest? Capture that.

Product Launch

When
The first question is “when” to launch. Presuming your service is in ‘public beta’, what is the advantage of moving out of beta and into a “version 1.0”, “gold”, or “public availability”? That depends on your service and customer base. Some services fly through public beta. Gmail, on the other hand, was (in)famous for being in beta for 5 years, despite having over 100 million users.

The term beta says to users, “give us some leeway, but feel free to use the service”. That’s fine for many consumer apps and will have near zero impact on them. However, services aimed at businesses and government will often not be adopted with a beta label as the enterprise customers want to know the company feels the service is ‘ready’. While Backblaze started out as a purely consumer service, because it was a data backup service, it was important for customers to trust that the service was ready.

No product is bug-free. But from a product readiness perspective, the nomenclature should also be a reflection of the quality of the product. You can launch a product with one feature that works well out of beta. But a product with fifty features on which half the users will bump into problems should likely stay in beta. The customer feedback, surveys, and your own internal testing should guide you in determining this quality during the beta. Be careful about “we’ve only seen that one time” or “I haven’t been able to reproduce that on my machine”; those issues are likely to scale with customers when you launch.

How
Launching out of beta can be as simple as removing the beta label from the website/product. However, this can be a great time to reach out to press, write a blog post, and send an email announcement to your customers.

Consider thanking your beta testers somehow; can they get some feature turned out for free, an extension of their trial, or premium support? If nothing else, remember to thank them for their feedback. Users that signed up during your beta are likely the ones who will propel your service. They had the need and interest to both be early adopters and deal with bugs. They are likely the key to getting 1,000 true fans.

The Beginning
The title of this post was “Getting your first customers”, because getting to launch may feel like the peak of your journey when you’re pre-launch, but it really is just the beginning. It’s a step along the journey of building your business. If your launch is wildly successful, enjoy it, work to build on the momentum, but don’t lose track of building your business. If your launch is a dud, go out for a coffee with your team, say “well that sucks”, and then get back to building your business. You can learn a tremendous amount from your early customers, and they can become your biggest fans, but the success of your business will depend on what you continue to do the months and years after your launch.

The post From Idea to Launch: Getting Your First Customers appeared first on Backblaze Blog | Cloud Storage & Cloud Backup.

How to Create an AMI Builder with AWS CodeBuild and HashiCorp Packer – Part 2

Post Syndicated from Heitor Lessa original https://aws.amazon.com/blogs/devops/how-to-create-an-ami-builder-with-aws-codebuild-and-hashicorp-packer-part-2/

Written by AWS Solutions Architects Jason Barto and Heitor Lessa

 
In Part 1 of this post, we described how AWS CodeBuild, AWS CodeCommit, and HashiCorp Packer can be used to build an Amazon Machine Image (AMI) from the latest version of Amazon Linux. In this post, we show how to use AWS CodePipeline, AWS CloudFormation, and Amazon CloudWatch Events to continuously ship new AMIs. We use Ansible by Red Hat to harden the OS on the AMIs through a well-known set of security controls outlined by the Center for Internet Security in its CIS Amazon Linux Benchmark.

You’ll find the source code for this post in our GitHub repo.

At the end of this post, we will have the following architecture:

Requirements

 
To follow along, you will need Git and a text editor. Make sure Git is configured to work with AWS CodeCommit, as described in Part 1.

Technologies

 
In addition to the services and products used in Part 1 of this post, we also use these AWS services and third-party software:

AWS CloudFormation gives developers and systems administrators an easy way to create and manage a collection of related AWS resources, provisioning and updating them in an orderly and predictable fashion.

Amazon CloudWatch Events enables you to react selectively to events in the cloud and in your applications. Specifically, you can create CloudWatch Events rules that match event patterns, and take actions in response to those patterns.

AWS CodePipeline is a continuous integration and continuous delivery service for fast and reliable application and infrastructure updates. AWS CodePipeline builds, tests, and deploys your code every time there is a code change, based on release process models you define.

Amazon SNS is a fast, flexible, fully managed push notification service that lets you send individual messages or to fan out messages to large numbers of recipients. Amazon SNS makes it simple and cost-effective to send push notifications to mobile device users or email recipients. The service can even send messages to other distributed services.

Ansible is a simple IT automation system that handles configuration management, application deployment, cloud provisioning, ad-hoc task-execution, and multinode orchestration.

Getting Started

 
We use CloudFormation to bootstrap the following infrastructure:

Component Purpose
AWS CodeCommit repository Git repository where the AMI builder code is stored.
S3 bucket Build artifact repository used by AWS CodePipeline and AWS CodeBuild.
AWS CodeBuild project Executes the AWS CodeBuild instructions contained in the build specification file.
AWS CodePipeline pipeline Orchestrates the AMI build process, triggered by new changes in the AWS CodeCommit repository.
SNS topic Notifies subscribed email addresses when an AMI build is complete.
CloudWatch Events rule Defines how the AMI builder should send a custom event to notify an SNS topic.
Region AMI Builder Launch Template
N. Virginia (us-east-1)
Ireland (eu-west-1)

After launching the CloudFormation template linked here, we will have a pipeline in the AWS CodePipeline console. (Failed at this stage simply means we don’t have any data in our newly created AWS CodeCommit Git repository.)

Next, we will clone the newly created AWS CodeCommit repository.

If this is your first time connecting to a AWS CodeCommit repository, please see instructions in our documentation on Setup steps for HTTPS Connections to AWS CodeCommit Repositories.

To clone the AWS CodeCommit repository (console)

  1. From the AWS Management Console, open the AWS CloudFormation console.
  2. Choose the AMI-Builder-Blogpost stack, and then choose Output.
  3. Make a note of the Git repository URL.
  4. Use git to clone the repository.

For example: git clone https://git-codecommit.eu-west-1.amazonaws.com/v1/repos/AMI-Builder_repo

To clone the AWS CodeCommit repository (CLI)

# Retrieve CodeCommit repo URL
git_repo=$(aws cloudformation describe-stacks --query 'Stacks[0].Outputs[?OutputKey==`GitRepository`].OutputValue' --output text --stack-name "AMI-Builder-Blogpost")

# Clone repository locally
git clone ${git_repo}

Bootstrap the Repo with the AMI Builder Structure

 
Now that our infrastructure is ready, download all the files and templates required to build the AMI.

Your local Git repo should have the following structure:

.
├── ami_builder_event.json
├── ansible
├── buildspec.yml
├── cloudformation
├── packer_cis.json

Next, push these changes to AWS CodeCommit, and then let AWS CodePipeline orchestrate the creation of the AMI:

git add .
git commit -m "My first AMI"
git push origin master

AWS CodeBuild Implementation Details

 
While we wait for the AMI to be created, let’s see what’s changed in our AWS CodeBuild buildspec.yml file:

...
phases:
  ...
  build:
    commands:
      ...
      - ./packer build -color=false packer_cis.json | tee build.log
  post_build:
    commands:
      - egrep "${AWS_REGION}\:\sami\-" build.log | cut -d' ' -f2 > ami_id.txt
      # Packer doesn't return non-zero status; we must do that if Packer build failed
      - test -s ami_id.txt || exit 1
      - sed -i.bak "s/<<AMI-ID>>/$(cat ami_id.txt)/g" ami_builder_event.json
      - aws events put-events --entries file://ami_builder_event.json
      ...
artifacts:
  files:
    - ami_builder_event.json
    - build.log
  discard-paths: yes

In the build phase, we capture Packer output into a file named build.log. In the post_build phase, we take the following actions:

  1. Look up the AMI ID created by Packer and save its findings to a temporary file (ami_id.txt).
  2. Forcefully make AWS CodeBuild to fail if the AMI ID (ami_id.txt) is not found. This is required because Packer doesn’t fail if something goes wrong during the AMI creation process. We have to tell AWS CodeBuild to stop by informing it that an error occurred.
  3. If an AMI ID is found, we update the ami_builder_event.json file and then notify CloudWatch Events that the AMI creation process is complete.
  4. CloudWatch Events publishes a message to an SNS topic. Anyone subscribed to the topic will be notified in email that an AMI has been created.

Lastly, the new artifacts phase instructs AWS CodeBuild to upload files built during the build process (ami_builder_event.json and build.log) to the S3 bucket specified in the Outputs section of the CloudFormation template. These artifacts can then be used as an input artifact in any later stage in AWS CodePipeline.

For information about customizing the artifacts sequence of the buildspec.yml, see the Build Specification Reference for AWS CodeBuild.

CloudWatch Events Implementation Details

 
CloudWatch Events allow you to extend the AMI builder to not only send email after the AMI has been created, but to hook up any of the supported targets to react to the AMI builder event. This event publication means you can decouple from Packer actions you might take after AMI completion and plug in other actions, as you see fit.

For more information about targets in CloudWatch Events, see the CloudWatch Events API Reference.

In this case, CloudWatch Events should receive the following event, match it with a rule we created through CloudFormation, and publish a message to SNS so that you can receive an email.

Example CloudWatch custom event

[
        {
            "Source": "com.ami.builder",
            "DetailType": "AmiBuilder",
            "Detail": "{ \"AmiStatus\": \"Created\"}",
            "Resources": [ "ami-12cd5guf" ]
        }
]

Cloudwatch Events rule

{
  "detail-type": [
    "AmiBuilder"
  ],
  "source": [
    "com.ami.builder"
  ],
  "detail": {
    "AmiStatus": [
      "Created"
    ]
  }
}

Example SNS message sent in email

{
    "version": "0",
    "id": "f8bdede0-b9d7...",
    "detail-type": "AmiBuilder",
    "source": "com.ami.builder",
    "account": "<<aws_account_number>>",
    "time": "2017-04-28T17:56:40Z",
    "region": "eu-west-1",
    "resources": ["ami-112cd5guf "],
    "detail": {
        "AmiStatus": "Created"
    }
}

Packer Implementation Details

 
In addition to the build specification file, there are differences between the current version of the HashiCorp Packer template (packer_cis.json) and the one used in Part 1.

Variables

  "variables": {
    "vpc": "{{env `BUILD_VPC_ID`}}",
    "subnet": "{{env `BUILD_SUBNET_ID`}}",
         “ami_name”: “Prod-CIS-Latest-AMZN-{{isotime \”02-Jan-06 03_04_05\”}}”
  },
  • ami_name: Prefixes a name used by Packer to tag resources during the Builders sequence.
  • vpc and subnet: Environment variables defined by the CloudFormation stack parameters.

We no longer assume a default VPC is present and instead use the VPC and subnet specified in the CloudFormation parameters. CloudFormation configures the AWS CodeBuild project to use these values as environment variables. They are made available throughout the build process.

That allows for more flexibility should you need to change which VPC and subnet will be used by Packer to launch temporary resources.

Builders

  "builders": [{
    ...
    "ami_name": “{{user `ami_name`| clean_ami_name}}”,
    "tags": {
      "Name": “{{user `ami_name`}}”,
    },
    "run_tags": {
      "Name": “{{user `ami_name`}}",
    },
    "run_volume_tags": {
      "Name": “{{user `ami_name`}}",
    },
    "snapshot_tags": {
      "Name": “{{user `ami_name`}}",
    },
    ...
    "vpc_id": "{{user `vpc` }}",
    "subnet_id": "{{user `subnet` }}"
  }],

We now have new properties (*_tag) and a new function (clean_ami_name) and launch temporary resources in a VPC and subnet specified in the environment variables. AMI names can only contain a certain set of ASCII characters. If the input in project deviates from the expected characters (for example, includes whitespace or slashes), Packer’s clean_ami_name function will fix it.

For more information, see functions on the HashiCorp Packer website.

Provisioners

  "provisioners": [
    {
        "type": "shell",
        "inline": [
            "sudo pip install ansible"
        ]
    }, 
    {
        "type": "ansible-local",
        "playbook_file": "ansible/playbook.yaml",
        "role_paths": [
            "ansible/roles/common"
        ],
        "playbook_dir": "ansible",
        "galaxy_file": "ansible/requirements.yaml"
    },
    {
      "type": "shell",
      "inline": [
        "rm .ssh/authorized_keys ; sudo rm /root/.ssh/authorized_keys"
      ]
    }

We used shell provisioner to apply OS patches in Part 1. Now, we use shell to install Ansible on the target machine and ansible-local to import, install, and execute Ansible roles to make our target machine conform to our standards.

Packer uses shell to remove temporary keys before it creates an AMI from the target and temporary EC2 instance.

Ansible Implementation Details

 
Ansible provides OS patching through a custom Common role that can be easily customized for other tasks.

CIS Benchmark and Cloudwatch Logs are implemented through two Ansible third-party roles that are defined in ansible/requirements.yaml as seen in the Packer template.

The Ansible provisioner uses Ansible Galaxy to download these roles onto the target machine and execute them as instructed by ansible/playbook.yaml.

For information about how these components are organized, see the Playbook Roles and Include Statements in the Ansible documentation.

The following Ansible playbook (ansible</playbook.yaml) controls the execution order and custom properties:

---
- hosts: localhost
  connection: local
  gather_facts: true    # gather OS info that is made available for tasks/roles
  become: yes           # majority of CIS tasks require root
  vars:
    # CIS Controls whitepaper:  http://bit.ly/2mGAmUc
    # AWS CIS Whitepaper:       http://bit.ly/2m2Ovrh
    cis_level_1_exclusions:
    # 3.4.2 and 3.4.3 effectively blocks access to all ports to the machine
    ## This can break automation; ignoring it as there are stronger mechanisms than that
      - 3.4.2 
      - 3.4.3
    # CloudWatch Logs will be used instead of Rsyslog/Syslog-ng
    ## Same would be true if any other software doesn't support Rsyslog/Syslog-ng mechanisms
      - 4.2.1.4
      - 4.2.2.4
      - 4.2.2.5
    # Autofs is not installed in newer versions, let's ignore
      - 1.1.19
    # Cloudwatch Logs role configuration
    logs:
      - file: /var/log/messages
        group_name: "system_logs"
  roles:
    - common
    - anthcourtney.cis-amazon-linux
    - dharrisio.aws-cloudwatch-logs-agent

Both third-party Ansible roles can be easily configured through variables (vars). We use Ansible playbook variables to exclude CIS controls that don’t apply to our case and to instruct the CloudWatch Logs agent to stream the /var/log/messages log file to CloudWatch Logs.

If you need to add more OS or application logs, you can easily duplicate the playbook and make changes. The CloudWatch Logs agent will ship configured log messages to CloudWatch Logs.

For more information about parameters you can use to further customize third-party roles, download Ansible roles for the Cloudwatch Logs Agent and CIS Amazon Linux from the Galaxy website.

Committing Changes

 
Now that Ansible and CloudWatch Events are configured as a part of the build process, commiting any changes to the AWS CodeComit Git Repository will triger a new AMI build process that can be followed through the AWS CodePipeline console.

When the build is complete, an email will be sent to the email address you provided as a part of the CloudFormation stack deployment. The email serves as notification that an AMI has been built and is ready for use.

Summary

 
We used AWS CodeCommit, AWS CodePipeline, AWS CodeBuild, Packer, and Ansible to build a pipeline that continuously builds new, hardened CIS AMIs. We used Amazon SNS so that email addresses subscribed to a SNS topic are notified upon completion of the AMI build.

By treating our AMI creation process as code, we can iterate and track changes over time. In this way, it’s no different from a software development workflow. With that in mind, software patches, OS configuration, and logs that need to be shipped to a central location are only a git commit away.

Next Steps

 
Here are some ideas to extend this AMI builder:

  • Hook up a Lambda function in Cloudwatch Events to update EC2 Auto Scaling configuration upon completion of the AMI build.
  • Use AWS CodePipeline parallel steps to build multiple Packer images.
  • Add a commit ID as a tag for the AMI you created.
  • Create a scheduled Lambda function through Cloudwatch Events to clean up old AMIs based on timestamp (name or additional tag).
  • Implement Windows support for the AMI builder.
  • Create a cross-account or cross-region AMI build.

Cloudwatch Events allow the AMI builder to decouple AMI configuration and creation so that you can easily add your own logic using targets (AWS Lambda, Amazon SQS, Amazon SNS) to add events or recycle EC2 instances with the new AMI.

If you have questions or other feedback, feel free to leave it in the comments or contribute to the AMI Builder repo on GitHub.

Court Grants Subpoenas to Unmask ‘TVAddons’ and ‘ZemTV’ Operators

Post Syndicated from Ernesto original https://torrentfreak.com/court-grants-subpoenas-to-unmask-tvaddons-and-zemtv-operators-170621/

Earlier this month we broke the news that third-party Kodi add-on ZemTV and the TVAddons library were being sued in a federal court in Texas.

In a complaint filed by American satellite and broadcast provider Dish Network, both stand accused of copyright infringement, facing up to $150,000 for each offense.

While the allegations are serious, Dish doesn’t know the full identities of the defendants.

To find out more, the company requested a broad range of subpoenas from the court, targeting Amazon, Github, Google, Twitter, Facebook, PayPal, and several hosting providers.

From Dish’s request

This week the court granted the subpoenas, which means that they can be forwarded to the companies in question. Whether that will be enough to identify the people behind ‘TVAddons’ and ‘ZemTV’ remains to be seen, but Dish has cast its net wide.

For example, the subpoena directed at Google covers any type of information that can be used to identify the account holder of [email protected], which is believed to be tied to ZemTV.

The information requested from Google includes IP address logs with session date and timestamps, but also covers “all communications,” including GChat messages from 2014 onwards.

Similarly, Twitter is required to hand over information tied to the accounts of the users “TV Addons” and “shani_08_kodi” as well as other accounts linked to tvaddons.ag and streamingboxes.com. This also applies the various tweets that were sent through the account.

The subpoena specifically mentions “all communications, including ‘tweets’, Twitter sent to or received from each Twitter Account during the time period of February 1, 2014 to present.”

From the Twitter subpoena

Similar subpoenas were granted for the other services, tailored towards the information Dish hopes to find there. For example, the broadcast provider also requests details of each transaction from PayPal, as well as all debits and credits to the accounts.

In some parts, the subpoenas appear to be quite broad. PayPal is asked to reveal information on any account with the credit card statement “Shani,” for example. Similarly, Github is required to hand over information on accounts that are ‘associated’ with the tvaddons.ag domain, which is referenced by many people who are not directly connected to the site.

The service providers in question still have the option to challenge the subpoenas or ask the court for further clarification. A full overview of all the subpoena requests is available here (Exhibit 2 and onwards), including all the relevant details. This also includes several letters to foreign hosting providers.

While Dish still appears to be keen to find out who is behind ‘TVAddons’ and ‘ZemTV,’ not much has been heard from the defendants in question.

ZemTV developer “Shani” shut down his addon soon after the lawsuit was announced, without mentioning it specifically. TVAddons, meanwhile, has been offline for well over a week, without any notice in public about the reason for the prolonged downtime.

The court’s order granting the subpoenas and letters of request is available here (pdf).

Source: TF, for the latest info on copyright, file-sharing, torrent sites and ANONYMOUS VPN services.

Building Loosely Coupled, Scalable, C# Applications with Amazon SQS and Amazon SNS

Post Syndicated from Tara Van Unen original https://aws.amazon.com/blogs/compute/building-loosely-coupled-scalable-c-applications-with-amazon-sqs-and-amazon-sns/

 
Stephen Liedig, Solutions Architect

 

One of the many challenges professional software architects and developers face is how to make cloud-native applications scalable, fault-tolerant, and highly available.

Fundamental to your project success is understanding the importance of making systems highly cohesive and loosely coupled. That means considering the multi-dimensional facets of system coupling to support the distributed nature of the applications that you are building for the cloud.

By that, I mean addressing not only the application-level coupling (managing incoming and outgoing dependencies), but also considering the impacts of of platform, spatial, and temporal coupling of your systems. Platform coupling relates to the interoperability, or lack thereof, of heterogeneous systems components. Spatial coupling deals with managing components at a network topology level or protocol level. Temporal, or runtime coupling, refers to the ability of a component within your system to do any kind of meaningful work while it is performing a synchronous, blocking operation.

The AWS messaging services, Amazon SQS and Amazon SNS, help you deal with these forms of coupling by providing mechanisms for:

  • Reliable, durable, and fault-tolerant delivery of messages between application components
  • Logical decomposition of systems and increased autonomy of components
  • Creating unidirectional, non-blocking operations, temporarily decoupling system components at runtime
  • Decreasing the dependencies that components have on each other through standard communication and network channels

Following on the recent topic, Building Scalable Applications and Microservices: Adding Messaging to Your Toolbox, in this post, I look at some of the ways you can introduce SQS and SNS into your architectures to decouple your components, and show how you can implement them using C#.

Walkthrough

To illustrate some of these concepts, consider a web application that processes customer orders. As good architects and developers, you have followed best practices and made your application scalable and highly available. Your solution included implementing load balancing, dynamic scaling across multiple Availability Zones, and persisting orders in a Multi-AZ Amazon RDS database instance, as in the following diagram.


In this example, the application is responsible for handling and persisting the order data, as well as dealing with increases in traffic for popular items.

One potential point of vulnerability in the order processing workflow is in saving the order in the database. The business expects that every order has been persisted into the database. However, any potential deadlock, race condition, or network issue could cause the persistence of the order to fail. Then, the order is lost with no recourse to restore the order.

With good logging capability, you may be able to identify when an error occurred and which customer’s order failed. This wouldn’t allow you to “restore” the transaction, and by that stage, your customer is no longer your customer.

As illustrated in the following diagram, introducing an SQS queue helps improve your ordering application. Using the queue isolates the processing logic into its own component and runs it in a separate process from the web application. This, in turn, allows the system to be more resilient to spikes in traffic, while allowing work to be performed only as fast as necessary in order to manage costs.


In addition, you now have a mechanism for persisting orders as messages (with the queue acting as a temporary database), and have moved the scope of your transaction with your database further down the stack. In the event of an application exception or transaction failure, this ensures that the order processing can be retired or redirected to the Amazon SQS Dead Letter Queue (DLQ), for re-processing at a later stage. (See the recent post, Using Amazon SQS Dead-Letter Queues to Control Message Failure, for more information on dead-letter queues.)

Scaling the order processing nodes

This change allows you now to scale the web application frontend independently from the processing nodes. The frontend application can continue to scale based on metrics such as CPU usage, or the number of requests hitting the load balancer. Processing nodes can scale based on the number of orders in the queue. Here is an example of scale-in and scale-out alarms that you would associate with the scaling policy.

Scale-out Alarm

aws cloudwatch put-metric-alarm --alarm-name AddCapacityToCustomerOrderQueue --metric-name ApproximateNumberOfMessagesVisible --namespace "AWS/SQS" 
--statistic Average --period 300 --threshold 3 --comparison-operator GreaterThanOrEqualToThreshold --dimensions Name=QueueName,Value=customer-orders
--evaluation-periods 2 --alarm-actions <arn of the scale-out autoscaling policy>

Scale-in Alarm

aws cloudwatch put-metric-alarm --alarm-name RemoveCapacityFromCustomerOrderQueue --metric-name ApproximateNumberOfMessagesVisible --namespace "AWS/SQS" 
 --statistic Average --period 300 --threshold 1 --comparison-operator LessThanOrEqualToThreshold --dimensions Name=QueueName,Value=customer-orders
 --evaluation-periods 2 --alarm-actions <arn of the scale-in autoscaling policy>

In the above example, use the ApproximateNumberOfMessagesVisible metric to discover the queue length and drive the scaling policy of the Auto Scaling group. Another useful metric is ApproximateAgeOfOldestMessage, when applications have time-sensitive messages and developers need to ensure that messages are processed within a specific time period.

Scaling the order processing implementation

On top of scaling at an infrastructure level using Auto Scaling, make sure to take advantage of the processing power of your Amazon EC2 instances by using as many of the available threads as possible. There are several ways to implement this. In this post, we build a Windows service that uses the BackgroundWorker class to process the messages from the queue.

Here’s a closer look at the implementation. In the first section of the consuming application, use a loop to continually poll the queue for new messages, and construct a ReceiveMessageRequest variable.

public static void PollQueue()
{
    while (_running)
    {
        Task<ReceiveMessageResponse> receiveMessageResponse;

        // Pull messages off the queue
        using (var sqs = new AmazonSQSClient())
        {
            const int maxMessages = 10;  // 1-10

            //Receiving a message
            var receiveMessageRequest = new ReceiveMessageRequest
            {
                // Get URL from Configuration
                QueueUrl = _queueUrl, 
                // The maximum number of messages to return. 
                // Fewer messages might be returned. 
                MaxNumberOfMessages = maxMessages, 
                // A list of attributes that need to be returned with message.
                AttributeNames = new List<string> { "All" },
                // Enable long polling. 
                // Time to wait for message to arrive on queue.
                WaitTimeSeconds = 5 
            };

            receiveMessageResponse = sqs.ReceiveMessageAsync(receiveMessageRequest);
        }

The WaitTimeSeconds property of the ReceiveMessageRequest specifies the duration (in seconds) that the call waits for a message to arrive in the queue before returning a response to the calling application. There are a few benefits to using long polling:

  • It reduces the number of empty responses by allowing SQS to wait until a message is available in the queue before sending a response.
  • It eliminates false empty responses by querying all (rather than a limited number) of the servers.
  • It returns messages as soon any message becomes available.

For more information, see Amazon SQS Long Polling.

After you have returned messages from the queue, you can start to process them by looping through each message in the response and invoking a new BackgroundWorker thread.

// Process messages
if (receiveMessageResponse.Result.Messages != null)
{
    foreach (var message in receiveMessageResponse.Result.Messages)
    {
        Console.WriteLine("Received SQS message, starting worker thread");

        // Create background worker to process message
        BackgroundWorker worker = new BackgroundWorker();
        worker.DoWork += (obj, e) => ProcessMessage(message);
        worker.RunWorkerAsync();
    }
}
else
{
    Console.WriteLine("No messages on queue");
}

The event handler, ProcessMessage, is where you implement business logic for processing orders. It is important to have a good understanding of how long a typical transaction takes so you can set a message VisibilityTimeout that is long enough to complete your operation. If order processing takes longer than the specified timeout period, the message becomes visible on the queue. Other nodes may pick it and process the same order twice, leading to unintended consequences.

Handling Duplicate Messages

In order to manage duplicate messages, seek to make your processing application idempotent. In mathematics, idempotent describes a function that produces the same result if it is applied to itself:

f(x) = f(f(x))

No matter how many times you process the same message, the end result is the same (definition from Enterprise Integration Patterns: Designing, Building, and Deploying Messaging Solutions, Hohpe and Wolf, 2004).

There are several strategies you could apply to achieve this:

  • Create messages that have inherent idempotent characteristics. That is, they are non-transactional in nature and are unique at a specified point in time. Rather than saying “place new order for Customer A,” which adds a duplicate order to the customer, use “place order <orderid> on <timestamp> for Customer A,” which creates a single order no matter how often it is persisted.
  • Deliver your messages via an Amazon SQS FIFO queue, which provides the benefits of message sequencing, but also mechanisms for content-based deduplication. You can deduplicate using the MessageDeduplicationId property on the SendMessage request or by enabling content-based deduplication on the queue, which generates a hash for MessageDeduplicationId, based on the content of the message, not the attributes.
var sendMessageRequest = new SendMessageRequest
{
    QueueUrl = _queueUrl,
    MessageBody = JsonConvert.SerializeObject(order),
    MessageGroupId = Guid.NewGuid().ToString("N"),
    MessageDeduplicationId = Guid.NewGuid().ToString("N")
};
  • If using SQS FIFO queues is not an option, keep a message log of all messages attributes processed for a specified period of time, as an alternative to message deduplication on the receiving end. Verifying the existence of the message in the log before processing the message adds additional computational overhead to your processing. This can be minimized through low latency persistence solutions such as Amazon DynamoDB. Bear in mind that this solution is dependent on the successful, distributed transaction of the message and the message log.

Handling exceptions

Because of the distributed nature of SQS queues, it does not automatically delete the message. Therefore, you must explicitly delete the message from the queue after processing it, using the message ReceiptHandle property (see the following code example).

However, if at any stage you have an exception, avoid handling it as you normally would. The intention is to make sure that the message ends back on the queue, so that you can gracefully deal with intermittent failures. Instead, log the exception to capture diagnostic information, and swallow it.

By not explicitly deleting the message from the queue, you can take advantage of the VisibilityTimeout behavior described earlier. Gracefully handle the message processing failure and make the unprocessed message available to other nodes to process.

In the event that subsequent retries fail, SQS automatically moves the message to the configured DLQ after the configured number of receives has been reached. You can further investigate why the order process failed. Most importantly, the order has not been lost, and your customer is still your customer.

private static void ProcessMessage(Message message)
{
    using (var sqs = new AmazonSQSClient())
    {
        try
        {
            Console.WriteLine("Processing message id: {0}", message.MessageId);

            // Implement messaging processing here
            // Ensure no downstream resource contention (parallel processing)
            // <your order processing logic in here…>
            Console.WriteLine("{0} Thread {1}: {2}", DateTime.Now.ToString("s"), Thread.CurrentThread.ManagedThreadId, message.MessageId);
            
            // Delete the message off the queue. 
            // Receipt handle is the identifier you must provide 
            // when deleting the message.
            var deleteRequest = new DeleteMessageRequest(_queueName, message.ReceiptHandle);
            sqs.DeleteMessageAsync(deleteRequest);
            Console.WriteLine("Processed message id: {0}", message.MessageId);

        }
        catch (Exception ex)
        {
            // Do nothing.
            // Swallow exception, message will return to the queue when 
            // visibility timeout has been exceeded.
            Console.WriteLine("Could not process message due to error. Exception: {0}", ex.Message);
        }
    }
}

Using SQS to adapt to changing business requirements

One of the benefits of introducing a message queue is that you can accommodate new business requirements without dramatically affecting your application.

If, for example, the business decided that all orders placed over $5000 are to be handled as a priority, you could introduce a new “priority order” queue. The way the orders are processed does not change. The only significant change to the processing application is to ensure that messages from the “priority order” queue are processed before the “standard order” queue.

The following diagram shows how this logic could be isolated in an “order dispatcher,” whose only purpose is to route order messages to the appropriate queue based on whether the order exceeds $5000. Nothing on the web application or the processing nodes changes other than the target queue to which the order is sent. The rates at which orders are processed can be achieved by modifying the poll rates and scalability settings that I have already discussed.

Extending the design pattern with Amazon SNS

Amazon SNS supports reliable publish-subscribe (pub-sub) scenarios and push notifications to known endpoints across a wide variety of protocols. It eliminates the need to periodically check or poll for new information and updates. SNS supports:

  • Reliable storage of messages for immediate or delayed processing
  • Publish / subscribe – direct, broadcast, targeted “push” messaging
  • Multiple subscriber protocols
  • Amazon SQS, HTTP, HTTPS, email, SMS, mobile push, AWS Lambda

With these capabilities, you can provide parallel asynchronous processing of orders in the system and extend it to support any number of different business use cases without affecting the production environment. This is commonly referred to as a “fanout” scenario.

Rather than your web application pushing orders to a queue for processing, send a notification via SNS. The SNS messages are sent to a topic and then replicated and pushed to multiple SQS queues and Lambda functions for processing.

As the diagram above shows, you have the development team consuming “live” data as they work on the next version of the processing application, or potentially using the messages to troubleshoot issues in production.

Marketing is consuming all order information, via a Lambda function that has subscribed to the SNS topic, inserting the records into an Amazon Redshift warehouse for analysis.

All of this, of course, is happening without affecting your order processing application.

Summary

While I haven’t dived deep into the specifics of each service, I have discussed how these services can be applied at an architectural level to build loosely coupled systems that facilitate multiple business use cases. I’ve also shown you how to use infrastructure and application-level scaling techniques, so you can get the most out of your EC2 instances.

One of the many benefits of using these managed services is how quickly and easily you can implement powerful messaging capabilities in your systems, and lower the capital and operational costs of managing your own messaging middleware.

Using Amazon SQS and Amazon SNS together can provide you with a powerful mechanism for decoupling application components. This should be part of design considerations as you architect for the cloud.

For more information, see the Amazon SQS Developer Guide and Amazon SNS Developer Guide. You’ll find tutorials on all the concepts covered in this post, and more. To can get started using the AWS console or SDK of your choice visit:

Happy messaging!

US Embassy Threatens to Close Domain Registry Over ‘Pirate Bay’ Domain

Post Syndicated from Andy original https://torrentfreak.com/us-embassy-threatens-to-close-domain-registry-over-pirate-bay-domain-170620/

Domains have become an integral part of the piracy wars and no one knows this better than The Pirate Bay.

The site has burned through numerous domains over the years, with copyright holders and authorities successfully pressurizing registries to destabilize the site.

The latest news on this front comes from the Central American country of Costa Rica, where the local domain registry is having problems with the United States government.

The drama is detailed in a letter to ICANN penned by Dr. Pedro León Azofeifa, President of the Costa Rican Academy of Science, which operates NIC Costa Rica, the registry in charge of local .CR domain names.

Azofeifa’s letter is addressed to ICANN board member Thomas Schneider and pulls no punches. It claims that for the past two years the United States Embassy in Costa Rica has been pressuring NIC Costa Rica to take action against a particular domain.

“Since 2015, the United Estates Embassy in Costa Rica, who represents the interests of the United States Department of Commerce, has frequently contacted our organization regarding the domain name thepiratebay.cr,” the letter to ICANN reads.

“These interactions with the United States Embassy have escalated with time and include great pressure since 2016 that is exemplified by several phone calls, emails, and meetings urging our ccTLD to take down the domain, even though this would go against our domain name policies.”

The letter states that following pressure from the US, the Costa Rican Ministry of Commerce carried out an investigation which concluded that not taking down the domain was in line with best practices that only require suspensions following a local court order. That didn’t satisfy the United States though, far from it.

“The representative of the United States Embassy, Mr. Kevin Ludeke, Economic Specialist, who claims to represent the interests of the US Department of
Commerce, has mentioned threats to close our registry, with repeated harassment
regarding our practices and operation policies,” the letter to ICANN reads.

Ludeke is indeed listed on the US Embassy site for Costa Rica. He’s also referenced in a 2008 diplomatic cable leaked previously by Wikileaks. Contacted via email, Ludeke did not immediately respond to TorrentFreak’s request for comment.

Extract from the letter to ICANN

Surprisingly, Azofeifa says the US representative then got personal, making negative comments towards his Executive Director, “based on no clear evidence or statistical data to support his claims, as a way to pressure our organization to take down the domain name without following our current policies.”

Citing the Tunis Agenda for the Information Society of 2005, Azofeifa asserts that “policy authority for Internet-related public policy issues is the sovereign right of the States,” which in Costa Rica’s case means that there must be “a final judgment from the Courts of Justice of the Republic of Costa Rica” before the registry will suspend a domain.

But it seems legal action was not the preferred route of the US Embassy. Demanding that NIC Costa Rica take unilateral action, Mr. Ludeke continued with “pressure and harassment to take down the domain name without its proper process and local court order.”

Azofeifa’s letter to ICANN, which is cc’d to Stafford Fitzgerald Haney, United States Ambassador to Costa Rica and various people in the Costa Rican Ministry of Commerce, concludes with a request for suggestions on how to deal with the matter.

While the response should prove very interesting, none of the parties involved appear to have noticed that ThePirateBay.cr isn’t officially connected to The Pirate Bay

The domain and associated site appeared in the wake of the December 2014 shut down of The Pirate Bay, claiming to be the real deal and even going as far as making fake accounts in the names of famous ‘pirate’ groups including ettv and YIFY.

Today it acts as an unofficial and unaffiliated reverse proxy to The Pirate Bay while presenting the site’s content as its own. It’s also affiliated with a fake KickassTorrents site, Kickass.cd, which to this day claims that it’s a reincarnation of the defunct torrent giant.

But perhaps the most glaring issue in this worrying case is the apparent willingness of the United States to call out Costa Rica for not doing anything about a .CR domain run by third parties, when the real Pirate Bay’s .org domain is under United States’ jurisdiction.

Registered by the Public Interest Registry in Reston, Virginia, ThePirateBay.org is the famous site’s main domain. TorrentFreak asked PIR if anyone from the US government had ever requested action against the domain but at the time of publication, we had received no response.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and ANONYMOUS VPN services.