Tag Archives: neopixel

The Pronunciation Training Machine

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/pronunciation-training-machine/

Using a Raspberry Pi, an Arduino, an Adafruit NeoPixel Ring and a servomotor, Japanese makers HomeMadeGarbage produced this Pronunciation Training Machine to help their parents distinguish ‘L’s and ‘R’s when speaking English.

L R 発音矯正ギブス お母ちゃん編 Pronunciation training machine #right #light #raspberrypi #arduino #neopixel

23 Likes, 1 Comments – Home Made Garbage (@homemadegarbage) on Instagram: “L R 発音矯正ギブス お母ちゃん編 Pronunciation training machine #right #light #raspberrypi #arduino #neopixel”

How does an Pronunciation Training Machine work?

As you can see in the video above, the machine utilises the Google Cloud Speech API to recognise their parents’ pronunciation of the words ‘right’ and ‘light’. Correctly pronounce the former, and the servo-mounted arrow points to the right. Pronounce the later and the NeoPixel Ring illuminates because, well, you just said “light”.

An image showing how the project works - English Pronunciation TrainingYou can find the full code for the project on its hackster page here.

Variations on the idea

It’s a super-cute project with great potential, and the concept could easily be amended for other training purposes. How about using motion sensors to help someone learn their left from their right?

A photo of hands with left and right written on them - English Pronunciation Training

Wait…your left or my left?
image c/o tattly

Or use random.choice to switch on LEDs over certain images, and speech recognition to reward a correct answer? Light up a picture of a cat, for example, and when the player says “cat”, they receive a ‘purr’ or a treat?

A photo of a kitten - English Pronunciation Training

Obligatory kitten picture
image c/o somewhere on the internet!

Raspberry Pi-based educational aids do not have to be elaborate builds. They can use components as simple as a servo and an LED, and still have the potential to make great improvements in people’s day-to-day lives.

Your own projects

If you’ve created an educational tool using a Raspberry Pi, we’d love to see it. The Raspberry Pi itself is an educational tool, so you’re helping it to fulfil its destiny! Make sure you share your projects with us on social media, or pop a link in the comments below. We’d also love to see people using the Pronunciation Training Machine (or similar projects), so make sure you share those too!

A massive shout out to Artie at hackster.io for this heads-up, and for all the other Raspberry Pi projects he sends my way. What a star!

The post The Pronunciation Training Machine appeared first on Raspberry Pi.

Sean’s DIY Bitcoin Lottery with a Raspberry Pi

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/seans-diy-bitcoin-lottery/

After several explorations into the world of 3D printing, and fresh off the back of his $5 fidget spinner crowd funding campaign, Sean Hodgins brings us his latest project: a DIY Bitcoin Lottery!

DIY Bitcoin Lottery with a Raspberry Pi

Build your own lottery! Thingiverse Files: https://www.thingiverse.com/thing:2494568 Pi How-to: http://www.idlehandsproject.com/raspberry-pi-bitcoin-lottery/ Instructables: https://www.instructables.com/id/DIY-Bitcoin-Lottery-With-Raspberry-Pi/ Send me bitcoins if you want!

What is Bitcoin mining?

According to the internet, Bitcoin mining is:

[A] record-keeping service. Miners keep the blockchain consistent, complete, and unalterable by repeatedly verifying and collecting newly broadcast transactions into a new group of transactions called a block. Each block contains a cryptographic hash of the previous block, using the SHA-256 hashing algorithm, which links it to the previous block, thus giving the blockchain its name.

If that makes no sense to you, welcome to the club. So here’s a handy video which explains it better.

What is Bitcoin Mining?

For more information: https://www.bitcoinmining.com and https://www.weusecoins.com What is Bitcoin Mining? Have you ever wondered how Bitcoin is generated? This short video is an animated introduction to Bitcoin Mining. Credits: Voice – Chris Rice (www.ricevoice.com) Motion Graphics – Fabian Rühle (www.fabianruehle.de) Music/Sound Design – Christian Barth (www.akkord-arbeiter.de) Andrew Mottl (www.andrewmottl.com)

Okay, now I get it.

I swear.

Sean’s Bitcoin Lottery

As a retired Bitcoin miner, Sean understands how the system works and what is required for mining. And since news sources report that Bitcoin is currently valued at around $4000, Sean decided to use a Raspberry Pi to bring to life an idea he’d been thinking about for a little while.

Sean Hodgins Raspberry Pi Bitcoin Lottery

He fitted the Raspberry Pi into a 3D-printed body, together with a small fan, a strip of NeoPixels, and a Block Eruptor ASIC which is the dedicated mining hardware. The Pi runs a Python script compatible with CGMiner, a mining software that needs far more explanation than I can offer in this short blog post.

The Neopixels take the first 6 characters of the 64-character-long number of the current block, and interpret it as a hex colour code. In this way, the block’s data is converted into colour, which, when you think about it, is kind of beautiful.

The device moves on to trying to solve a new block every 20 minutes. When it does, the NeoPixel LEDs play a flashing ‘Win’ or ‘Lose’ animation to let you know whether you were the one to solve the previous block.

Sean Hodgins Raspberry Pi Bitcoin Lottery

Lottery results

Sean has done the maths to calculate the power consumption of the device. He says that the annual cost of running his Bitcoin Lottery is roughly what you would pay for two lottery scratch cards. Now, the odds of solving a block are much lower than those of buying a winning scratch card. However, since the mining device moves on to a new block every 20 minutes, the odds of being a winner with Bitcoin using Sean’s build are actually better than those of winning the lottery.

Sean Hodgins Raspberry Pi Bitcoin Lottery

MATHS!

But even if you don’t win, Sean’s project is a fun experiment in Bitcoin mining and creating colour through code. And if you want to make your own, you can download the 3D-files here, find the code here, and view the step-by-step guide here on Instructables.

Good luck and happy mining!

The post Sean’s DIY Bitcoin Lottery with a Raspberry Pi appeared first on Raspberry Pi.

Ms. Haughs’ tote-ally awesome Raspberry Pi bag

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/pi-tote-bag/

While planning her trips to upcoming educational events, Raspberry Pi Certified Educator Amanda Haughs decided to incorporate the Pi Zero W into a rather nifty accessory.

Final Pi Tote bag

Uploaded by Amanda Haughs on 2017-07-08.

The idea

Commenting on the convenient size of the Raspberry Pi Zero W, Amanda explains on her blog “I decided that I wanted to make something that would fully take advantage of the compact size of the Pi Zero, that was somewhat useful, and that I could take with me and share with my maker friends during my summer tech travels.”

Amanda Haughs Raspberry Pi Tote Bag

Awesome grandmothers and wearable tech are an instant recipe for success!

With access to her grandmother’s “high-tech embroidery machine”, Amanda was able to incorporate various maker skills into her project.

The Tech

Amanda used five clear white LEDs and the Raspberry Pi Zero for the project. Taking inspiration from the LED-adorned Babbage Bear her team created at Picademy, she decided to connect the LEDs using female-to-female jumper wires

Amanda Haughs Pi Tote Bag

Poor Babbage really does suffer at Picademy events

It’s worth noting that she could also have used conductive thread, though we wonder how this slightly less flexible thread would work in a sewing machine, so don’t try this at home. Or do, but don’t blame me if it goes wonky.

Having set the LEDs in place, Amanda worked on the code. Unsure about how she wanted the LEDs to blink, she finally settled on a random pulsing of the lights, and used the GPIO Zero library to achieve the effect.

Raspberry Pi Tote Bag

Check out the GPIO Zero library for some great LED effects

The GPIO Zero pulse effect allows users to easily fade an LED in and out without the need for long strings of code. Very handy.

The Bag

Inspiration for the bag’s final design came thanks to a YouTube video, and Amanda and her grandmother were able to recreate the make using their fabric of choice.

DIY Tote Bag – Beginner’s Sewing Tutorial

Learn how to make this cute tote bag. A great project for beginning seamstresses!

A small pocket was added on the outside of the bag to allow for the Raspberry Pi Zero to be snugly secured, and the pattern was stitched into the front, allowing spaces for the LEDs to pop through.

Raspberry Pi Tote Bag

Amanda shows off her bag to Philip at ISTE 2017

You can find more information on the project, including Amanda’s initial experimentation with the Sense HAT, on her blog. If you’re a maker, an educator or, (and here’s a word I’m pretty sure I’ve made up) an edumaker, be sure to keep her blog bookmarked!

Make your own wearable tech

Whether you use jumper leads, or conductive thread or paint, we’d love to see your wearable tech projects.

Getting started with wearables

To help you get started, we’ve created this Getting started with wearables free resource that allows you to get making with the Adafruit FLORA and and NeoPixel. Check it out!

The post Ms. Haughs’ tote-ally awesome Raspberry Pi bag appeared first on Raspberry Pi.

The Heart of Maker Faire

Post Syndicated from Janina Ander original https://www.raspberrypi.org/blog/heart-maker-faire/

We at the Raspberry Pi Foundation find it incredibly rewarding to help people make and share things they love. It’s amazing to be part of an incredibly creative community of makers. And we’re not the only ones who feel this way: for this year’s Maker Faire UK, the team over at NUSTEM created the Heart of Maker Faire, a Pi-powered art installation that is a symbol of this unique community. And to be perfectly frank, it’s bloody gorgeous.

The Heart of Maker Faire

NUSTEM’s new installation for Maker Faire UK 2017, held on 1st & 2nd April at the Centre for Life, Newcastle-upon-Tyne. Visitors wrote notes about things they love, and sealed them in jars. They then read their heart rates, and used the control boxes to associate their jar and heart rate with a space on the shelves.

A heart for the community

NUSTEM is a STEM outreach organisation from Northumbria University, and the makers there are always keen to build interactive projects that get people excited about technology. So at this year’s Faire, attendees passing their installation were invited to write down something close to their heart, put that note in a jar, and measure their heart rate. Then they could connect their heart rate, via a QR code, to a space on a shelf lined with LEDs. Once they placed the jar in their space, the LEDs started blinking to imitate their heart beat. With this art piece, the NUSTEM team wants to say something about “how we’re all individuals, but about our similarities too”.

NUSTEM on Twitter

Still beating. Heart of #MakerFaireUK

Making the heart beat

This is no small build – it uses more than 2,000 NeoPixel LEDs, as well as five Raspberry Pis, among other components. Two Pi 3s are in charge of registering people’s contributions and keeping track of their jars. A Pi Zero W acts as a central hub, connecting its bigger siblings via WiFi, and storing a MySQL database of the jars’ data. Finally, two more Pi 3s control the LEDs of the Heart via a script written in Processing. The NUSTEM team has made the code available here for you “to laugh at” (their words, not mine!)

Heart of Maker Faire shelf

The heart, ready to be filled with love

A heart for art

Processing is an open-source programming language used to create images, graphs, and animations. It can respond to keyboard and mouse input, so you can write games with it as well. Moreover, it runs on the Pi, and you can use it to talk to the Pi’s GPIO pins, as the Heart of Maker Faire team did. Hook up buttons, sensors, and LEDs, and get ready to create amazing interactive pieces of art! If you’d like to learn more, read Matt’s blog post, or watch the talk he gave about Processing at our fifth birthday party earlier this year.

Matt Richardson: Art with Processing on the Raspberry Pi – Raspberry Pi Birthday Event 2017 – Talks

Matt Richardson: Art with Processing on the Raspberry Pi Sunday 5th March 2017 Raspberry Pi Birthday Event 2017 Filmed and edited by David and Andrew Ferguson. This video is not an official video published by the Raspberry Pi Foundation. No copyright infringement intended.

To help you get started, we’re providing a free learning resource introducing you to the basics of Processing. We’d love to see what you create, so do share a link to your masterworks in the comments!

World Maker Faire

We’ll be attending World Maker Faire in New York on the 23rd and 24th of September. Will you be there?

The post The Heart of Maker Faire appeared first on Raspberry Pi.

Shelfchecker Smart Shelf: build a home library system

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/smart-shelf-home-library/

Are you tired of friends borrowing your books and never returning them? Maybe you’re sure you own 1984 but can’t seem to locate it? Do you find a strange satisfaction in using the supermarket self-checkout simply because of the barcode beep? With the ShelfChecker smart shelf from maker Annelynn described on Instructables, you can be your own librarian and never misplace your books again! Beep!

Shelfchecker smart shelf annelynn Raspberry Pi

Harry Potter and the Aesthetically Pleasing Smart Shelf

The ShelfChecker smart shelf

Annelynn built her smart shelf utilising a barcode scanner, LDR light sensors, a Raspberry Pi, plus a few other peripherals and some Python scripts. She has created a fully integrated library checkout system with accompanying NeoPixel location notification for your favourite books.

This build allows you to issue your book-borrowing friends their own IDs and catalogue their usage of your treasured library. On top of that, you’ll be able to use LED NeoPixels to highlight your favourite books, registering their removal and return via light sensor tracking.

Using light sensors for book cataloguing

Once Annelynn had built the shelf, she drilled holes to fit the eight LDRs that would guard her favourite books, and separated them with corner brackets to prevent confusion.

Shelfchecker smart shelf annelynn Raspberry Pi

Corner brackets keep the books in place without confusion between their respective light sensors

Due to the limitations of the MCP3008 Adafruit microchip, the smart shelf can only keep track of eight of your favourite books. But this limitation won’t stop you from cataloguing your entire home library; it simply means you get to pick your ultimate favourites that will occupy the prime real estate on your wall.

Obviously, the light sensors sense light. So when you remove or insert a book, light floods or is blocked from that book’s sensor. The sensor sends this information to the Raspberry Pi. In response, an Arduino controls the NeoPixel strip along the ‘favourites’ shelf to indicate the book’s status.

Shelfchecker smart shelf annelynn Raspberry Pi

The book you are looking for is temporarily unavailable

Code your own library

While keeping a close eye on your favourite books, the system also allows creation of a complete library catalogue system with the help of a MySQL database. Users of the library can log into the system with a barcode scanner, and take out or return books recorded in the database guided by an LCD screen attached to the Pi.

Shelfchecker smart shelf annelynn Raspberry Pi

Beep!

I won’t go into an extensive how-to on creating MySQL databases here on the blog, because my glamourous assistant Janina has pulled up these MySQL tutorials to help you get started. Annelynn’s Github scripts are also packed with useful comments to keep you on track.

Raspberry Pi and books

We love books and libraries. And considering the growing number of Code Clubs and makespaces into libraries across the world, and the host of book-based Pi builds we’ve come across, the love seems to be mutual.

We’ve seen the Raspberry Pi introduced into the Wordery bookseller warehouse, a Pi-powered page-by-page book scanner by Jonathon Duerig, and these brilliant text-to-speech and page turner projects that use our Pis!

Did I say we love books? In fact we love them so much that members of our team have even written a few.*

If you’ve set up any sort of digital making event in a library, have in some way incorporated Raspberry Pi into your own personal book collection, or even managed to recreate the events of your favourite story using digital making, make sure to let us know in the comments below.

* Shameless plug**

Fancy adding some Pi to your home library? Check out these publications from the Raspberry Pi staff:

A Beginner’s Guide to Coding by Marc Scott

Adventures in Raspberry Pi by Carrie Anne Philbin

Getting Started with Raspberry Pi by Matt Richardson

Raspberry Pi User Guide by Eben Upton

The MagPi Magazine, Essentials Guides and Project Books

Make Your Own Game and Build Your Own Website by CoderDojo

** Shameless Pug

 

The post Shelfchecker Smart Shelf: build a home library system appeared first on Raspberry Pi.

Mira, tiny robot of joyful delight

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/mira-robot-alonso-martinez/

The staff of Pi Towers are currently melting into puddles while making ‘Aaaawwwwwww’ noises as Mira, the adorable little Pi-controlled robot made by Pixar 3D artist Alonso Martinez, steals their hearts.

Mira the robot playing peek-a-boo

If you want to get updates on Mira’s progress, sign up for the mailing list! http://eepurl.com/bteigD Mira is a desk companion that makes your life better one smile at a time. This project explores human robot interactivity and emotional intelligence. Currently Mira uses face tracking to interact with the users and loves playing the game “peek-a-boo”.

Introducing Mira

Honestly, I can’t type words – I am but a puddle! If I could type at all, I would only produce a stream of affectionate fragments. Imagine walking into a room full of kittens. What you would sound like is what I’d type.

No! I can do this. I’m a professional. I write for a living! I can…

SHE BLINKS OHMYAAAARGH!!!

Mira Alonso Martinez Raspberry Pi

Weebl & Bob meets South Park’s Ike Broflovski in an adorable 3D-printed bundle of ‘Aaawwwww’

Introducing Mira (I promise I can do this)

Right. I’ve had a nap and a drink. I’ve composed myself. I am up for this challenge. As long as I don’t look directly at her, I’ll be fine!

Here I go.

As one of the many über-talented 3D artists at Pixar, Alonso Martinez knows a thing or two about bringing adorable-looking characters to life on screen. However, his work left him wondering:

In movies you see really amazing things happening but you actually can’t interact with them – what would it be like if you could interact with characters?

So with the help of his friends Aaron Nathan and Vijay Sundaram, Alonso set out to bring the concept of animation to the physical world by building a “character” that reacts to her environment. His experiments with robotics started with Gertie, a ball-like robot reminiscent of his time spent animating bouncing balls when he was learning his trade. From there, he moved on to Mira.

Mira Alonso Martinez

Many, many of the views of this Tested YouTube video have come from me. So many.

Mira swivels to follow a person’s face, plays games such as peekaboo, shows surprise when you finger-shoot her, and giggles when you give her a kiss.

Mira’s inner workings

To get Mira to turn her head in three dimensions, Alonso took inspiration from the Microsoft Sidewinder Pro joystick he had as a kid. He purchased one on eBay, took it apart to understand how it works, and replicated its mechanism for Mira’s Raspberry Pi-powered innards.

Mira Alonso Martinez

Alonso used the smallest components he could find so that they would fit inside Mira’s tiny body.

Mira’s axis of 3D-printed parts moves via tiny Power HD DSM44 servos, while a camera and OpenCV handle face-tracking, and a single NeoPixel provides a range of colours to indicate her emotions. As for the blinking eyes? Two OLED screens boasting acrylic domes fit within the few millimeters between all the other moving parts.

More on Mira, including her history and how she works, can be found in this wonderful video released by Tested this week.

Pixar Artist’s 3D-Printed Animated Robots!

We’re gushing with grins and delight at the sight of these adorable animated robots created by artist Alonso Martinez. Sean chats with Alonso to learn how he designed and engineered his family of robots, using processes like 3D printing, mold-making, and silicone casting. They’re amazing!

You can also sign up for Alonso’s newsletter here to stay up-to-date about this little robot. Hopefully one of these newsletters will explain how to buy or build your own Mira, as I for one am desperate to see her adorable little face on my desk every day for the rest of my life.

The post Mira, tiny robot of joyful delight appeared first on Raspberry Pi.

Storm Glass: simulate the weather at your desk

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/storm-glass/

Inspired by the tempescope, The Modern Inventor’s Storm Glass is a weather-simulating lamp that can recreate the weather of any location in the world, all thanks to the help of a Raspberry Pi Zero W.

The Modern Inventors Storm Glass

Image c/o The Modern Inventor

The lamp uses the Weather Underground API, which allows the Raspberry Pi to access current and predicted weather conditions across the globe. Some may argue “Why do I need a recreation of the weather if I can look out my window?”, but I think the idea of observing tomorrow’s weather today, or keeping an eye on conditions in another location, say your favourite holiday destination, is pretty sweet.

Building a Storm Glass

The Modern Inventor, whose name I haven’t found out yet so I’ll call him TMI, designed and 3D printed the base and cap for the lamp. The glass bottle that sits between the two is one of those fancy mineral water bottles you’ve seen in the supermarket but never could justify buying before.

The base holds the Pi, as well as a speaker, a microphone, and various other components such as a Speaker Bonnet and NeoPixel Ring from Adafruit.

The Modern Inventors Storm Glass

Image c/o The Modern Inventor

“The rain maker is a tiny 5V centrifuge pump I got online, which pumps water along some glass tubing and into the lid where the rain falls from”, TMI explains on his Instructables project page. “The cloud generator is a USB-powered ultrasonic diffuser/humidifier. I just pulled out the guts and got rid of the rest. Make sure to keep the electronics which create the ultrasonic signal that drives the diffuser.”

The Modern Inventor's Storm Glass

Image c/o The Modern Inventor

With the tech in place, TMI (yes, I do appreciate the irony of using TMI as a designator for someone about whom I lack information) used hot glue like his life depended on it, bringing the whole build together into one slick-looking lamp.

Coding the storm

TMI set up the Storm Glass to pull data about weather conditions in a designated location via the Weather Underground API and recreate these within the lamp. He also installed Alexa Voice Service in it, giving the lamp a secondary function as a home automation device.

The Modern Inventor's Storm Glass

Image c/o The Modern Inventor

Code for the Storm Glass, alongside a far more detailed explanation of the build process, can be found on TMI’s project page. He says the total cost of this make comes to less than $80.

Create your own weather device

If you’d like to start using weather APIs to track conditions at home or abroad, we have a whole host of free Raspberry Pi resources for you to try your hand on: begin by learning how to fetch weather data using the RESTful API or using Scratch and the OpenWeatherMap to create visual representations of weather across the globe. You could even create a ‘Dress for the weather’ indicator so you’re never caught without a coat, an umbrella, or sunscreen again!

However you use the weather in your digital making projects, we’d love to see what you’ve been up to in the comments below.

The post Storm Glass: simulate the weather at your desk appeared first on Raspberry Pi.

NeoPixel Temperature Stair Lights

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/neopixel-temperature-stair-lights/

Following a post-Christmas decision to keep illuminated decorations on her stairway bannister throughout the year, Lorraine Underwood found a new purpose for a strip of NeoPixels she had lying around.

Lorraine Underwood on Twitter

Changed the stair lights from a string to a strip & they look awesome! #neopixel #raspberrypi https://t.co/dksLwy1SE1

Simply running the lights up the stairs, blinking and flashing to a random code, wasn’t enough for her. By using an API to check the outdoor weather, Lorraine’s lights went from decorative to informative: they now give an indication of outside weather conditions through their colour and the quantity illuminated.

“The idea is that more lights will light up as it gets warmer,” Lorraine explains. “The temperature is checked every five minutes (I think that may even be a little too often). I am looking forward to walking downstairs to a nice warm yellow light instead of the current blue!”

In total, Lorraine had 240 lights in the strip; she created a chart indicating a range of outside temperatures and the quantity of lights which for each value, as well as specifying the colour of those lights, running from chilly blue through to scorching red.

Lorraine Underwood Neopixel stair way lights

Oh, Lorraine! We love your optimistic dreams of the British summer being more than its usual rainy 16 Celsius…

The lights are controlled by a Raspberry Pi Zero running a code that can be found on Lorraine’s blog. The code dictates which lights are lit and when.

Lorraine Underwood Neopixel stair way lights

“Do I need a coat today? I’ll check the stairs.”

Lorraine is planning some future additions to the build, including a toddler-proof 3D housing, powering the Zero from the lights’ power supply, and gathering her own temperature data instead of relying on a third-party API.

While gathering the temperature data from outside her house, she may also want to look into building an entire weather station, collecting extra data on rain, humidity, and wind conditions. After all, this is the UK: just because it’s hot outside, it doesn’t mean it’s not also raining.

The post NeoPixel Temperature Stair Lights appeared first on Raspberry Pi.

Baby, you’re a (legal, indoor) firework

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/legal-indoor-firework/

Dr Lucy Rogers is more than just a human LED. She’s also an incredibly imaginative digital maker, ready and willing to void warranties in her quest to take things apart and put them back together again, better than before. With her recipe for legal, digital indoor fireworks, she does exactly that, leaving an electronic cigarette in a battered state as it produces the smoke effects for this awesome build.

Firecracker Demo Video

Uploaded by IBM Internet of Things on 2017-02-28.

In her IBM blog post, Lucy offers a basic rundown of the build. While it may not be a complete how-to for building the firecrackers, the provided GitHub link and commentary should be enough for the seasoned maker to attempt their own version. If you feel less confident about producing the complete build yourself, there are more than enough resources available online to help you create something flashy and bangy without the added smoke show.

Lucy Rogers Firecracker Raspberry Pi

For the physical build itself, Lucy used a plastic soft drink bottle, a paper plate, and plastic tubing. Once painted, they provided the body for her firecrackers, and the support needed to keep the LED NeoPixels in place. She also drilled holes into the main plastic tube that ran up the centre of the firecracker, allowing smoke to billow out at random points. More of that to come.

Lucy Rogers Firecracker Raspberry Pi

Spray paint and a touch of gold transform the pieces of plastic piping into firecrackers

The cracking, banging sounds play via a USB audio adapter due to complications between the NeoPixels and the audio jack. Lucy explains:

The audio settings need to be set in the Raspberry Pi’s configuration settings (raspi-config). I also used the Linux program ‘alsamixer’ to set the volume. The firecrackers sound file was made by Phil Andrew. I found that using the Node-RED ‘exec node’ calling the ‘mpg123’ program worked best.

Lucy states that the hacking of the e-cigarette was the hardest part of the build. For the smoke show itself, she reversed its recommended usage as follows:

On an electronic cigarette, if you blow down the air-intake hole (not the outlet hole from which you would normally inhale), smoke comes out of the outlet hole. I attached an aquarium pump to the air-intake hole and the firecracker pipe to the outlet, to make smoke on demand.

For the power, she gingerly hacked at the body with a pipe cutter before replacing the inner LiPo battery with a 30W isolated DC-DC converter, allowing for a safer power flow throughout the build (for “safer flow”, read “less likely to blow up the Raspberry Pi”).

Lucy Rogers internal workings Firecracker Raspberry Pi

The pump and e-cigarette fit snugly inside the painted bottle, while the Raspberry Pi remains outside

The project was partly inspired by Lucy’s work with Robin Hill Country Park. A how-to of that build can be seen below:

Dr Lucy Rogers Electronic Fire Crackers

www.farnell.com Dr Lucy Rogers presents her exciting Fire Crackers project, taking you from the initial concept right through to installation. Whilst working in partnership with the Robin Hill country park on the Isle of Wight, Lucy wanted to develop a solution for creating safe electronic Fire Crackers, for their Chinese New year festival.

Although I won’t challenge you all to dismantle electric cigarettes, nor do I expect you to spend money on strobe lights, sensors, and other such peripherals, it would be great to see some other attempts at digital home fireworks. If you build, or have built, anything flashy and noisy, please share it in the comments below.

The post Baby, you’re a (legal, indoor) firework appeared first on Raspberry Pi.

Christmas Special: The MagPi 52 is out now!

Post Syndicated from Lucy Hattersley original https://www.raspberrypi.org/blog/magpi-christmas-special/

The MagPi Christmas Special is out now.

For the festive season, the official magazine of the Raspberry Pi community is having a maker special. This edition is packed with fun festive projects!

The MagPi issue 52 cover

The MagPi issue 52

Click here to download the MagPi Christmas Special

Here are just some of the fun projects inside this festive issue:

  • Magazine tree: turn the special cover into a Christmas tree, using LED lights to create a shiny, blinky display
  • DIY decorations: bling out your tree with NeoPixels and code
  • Santa tracker: follow Santa Claus around the world with a Raspberry Pi
  • Christmas crackers: the best low-cost presents for makers and hackers
  • Yuletide game: build Sliders, a fab block-sliding game with a festive feel.

Sliders

A Christmas game from the MagPi No.52

Inside the MagPi Christmas special

If you’re a bit Grinchy when it comes to Christmas, there’s plenty of non-festive fun to be found too:

  • Learn to use VNC Viewer
  • Find out how to build a sunrise alarm clock
  • Read our in-depth guide to Amiga emulation
  • Discover the joys of parallel computing

There’s also a huge amount of community news this month. The MagPi has an exclusive feature on Pioneers, our new programme for 12- to 15-year-olds, and news about Astro Pi winning the Arthur Clarke Award.

The Pioneers

The MagPi outlines our new Pioneers programme in detail

After that, we see some of the most stylish projects ever. Inside is the beautiful Sisyphus table; that’s a moving work of art, a facial recognition door lock, and a working loom controlled by a Raspberry Pi.

The MagPi 52 Sisyphus Project Focus

The MagPi interviews the maker of this amazing Sisyphus table

If that wasn’t enough, we also have a big feature on adding sensors to your robots. These can be used to built a battle-bot ready for the upcoming Pi Wars challenge.

The MagPi team wishes you all a merry Christmas! You can grab The MagPi 52 in stores today: it’s in WHSmith, Tesco, Sainsbury’s, and Asda in the UK, and it will be in Micro Center and selected Barnes & Noble stores when it comes to the US. You can also buy the print edition online from our store, and it’s available digitally on our Android and iOS app.

Get a free Pi Zero
Want to make sure you never miss an issue? Subscribe today and get a Pi Zero bundle featuring the new, camera-enabled Pi Zero, and a cable bundle that includes the camera adapter.

If you subscribe to The MagPi before 7 December 2016, you will get a free Pi Zero in time for Christmas.

The post Christmas Special: The MagPi 52 is out now! appeared first on Raspberry Pi.

World of Light – an interactive feedback map

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/world-of-light-an-interactive-feedback-map/

Using a self-written API, Joshua Krosenbrink gifted the new Usabilla office with the World of Light, a 426 RGB LED-powered map of the world.

World of Light

The API pushes user location information to a Raspberry Pi, animating the LEDs in real time to respond to website feedback as and when it’s received by the company.

World of Light

Nice LED wall I built with 426 RGB LEDs and a Raspberry Pi with WIFI. Renders live user feedback that comes in from all over the world by pulling data from the public API. A ‘little’ present for in the new office.

Joshua spent a decent amount of time using a CNC machine to drill the 426 holes needed, while distributing 30 amps of power to produce the beautiful effect. 

World of Light Map

More photos of the build can be found at the project’s Hackaday page. While we figure out what we could use this map for at Pi Towers, why not tell us how you would use one in the comments below?

The post World of Light – an interactive feedback map appeared first on Raspberry Pi.

How to Pi: Halloween Edition 2016

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/how-to-pi-halloween-edition-2016/

Happy Halloween, one and all. Whether you’ve planned a night of trick-or-treating, watching scary movies, or hiding from costumed children with the lights off, our How to Pi guide should get you ready for the evening’s festivities. Enjoy!

Costumes

This is definitely a Pi Towers favourite. The Disco Ball costume by Wolfie uses a drone battery and Raspberry Pi to create, well, a child-sized human disco ball. The video links on the project page seem to be down; however, all the ingredients needed for the project are listed at Thingiverse, and a walkthrough of the wiring can be seen here. Below, you’ll see the full effect of the costume, and I’m sure we can all agree that we need one here in the office.

Halloween 2016 Disco Ball

Some aerial shots of Serena’s halloween costume we made. It contains 288 full color LEDs, a dual battery system for power, and a Raspberry Pi B2 running the sequence that was created in xLights.

If you feel ‘too cool’ to fit inside a giant disco ball, how about fitting inside a computer… sort of? The Jacket houses a Raspberry Pi with a monitor in the sleeve because, well, why not?

‘The Jacket’ 2.0 My Cyberp…

lsquo;The Jacket’ 2.0 My Cyberpunk inspired jacket was completed just in time for a Halloween party last night. This year’s upgrades added to the EL tape and 5″ LCD, with spikes, a pi zero and an action cam (look for the missing chest spike).

 

Dealing with Trick-or-treaters

Trick or Trivia, the trivia-based Halloween candy dispenser from YouTube maker TheMakersWorkbench, dispenses candy based on correct answers to spooky themed questions. For example, Casper is a friendly what? Select ‘Ghost’ on the touchscreen and receive three pieces of candy. Select an incorrect answer and receive only one.

It’s one of the best ways to give out candy to trick-or-treaters, without having to answer the door or put in any effort whatsoever.

Trick Or Trivia Trivia-Based Halloween Candy Dispenser Servo Demo

This video is a companion video to a project series I am posting on Element14.com. The video demonstrates the candy dispensing system for the Trick or Trivia candy dispenser project. You can find the post that this video accompanies at the following link: http://bit.ly/TrickorTrivia If you like this video, please consider becoming out patron on Patreon.

Or just stop them knocking in the first place with this…

Raspberry Pi Motion Sensor Halloween Trick

A Raspberry Pi running Ubuntu Mate connected to an old laptop screen. I have a motion sensor hidden in the letterbox. When you approach the door it detects you. Next the pi sends a signal to a Wi Fi enabled WeMo switch to turn on the screen.

Scary pranks

When it comes to using a Raspberry Pi to prank people, the team at Circuit-Help have definitely come up with the goods. By using a setup similar to the magic mirror project, they fitted an ultrasonic sensor to display a zombie video within the mirror whenever an unsuspecting soul approaches. Next year’s The Walking Dead-themed Halloween party is sorted!

Haunted Halloween Mirror

This Raspberry Pi Halloween Mirror is perfect for both parties and pranks! http://www.circuit-help.com.ph/haunted-halloween-mirror/

If the zombie mirror isn’t enough, how about some animated portraits for your wall? Here’s Pi Borg’s Moving Eye Halloween portrait. Full instructions here.

Spooky Raspberry Pi controlled Halloween picture

Check out our quick Halloween Project, make your own Raspberry Pi powered spooky portrait! http://www.instructables.com/id/Halloween-painting-with-moving-eyes/

Pumpkins

We’ve seen a flurry of Raspberry Pi pumpkins this year. From light shows to motion-activated noise makers, it’s the year of the pimped-up pumpkin. Here’s Oliver with his entry into the automated pumpkin patch, offering up a motion-activated pumpkin jam-packed with LEDs.

Raspberry Pi Motion Sensor Light Up Pumpkin

Using a Raspberry Pi with a PIR motion sensor and a bunch of NeoPixels to make a scary Halloween Pumpkin

Or get super-fancy and use a couple of Pimoroni Unicorn HATs to create animated pumpkin eyes. Instructions here.

Raspberry Pi Pumpkin LED Matrix Eyes

Inspired by the many Halloween electronics projects we saw last year, we tried our own this year. Source code is on github https://github.com/mirkin/pi-word-clock

Ignore the world and get coding

If you’re one of the many who would rather ignore Halloween, close the curtains, and pretend not to be home, here are some fun, spooky projects to work on this evening. Yes, they’re still Halloween-themed… but c’mon, they’ll be fun regardless!

Halloween Music Light Project – Follow the tutorial at Linux.com to create this awesome and effective musical light show. You can replace the tune for a less Halloweeny experience.

Halloween Music-Light project created using Raspberry Pi and Lightshow project.

Uploaded by Swapnil Bhartiya on 2016-10-12.

Spooky Spot the Difference – Let the Raspberry Pi Foundation team guide you through this fun prank, and use the skills you learn to replace the images for other events and holidays.

spot_the_diff

Whatever you get up to with a Raspberry Pi this Halloween, make sure to tag us across social media on Facebook, Twitter, Instagram, G+, and Vine. You can also check out our Spooky Pi board on Pinterest.

The post How to Pi: Halloween Edition 2016 appeared first on Raspberry Pi.

RecordShelf – vinyl selection lightshow spectacular

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/recordshelf-vinyl-selection-lightshow-spectacular/

Mike Smith wanted to be able to locate specific records in his collection with ease, so he turned to a Raspberry Pi for assistance.

A web server running on the Pi catalogues his vast vinyl collection. Upon selecting a specific record, the appropriate shelf lights up, followed by a single NeoPixel highlighting the record’s location.

recordShelf demo 2

recordShelf helps organize and visualize dat about your record collection. This is my second video demonstrating it’s latest form.

The lights are controlled with Adafruit’s FadeCandy, a dithering USB controller driver with its own software that allows for easier direction of a NeoPixel. It also puts on a pretty nifty light show.

Records can be selected via artist, title, record label, a unique index number, or even vinyl colour. This also allowed for Mike to select all records in a specific category and highlight them at once; how many records by a specific artist or label, for example.

RecordShelf

Further down the line, Mike is also planning on RFID support, allowing him to scan a record and have the appropriate shelf light up to indicate where it should be stored. Keep up to date with the build via the project’s Hackaday.io page.

The post RecordShelf – vinyl selection lightshow spectacular appeared first on Raspberry Pi.