Tag Archives: Parameter Store

Use Slack ChatOps to Deploy Your Code – How to Integrate Your Pipeline in AWS CodePipeline with Your Slack Channel

Post Syndicated from Rumi Olsen original https://aws.amazon.com/blogs/devops/use-slack-chatops-to-deploy-your-code-how-to-integrate-your-pipeline-in-aws-codepipeline-with-your-slack-channel/

Slack is widely used by DevOps and development teams to communicate status. Typically, when a build has been tested and is ready to be promoted to a staging environment, a QA engineer or DevOps engineer kicks off the deployment. Using Slack in a ChatOps collaboration model, the promotion can be done in a single click from a Slack channel. And because the promotion happens through a Slack channel, the whole development team knows what’s happening without checking email.

In this blog post, I will show you how to integrate AWS services with a Slack application. I use an interactive message button and incoming webhook to promote a stage with a single click.

To follow along with the steps in this post, you’ll need a pipeline in AWS CodePipeline. If you don’t have a pipeline, the fastest way to create one for this use case is to use AWS CodeStar. Go to the AWS CodeStar console and select the Static Website template (shown in the screenshot). AWS CodeStar will create a pipeline with an AWS CodeCommit repository and an AWS CodeDeploy deployment for you. After the pipeline is created, you will need to add a manual approval stage.

You’ll also need to build a Slack app with webhooks and interactive components, write two Lambda functions, and create an API Gateway API and a SNS topic.

As you’ll see in the following diagram, when I make a change and merge a new feature into the master branch in AWS CodeCommit, the check-in kicks off my CI/CD pipeline in AWS CodePipeline. When CodePipeline reaches the approval stage, it sends a notification to Amazon SNS, which triggers an AWS Lambda function (ApprovalRequester).

The Slack channel receives a prompt that looks like the following screenshot. When I click Yes to approve the build promotion, the approval result is sent to CodePipeline through API Gateway and Lambda (ApprovalHandler). The pipeline continues on to deploy the build to the next environment.

Create a Slack app

For App Name, type a name for your app. For Development Slack Workspace, choose the name of your workspace. You’ll see in the following screenshot that my workspace is AWS ChatOps.

After the Slack application has been created, you will see the Basic Information page, where you can create incoming webhooks and enable interactive components.

To add incoming webhooks:

  1. Under Add features and functionality, choose Incoming Webhooks. Turn the feature on by selecting Off, as shown in the following screenshot.
  2. Now that the feature is turned on, choose Add New Webhook to Workspace. In the process of creating the webhook, Slack lets you choose the channel where messages will be posted.
  3. After the webhook has been created, you’ll see its URL. You will use this URL when you create the Lambda function.

If you followed the steps in the post, the pipeline should look like the following.

Write the Lambda function for approval requests

This Lambda function is invoked by the SNS notification. It sends a request that consists of an interactive message button to the incoming webhook you created earlier.  The following sample code sends the request to the incoming webhook. WEBHOOK_URL and SLACK_CHANNEL are the environment variables that hold values of the webhook URL that you created and the Slack channel where you want the interactive message button to appear.

# This function is invoked via SNS when the CodePipeline manual approval action starts.
# It will take the details from this approval notification and sent an interactive message to Slack that allows users to approve or cancel the deployment.

import os
import json
import logging
import urllib.parse

from base64 import b64decode
from urllib.request import Request, urlopen
from urllib.error import URLError, HTTPError

# This is passed as a plain-text environment variable for ease of demonstration.
# Consider encrypting the value with KMS or use an encrypted parameter in Parameter Store for production deployments.
SLACK_WEBHOOK_URL = os.environ['SLACK_WEBHOOK_URL']
SLACK_CHANNEL = os.environ['SLACK_CHANNEL']

logger = logging.getLogger()
logger.setLevel(logging.INFO)

def lambda_handler(event, context):
    print("Received event: " + json.dumps(event, indent=2))
    message = event["Records"][0]["Sns"]["Message"]
    
    data = json.loads(message) 
    token = data["approval"]["token"]
    codepipeline_name = data["approval"]["pipelineName"]
    
    slack_message = {
        "channel": SLACK_CHANNEL,
        "text": "Would you like to promote the build to production?",
        "attachments": [
            {
                "text": "Yes to deploy your build to production",
                "fallback": "You are unable to promote a build",
                "callback_id": "wopr_game",
                "color": "#3AA3E3",
                "attachment_type": "default",
                "actions": [
                    {
                        "name": "deployment",
                        "text": "Yes",
                        "style": "danger",
                        "type": "button",
                        "value": json.dumps({"approve": True, "codePipelineToken": token, "codePipelineName": codepipeline_name}),
                        "confirm": {
                            "title": "Are you sure?",
                            "text": "This will deploy the build to production",
                            "ok_text": "Yes",
                            "dismiss_text": "No"
                        }
                    },
                    {
                        "name": "deployment",
                        "text": "No",
                        "type": "button",
                        "value": json.dumps({"approve": False, "codePipelineToken": token, "codePipelineName": codepipeline_name})
                    }  
                ]
            }
        ]
    }

    req = Request(SLACK_WEBHOOK_URL, json.dumps(slack_message).encode('utf-8'))

    response = urlopen(req)
    response.read()
    
    return None

 

Create a SNS topic

Create a topic and then create a subscription that invokes the ApprovalRequester Lambda function. You can configure the manual approval action in the pipeline to send a message to this SNS topic when an approval action is required. When the pipeline reaches the approval stage, it sends a notification to this SNS topic. SNS publishes a notification to all of the subscribed endpoints. In this case, the Lambda function is the endpoint. Therefore, it invokes and executes the Lambda function. For information about how to create a SNS topic, see Create a Topic in the Amazon SNS Developer Guide.

Write the Lambda function for handling the interactive message button

This Lambda function is invoked by API Gateway. It receives the result of the interactive message button whether or not the build promotion was approved. If approved, an API call is made to CodePipeline to promote the build to the next environment. If not approved, the pipeline stops and does not move to the next stage.

The Lambda function code might look like the following. SLACK_VERIFICATION_TOKEN is the environment variable that contains your Slack verification token. You can find your verification token under Basic Information on Slack manage app page. When you scroll down, you will see App Credential. Verification token is found under the section.

# This function is triggered via API Gateway when a user acts on the Slack interactive message sent by approval_requester.py.

from urllib.parse import parse_qs
import json
import os
import boto3

SLACK_VERIFICATION_TOKEN = os.environ['SLACK_VERIFICATION_TOKEN']

#Triggered by API Gateway
#It kicks off a particular CodePipeline project
def lambda_handler(event, context):
	#print("Received event: " + json.dumps(event, indent=2))
	body = parse_qs(event['body'])
	payload = json.loads(body['payload'][0])

	# Validate Slack token
	if SLACK_VERIFICATION_TOKEN == payload['token']:
		send_slack_message(json.loads(payload['actions'][0]['value']))
		
		# This will replace the interactive message with a simple text response.
		# You can implement a more complex message update if you would like.
		return  {
			"isBase64Encoded": "false",
			"statusCode": 200,
			"body": "{\"text\": \"The approval has been processed\"}"
		}
	else:
		return  {
			"isBase64Encoded": "false",
			"statusCode": 403,
			"body": "{\"error\": \"This request does not include a vailid verification token.\"}"
		}


def send_slack_message(action_details):
	codepipeline_status = "Approved" if action_details["approve"] else "Rejected"
	codepipeline_name = action_details["codePipelineName"]
	token = action_details["codePipelineToken"] 

	client = boto3.client('codepipeline')
	response_approval = client.put_approval_result(
							pipelineName=codepipeline_name,
							stageName='Approval',
							actionName='ApprovalOrDeny',
							result={'summary':'','status':codepipeline_status},
							token=token)
	print(response_approval)

 

Create the API Gateway API

  1. In the Amazon API Gateway console, create a resource called InteractiveMessageHandler.
  2. Create a POST method.
    • For Integration type, choose Lambda Function.
    • Select Use Lambda Proxy integration.
    • From Lambda Region, choose a region.
    • In Lambda Function, type a name for your function.
  3.  Deploy to a stage.

For more information, see Getting Started with Amazon API Gateway in the Amazon API Developer Guide.

Now go back to your Slack application and enable interactive components.

To enable interactive components for the interactive message (Yes) button:

  1. Under Features, choose Interactive Components.
  2. Choose Enable Interactive Components.
  3. Type a request URL in the text box. Use the invoke URL in Amazon API Gateway that will be called when the approval button is clicked.

Now that all the pieces have been created, run the solution by checking in a code change to your CodeCommit repo. That will release the change through CodePipeline. When the CodePipeline comes to the approval stage, it will prompt to your Slack channel to see if you want to promote the build to your staging or production environment. Choose Yes and then see if your change was deployed to the environment.

Conclusion

That is it! You have now created a Slack ChatOps solution using AWS CodeCommit, AWS CodePipeline, AWS Lambda, Amazon API Gateway, and Amazon Simple Notification Service.

Now that you know how to do this Slack and CodePipeline integration, you can use the same method to interact with other AWS services using API Gateway and Lambda. You can also use Slack’s slash command to initiate an action from a Slack channel, rather than responding in the way demonstrated in this post.

How to retain system tables’ data spanning multiple Amazon Redshift clusters and run cross-cluster diagnostic queries

Post Syndicated from Karthik Sonti original https://aws.amazon.com/blogs/big-data/how-to-retain-system-tables-data-spanning-multiple-amazon-redshift-clusters-and-run-cross-cluster-diagnostic-queries/

Amazon Redshift is a data warehouse service that logs the history of the system in STL log tables. The STL log tables manage disk space by retaining only two to five days of log history, depending on log usage and available disk space.

To retain STL tables’ data for an extended period, you usually have to create a replica table for every system table. Then, for each you load the data from the system table into the replica at regular intervals. By maintaining replica tables for STL tables, you can run diagnostic queries on historical data from the STL tables. You then can derive insights from query execution times, query plans, and disk-spill patterns, and make better cluster-sizing decisions. However, refreshing replica tables with live data from STL tables at regular intervals requires schedulers such as Cron or AWS Data Pipeline. Also, these tables are specific to one cluster and they are not accessible after the cluster is terminated. This is especially true for transient Amazon Redshift clusters that last for only a finite period of ad hoc query execution.

In this blog post, I present a solution that exports system tables from multiple Amazon Redshift clusters into an Amazon S3 bucket. This solution is serverless, and you can schedule it as frequently as every five minutes. The AWS CloudFormation deployment template that I provide automates the solution setup in your environment. The system tables’ data in the Amazon S3 bucket is partitioned by cluster name and query execution date to enable efficient joins in cross-cluster diagnostic queries.

I also provide another CloudFormation template later in this post. This second template helps to automate the creation of tables in the AWS Glue Data Catalog for the system tables’ data stored in Amazon S3. After the system tables are exported to Amazon S3, you can run cross-cluster diagnostic queries on the system tables’ data and derive insights about query executions in each Amazon Redshift cluster. You can do this using Amazon QuickSight, Amazon Athena, Amazon EMR, or Amazon Redshift Spectrum.

You can find all the code examples in this post, including the CloudFormation templates, AWS Glue extract, transform, and load (ETL) scripts, and the resolution steps for common errors you might encounter in this GitHub repository.

Solution overview

The solution in this post uses AWS Glue to export system tables’ log data from Amazon Redshift clusters into Amazon S3. The AWS Glue ETL jobs are invoked at a scheduled interval by AWS Lambda. AWS Systems Manager, which provides secure, hierarchical storage for configuration data management and secrets management, maintains the details of Amazon Redshift clusters for which the solution is enabled. The last-fetched time stamp values for the respective cluster-table combination are maintained in an Amazon DynamoDB table.

The following diagram covers the key steps involved in this solution.

The solution as illustrated in the preceding diagram flows like this:

  1. The Lambda function, invoke_rs_stl_export_etl, is triggered at regular intervals, as controlled by Amazon CloudWatch. It’s triggered to look up the AWS Systems Manager parameter store to get the details of the Amazon Redshift clusters for which the system table export is enabled.
  2. The same Lambda function, based on the Amazon Redshift cluster details obtained in step 1, invokes the AWS Glue ETL job designated for the Amazon Redshift cluster. If an ETL job for the cluster is not found, the Lambda function creates one.
  3. The ETL job invoked for the Amazon Redshift cluster gets the cluster credentials from the parameter store. It gets from the DynamoDB table the last exported time stamp of when each of the system tables was exported from the respective Amazon Redshift cluster.
  4. The ETL job unloads the system tables’ data from the Amazon Redshift cluster into an Amazon S3 bucket.
  5. The ETL job updates the DynamoDB table with the last exported time stamp value for each system table exported from the Amazon Redshift cluster.
  6. The Amazon Redshift cluster system tables’ data is available in Amazon S3 and is partitioned by cluster name and date for running cross-cluster diagnostic queries.

Understanding the configuration data

This solution uses AWS Systems Manager parameter store to store the Amazon Redshift cluster credentials securely. The parameter store also securely stores other configuration information that the AWS Glue ETL job needs for extracting and storing system tables’ data in Amazon S3. Systems Manager comes with a default AWS Key Management Service (AWS KMS) key that it uses to encrypt the password component of the Amazon Redshift cluster credentials.

The following table explains the global parameters and cluster-specific parameters required in this solution. The global parameters are defined once and applicable at the overall solution level. The cluster-specific parameters are specific to an Amazon Redshift cluster and repeat for each cluster for which you enable this post’s solution. The CloudFormation template explained later in this post creates these parameters as part of the deployment process.

Parameter nameTypeDescription
Global parametersdefined once and applied to all jobs
redshift_query_logs.global.s3_prefixStringThe Amazon S3 path where the query logs are exported. Under this path, each exported table is partitioned by cluster name and date.
redshift_query_logs.global.tempdirStringThe Amazon S3 path that AWS Glue ETL jobs use for temporarily staging the data.
redshift_query_logs.global.role>StringThe name of the role that the AWS Glue ETL jobs assume. Just the role name is sufficient. The complete Amazon Resource Name (ARN) is not required.
redshift_query_logs.global.enabled_cluster_listStringListA comma-separated list of cluster names for which system tables’ data export is enabled. This gives flexibility for a user to exclude certain clusters.
Cluster-specific parametersfor each cluster specified in the enabled_cluster_list parameter
redshift_query_logs.<<cluster_name>>.connectionStringThe name of the AWS Glue Data Catalog connection to the Amazon Redshift cluster. For example, if the cluster name is product_warehouse, the entry is redshift_query_logs.product_warehouse.connection.
redshift_query_logs.<<cluster_name>>.userStringThe user name that AWS Glue uses to connect to the Amazon Redshift cluster.
redshift_query_logs.<<cluster_name>>.passwordSecure StringThe password that AWS Glue uses to connect the Amazon Redshift cluster’s encrypted-by key that is managed in AWS KMS.

For example, suppose that you have two Amazon Redshift clusters, product-warehouse and category-management, for which the solution described in this post is enabled. In this case, the parameters shown in the following screenshot are created by the solution deployment CloudFormation template in the AWS Systems Manager parameter store.

Solution deployment

To make it easier for you to get started, I created a CloudFormation template that automatically configures and deploys the solution—only one step is required after deployment.

Prerequisites

To deploy the solution, you must have one or more Amazon Redshift clusters in a private subnet. This subnet must have a network address translation (NAT) gateway or a NAT instance configured, and also a security group with a self-referencing inbound rule for all TCP ports. For more information about why AWS Glue ETL needs the configuration it does, described previously, see Connecting to a JDBC Data Store in a VPC in the AWS Glue documentation.

To start the deployment, launch the CloudFormation template:

CloudFormation stack parameters

The following table lists and describes the parameters for deploying the solution to export query logs from multiple Amazon Redshift clusters.

PropertyDefaultDescription
S3BucketmybucketThe bucket this solution uses to store the exported query logs, stage code artifacts, and perform unloads from Amazon Redshift. For example, the mybucket/extract_rs_logs/data bucket is used for storing all the exported query logs for each system table partitioned by the cluster. The mybucket/extract_rs_logs/temp/ bucket is used for temporarily staging the unloaded data from Amazon Redshift. The mybucket/extract_rs_logs/code bucket is used for storing all the code artifacts required for Lambda and the AWS Glue ETL jobs.
ExportEnabledRedshiftClustersRequires InputA comma-separated list of cluster names from which the system table logs need to be exported.
DataStoreSecurityGroupsRequires InputA list of security groups with an inbound rule to the Amazon Redshift clusters provided in the parameter, ExportEnabledClusters. These security groups should also have a self-referencing inbound rule on all TCP ports, as explained on Connecting to a JDBC Data Store in a VPC.

After you launch the template and create the stack, you see that the following resources have been created:

  1. AWS Glue connections for each Amazon Redshift cluster you provided in the CloudFormation stack parameter, ExportEnabledRedshiftClusters.
  2. All parameters required for this solution created in the parameter store.
  3. The Lambda function that invokes the AWS Glue ETL jobs for each configured Amazon Redshift cluster at a regular interval of five minutes.
  4. The DynamoDB table that captures the last exported time stamps for each exported cluster-table combination.
  5. The AWS Glue ETL jobs to export query logs from each Amazon Redshift cluster provided in the CloudFormation stack parameter, ExportEnabledRedshiftClusters.
  6. The IAM roles and policies required for the Lambda function and AWS Glue ETL jobs.

After the deployment

For each Amazon Redshift cluster for which you enabled the solution through the CloudFormation stack parameter, ExportEnabledRedshiftClusters, the automated deployment includes temporary credentials that you must update after the deployment:

  1. Go to the parameter store.
  2. Note the parameters <<cluster_name>>.user and redshift_query_logs.<<cluster_name>>.password that correspond to each Amazon Redshift cluster for which you enabled this solution. Edit these parameters to replace the placeholder values with the right credentials.

For example, if product-warehouse is one of the clusters for which you enabled system table export, you edit these two parameters with the right user name and password and choose Save parameter.

Querying the exported system tables

Within a few minutes after the solution deployment, you should see Amazon Redshift query logs being exported to the Amazon S3 location, <<S3Bucket_you_provided>>/extract_redshift_query_logs/data/. In that bucket, you should see the eight system tables partitioned by customer name and date: stl_alert_event_log, stl_dlltext, stl_explain, stl_query, stl_querytext, stl_scan, stl_utilitytext, and stl_wlm_query.

To run cross-cluster diagnostic queries on the exported system tables, create external tables in the AWS Glue Data Catalog. To make it easier for you to get started, I provide a CloudFormation template that creates an AWS Glue crawler, which crawls the exported system tables stored in Amazon S3 and builds the external tables in the AWS Glue Data Catalog.

Launch this CloudFormation template to create external tables that correspond to the Amazon Redshift system tables. S3Bucket is the only input parameter required for this stack deployment. Provide the same Amazon S3 bucket name where the system tables’ data is being exported. After you successfully create the stack, you can see the eight tables in the database, redshift_query_logs_db, as shown in the following screenshot.

Now, navigate to the Athena console to run cross-cluster diagnostic queries. The following screenshot shows a diagnostic query executed in Athena that retrieves query alerts logged across multiple Amazon Redshift clusters.

You can build the following example Amazon QuickSight dashboard by running cross-cluster diagnostic queries on Athena to identify the hourly query count and the key query alert events across multiple Amazon Redshift clusters.

How to extend the solution

You can extend this post’s solution in two ways:

  • Add any new Amazon Redshift clusters that you spin up after you deploy the solution.
  • Add other system tables or custom query results to the list of exports from an Amazon Redshift cluster.

Extend the solution to other Amazon Redshift clusters

To extend the solution to more Amazon Redshift clusters, add the three cluster-specific parameters in the AWS Systems Manager parameter store following the guidelines earlier in this post. Modify the redshift_query_logs.global.enabled_cluster_list parameter to append the new cluster to the comma-separated string.

Extend the solution to add other tables or custom queries to an Amazon Redshift cluster

The current solution ships with the export functionality for the following Amazon Redshift system tables:

  • stl_alert_event_log
  • stl_dlltext
  • stl_explain
  • stl_query
  • stl_querytext
  • stl_scan
  • stl_utilitytext
  • stl_wlm_query

You can easily add another system table or custom query by adding a few lines of code to the AWS Glue ETL job, <<cluster-name>_extract_rs_query_logs. For example, suppose that from the product-warehouse Amazon Redshift cluster you want to export orders greater than $2,000. To do so, add the following five lines of code to the AWS Glue ETL job product-warehouse_extract_rs_query_logs, where product-warehouse is your cluster name:

  1. Get the last-processed time-stamp value. The function creates a value if it doesn’t already exist.

salesLastProcessTSValue = functions.getLastProcessedTSValue(trackingEntry=”mydb.sales_2000",job_configs=job_configs)

  1. Run the custom query with the time stamp.

returnDF=functions.runQuery(query="select * from sales s join order o where o.order_amnt > 2000 and sale_timestamp > '{}'".format (salesLastProcessTSValue) ,tableName="mydb.sales_2000",job_configs=job_configs)

  1. Save the results to Amazon S3.

functions.saveToS3(dataframe=returnDF,s3Prefix=s3Prefix,tableName="mydb.sales_2000",partitionColumns=["sale_date"],job_configs=job_configs)

  1. Get the latest time-stamp value from the returned data frame in Step 2.

latestTimestampVal=functions.getMaxValue(returnDF,"sale_timestamp",job_configs)

  1. Update the last-processed time-stamp value in the DynamoDB table.

functions.updateLastProcessedTSValue(“mydb.sales_2000",latestTimestampVal[0],job_configs)

Conclusion

In this post, I demonstrate a serverless solution to retain the system tables’ log data across multiple Amazon Redshift clusters. By using this solution, you can incrementally export the data from system tables into Amazon S3. By performing this export, you can build cross-cluster diagnostic queries, build audit dashboards, and derive insights into capacity planning by using services such as Athena. I also demonstrate how you can extend this solution to other ad hoc query use cases or tables other than system tables by adding a few lines of code.


Additional Reading

If you found this post useful, be sure to check out Using Amazon Redshift Spectrum, Amazon Athena, and AWS Glue with Node.js in Production and Amazon Redshift – 2017 Recap.


About the Author

Karthik Sonti is a senior big data architect at Amazon Web Services. He helps AWS customers build big data and analytical solutions and provides guidance on architecture and best practices.

 

 

 

 

Sharing Secrets with AWS Lambda Using AWS Systems Manager Parameter Store

Post Syndicated from Chris Munns original https://aws.amazon.com/blogs/compute/sharing-secrets-with-aws-lambda-using-aws-systems-manager-parameter-store/

This post courtesy of Roberto Iturralde, Sr. Application Developer- AWS Professional Services

Application architects are faced with key decisions throughout the process of designing and implementing their systems. One decision common to nearly all solutions is how to manage the storage and access rights of application configuration. Shared configuration should be stored centrally and securely with each system component having access only to the properties that it needs for functioning.

With AWS Systems Manager Parameter Store, developers have access to central, secure, durable, and highly available storage for application configuration and secrets. Parameter Store also integrates with AWS Identity and Access Management (IAM), allowing fine-grained access control to individual parameters or branches of a hierarchical tree.

This post demonstrates how to create and access shared configurations in Parameter Store from AWS Lambda. Both encrypted and plaintext parameter values are stored with only the Lambda function having permissions to decrypt the secrets. You also use AWS X-Ray to profile the function.

Solution overview

This example is made up of the following components:

  • An AWS SAM template that defines:
    • A Lambda function and its permissions
    • An unencrypted Parameter Store parameter that the Lambda function loads
    • A KMS key that only the Lambda function can access. You use this key to create an encrypted parameter later.
  • Lambda function code in Python 3.6 that demonstrates how to load values from Parameter Store at function initialization for reuse across invocations.

Launch the AWS SAM template

To create the resources shown in this post, you can download the SAM template or choose the button to launch the stack. The template requires one parameter, an IAM user name, which is the name of the IAM user to be the admin of the KMS key that you create. In order to perform the steps listed in this post, this IAM user will need permissions to execute Lambda functions, create Parameter Store parameters, administer keys in KMS, and view the X-Ray console. If you have these privileges in your IAM user account you can use your own account to complete the walkthrough. You can not use the root user to administer the KMS keys.

SAM template resources

The following sections show the code for the resources defined in the template.
Lambda function

ParameterStoreBlogFunctionDev:
    Type: 'AWS::Serverless::Function'
    Properties:
      FunctionName: 'ParameterStoreBlogFunctionDev'
      Description: 'Integrating lambda with Parameter Store'
      Handler: 'lambda_function.lambda_handler'
      Role: !GetAtt ParameterStoreBlogFunctionRoleDev.Arn
      CodeUri: './code'
      Environment:
        Variables:
          ENV: 'dev'
          APP_CONFIG_PATH: 'parameterStoreBlog'
          AWS_XRAY_TRACING_NAME: 'ParameterStoreBlogFunctionDev'
      Runtime: 'python3.6'
      Timeout: 5
      Tracing: 'Active'

  ParameterStoreBlogFunctionRoleDev:
    Type: AWS::IAM::Role
    Properties:
      AssumeRolePolicyDocument:
        Version: '2012-10-17'
        Statement:
          -
            Effect: Allow
            Principal:
              Service:
                - 'lambda.amazonaws.com'
            Action:
              - 'sts:AssumeRole'
      ManagedPolicyArns:
        - 'arn:aws:iam::aws:policy/service-role/AWSLambdaBasicExecutionRole'
      Policies:
        -
          PolicyName: 'ParameterStoreBlogDevParameterAccess'
          PolicyDocument:
            Version: '2012-10-17'
            Statement:
              -
                Effect: Allow
                Action:
                  - 'ssm:GetParameter*'
                Resource: !Sub 'arn:aws:ssm:${AWS::Region}:${AWS::AccountId}:parameter/dev/parameterStoreBlog*'
        -
          PolicyName: 'ParameterStoreBlogDevXRayAccess'
          PolicyDocument:
            Version: '2012-10-17'
            Statement:
              -
                Effect: Allow
                Action:
                  - 'xray:PutTraceSegments'
                  - 'xray:PutTelemetryRecords'
                Resource: '*'

In this YAML code, you define a Lambda function named ParameterStoreBlogFunctionDev using the SAM AWS::Serverless::Function type. The environment variables for this function include the ENV (dev) and the APP_CONFIG_PATH where you find the configuration for this app in Parameter Store. X-Ray tracing is also enabled for profiling later.

The IAM role for this function extends the AWSLambdaBasicExecutionRole by adding IAM policies that grant the function permissions to write to X-Ray and get parameters from Parameter Store, limited to paths under /dev/parameterStoreBlog*.
Parameter Store parameter

SimpleParameter:
    Type: AWS::SSM::Parameter
    Properties:
      Name: '/dev/parameterStoreBlog/appConfig'
      Description: 'Sample dev config values for my app'
      Type: String
      Value: '{"key1": "value1","key2": "value2","key3": "value3"}'

This YAML code creates a plaintext string parameter in Parameter Store in a path that your Lambda function can access.
KMS encryption key

ParameterStoreBlogDevEncryptionKeyAlias:
    Type: AWS::KMS::Alias
    Properties:
      AliasName: 'alias/ParameterStoreBlogKeyDev'
      TargetKeyId: !Ref ParameterStoreBlogDevEncryptionKey

  ParameterStoreBlogDevEncryptionKey:
    Type: AWS::KMS::Key
    Properties:
      Description: 'Encryption key for secret config values for the Parameter Store blog post'
      Enabled: True
      EnableKeyRotation: False
      KeyPolicy:
        Version: '2012-10-17'
        Id: 'key-default-1'
        Statement:
          -
            Sid: 'Allow administration of the key & encryption of new values'
            Effect: Allow
            Principal:
              AWS:
                - !Sub 'arn:aws:iam::${AWS::AccountId}:user/${IAMUsername}'
            Action:
              - 'kms:Create*'
              - 'kms:Encrypt'
              - 'kms:Describe*'
              - 'kms:Enable*'
              - 'kms:List*'
              - 'kms:Put*'
              - 'kms:Update*'
              - 'kms:Revoke*'
              - 'kms:Disable*'
              - 'kms:Get*'
              - 'kms:Delete*'
              - 'kms:ScheduleKeyDeletion'
              - 'kms:CancelKeyDeletion'
            Resource: '*'
          -
            Sid: 'Allow use of the key'
            Effect: Allow
            Principal:
              AWS: !GetAtt ParameterStoreBlogFunctionRoleDev.Arn
            Action:
              - 'kms:Encrypt'
              - 'kms:Decrypt'
              - 'kms:ReEncrypt*'
              - 'kms:GenerateDataKey*'
              - 'kms:DescribeKey'
            Resource: '*'

This YAML code creates an encryption key with a key policy with two statements.

The first statement allows a given user (${IAMUsername}) to administer the key. Importantly, this includes the ability to encrypt values using this key and disable or delete this key, but does not allow the administrator to decrypt values that were encrypted with this key.

The second statement grants your Lambda function permission to encrypt and decrypt values using this key. The alias for this key in KMS is ParameterStoreBlogKeyDev, which is how you reference it later.

Lambda function

Here I walk you through the Lambda function code.

import os, traceback, json, configparser, boto3
from aws_xray_sdk.core import patch_all
patch_all()

# Initialize boto3 client at global scope for connection reuse
client = boto3.client('ssm')
env = os.environ['ENV']
app_config_path = os.environ['APP_CONFIG_PATH']
full_config_path = '/' + env + '/' + app_config_path
# Initialize app at global scope for reuse across invocations
app = None

class MyApp:
    def __init__(self, config):
        """
        Construct new MyApp with configuration
        :param config: application configuration
        """
        self.config = config

    def get_config(self):
        return self.config

def load_config(ssm_parameter_path):
    """
    Load configparser from config stored in SSM Parameter Store
    :param ssm_parameter_path: Path to app config in SSM Parameter Store
    :return: ConfigParser holding loaded config
    """
    configuration = configparser.ConfigParser()
    try:
        # Get all parameters for this app
        param_details = client.get_parameters_by_path(
            Path=ssm_parameter_path,
            Recursive=False,
            WithDecryption=True
        )

        # Loop through the returned parameters and populate the ConfigParser
        if 'Parameters' in param_details and len(param_details.get('Parameters')) > 0:
            for param in param_details.get('Parameters'):
                param_path_array = param.get('Name').split("/")
                section_position = len(param_path_array) - 1
                section_name = param_path_array[section_position]
                config_values = json.loads(param.get('Value'))
                config_dict = {section_name: config_values}
                print("Found configuration: " + str(config_dict))
                configuration.read_dict(config_dict)

    except:
        print("Encountered an error loading config from SSM.")
        traceback.print_exc()
    finally:
        return configuration

def lambda_handler(event, context):
    global app
    # Initialize app if it doesn't yet exist
    if app is None:
        print("Loading config and creating new MyApp...")
        config = load_config(full_config_path)
        app = MyApp(config)

    return "MyApp config is " + str(app.get_config()._sections)

Beneath the import statements, you import the patch_all function from the AWS X-Ray library, which you use to patch boto3 to create X-Ray segments for all your boto3 operations.

Next, you create a boto3 SSM client at the global scope for reuse across function invocations, following Lambda best practices. Using the function environment variables, you assemble the path where you expect to find your configuration in Parameter Store. The class MyApp is meant to serve as an example of an application that would need its configuration injected at construction. In this example, you create an instance of ConfigParser, a class in Python’s standard library for handling basic configurations, to give to MyApp.

The load_config function loads the all the parameters from Parameter Store at the level immediately beneath the path provided in the Lambda function environment variables. Each parameter found is put into a new section in ConfigParser. The name of the section is the name of the parameter, less the base path. In this example, the full parameter name is /dev/parameterStoreBlog/appConfig, which is put in a section named appConfig.

Finally, the lambda_handler function initializes an instance of MyApp if it doesn’t already exist, constructing it with the loaded configuration from Parameter Store. Then it simply returns the currently loaded configuration in MyApp. The impact of this design is that the configuration is only loaded from Parameter Store the first time that the Lambda function execution environment is initialized. Subsequent invocations reuse the existing instance of MyApp, resulting in improved performance. You see this in the X-Ray traces later in this post. For more advanced use cases where configuration changes need to be received immediately, you could implement an expiry policy for your configuration entries or push notifications to your function.

To confirm that everything was created successfully, test the function in the Lambda console.

  1. Open the Lambda console.
  2. In the navigation pane, choose Functions.
  3. In the Functions pane, filter to ParameterStoreBlogFunctionDev to find the function created by the SAM template earlier. Open the function name to view its details.
  4. On the top right of the function detail page, choose Test. You may need to create a new test event. The input JSON doesn’t matter as this function ignores the input.

After running the test, you should see output similar to the following. This demonstrates that the function successfully fetched the unencrypted configuration from Parameter Store.

Create an encrypted parameter

You currently have a simple, unencrypted parameter and a Lambda function that can access it.

Next, you create an encrypted parameter that only your Lambda function has permission to use for decryption. This limits read access for this parameter to only this Lambda function.

To follow along with this section, deploy the SAM template for this post in your account and make your IAM user name the KMS key admin mentioned earlier.

  1. In the Systems Manager console, under Shared Resources, choose Parameter Store.
  2. Choose Create Parameter.
    • For Name, enter /dev/parameterStoreBlog/appSecrets.
    • For Type, select Secure String.
    • For KMS Key ID, choose alias/ParameterStoreBlogKeyDev, which is the key that your SAM template created.
    • For Value, enter {"secretKey": "secretValue"}.
    • Choose Create Parameter.
  3. If you now try to view the value of this parameter by choosing the name of the parameter in the parameters list and then choosing Show next to the Value field, you won’t see the value appear. This is because, even though you have permission to encrypt values using this KMS key, you do not have permissions to decrypt values.
  4. In the Lambda console, run another test of your function. You now also see the secret parameter that you created and its decrypted value.

If you do not see the new parameter in the Lambda output, this may be because the Lambda execution environment is still warm from the previous test. Because the parameters are loaded at Lambda startup, you need a fresh execution environment to refresh the values.

Adjust the function timeout to a different value in the Advanced Settings at the bottom of the Lambda Configuration tab. Choose Save and test to trigger the creation of a new Lambda execution environment.

Profiling the impact of querying Parameter Store using AWS X-Ray

By using the AWS X-Ray SDK to patch boto3 in your Lambda function code, each invocation of the function creates traces in X-Ray. In this example, you can use these traces to validate the performance impact of your design decision to only load configuration from Parameter Store on the first invocation of the function in a new execution environment.

From the Lambda function details page where you tested the function earlier, under the function name, choose Monitoring. Choose View traces in X-Ray.

This opens the X-Ray console in a new window filtered to your function. Be aware of the time range field next to the search bar if you don’t see any search results.
In this screenshot, I’ve invoked the Lambda function twice, one time 10.3 minutes ago with a response time of 1.1 seconds and again 9.8 minutes ago with a response time of 8 milliseconds.

Looking at the details of the longer running trace by clicking the trace ID, you can see that the Lambda function spent the first ~350 ms of the full 1.1 sec routing the request through Lambda and creating a new execution environment for this function, as this was the first invocation with this code. This is the portion of time before the initialization subsegment.

Next, it took 725 ms to initialize the function, which includes executing the code at the global scope (including creating the boto3 client). This is also a one-time cost for a fresh execution environment.

Finally, the function executed for 65 ms, of which 63.5 ms was the GetParametersByPath call to Parameter Store.

Looking at the trace for the second, much faster function invocation, you see that the majority of the 8 ms execution time was Lambda routing the request to the function and returning the response. Only 1 ms of the overall execution time was attributed to the execution of the function, which makes sense given that after the first invocation you’re simply returning the config stored in MyApp.

While the Traces screen allows you to view the details of individual traces, the X-Ray Service Map screen allows you to view aggregate performance data for all traced services over a period of time.

In the X-Ray console navigation pane, choose Service map. Selecting a service node shows the metrics for node-specific requests. Selecting an edge between two nodes shows the metrics for requests that traveled that connection. Again, be aware of the time range field next to the search bar if you don’t see any search results.

After invoking your Lambda function several more times by testing it from the Lambda console, you can view some aggregate performance metrics. Look at the following:

  • From the client perspective, requests to the Lambda service for the function are taking an average of 50 ms to respond. The function is generating ~1 trace per minute.
  • The function itself is responding in an average of 3 ms. In the following screenshot, I’ve clicked on this node, which reveals a latency histogram of the traced requests showing that over 95% of requests return in under 5 ms.
  • Parameter Store is responding to requests in an average of 64 ms, but note the much lower trace rate in the node. This is because you only fetch data from Parameter Store on the initialization of the Lambda execution environment.

Conclusion

Deduplication, encryption, and restricted access to shared configuration and secrets is a key component to any mature architecture. Serverless architectures designed using event-driven, on-demand, compute services like Lambda are no different.

In this post, I walked you through a sample application accessing unencrypted and encrypted values in Parameter Store. These values were created in a hierarchy by application environment and component name, with the permissions to decrypt secret values restricted to only the function needing access. The techniques used here can become the foundation of secure, robust configuration management in your enterprise serverless applications.