Tag Archives: Peru

GoDaddy to Suspend ‘Pirate’ Domain Following Music Industry Complaints

Post Syndicated from Andy original https://torrentfreak.com/godaddy-to-suspend-pirate-domain-following-music-industry-complaints-180601/

Most piracy-focused sites online conduct their business with minimal interference from outside parties. In many cases, a heap of DMCA notices filed with Google represents the most visible irritant.

Others, particularly those with large audiences, can find themselves on the end of a web blockade. Mostly court-ordered, blocking measures restrict the ability of Internet users to visit a site due to ISPs restricting traffic.

In some regions, where copyright holders have the means to do so, they choose to tackle a site’s infrastructure instead, which could mean complaints to webhosts or other service providers. At times, this has included domain registries, who are asked to disable domains on copyright grounds.

This is exactly what has happened to Fox-MusicaGratis.com, a Spanish-language music piracy site that incurred the wrath of IFPI member UNIMPRO – the Peruvian Union of Phonographic Producers.

Pirate music, suspended domain

In a process that’s becoming more common in the region, UNIMPRO initially filed a complaint with the Copyright Commission (Comisión de Derecho de Autor (CDA)) which conducted an investigation into the platform’s activities.

“The CDA considered, among other things, the irreparable damage that would have been caused to the legitimate rights owners, taking into account the large number of users who could potentially have visited said website, which was making available endless musical recordings for commercial purposes, without authorization of the holders of rights,” a statement from CDA reads.

The administrative process was carried out locally with the involvement of the National Institute for the Defense of Competition and the Protection of Intellectual Property (Indecopi), an autonomous public body tasked with handling anti-competitive behavior, unfair competition, and intellectual property matters.

Indecopi HQ

The matter was decided in favor of the rightsholders and a subsequent ruling included an instruction for US-based domain name registry GoDaddy to suspend Fox-MusicaGratis.com. According to the copyright protection entity, GoDaddy agreed to comply, to prevent further infringement.

This latest action involving a music piracy site registered with GoDaddy follows on the heels of a similar enforcement process back in March.

Mp3Juices-Download-Free.com, Melodiavip.net, Foxmusica.site and Fulltono.me were all music sites offering MP3 content without copyright holders’ permission. They too were the subject of an UNIMPRO complaint which resulted in orders for GoDaddy to suspend their domains.

In the cases of all five websites, GoDaddy was given the chance to appeal but there is no indication that the company has done so. GoDaddy did not respond to a request for comment.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and more. We also have VPN reviews, discounts, offers and coupons.

Rotate Amazon RDS database credentials automatically with AWS Secrets Manager

Post Syndicated from Apurv Awasthi original https://aws.amazon.com/blogs/security/rotate-amazon-rds-database-credentials-automatically-with-aws-secrets-manager/

Recently, we launched AWS Secrets Manager, a service that makes it easier to rotate, manage, and retrieve database credentials, API keys, and other secrets throughout their lifecycle. You can configure Secrets Manager to rotate secrets automatically, which can help you meet your security and compliance needs. Secrets Manager offers built-in integrations for MySQL, PostgreSQL, and Amazon Aurora on Amazon RDS, and can rotate credentials for these databases natively. You can control access to your secrets by using fine-grained AWS Identity and Access Management (IAM) policies. To retrieve secrets, employees replace plaintext secrets with a call to Secrets Manager APIs, eliminating the need to hard-code secrets in source code or update configuration files and redeploy code when secrets are rotated.

In this post, I introduce the key features of Secrets Manager. I then show you how to store a database credential for a MySQL database hosted on Amazon RDS and how your applications can access this secret. Finally, I show you how to configure Secrets Manager to rotate this secret automatically.

Key features of Secrets Manager

These features include the ability to:

  • Rotate secrets safely. You can configure Secrets Manager to rotate secrets automatically without disrupting your applications. Secrets Manager offers built-in integrations for rotating credentials for Amazon RDS databases for MySQL, PostgreSQL, and Amazon Aurora. You can extend Secrets Manager to meet your custom rotation requirements by creating an AWS Lambda function to rotate other types of secrets. For example, you can create an AWS Lambda function to rotate OAuth tokens used in a mobile application. Users and applications retrieve the secret from Secrets Manager, eliminating the need to email secrets to developers or update and redeploy applications after AWS Secrets Manager rotates a secret.
  • Secure and manage secrets centrally. You can store, view, and manage all your secrets. By default, Secrets Manager encrypts these secrets with encryption keys that you own and control. Using fine-grained IAM policies, you can control access to secrets. For example, you can require developers to provide a second factor of authentication when they attempt to retrieve a production database credential. You can also tag secrets to help you discover, organize, and control access to secrets used throughout your organization.
  • Monitor and audit easily. Secrets Manager integrates with AWS logging and monitoring services to enable you to meet your security and compliance requirements. For example, you can audit AWS CloudTrail logs to see when Secrets Manager rotated a secret or configure AWS CloudWatch Events to alert you when an administrator deletes a secret.
  • Pay as you go. Pay for the secrets you store in Secrets Manager and for the use of these secrets; there are no long-term contracts or licensing fees.

Get started with Secrets Manager

Now that you’re familiar with the key features, I’ll show you how to store the credential for a MySQL database hosted on Amazon RDS. To demonstrate how to retrieve and use the secret, I use a python application running on Amazon EC2 that requires this database credential to access the MySQL instance. Finally, I show how to configure Secrets Manager to rotate this database credential automatically. Let’s get started.

Phase 1: Store a secret in Secrets Manager

  1. Open the Secrets Manager console and select Store a new secret.
     
    Secrets Manager console interface
     
  2. I select Credentials for RDS database because I’m storing credentials for a MySQL database hosted on Amazon RDS. For this example, I store the credentials for the database superuser. I start by securing the superuser because it’s the most powerful database credential and has full access over the database.
     
    Store a new secret interface with Credentials for RDS database selected
     

    Note: For this example, you need permissions to store secrets in Secrets Manager. To grant these permissions, you can use the AWSSecretsManagerReadWriteAccess managed policy. Read the AWS Secrets Manager Documentation for more information about the minimum IAM permissions required to store a secret.

  3. Next, I review the encryption setting and choose to use the default encryption settings. Secrets Manager will encrypt this secret using the Secrets Manager DefaultEncryptionKeyDefaultEncryptionKey in this account. Alternatively, I can choose to encrypt using a customer master key (CMK) that I have stored in AWS KMS.
     
    Select the encryption key interface
     
  4. Next, I view the list of Amazon RDS instances in my account and select the database this credential accesses. For this example, I select the DB instance mysql-rds-database, and then I select Next.
     
    Select the RDS database interface
     
  5. In this step, I specify values for Secret Name and Description. For this example, I use Applications/MyApp/MySQL-RDS-Database as the name and enter a description of this secret, and then select Next.
     
    Secret Name and description interface
     
  6. For the next step, I keep the default setting Disable automatic rotation because my secret is used by my application running on Amazon EC2. I’ll enable rotation after I’ve updated my application (see Phase 2 below) to use Secrets Manager APIs to retrieve secrets. I then select Next.

    Note: If you’re storing a secret that you’re not using in your application, select Enable automatic rotation. See our AWS Secrets Manager getting started guide on rotation for details.

     
    Configure automatic rotation interface
     

  7. Review the information on the next screen and, if everything looks correct, select Store. We’ve now successfully stored a secret in Secrets Manager.
  8. Next, I select See sample code.
     
    The See sample code button
     
  9. Take note of the code samples provided. I will use this code to update my application to retrieve the secret using Secrets Manager APIs.
     
    Python sample code
     

Phase 2: Update an application to retrieve secret from Secrets Manager

Now that I have stored the secret in Secrets Manager, I update my application to retrieve the database credential from Secrets Manager instead of hard coding this information in a configuration file or source code. For this example, I show how to configure a python application to retrieve this secret from Secrets Manager.

  1. I connect to my Amazon EC2 instance via Secure Shell (SSH).
  2. Previously, I configured my application to retrieve the database user name and password from the configuration file. Below is the source code for my application.
    import MySQLdb
    import config

    def no_secrets_manager_sample()

    # Get the user name, password, and database connection information from a config file.
    database = config.database
    user_name = config.user_name
    password = config.password

    # Use the user name, password, and database connection information to connect to the database
    db = MySQLdb.connect(database.endpoint, user_name, password, database.db_name, database.port)

  3. I use the sample code from Phase 1 above and update my application to retrieve the user name and password from Secrets Manager. This code sets up the client and retrieves and decrypts the secret Applications/MyApp/MySQL-RDS-Database. I’ve added comments to the code to make the code easier to understand.
    # Use the code snippet provided by Secrets Manager.
    import boto3
    from botocore.exceptions import ClientError

    def get_secret():
    #Define the secret you want to retrieve
    secret_name = "Applications/MyApp/MySQL-RDS-Database"
    #Define the Secrets mManager end-point your code should use.
    endpoint_url = "https://secretsmanager.us-east-1.amazonaws.com"
    region_name = "us-east-1"

    #Setup the client
    session = boto3.session.Session()
    client = session.client(
    service_name='secretsmanager',
    region_name=region_name,
    endpoint_url=endpoint_url
    )

    #Use the client to retrieve the secret
    try:
    get_secret_value_response = client.get_secret_value(
    SecretId=secret_name
    )
    #Error handling to make it easier for your code to tolerate faults
    except ClientError as e:
    if e.response['Error']['Code'] == 'ResourceNotFoundException':
    print("The requested secret " + secret_name + " was not found")
    elif e.response['Error']['Code'] == 'InvalidRequestException':
    print("The request was invalid due to:", e)
    elif e.response['Error']['Code'] == 'InvalidParameterException':
    print("The request had invalid params:", e)
    else:
    # Decrypted secret using the associated KMS CMK
    # Depending on whether the secret was a string or binary, one of these fields will be populated
    if 'SecretString' in get_secret_value_response:
    secret = get_secret_value_response['SecretString']
    else:
    binary_secret_data = get_secret_value_response['SecretBinary']

    # Your code goes here.

  4. Applications require permissions to access Secrets Manager. My application runs on Amazon EC2 and uses an IAM role to obtain access to AWS services. I will attach the following policy to my IAM role. This policy uses the GetSecretValue action to grant my application permissions to read secret from Secrets Manager. This policy also uses the resource element to limit my application to read only the Applications/MyApp/MySQL-RDS-Database secret from Secrets Manager. You can visit the AWS Secrets Manager Documentation to understand the minimum IAM permissions required to retrieve a secret.
    {
    "Version": "2012-10-17",
    "Statement": {
    "Sid": "RetrieveDbCredentialFromSecretsManager",
    "Effect": "Allow",
    "Action": "secretsmanager:GetSecretValue",
    "Resource": "arn:aws:secretsmanager:::secret:Applications/MyApp/MySQL-RDS-Database"
    }
    }

Phase 3: Enable Rotation for Your Secret

Rotating secrets periodically is a security best practice because it reduces the risk of misuse of secrets. Secrets Manager makes it easy to follow this security best practice and offers built-in integrations for rotating credentials for MySQL, PostgreSQL, and Amazon Aurora databases hosted on Amazon RDS. When you enable rotation, Secrets Manager creates a Lambda function and attaches an IAM role to this function to execute rotations on a schedule you define.

Note: Configuring rotation is a privileged action that requires several IAM permissions and you should only grant this access to trusted individuals. To grant these permissions, you can use the AWS IAMFullAccess managed policy.

Next, I show you how to configure Secrets Manager to rotate the secret Applications/MyApp/MySQL-RDS-Database automatically.

  1. From the Secrets Manager console, I go to the list of secrets and choose the secret I created in the first step Applications/MyApp/MySQL-RDS-Database.
     
    List of secrets in the Secrets Manager console
     
  2. I scroll to Rotation configuration, and then select Edit rotation.
     
    Rotation configuration interface
     
  3. To enable rotation, I select Enable automatic rotation. I then choose how frequently I want Secrets Manager to rotate this secret. For this example, I set the rotation interval to 60 days.
     
    Edit rotation configuration interface
     
  4. Next, Secrets Manager requires permissions to rotate this secret on your behalf. Because I’m storing the superuser database credential, Secrets Manager can use this credential to perform rotations. Therefore, I select Use the secret that I provided in step 1, and then select Next.
     
    Select which secret to use in the Edit rotation configuration interface
     
  5. The banner on the next screen confirms that I have successfully configured rotation and the first rotation is in progress, which enables you to verify that rotation is functioning as expected. Secrets Manager will rotate this credential automatically every 60 days.
     
    Confirmation banner message
     

Summary

I introduced AWS Secrets Manager, explained the key benefits, and showed you how to help meet your compliance requirements by configuring AWS Secrets Manager to rotate database credentials automatically on your behalf. Secrets Manager helps you protect access to your applications, services, and IT resources without the upfront investment and on-going maintenance costs of operating your own secrets management infrastructure. To get started, visit the Secrets Manager console. To learn more, visit Secrets Manager documentation.

If you have comments about this post, submit them in the Comments section below. If you have questions about anything in this post, start a new thread on the Secrets Manager forum.

Want more AWS Security news? Follow us on Twitter.

Big Birthday Weekend 2018: find a Jam near you!

Post Syndicated from Ben Nuttall original https://www.raspberrypi.org/blog/big-birthday-weekend-2018-find-a-jam-near-you/

We’re just over three weeks away from the Raspberry Jam Big Birthday Weekend 2018, our community celebration of Raspberry Pi’s sixth birthday. Instead of an event in Cambridge, as we’ve held in the past, we’re coordinating Raspberry Jam events to take place around the world on 3–4 March, so that as many people as possible can join in. Well over 100 Jams have been confirmed so far.

Raspberry Pi Big Birthday Weekend Jam

Find a Jam near you

There are Jams planned in Argentina, Australia, Bolivia, Brazil, Bulgaria, Cameroon, Canada, Colombia, Dominican Republic, France, Germany, Greece, Hungary, India, Iran, Ireland, Italy, Japan, Kenya, Malaysia, Malta, Mexico, Netherlands, Norway, Papua New Guinea, Peru, Philippines, Poland, South Africa, Spain, Taiwan, Turkey, United Kingdom, United States, and Zimbabwe.

Take a look at the events map and the full list (including those who haven’t added their event to the map quite yet).

Raspberry Jam Big Birthday Weekend 2018 event map

We will have Raspberry Jams in 35 countries across six continents

Birthday kits

We had some special swag made especially for the birthday, including these T-shirts, which we’ve sent to Jam organisers:

Raspberry Jam Big Birthday Weekend 2018 T-shirt

There is also a poster with a list of participating Jams, which you can download:

Raspberry Jam Big Birthday Weekend 2018 list

Raspberry Jam photo booth

I created a Raspberry Jam photo booth that overlays photos with the Big Birthday Weekend logo and then tweets the picture from your Jam’s account — you’ll be seeing plenty of those if you follow the #PiParty hashtag on 3–4 March.

Check out the project on GitHub, and feel free to set up your own booth, or modify it to your own requirements. We’ve included text annotations in several languages, and more contributions are very welcome.

There’s still time…

If you can’t find a Jam near you, there’s still time to organise one for the Big Birthday Weekend. All you need to do is find a venue — a room in a school or library will do — and think about what you’d like to do at the event. Some Jams have Raspberry Pis set up for workshops and practical activities, some arrange tech talks, some put on show-and-tell — it’s up to you. To help you along, there’s the Raspberry Jam Guidebook full of advice and tips from Jam organisers.

Raspberry Pi on Twitter

The packed. And they packed. And they packed some more. Who’s expecting one of these #rjam kits for the Raspberry Jam Big Birthday Weekend?

Download the Raspberry Jam branding pack, and the special birthday branding pack, where you’ll find logos, graphical assets, flyer templates, worksheets, and more. When you’re ready to announce your event, create a webpage for it — you can use a site like Eventbrite or Meetup — and submit your Jam to us so it will appear on the Jam map!

We are six

We’re really looking forward to celebrating our birthday with thousands of people around the world. Over 48 hours, people of all ages will come together at more than 100 events to learn, share ideas, meet people, and make things during our Big Birthday Weekend.

Raspberry Jam Manchester
Raspberry Jam Manchester
Raspberry Jam Manchester

Since we released the first Raspberry Pi in 2012, we’ve sold 17 million of them. We’re also reaching almost 200000 children in 130 countries around the world through Code Club and CoderDojo, we’ve trained over 1500 Raspberry Pi Certified Educators, and we’ve sent code written by more than 6800 children into space. Our magazines are read by a quarter of a million people, and millions more use our free online learning resources. There’s plenty to celebrate and even more still to do: we really hope you’ll join us from a Jam near you on 3–4 March.

The post Big Birthday Weekend 2018: find a Jam near you! appeared first on Raspberry Pi.

GAMES MADE QUICK??? 2.0

Post Syndicated from Eevee original https://eev.ee/release/2018/01/23/games-made-quick-2-0/

🔗 GAMES MADE QUICK??? 2.0 on itch

I realize, with all the cognitive speed and grace of a cat falling out of a chair, that I have my own website where I can announce things that I am doing.

Here is a thing that I am having done: it’s GAMES MADE QUICK??? 2.0, a game jam that runs concurrently with Games Done Quick. The inspiration was that I once spent the entire week of AGDQ doing nothing but watching the stream, which completely ruined my momentum and cost me the following week as well while I struggled to get back up to speed. What a catastrophe!

So my solution was to spend the week making a game instead, which prompted someone to suggest that I make a jam out of it, and so I did. The results were NEON PHASE and also the original GAMES MADE QUICK???.

It’s a bit late to join now, but look forward to the jam during SGDQ, which runs the last week of June! In the meantime, perhaps peruse the fruits of this season’s labor, or at least glance over my thoughts on some of them.

Previously:

Using taxies to monitor air quality in Peru

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/air-quality-peru/

When James Puderer moved to Lima, Peru, his roadside runs left a rather nasty taste in his mouth. Hit by the pollution from old diesel cars in the area, he decided to monitor the air quality in his new city using Raspberry Pis and the abundant taxies as his tech carriers.

Taxi Datalogger – Assembly

How to assemble the enclosure for my Taxi Datalogger project: https://www.hackster.io/james-puderer/distributed-air-quality-monitoring-using-taxis-69647e

Sensing air quality in Lima

Luckily for James, almost all taxies in Lima are equipped with the standard hollow vinyl roof sign seen in the video above, which makes them ideal for hacking.

Using a Raspberry Pi alongside various Adafuit tech including the BME280 Temperature/Humidity/Pressure Sensor and GPS Antenna, James created a battery-powered retrofit setup that fits snugly into the vinyl sign.

The schematic of the air quality monitor tech inside the taxi sign

With the onboard tech, the device collects data on longitude, latitude, humidity, temperature, pressure, and airborne particle count, feeding it back to an Android Things datalogger. This data is then pushed to Google IoT Core, where it can be remotely accessed.

Next, the data is processed by Google Dataflow and turned into a BigQuery table. Users can then visualize the collected measurements. And while James uses Google Maps to analyse his data, there are many tools online that will allow you to organise and study your figures depending on what final result you’re hoping to achieve.

A heat map of James' local area showing air quality

James hopped in a taxi and took his monitor on the road, collecting results throughout the journey

James has provided the complete build process, including all tech ingredients and code, on his Hackster.io project page, and urges makers to create their own air quality monitor for their local area. He also plans on building upon the existing design by adding a 12V power hookup for connecting to the taxi, functioning lights within the sign, and companion apps for drivers.

Sensing the world around you

We’ve seen a wide variety of Raspberry Pi projects using sensors to track the world around us, such as Kasia Molga’s Human Sensor costume series, which reacts to air pollution by lighting up, and Clodagh O’Mahony’s Social Interaction Dress, which she created to judge how conversation and physical human interaction can be scored and studied.

Human Sensor

Kasia Molga’s Human Sensor — a collection of hi-tech costumes that react to air pollution within the wearer’s environment.

Many people also build their own Pi-powered weather stations, or use the Raspberry Pi Oracle Weather Station, to measure and record conditions in their towns and cities from the roofs of schools, offices, and homes.

Have you incorporated sensors into your Raspberry Pi projects? Share your builds in the comments below or via social media by tagging us.

The post Using taxies to monitor air quality in Peru appeared first on Raspberry Pi.

Federate Database User Authentication Easily with IAM and Amazon Redshift

Post Syndicated from Thiyagarajan Arumugam original https://aws.amazon.com/blogs/big-data/federate-database-user-authentication-easily-with-iam-and-amazon-redshift/

Managing database users though federation allows you to manage authentication and authorization procedures centrally. Amazon Redshift now supports database authentication with IAM, enabling user authentication though enterprise federation. No need to manage separate database users and passwords to further ease the database administration. You can now manage users outside of AWS and authenticate them for access to an Amazon Redshift data warehouse. Do this by integrating IAM authentication and a third-party SAML-2.0 identity provider (IdP), such as AD FS, PingFederate, or Okta. In addition, database users can also be automatically created at their first login based on corporate permissions.

In this post, I demonstrate how you can extend the federation to enable single sign-on (SSO) to the Amazon Redshift data warehouse.

SAML and Amazon Redshift

AWS supports Security Assertion Markup Language (SAML) 2.0, which is an open standard for identity federation used by many IdPs. SAML enables federated SSO, which enables your users to sign in to the AWS Management Console. Users can also make programmatic calls to AWS API actions by using assertions from a SAML-compliant IdP. For example, if you use Microsoft Active Directory for corporate directories, you may be familiar with how Active Directory and AD FS work together to enable federation. For more information, see the Enabling Federation to AWS Using Windows Active Directory, AD FS, and SAML 2.0 AWS Security Blog post.

Amazon Redshift now provides the GetClusterCredentials API operation that allows you to generate temporary database user credentials for authentication. You can set up an IAM permissions policy that generates these credentials for connecting to Amazon Redshift. Extending the IAM authentication, you can configure the federation of AWS access though a SAML 2.0–compliant IdP. An IAM role can be configured to permit the federated users call the GetClusterCredentials action and generate temporary credentials to log in to Amazon Redshift databases. You can also set up policies to restrict access to Amazon Redshift clusters, databases, database user names, and user group.

Amazon Redshift federation workflow

In this post, I demonstrate how you can use a JDBC– or ODBC-based SQL client to log in to the Amazon Redshift cluster using this feature. The SQL clients used with Amazon Redshift JDBC or ODBC drivers automatically manage the process of calling the GetClusterCredentials action, retrieving the database user credentials, and establishing a connection to your Amazon Redshift database. You can also use your database application to programmatically call the GetClusterCredentials action, retrieve database user credentials, and connect to the database. I demonstrate these features using an example company to show how different database users accounts can be managed easily using federation.

The following diagram shows how the SSO process works:

  1. JDBC/ODBC
  2. Authenticate using Corp Username/Password
  3. IdP sends SAML assertion
  4. Call STS to assume role with SAML
  5. STS Returns Temp Credentials
  6. Use Temp Credentials to get Temp cluster credentials
  7. Connect to Amazon Redshift using temp credentials

Walkthrough

Example Corp. is using Active Directory (idp host:demo.examplecorp.com) to manage federated access for users in its organization. It has an AWS account: 123456789012 and currently manages an Amazon Redshift cluster with the cluster ID “examplecorp-dw”, database “analytics” in us-west-2 region for its Sales and Data Science teams. It wants the following access:

  • Sales users can access the examplecorp-dw cluster using the sales_grp database group
  • Sales users access examplecorp-dw through a JDBC-based SQL client
  • Sales users access examplecorp-dw through an ODBC connection, for their reporting tools
  • Data Science users access the examplecorp-dw cluster using the data_science_grp database group.
  • Partners access the examplecorp-dw cluster and query using the partner_grp database group.
  • Partners are not federated through Active Directory and are provided with separate IAM user credentials (with IAM user name examplecorpsalespartner).
  • Partners can connect to the examplecorp-dw cluster programmatically, using language such as Python.
  • All users are automatically created in Amazon Redshift when they log in for the first time.
  • (Optional) Internal users do not specify database user or group information in their connection string. It is automatically assigned.
  • Data warehouse users can use SSO for the Amazon Redshift data warehouse using the preceding permissions.

Step 1:  Set up IdPs and federation

The Enabling Federation to AWS Using Windows Active Directory post demonstrated how to prepare Active Directory and enable federation to AWS. Using those instructions, you can establish trust between your AWS account and the IdP and enable user access to AWS using SSO.  For more information, see Identity Providers and Federation.

For this walkthrough, assume that this company has already configured SSO to their AWS account: 123456789012 for their Active Directory domain demo.examplecorp.com. The Sales and Data Science teams are not required to specify database user and group information in the connection string. The connection string can be configured by adding SAML Attribute elements to your IdP. Configuring these optional attributes enables internal users to conveniently avoid providing the DbUser and DbGroup parameters when they log in to Amazon Redshift.

The user-name attribute can be set up as follows, with a user ID (for example, nancy) or an email address (for example. [email protected]):

<Attribute Name="https://redshift.amazon.com/SAML/Attributes/DbUser">  
  <AttributeValue>user-name</AttributeValue>
</Attribute>

The AutoCreate attribute can be defined as follows:

<Attribute Name="https://redshift.amazon.com/SAML/Attributes/AutoCreate">
    <AttributeValue>true</AttributeValue>
</Attribute>

The sales_grp database group can be included as follows:

<Attribute Name="https://redshift.amazon.com/SAML/Attributes/DbGroups">
    <AttributeValue>sales_grp</AttributeValue>
</Attribute>

For more information about attribute element configuration, see Configure SAML Assertions for Your IdP.

Step 2: Create IAM roles for access to the Amazon Redshift cluster

The next step is to create IAM policies with permissions to call GetClusterCredentials and provide authorization for Amazon Redshift resources. To grant a SQL client the ability to retrieve the cluster endpoint, region, and port automatically, include the redshift:DescribeClusters action with the Amazon Redshift cluster resource in the IAM role.  For example, users can connect to the Amazon Redshift cluster using a JDBC URL without the need to hardcode the Amazon Redshift endpoint:

Previous:  jdbc:redshift://endpoint:port/database

Current:  jdbc:redshift:iam://clustername:region/dbname

Use IAM to create the following policies. You can also use an existing user or role and assign these policies. For example, if you already created an IAM role for IdP access, you can attach the necessary policies to that role. Here is the policy created for sales users for this example:

Sales_DW_IAM_Policy

{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Effect": "Allow",
            "Action": [
                "redshift:DescribeClusters"
            ],
            "Resource": [
                "arn:aws:redshift:us-west-2:123456789012:cluster:examplecorp-dw"
            ]
        },
        {
            "Effect": "Allow",
            "Action": [
                "redshift:GetClusterCredentials"
            ],
            "Resource": [
                "arn:aws:redshift:us-west-2:123456789012:cluster:examplecorp-dw",
                "arn:aws:redshift:us-west-2:123456789012:dbuser:examplecorp-dw/${redshift:DbUser}"
            ],
            "Condition": {
                "StringEquals": {
                    "aws:userid": "AIDIODR4TAW7CSEXAMPLE:${redshift:DbUser}@examplecorp.com"
                }
            }
        },
        {
            "Effect": "Allow",
            "Action": [
                "redshift:CreateClusterUser"
            ],
            "Resource": [
                "arn:aws:redshift:us-west-2:123456789012:dbuser:examplecorp-dw/${redshift:DbUser}"
            ]
        },
        {
            "Effect": "Allow",
            "Action": [
                "redshift:JoinGroup"
            ],
            "Resource": [
                "arn:aws:redshift:us-west-2:123456789012:dbgroup:examplecorp-dw/sales_grp"
            ]
        }
    ]
}

The policy uses the following parameter values:

  • Region: us-west-2
  • AWS Account: 123456789012
  • Cluster name: examplecorp-dw
  • Database group: sales_grp
  • IAM role: AIDIODR4TAW7CSEXAMPLE
Policy StatementDescription
{
"Effect":"Allow",
"Action":[
"redshift:DescribeClusters"
],
"Resource":[
"arn:aws:redshift:us-west-2:123456789012:cluster:examplecorp-dw"
]
}

Allow users to retrieve the cluster endpoint, region, and port automatically for the Amazon Redshift cluster examplecorp-dw. This specification uses the resource format arn:aws:redshift:region:account-id:cluster:clustername. For example, the SQL client JDBC can be specified in the format jdbc:redshift:iam://clustername:region/dbname.

For more information, see Amazon Resource Names.

{
"Effect":"Allow",
"Action":[
"redshift:GetClusterCredentials"
],
"Resource":[
"arn:aws:redshift:us-west-2:123456789012:cluster:examplecorp-dw",
"arn:aws:redshift:us-west-2:123456789012:dbuser:examplecorp-dw/${redshift:DbUser}"
],
"Condition":{
"StringEquals":{
"aws:userid":"AIDIODR4TAW7CSEXAMPLE:${redshift:DbUser}@examplecorp.com"
}
}
}

Generates a temporary token to authenticate into the examplecorp-dw cluster. “arn:aws:redshift:us-west-2:123456789012:dbuser:examplecorp-dw/${redshift:DbUser}” restricts the corporate user name to the database user name for that user. This resource is specified using the format: arn:aws:redshift:region:account-id:dbuser:clustername/dbusername.

The Condition block enforces that the AWS user ID should match “AIDIODR4TAW7CSEXAMPLE:${redshift:DbUser}@examplecorp.com”, so that individual users can authenticate only as themselves. The AIDIODR4TAW7CSEXAMPLE role has the Sales_DW_IAM_Policy policy attached.

{
"Effect":"Allow",
"Action":[
"redshift:CreateClusterUser"
],
"Resource":[
"arn:aws:redshift:us-west-2:123456789012:dbuser:examplecorp-dw/${redshift:DbUser}"
]
}
Automatically creates database users in examplecorp-dw, when they log in for the first time. Subsequent logins reuse the existing database user.
{
"Effect":"Allow",
"Action":[
"redshift:JoinGroup"
],
"Resource":[
"arn:aws:redshift:us-west-2:123456789012:dbgroup:examplecorp-dw/sales_grp"
]
}
Allows sales users to join the sales_grp database group through the resource “arn:aws:redshift:us-west-2:123456789012:dbgroup:examplecorp-dw/sales_grp” that is specified in the format arn:aws:redshift:region:account-id:dbgroup:clustername/dbgroupname.

Similar policies can be created for Data Science users with access to join the data_science_grp group in examplecorp-dw. You can now attach the Sales_DW_IAM_Policy policy to the role that is mapped to IdP application for SSO.
 For more information about how to define the claim rules, see Configuring SAML Assertions for the Authentication Response.

Because partners are not authorized using Active Directory, they are provided with IAM credentials and added to the partner_grp database group. The Partner_DW_IAM_Policy is attached to the IAM users for partners. The following policy allows partners to log in using the IAM user name as the database user name.

Partner_DW_IAM_Policy

{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Effect": "Allow",
            "Action": [
                "redshift:DescribeClusters"
            ],
            "Resource": [
                "arn:aws:redshift:us-west-2:123456789012:cluster:examplecorp-dw"
            ]
        },
        {
            "Effect": "Allow",
            "Action": [
                "redshift:GetClusterCredentials"
            ],
            "Resource": [
                "arn:aws:redshift:us-west-2:123456789012:cluster:examplecorp-dw",
                "arn:aws:redshift:us-west-2:123456789012:dbuser:examplecorp-dw/${redshift:DbUser}"
            ],
            "Condition": {
                "StringEquals": {
                    "redshift:DbUser": "${aws:username}"
                }
            }
        },
        {
            "Effect": "Allow",
            "Action": [
                "redshift:CreateClusterUser"
            ],
            "Resource": [
                "arn:aws:redshift:us-west-2:123456789012:dbuser:examplecorp-dw/${redshift:DbUser}"
            ]
        },
        {
            "Effect": "Allow",
            "Action": [
                "redshift:JoinGroup"
            ],
            "Resource": [
                "arn:aws:redshift:us-west-2:123456789012:dbgroup:examplecorp-dw/partner_grp"
            ]
        }
    ]
}

redshift:DbUser“: “${aws:username}” forces an IAM user to use the IAM user name as the database user name.

With the previous steps configured, you can now establish the connection to Amazon Redshift through JDBC– or ODBC-supported clients.

Step 3: Set up database user access

Before you start connecting to Amazon Redshift using the SQL client, set up the database groups for appropriate data access. Log in to your Amazon Redshift database as superuser to create a database group, using CREATE GROUP.

Log in to examplecorp-dw/analytics as superuser and create the following groups and users:

CREATE GROUP sales_grp;
CREATE GROUP datascience_grp;
CREATE GROUP partner_grp;

Use the GRANT command to define access permissions to database objects (tables/views) for the preceding groups.

Step 4: Connect to Amazon Redshift using the JDBC SQL client

Assume that sales user “nancy” is using the SQL Workbench client and JDBC driver to log in to the Amazon Redshift data warehouse. The following steps help set up the client and establish the connection:

  1. Download the latest Amazon Redshift JDBC driver from the Configure a JDBC Connection page
  2. Build the JDBC URL with the IAM option in the following format:
    jdbc:redshift:iam://examplecorp-dw:us-west-2/sales_db

Because the redshift:DescribeClusters action is assigned to the preceding IAM roles, it automatically resolves the cluster endpoints and the port. Otherwise, you can specify the endpoint and port information in the JDBC URL, as described in Configure a JDBC Connection.

Identify the following JDBC options for providing the IAM credentials (see the “Prepare your environment” section) and configure in the SQL Workbench Connection Profile:

plugin_name=com.amazon.redshift.plugin.AdfsCredentialsProvider 
idp_host=demo.examplecorp.com (The name of the corporate identity provider host)
idp_port=443  (The port of the corporate identity provider host)
user=examplecorp\nancy(corporate user name)
password=***(corporate user password)

The SQL workbench configuration looks similar to the following screenshot:

Now, “nancy” can connect to examplecorp-dw by authenticating using the corporate Active Directory. Because the SAML attributes elements are already configured for nancy, she logs in as database user nancy and is assigned the sales_grp. Similarly, other Sales and Data Science users can connect to the examplecorp-dw cluster. A custom Amazon Redshift ODBC driver can also be used to connect using a SQL client. For more information, see Configure an ODBC Connection.

Step 5: Connecting to Amazon Redshift using JDBC SQL Client and IAM Credentials

This optional step is necessary only when you want to enable users that are not authenticated with Active Directory. Partners are provided with IAM credentials that they can use to connect to the examplecorp-dw Amazon Redshift clusters. These IAM users are attached to Partner_DW_IAM_Policy that assigns them to be assigned to the public database group in Amazon Redshift. The following JDBC URLs enable them to connect to the Amazon Redshift cluster:

jdbc:redshift:iam//examplecorp-dw/analytics?AccessKeyID=XXX&SecretAccessKey=YYY&DbUser=examplecorpsalespartner&DbGroup= partner_grp&AutoCreate=true

The AutoCreate option automatically creates a new database user the first time the partner logs in. There are several other options available to conveniently specify the IAM user credentials. For more information, see Options for providing IAM credentials.

Step 6: Connecting to Amazon Redshift using an ODBC client for Microsoft Windows

Assume that another sales user “uma” is using an ODBC-based client to log in to the Amazon Redshift data warehouse using Example Corp Active Directory. The following steps help set up the ODBC client and establish the Amazon Redshift connection in a Microsoft Windows operating system connected to your corporate network:

  1. Download and install the latest Amazon Redshift ODBC driver.
  2. Create a system DSN entry.
    1. In the Start menu, locate the driver folder or folders:
      • Amazon Redshift ODBC Driver (32-bit)
      • Amazon Redshift ODBC Driver (64-bit)
      • If you installed both drivers, you have a folder for each driver.
    2. Choose ODBC Administrator, and then type your administrator credentials.
    3. To configure the driver for all users on the computer, choose System DSN. To configure the driver for your user account only, choose User DSN.
    4. Choose Add.
  3. Select the Amazon Redshift ODBC driver, and choose Finish. Configure the following attributes:
    Data Source Name =any friendly name to identify the ODBC connection 
    Database=analytics
    user=uma(corporate user name)
    Auth Type-Identity Provider: AD FS
    password=leave blank (Windows automatically authenticates)
    Cluster ID: examplecorp-dw
    idp_host=demo.examplecorp.com (The name of the corporate IdP host)

This configuration looks like the following:

  1. Choose OK to save the ODBC connection.
  2. Verify that uma is set up with the SAML attributes, as described in the “Set up IdPs and federation” section.

The user uma can now use this ODBC connection to establish the connection to the Amazon Redshift cluster using any ODBC-based tools or reporting tools such as Tableau. Internally, uma authenticates using the Sales_DW_IAM_Policy  IAM role and is assigned the sales_grp database group.

Step 7: Connecting to Amazon Redshift using Python and IAM credentials

To enable partners, connect to the examplecorp-dw cluster programmatically, using Python on a computer such as Amazon EC2 instance. Reuse the IAM users that are attached to the Partner_DW_IAM_Policy policy defined in Step 2.

The following steps show this set up on an EC2 instance:

  1. Launch a new EC2 instance with the Partner_DW_IAM_Policy role, as described in Using an IAM Role to Grant Permissions to Applications Running on Amazon EC2 Instances. Alternatively, you can attach an existing IAM role to an EC2 instance.
  2. This example uses Python PostgreSQL Driver (PyGreSQL) to connect to your Amazon Redshift clusters. To install PyGreSQL on Amazon Linux, use the following command as the ec2-user:
    sudo easy_install pip
    sudo yum install postgresql postgresql-devel gcc python-devel
    sudo pip install PyGreSQL

  1. The following code snippet demonstrates programmatic access to Amazon Redshift for partner users:
    #!/usr/bin/env python
    """
    Usage:
    python redshift-unload-copy.py <config file> <region>
    
    * Copyright 2014, Amazon.com, Inc. or its affiliates. All Rights Reserved.
    *
    * Licensed under the Amazon Software License (the "License").
    * You may not use this file except in compliance with the License.
    * A copy of the License is located at
    *
    * http://aws.amazon.com/asl/
    *
    * or in the "license" file accompanying this file. This file is distributed
    * on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
    * express or implied. See the License for the specific language governing
    * permissions and limitations under the License.
    """
    
    import sys
    import pg
    import boto3
    
    REGION = 'us-west-2'
    CLUSTER_IDENTIFIER = 'examplecorp-dw'
    DB_NAME = 'sales_db'
    DB_USER = 'examplecorpsalespartner'
    
    options = """keepalives=1 keepalives_idle=200 keepalives_interval=200
                 keepalives_count=6"""
    
    set_timeout_stmt = "set statement_timeout = 1200000"
    
    def conn_to_rs(host, port, db, usr, pwd, opt=options, timeout=set_timeout_stmt):
        rs_conn_string = """host=%s port=%s dbname=%s user=%s password=%s
                             %s""" % (host, port, db, usr, pwd, opt)
        print "Connecting to %s:%s:%s as %s" % (host, port, db, usr)
        rs_conn = pg.connect(dbname=rs_conn_string)
        rs_conn.query(timeout)
        return rs_conn
    
    def main():
        # describe the cluster and fetch the IAM temporary credentials
        global redshift_client
        redshift_client = boto3.client('redshift', region_name=REGION)
        response_cluster_details = redshift_client.describe_clusters(ClusterIdentifier=CLUSTER_IDENTIFIER)
        response_credentials = redshift_client.get_cluster_credentials(DbUser=DB_USER,DbName=DB_NAME,ClusterIdentifier=CLUSTER_IDENTIFIER,DurationSeconds=3600)
        rs_host = response_cluster_details['Clusters'][0]['Endpoint']['Address']
        rs_port = response_cluster_details['Clusters'][0]['Endpoint']['Port']
        rs_db = DB_NAME
        rs_iam_user = response_credentials['DbUser']
        rs_iam_pwd = response_credentials['DbPassword']
        # connect to the Amazon Redshift cluster
        conn = conn_to_rs(rs_host, rs_port, rs_db, rs_iam_user,rs_iam_pwd)
        # execute a query
        result = conn.query("SELECT sysdate as dt")
        # fetch results from the query
        for dt_val in result.getresult() :
            print dt_val
        # close the Amazon Redshift connection
        conn.close()
    
    if __name__ == "__main__":
        main()

You can save this Python program in a file (redshiftscript.py) and execute it at the command line as ec2-user:

python redshiftscript.py

Now partners can connect to the Amazon Redshift cluster using the Python script, and authentication is federated through the IAM user.

Summary

In this post, I demonstrated how to use federated access using Active Directory and IAM roles to enable single sign-on to an Amazon Redshift cluster. I also showed how partners outside an organization can be managed easily using IAM credentials.  Using the GetClusterCredentials API action, now supported by Amazon Redshift, lets you manage a large number of database users and have them use corporate credentials to log in. You don’t have to maintain separate database user accounts.

Although this post demonstrated the integration of IAM with AD FS and Active Directory, you can replicate this solution across with your choice of SAML 2.0 third-party identity providers (IdP), such as PingFederate or Okta. For the different supported federation options, see Configure SAML Assertions for Your IdP.

If you have questions or suggestions, please comment below.


Additional Reading

Learn how to establish federated access to your AWS resources by using Active Directory user attributes.


About the Author

Thiyagarajan Arumugam is a Big Data Solutions Architect at Amazon Web Services and designs customer architectures to process data at scale. Prior to AWS, he built data warehouse solutions at Amazon.com. In his free time, he enjoys all outdoor sports and practices the Indian classical drum mridangam.

 

JavaScript got better while I wasn’t looking

Post Syndicated from Eevee original https://eev.ee/blog/2017/10/07/javascript-got-better-while-i-wasnt-looking/

IndustrialRobot has generously donated in order to inquire:

In the last few years there seems to have been a lot of activity with adding emojis to Unicode. Has there been an equal effort to add ‘real’ languages/glyph systems/etc?

And as always, if you don’t have anything to say on that topic, feel free to choose your own. :p

Yes.

I mean, each release of Unicode lists major new additions right at the top — Unicode 10, Unicode 9, Unicode 8, etc. They also keep fastidious notes, so you can also dig into how and why these new scripts came from, by reading e.g. the proposal for the addition of Zanabazar Square. I don’t think I have much to add here; I’m not a real linguist, I only play one on TV.

So with that out of the way, here’s something completely different!

A brief history of JavaScript

JavaScript was created in seven days, about eight thousand years ago. It was pretty rough, and it stayed rough for most of its life. But that was fine, because no one used it for anything besides having a trail of sparkles follow your mouse on their Xanga profile.

Then people discovered you could actually do a handful of useful things with JavaScript, and it saw a sharp uptick in usage. Alas, it stayed pretty rough. So we came up with polyfills and jQuerys and all kinds of miscellaneous things that tried to smooth over the rough parts, to varying degrees of success.

And… that’s it. That’s pretty much how things stayed for a while.


I have complicated feelings about JavaScript. I don’t hate it… but I certainly don’t enjoy it, either. It has some pretty neat ideas, like prototypical inheritance and “everything is a value”, but it buries them under a pile of annoying quirks and a woefully inadequate standard library. The DOM APIs don’t make things much better — they seem to be designed as though the target language were Java, rarely taking advantage of any interesting JavaScript features. And the places where the APIs overlap with the language are a hilarious mess: I have to check documentation every single time I use any API that returns a set of things, because there are at least three totally different conventions for handling that and I can’t keep them straight.

The funny thing is that I’ve been fairly happy to work with Lua, even though it shares most of the same obvious quirks as JavaScript. Both languages are weakly typed; both treat nonexistent variables and keys as simply false values, rather than errors; both have a single data structure that doubles as both a list and a map; both use 64-bit floating-point as their only numeric type (though Lua added integers very recently); both lack a standard object model; both have very tiny standard libraries. Hell, Lua doesn’t even have exceptions, not really — you have to fake them in much the same style as Perl.

And yet none of this bothers me nearly as much in Lua. The differences between the languages are very subtle, but combined they make a huge impact.

  • Lua has separate operators for addition and concatenation, so + is never ambiguous. It also has printf-style string formatting in the standard library.

  • Lua’s method calls are syntactic sugar: foo:bar() just means foo.bar(foo). Lua doesn’t even have a special this or self value; the invocant just becomes the first argument. In contrast, JavaScript invokes some hand-waved magic to set its contextual this variable, which has led to no end of confusion.

  • Lua has an iteration protocol, as well as built-in iterators for dealing with list-style or map-style data. JavaScript has a special dedicated Array type and clumsy built-in iteration syntax.

  • Lua has operator overloading and (surprisingly flexible) module importing.

  • Lua allows the keys of a map to be any value (though non-scalars are always compared by identity). JavaScript implicitly converts keys to strings — and since there’s no operator overloading, there’s no way to natively fix this.

These are fairly minor differences, in the grand scheme of language design. And almost every feature in Lua is implemented in a ridiculously simple way; in fact the entire language is described in complete detail in a single web page. So writing JavaScript is always frustrating for me: the language is so close to being much more ergonomic, and yet, it isn’t.

Or, so I thought. As it turns out, while I’ve been off doing other stuff for a few years, browser vendors have been implementing all this pie-in-the-sky stuff from “ES5” and “ES6”, whatever those are. People even upgrade their browsers now. Lo and behold, the last time I went to write JavaScript, I found out that a number of papercuts had actually been solved, and the solutions were sufficiently widely available that I could actually use them in web code.

The weird thing is that I do hear a lot about JavaScript, but the feature I’ve seen raved the most about by far is probably… built-in types for working with arrays of bytes? That’s cool and all, but not exactly the most pressing concern for me.

Anyway, if you also haven’t been keeping tabs on the world of JavaScript, here are some things we missed.

let

MDN docs — supported in Firefox 44, Chrome 41, IE 11, Safari 10

I’m pretty sure I first saw let over a decade ago. Firefox has supported it for ages, but you actually had to opt in by specifying JavaScript version 1.7. Remember JavaScript versions? You know, from back in the days when people actually suggested you write stuff like this:

1
<SCRIPT LANGUAGE="JavaScript1.2" TYPE="text/javascript">

Yikes.

Anyway, so, let declares a variable — but scoped to the immediately containing block, unlike var, which scopes to the innermost function. The trouble with var was that it was very easy to make misleading:

1
2
3
4
5
6
// foo exists here
while (true) {
    var foo = ...;
    ...
}
// foo exists here too

If you reused the same temporary variable name in a different block, or if you expected to be shadowing an outer foo, or if you were trying to do something with creating closures in a loop, this would cause you some trouble.

But no more, because let actually scopes the way it looks like it should, the way variable declarations do in C and friends. As an added bonus, if you refer to a variable declared with let outside of where it’s valid, you’ll get a ReferenceError instead of a silent undefined value. Hooray!

There’s one other interesting quirk to let that I can’t find explicitly documented. Consider:

1
2
3
4
5
6
7
let closures = [];
for (let i = 0; i < 4; i++) {
    closures.push(function() { console.log(i); });
}
for (let j = 0; j < closures.length; j++) {
    closures[j]();
}

If this code had used var i, then it would print 4 four times, because the function-scoped var i means each closure is sharing the same i, whose final value is 4. With let, the output is 0 1 2 3, as you might expect, because each run through the loop gets its own i.

But wait, hang on.

The semantics of a C-style for are that the first expression is only evaluated once, at the very beginning. So there’s only one let i. In fact, it makes no sense for each run through the loop to have a distinct i, because the whole idea of the loop is to modify i each time with i++.

I assume this is simply a special case, since it’s what everyone expects. We expect it so much that I can’t find anyone pointing out that the usual explanation for why it works makes no sense. It has the interesting side effect that for no longer de-sugars perfectly to a while, since this will print all 4s:

1
2
3
4
5
6
7
8
9
closures = [];
let i = 0;
while (i < 4) {
    closures.push(function() { console.log(i); });
    i++;
}
for (let j = 0; j < closures.length; j++) {
    closures[j]();
}

This isn’t a problem — I’m glad let works this way! — it just stands out to me as interesting. Lua doesn’t need a special case here, since it uses an iterator protocol that produces values rather than mutating a visible state variable, so there’s no problem with having the loop variable be truly distinct on each run through the loop.

Classes

MDN docs — supported in Firefox 45, Chrome 42, Safari 9, Edge 13

Prototypical inheritance is pretty cool. The way JavaScript presents it is a little bit opaque, unfortunately, which seems to confuse a lot of people. JavaScript gives you enough functionality to make it work, and even makes it sound like a first-class feature with a property outright called prototype… but to actually use it, you have to do a bunch of weird stuff that doesn’t much look like constructing an object or type.

The funny thing is, people with almost any background get along with Python just fine, and Python uses prototypical inheritance! Nobody ever seems to notice this, because Python tucks it neatly behind a class block that works enough like a Java-style class. (Python also handles inheritance without using the prototype, so it’s a little different… but I digress. Maybe in another post.)

The point is, there’s nothing fundamentally wrong with how JavaScript handles objects; the ergonomics are just terrible.

Lo! They finally added a class keyword. Or, rather, they finally made the class keyword do something; it’s been reserved this entire time.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
class Vector {
    constructor(x, y) {
        this.x = x;
        this.y = y;
    }

    get magnitude() {
        return Math.sqrt(this.x * this.x + this.y * this.y);
    }

    dot(other) {
        return this.x * other.x + this.y * other.y;
    }
}

This is all just sugar for existing features: creating a Vector function to act as the constructor, assigning a function to Vector.prototype.dot, and whatever it is you do to make a property. (Oh, there are properties. I’ll get to that in a bit.)

The class block can be used as an expression, with or without a name. It also supports prototypical inheritance with an extends clause and has a super pseudo-value for superclass calls.

It’s a little weird that the inside of the class block has its own special syntax, with function omitted and whatnot, but honestly you’d have a hard time making a class block without special syntax.

One severe omission here is that you can’t declare values inside the block, i.e. you can’t just drop a bar = 3; in there if you want all your objects to share a default attribute. The workaround is to just do this.bar = 3; inside the constructor, but I find that unsatisfying, since it defeats half the point of using prototypes.

Properties

MDN docs — supported in Firefox 4, Chrome 5, IE 9, Safari 5.1

JavaScript historically didn’t have a way to intercept attribute access, which is a travesty. And by “intercept attribute access”, I mean that you couldn’t design a value foo such that evaluating foo.bar runs some code you wrote.

Exciting news: now it does. Or, rather, you can intercept specific attributes, like in the class example above. The above magnitude definition is equivalent to:

1
2
3
4
5
6
7
Object.defineProperty(Vector.prototype, 'magnitude', {
    configurable: true,
    enumerable: true,
    get: function() {
        return Math.sqrt(this.x * this.x + this.y * this.y);
    },
});

Beautiful.

And what even are these configurable and enumerable things? It seems that every single key on every single object now has its own set of three Boolean twiddles:

  • configurable means the property itself can be reconfigured with another call to Object.defineProperty.
  • enumerable means the property appears in for..in or Object.keys().
  • writable means the property value can be changed, which only applies to properties with real values rather than accessor functions.

The incredibly wild thing is that for properties defined by Object.defineProperty, configurable and enumerable default to false, meaning that by default accessor properties are immutable and invisible. Super weird.

Nice to have, though. And luckily, it turns out the same syntax as in class also works in object literals.

1
2
3
4
5
6
Vector.prototype = {
    get magnitude() {
        return Math.sqrt(this.x * this.x + this.y * this.y);
    },
    ...
};

Alas, I’m not aware of a way to intercept arbitrary attribute access.

Another feature along the same lines is Object.seal(), which marks all of an object’s properties as non-configurable and prevents any new properties from being added to the object. The object is still mutable, but its “shape” can’t be changed. And of course you can just make the object completely immutable if you want, via setting all its properties non-writable, or just using Object.freeze().

I have mixed feelings about the ability to irrevocably change something about a dynamic runtime. It would certainly solve some gripes of former Haskell-minded colleagues, and I don’t have any compelling argument against it, but it feels like it violates some unwritten contract about dynamic languages — surely any structural change made by user code should also be able to be undone by user code?

Slurpy arguments

MDN docs — supported in Firefox 15, Chrome 47, Edge 12, Safari 10

Officially this feature is called “rest parameters”, but that’s a terrible name, no one cares about “arguments” vs “parameters”, and “slurpy” is a good word. Bless you, Perl.

1
2
3
function foo(a, b, ...args) {
    // ...
}

Now you can call foo with as many arguments as you want, and every argument after the second will be collected in args as a regular array.

You can also do the reverse with the spread operator:

1
2
3
4
5
let args = [];
args.push(1);
args.push(2);
args.push(3);
foo(...args);

It even works in array literals, even multiple times:

1
2
let args2 = [...args, ...args];
console.log(args2);  // [1, 2, 3, 1, 2, 3]

Apparently there’s also a proposal for allowing the same thing with objects inside object literals.

Default arguments

MDN docs — supported in Firefox 15, Chrome 49, Edge 14, Safari 10

Yes, arguments can have defaults now. It’s more like Sass than Python — default expressions are evaluated once per call, and later default expressions can refer to earlier arguments. I don’t know how I feel about that but whatever.

1
2
3
function foo(n = 1, m = n + 1, list = []) {
    ...
}

Also, unlike Python, you can have an argument with a default and follow it with an argument without a default, since the default default (!) is and always has been defined as undefined. Er, let me just write it out.

1
2
3
function bar(a = 5, b) {
    ...
}

Arrow functions

MDN docs — supported in Firefox 22, Chrome 45, Edge 12, Safari 10

Perhaps the most humble improvement is the arrow function. It’s a slightly shorter way to write an anonymous function.

1
2
3
(a, b, c) => { ... }
a => { ... }
() => { ... }

An arrow function does not set this or some other magical values, so you can safely use an arrow function as a quick closure inside a method without having to rebind this. Hooray!

Otherwise, arrow functions act pretty much like regular functions; you can even use all the features of regular function signatures.

Arrow functions are particularly nice in combination with all the combinator-style array functions that were added a while ago, like Array.forEach.

1
2
3
[7, 8, 9].forEach(value => {
    console.log(value);
});

Symbol

MDN docs — supported in Firefox 36, Chrome 38, Edge 12, Safari 9

This isn’t quite what I’d call an exciting feature, but it’s necessary for explaining the next one. It’s actually… extremely weird.

symbol is a new kind of primitive (like number and string), not an object (like, er, Number and String). A symbol is created with Symbol('foo'). No, not new Symbol('foo'); that throws a TypeError, for, uh, some reason.

The only point of a symbol is as a unique key. You see, symbols have one very special property: they can be used as object keys, and will not be stringified. Remember, only strings can be keys in JavaScript — even the indices of an array are, semantically speaking, still strings. Symbols are a new exception to this rule.

Also, like other objects, two symbols don’t compare equal to each other: Symbol('foo') != Symbol('foo').

The result is that symbols solve one of the problems that plauges most object systems, something I’ve talked about before: interfaces. Since an interface might be implemented by any arbitrary type, and any arbitrary type might want to implement any number of arbitrary interfaces, all the method names on an interface are effectively part of a single global namespace.

I think I need to take a moment to justify that. If you have IFoo and IBar, both with a method called method, and you want to implement both on the same type… you have a problem. Because most object systems consider “interface” to mean “I have a method called method, with no way to say which interface’s method you mean. This is a hard problem to avoid, because IFoo and IBar might not even come from the same library. Occasionally languages offer a clumsy way to “rename” one method or the other, but the most common approach seems to be for interface designers to avoid names that sound “too common”. You end up with redundant mouthfuls like IFoo.foo_method.

This incredibly sucks, and the only languages I’m aware of that avoid the problem are the ML family and Rust. In Rust, you define all the methods for a particular trait (interface) in a separate block, away from the type’s “own” methods. It’s pretty slick. You can still do obj.method(), and as long as there’s only one method among all the available traits, you’ll get that one. If not, there’s syntax for explicitly saying which trait you mean, which I can’t remember because I’ve never had to use it.

Symbols are JavaScript’s answer to this problem. If you want to define some interface, you can name its methods with symbols, which are guaranteed to be unique. You just have to make sure you keep the symbol around somewhere accessible so other people can actually use it. (Or… not?)

The interesting thing is that JavaScript now has several of its own symbols built in, allowing user objects to implement features that were previously reserved for built-in types. For example, you can use the Symbol.hasInstance symbol — which is simply where the language is storing an existing symbol and is not the same as Symbol('hasInstance')! — to override instanceof:

1
2
3
4
5
6
7
8
// oh my god don't do this though
class EvenNumber {
    static [Symbol.hasInstance](obj) {
        return obj % 2 == 0;
    }
}
console.log(2 instanceof EvenNumber);  // true
console.log(3 instanceof EvenNumber);  // false

Oh, and those brackets around Symbol.hasInstance are a sort of reverse-quoting — they indicate an expression to use where the language would normally expect a literal identifier. I think they work as object keys, too, and maybe some other places.

The equivalent in Python is to implement a method called __instancecheck__, a name which is not special in any way except that Python has reserved all method names of the form __foo__. That’s great for Python, but doesn’t really help user code. JavaScript has actually outclassed (ho ho) Python here.

Of course, obj[BobNamespace.some_method]() is not the prettiest way to call an interface method, so it’s not perfect. I imagine this would be best implemented in user code by exposing a polymorphic function, similar to how Python’s len(obj) pretty much just calls obj.__len__().

I only bring this up because it’s the plumbing behind one of the most incredible things in JavaScript that I didn’t even know about until I started writing this post. I’m so excited oh my gosh. Are you ready? It’s:

Iteration protocol

MDN docs — supported in Firefox 27, Chrome 39, Safari 10; still experimental in Edge

Yes! Amazing! JavaScript has first-class support for iteration! I can’t even believe this.

It works pretty much how you’d expect, or at least, how I’d expect. You give your object a method called Symbol.iterator, and that returns an iterator.

What’s an iterator? It’s an object with a next() method that returns the next value and whether the iterator is exhausted.

Wait, wait, wait a second. Hang on. The method is called next? Really? You didn’t go for Symbol.next? Python 2 did exactly the same thing, then realized its mistake and changed it to __next__ in Python 3. Why did you do this?

Well, anyway. My go-to test of an iterator protocol is how hard it is to write an equivalent to Python’s enumerate(), which takes a list and iterates over its values and their indices. In Python it looks like this:

1
2
3
4
5
for i, value in enumerate(['one', 'two', 'three']):
    print(i, value)
# 0 one
# 1 two
# 2 three

It’s super nice to have, and I’m always amazed when languages with “strong” “support” for iteration don’t have it. Like, C# doesn’t. So if you want to iterate over a list but also need indices, you need to fall back to a C-style for loop. And if you want to iterate over a lazy or arbitrary iterable but also need indices, you need to track it yourself with a counter. Ridiculous.

Here’s my attempt at building it in JavaScript.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
function enumerate(iterable) {
    // Return a new iter*able* object with a Symbol.iterator method that
    // returns an iterator.
    return {
        [Symbol.iterator]: function() {
            let iterator = iterable[Symbol.iterator]();
            let i = 0;

            return {
                next: function() {
                    let nextval = iterator.next();
                    if (! nextval.done) {
                        nextval.value = [i, nextval.value];
                        i++;
                    }
                    return nextval;
                },
            };
        },
    };
}
for (let [i, value] of enumerate(['one', 'two', 'three'])) {
    console.log(i, value);
}
// 0 one
// 1 two
// 2 three

Incidentally, for..of (which iterates over a sequence, unlike for..in which iterates over keys — obviously) is finally supported in Edge 12. Hallelujah.

Oh, and let [i, value] is destructuring assignment, which is also a thing now and works with objects as well. You can even use the splat operator with it! Like Python! (And you can use it in function signatures! Like Python! Wait, no, Python decided that was terrible and removed it in 3…)

1
let [x, y, ...others] = ['apple', 'orange', 'cherry', 'banana'];

It’s a Halloween miracle. 🎃

Generators

MDN docs — supported in Firefox 26, Chrome 39, Edge 13, Safari 10

That’s right, JavaScript has goddamn generators now. It’s basically just copying Python and adding a lot of superfluous punctuation everywhere. Not that I’m complaining.

Also, generators are themselves iterable, so I’m going to cut to the chase and rewrite my enumerate() with a generator.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
function enumerate(iterable) {
    return {
        [Symbol.iterator]: function*() {
            let i = 0;
            for (let value of iterable) {
                yield [i, value];
                i++;
            }
        },
    };
}
for (let [i, value] of enumerate(['one', 'two', 'three'])) {
    console.log(i, value);
}
// 0 one
// 1 two
// 2 three

Amazing. function* is a pretty strange choice of syntax, but whatever? I guess it also lets them make yield only act as a keyword inside a generator, for ultimate backwards compatibility.

JavaScript generators support everything Python generators do: yield* yields every item from a subsequence, like Python’s yield from; generators can return final values; you can pass values back into the generator if you iterate it by hand. No, really, I wasn’t kidding, it’s basically just copying Python. It’s great. You could now built asyncio in JavaScript!

In fact, they did that! JavaScript now has async and await. An async function returns a Promise, which is also a built-in type now. Amazing.

Sets and maps

MDN docs for MapMDN docs for Set — supported in Firefox 13, Chrome 38, IE 11, Safari 7.1

I did not save the best for last. This is much less exciting than generators. But still exciting.

The only data structure in JavaScript is the object, a map where the strings are keys. (Or now, also symbols, I guess.) That means you can’t readily use custom values as keys, nor simulate a set of arbitrary objects. And you have to worry about people mucking with Object.prototype, yikes.

But now, there’s Map and Set! Wow.

Unfortunately, because JavaScript, Map couldn’t use the indexing operators without losing the ability to have methods, so you have to use a boring old method-based API. But Map has convenient methods that plain objects don’t, like entries() to iterate over pairs of keys and values. In fact, you can use a map with for..of to get key/value pairs. So that’s nice.

Perhaps more interesting, there’s also now a WeakMap and WeakSet, where the keys are weak references. I don’t think JavaScript had any way to do weak references before this, so that’s pretty slick. There’s no obvious way to hold a weak value, but I guess you could substitute a WeakSet with only one item.

Template literals

MDN docs — supported in Firefox 34, Chrome 41, Edge 12, Safari 9

Template literals are JavaScript’s answer to string interpolation, which has historically been a huge pain in the ass because it doesn’t even have string formatting in the standard library.

They’re just strings delimited by backticks instead of quotes. They can span multiple lines and contain expressions.

1
2
console.log(`one plus
two is ${1 + 2}`);

Someone decided it would be a good idea to allow nesting more sets of backticks inside a ${} expression, so, good luck to syntax highlighters.

However, someone also had the most incredible idea ever, which was to add syntax allowing user code to do the interpolation — so you can do custom escaping, when absolutely necessary, which is virtually never, because “escaping” means you’re building a structured format by slopping strings together willy-nilly instead of using some API that works with the structure.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
// OF COURSE, YOU SHOULDN'T BE DOING THIS ANYWAY; YOU SHOULD BUILD HTML WITH
// THE DOM API AND USE .textContent FOR LITERAL TEXT.  BUT AS AN EXAMPLE:
function html(literals, ...values) {
    let ret = [];
    literals.forEach((literal, i) => {
        if (i > 0) {
            // Is there seriously still not a built-in function for doing this?
            // Well, probably because you SHOULDN'T BE DOING IT
            ret.push(values[i - 1]
                .replace(/&/g, '&amp;')
                .replace(/</g, '&lt;')
                .replace(/>/g, '&gt;')
                .replace(/"/g, '&quot;')
                .replace(/'/g, '&apos;'));
        }
        ret.push(literal);
    });
    return ret.join('');
}
let username = 'Bob<script>';
let result = html`<b>Hello, ${username}!</b>`;
console.log(result);
// <b>Hello, Bob&lt;script&gt;!</b>

It’s a shame this feature is in JavaScript, the language where you are least likely to need it.

Trailing commas

Remember how you couldn’t do this for ages, because ass-old IE considered it a syntax error and would reject the entire script?

1
2
3
4
5
{
    a: 'one',
    b: 'two',
    c: 'three',  // <- THIS GUY RIGHT HERE
}

Well now it’s part of the goddamn spec and if there’s anything in this post you can rely on, it’s this. In fact you can use AS MANY GODDAMN TRAILING COMMAS AS YOU WANT. But only in arrays.

1
[1, 2, 3,,,,,,,,,,,,,,,,,,,,,,,,,]

Apparently that has the bizarre side effect of reserving extra space at the end of the array, without putting values there.

And more, probably

Like strict mode, which makes a few silent “errors” be actual errors, forces you to declare variables (no implicit globals!), and forbids the completely bozotic with block.

Or String.trim(), which trims whitespace off of strings.

Or… Math.sign()? That’s new? Seriously? Well, okay.

Or the Proxy type, which lets you customize indexing and assignment and calling. Oh. I guess that is possible, though this is a pretty weird way to do it; why not just use symbol-named methods?

You can write Unicode escapes for astral plane characters in strings (or identifiers!), as \u{XXXXXXXX}.

There’s a const now? I extremely don’t care, just name it in all caps and don’t reassign it, come on.

There’s also a mountain of other minor things, which you can peruse at your leisure via MDN or the ECMAScript compatibility tables (note the links at the top, too).

That’s all I’ve got. I still wouldn’t say I’m a big fan of JavaScript, but it’s definitely making an effort to clean up some goofy inconsistencies and solve common problems. I think I could even write some without yelling on Twitter about it now.

On the other hand, if you’re still stuck supporting IE 10 for some reason… well, er, my condolences.