Tag Archives: petya

Supply-Chain Security

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2018/05/supply-chain_se.html

Earlier this month, the Pentagon stopped selling phones made by the Chinese companies ZTE and Huawei on military bases because they might be used to spy on their users.

It’s a legitimate fear, and perhaps a prudent action. But it’s just one instance of the much larger issue of securing our supply chains.

All of our computerized systems are deeply international, and we have no choice but to trust the companies and governments that touch those systems. And while we can ban a few specific products, services or companies, no country can isolate itself from potential foreign interference.

In this specific case, the Pentagon is concerned that the Chinese government demanded that ZTE and Huawei add “backdoors” to their phones that could be surreptitiously turned on by government spies or cause them to fail during some future political conflict. This tampering is possible because the software in these phones is incredibly complex. It’s relatively easy for programmers to hide these capabilities, and correspondingly difficult to detect them.

This isn’t the first time the United States has taken action against foreign software suspected to contain hidden features that can be used against us. Last December, President Trump signed into law a bill banning software from the Russian company Kaspersky from being used within the US government. In 2012, the focus was on Chinese-made Internet routers. Then, the House Intelligence Committee concluded: “Based on available classified and unclassified information, Huawei and ZTE cannot be trusted to be free of foreign state influence and thus pose a security threat to the United States and to our systems.”

Nor is the United States the only country worried about these threats. In 2014, China reportedly banned antivirus products from both Kaspersky and the US company Symantec, based on similar fears. In 2017, the Indian government identified 42 smartphone apps that China subverted. Back in 1997, the Israeli company Check Point was dogged by rumors that its government added backdoors into its products; other of that country’s tech companies have been suspected of the same thing. Even al-Qaeda was concerned; ten years ago, a sympathizer released the encryption software Mujahedeen Secrets, claimed to be free of Western influence and backdoors. If a country doesn’t trust another country, then it can’t trust that country’s computer products.

But this trust isn’t limited to the country where the company is based. We have to trust the country where the software is written — and the countries where all the components are manufactured. In 2016, researchers discovered that many different models of cheap Android phones were sending information back to China. The phones might be American-made, but the software was from China. In 2016, researchers demonstrated an even more devious technique, where a backdoor could be added at the computer chip level in the factory that made the chips ­ without the knowledge of, and undetectable by, the engineers who designed the chips in the first place. Pretty much every US technology company manufactures its hardware in countries such as Malaysia, Indonesia, China and Taiwan.

We also have to trust the programmers. Today’s large software programs are written by teams of hundreds of programmers scattered around the globe. Backdoors, put there by we-have-no-idea-who, have been discovered in Juniper firewalls and D-Link routers, both of which are US companies. In 2003, someone almost slipped a very clever backdoor into Linux. Think of how many countries’ citizens are writing software for Apple or Microsoft or Google.

We can go even farther down the rabbit hole. We have to trust the distribution systems for our hardware and software. Documents disclosed by Edward Snowden showed the National Security Agency installing backdoors into Cisco routers being shipped to the Syrian telephone company. There are fake apps in the Google Play store that eavesdrop on you. Russian hackers subverted the update mechanism of a popular brand of Ukrainian accounting software to spread the NotPetya malware.

In 2017, researchers demonstrated that a smartphone can be subverted by installing a malicious replacement screen.

I could go on. Supply-chain security is an incredibly complex problem. US-only design and manufacturing isn’t an option; the tech world is far too internationally interdependent for that. We can’t trust anyone, yet we have no choice but to trust everyone. Our phones, computers, software and cloud systems are touched by citizens of dozens of different countries, any one of whom could subvert them at the demand of their government. And just as Russia is penetrating the US power grid so they have that capability in the event of hostilities, many countries are almost certainly doing the same thing at the consumer level.

We don’t know whether the risk of Huawei and ZTE equipment is great enough to warrant the ban. We don’t know what classified intelligence the United States has, and what it implies. But we do know that this is just a minor fix for a much larger problem. It’s doubtful that this ban will have any real effect. Members of the military, and everyone else, can still buy the phones. They just can’t buy them on US military bases. And while the US might block the occasional merger or acquisition, or ban the occasional hardware or software product, we’re largely ignoring that larger issue. Solving it borders on somewhere between incredibly expensive and realistically impossible.

Perhaps someday, global norms and international treaties will render this sort of device-level tampering off-limits. But until then, all we can do is hope that this particular arms race doesn’t get too far out of control.

This essay previously appeared in the Washington Post.

WannaCry after one year

Post Syndicated from Robert Graham original https://blog.erratasec.com/2018/03/wannacry-after-one-year.html

In the news, Boeing (an aircraft maker) has been “targeted by a WannaCry virus attack”. Phrased this way, it’s implausible. There are no new attacks targeting people with WannaCry. There is either no WannaCry, or it’s simply a continuation of the attack from a year ago.


It’s possible what happened is that an anti-virus product called a new virus “WannaCry”. Virus families are often related, and sometimes a distant relative gets called the same thing. I know this watching the way various anti-virus products label my own software, which isn’t a virus, but which virus writers often include with their own stuff. The Lazarus group, which is believed to be responsible for WannaCry, have whole virus families like this. Thus, just because an AV product claims you are infected with WannaCry doesn’t mean it’s the same thing that everyone else is calling WannaCry.

Famously, WannaCry was the first virus/ransomware/worm that used the NSA ETERNALBLUE exploit. Other viruses have since added the exploit, and of course, hackers use it when attacking systems. It may be that a network intrusion detection system detected ETERNALBLUE, which people then assumed was due to WannaCry. It may actually have been an nPetya infection instead (nPetya was the second major virus/worm/ransomware to use the exploit).

Or it could be the real WannaCry, but it’s probably not a new “attack” that “targets” Boeing. Instead, it’s likely a continuation from WannaCry’s first appearance. WannaCry is a worm, which means it spreads automatically after it was launched, for years, without anybody in control. Infected machines still exist, unnoticed by their owners, attacking random machines on the Internet. If you plug in an unpatched computer onto the raw Internet, without the benefit of a firewall, it’ll get infected within an hour.

However, the Boeing manufacturing systems that were infected were not on the Internet, so what happened? The narrative from the news stories imply some nefarious hacker activity that “targeted” Boeing, but that’s unlikely.

We have now have over 15 years of experience with network worms getting into strange places disconnected and even “air gapped” from the Internet. The most common reason is laptops. Somebody takes their laptop to some place like an airport WiFi network, and gets infected. They put their laptop to sleep, then wake it again when they reach their destination, and plug it into the manufacturing network. At this point, the virus spreads and infects everything. This is especially the case with maintenance/support engineers, who often have specialized software they use to control manufacturing machines, for which they have a reason to connect to the local network even if it doesn’t have useful access to the Internet. A single engineer may act as a sort of Typhoid Mary, going from customer to customer, infecting each in turn whenever they open their laptop.

Another cause for infection is virtual machines. A common practice is to take “snapshots” of live machines and save them to backups. Should the virtual machine crash, instead of rebooting it, it’s simply restored from the backed up running image. If that backup image is infected, then bringing it out of sleep will allow the worm to start spreading.

Jake Williams claims he’s seen three other manufacturing networks infected with WannaCry. Why does manufacturing seem more susceptible? The reason appears to be the “killswitch” that stops WannaCry from running elsewhere. The killswitch uses a DNS lookup, stopping itself if it can resolve a certain domain. Manufacturing networks are largely disconnected from the Internet enough that such DNS lookups don’t work, so the domain can’t be found, so the killswitch doesn’t work. Thus, manufacturing systems are no more likely to get infected, but the lack of killswitch means the virus will continue to run, attacking more systems instead of immediately killing itself.

One solution to this would be to setup sinkhole DNS servers on the network that resolve all unknown DNS queries to a single server that logs all requests. This is trivially setup with most DNS servers. The logs will quickly identify problems on the network, as well as any hacker or virus activity. The side effect is that it would make this killswitch kill WannaCry. WannaCry isn’t sufficient reason to setup sinkhole servers, of course, but it’s something I’ve found generally useful in the past.

Conclusion

Something obviously happened to the Boeing plant, but the narrative is all wrong. Words like “targeted attack” imply things that likely didn’t happen. Facts are so loose in cybersecurity that it may not have even been WannaCry.

The real story is that the original WannaCry is still out there, still trying to spread. Simply put a computer on the raw Internet (without a firewall) and you’ll get attacked. That, somehow, isn’t news. Instead, what’s news is whenever that continued infection hits somewhere famous, like Boeing, even though (as Boeing claims) it had no important effect.

The problematic Wannacry North Korea attribution

Post Syndicated from Robert Graham original http://blog.erratasec.com/2018/01/the-problematic-wannacry-north-korea.html

Last month, the US government officially “attributed” the Wannacry ransomware worm to North Korea. This attribution has three flaws, which are a good lesson for attribution in general.

It was an accident

The most important fact about Wannacry is that it was an accident. We’ve had 30 years of experience with Internet worms teaching us that worms are always accidents. While launching worms may be intentional, their effects cannot be predicted. While they appear to have targets, like Slammer against South Korea, or Witty against the Pentagon, further analysis shows this was just a random effect that was impossible to predict ahead of time. Only in hindsight are these effects explainable.
We should hold those causing accidents accountable, too, but it’s a different accountability. The U.S. has caused more civilian deaths in its War on Terror than the terrorists caused triggering that war. But we hold these to be morally different: the terrorists targeted the innocent, whereas the U.S. takes great pains to avoid civilian casualties. 
Since we are talking about blaming those responsible for accidents, we also must include the NSA in that mix. The NSA created, then allowed the release of, weaponized exploits. That’s like accidentally dropping a load of unexploded bombs near a village. When those bombs are then used, those having lost the weapons are held guilty along with those using them. Yes, while we should blame the hacker who added ETERNAL BLUE to their ransomware, we should also blame the NSA for losing control of ETERNAL BLUE.

A country and its assets are different

Was it North Korea, or hackers affilliated with North Korea? These aren’t the same.

It’s hard for North Korea to have hackers of its own. It doesn’t have citizens who grow up with computers to pick from. Moreover, an internal hacking corps would create tainted citizens exposed to dangerous outside ideas. Update: Some people have pointed out that Kim Il-sung University in the capital does have some contact with the outside world, with academics granted limited Internet access, so I guess some tainting is allowed. Still, what we know of North Korea hacking efforts largley comes from hackers they employ outside North Korea. It was the Lazurus Group, outside North Korea, that did Wannacry.
Instead, North Korea develops external hacking “assets”, supporting several external hacking groups in China, Japan, and South Korea. This is similar to how intelligence agencies develop human “assets” in foreign countries. While these assets do things for their handlers, they also have normal day jobs, and do many things that are wholly independent and even sometimes against their handler’s interests.
For example, this Muckrock FOIA dump shows how “CIA assets” independently worked for Castro and assassinated a Panamanian president. That they also worked for the CIA does not make the CIA responsible for the Panamanian assassination.
That CIA/intelligence assets work this way is well-known and uncontroversial. The fact that countries use hacker assets like this is the controversial part. These hackers do act independently, yet we refuse to consider this when we want to “attribute” attacks.

Attribution is political

We have far better attribution for the nPetya attacks. It was less accidental (they clearly desired to disrupt Ukraine), and the hackers were much closer to the Russian government (Russian citizens). Yet, the Trump administration isn’t fighting Russia, they are fighting North Korea, so they don’t officially attribute nPetya to Russia, but do attribute Wannacry to North Korea.
Trump is in conflict with North Korea. He is looking for ways to escalate the conflict. Attributing Wannacry helps achieve his political objectives.
That it was blatantly politics is demonstrated by the way it was released to the press. It wasn’t released in the normal way, where the administration can stand behind it, and get challenged on the particulars. Instead, it was pre-released through the normal system of “anonymous government officials” to the NYTimes, and then backed up with op-ed in the Wall Street Journal. The government leaks information like this when it’s weak, not when its strong.

The proper way is to release the evidence upon which the decision was made, so that the public can challenge it. Among the questions the public would ask is whether it they believe it was North Korea’s intention to cause precisely this effect, such as disabling the British NHS. Or, whether it was merely hackers “affiliated” with North Korea, or hackers carrying out North Korea’s orders. We cannot challenge the government this way because the government intentionally holds itself above such accountability.

Conclusion

We believe hacking groups tied to North Korea are responsible for Wannacry. Yet, even if that’s true, we still have three attribution problems. We still don’t know if that was intentional, in pursuit of some political goal, or an accident. We still don’t know if it was at the direction of North Korea, or whether their hacker assets acted independently. We still don’t know if the government has answers to these questions, or whether it’s exploiting this doubt to achieve political support for actions against North Korea.

2017-12-27 34c3 ден 1

Post Syndicated from Vasil Kolev original https://vasil.ludost.net/blog/?p=3373

Успявам да гледам малко лекции от 34c3 (програма, streaming).

Откриването на Charlie Stross (който ми е от любимите автори) беше доста интересно, с наблюдението, че корпорациите могат да се разглеждат като начална форма на изкуствените интелекти и всякакви интересни следствия от това, струва си да се отдели малко време и да се гледа (не знам дали ще го качи в блога си).

Лекцията за геймифицираната система за социален кредит в Китай не ми каза нещо ново и не беше особено добре представена, но е добре човек да почете за ситуацията.

Харалд Велте разказа за internet-а и BBS-ите от едно време (само че в Германия), като цяло все неща, с които едно време сме си играли. Иво ме пита дали не можем да направим някаква такава лекция или да намерим история на случвалите се неща в България. Мислех си, че вече има такова нещо, ама не мога да го намеря, някой да се сеща за хубава история на ония времена?

Лекцията за Иран имаше малко полезна информация в нея, но основно не си заслужаваше. Лекцията за Саудитска Арабия също нямаше много съдържание.

Лекцията за “Low Cost Non-Invasive Biomedical Imaging” за момента ми е любима, и трябва да си вземем едно такова нещо за в лаба. Звучи като технология, с която си струва да си играем и която може много да подобри работата на всякакви лекари.

“Defeating (Not)Petya’s Cryptography” имаше полезни моменти.

Като успея да изгледам още някакви неща, ще пиша и за тях. Който иска, може директно да ходи в initLab да гледа, тъкмо ще има с кой да коментира 🙂

Update: “The Ultimate Apollo Guidance Computer Talk” се оказа страхотно, особено архитектурата на нещото, която има вид на скалъпена с тел и тиксо.

ROI is not a cybersecurity concept

Post Syndicated from Robert Graham original http://blog.erratasec.com/2017/08/roi-is-not-cybersecurity-concept.html

In the cybersecurity community, much time is spent trying to speak the language of business, in order to communicate to business leaders our problems. One way we do this is trying to adapt the concept of “return on investment” or “ROI” to explain why they need to spend more money. Stop doing this. It’s nonsense. ROI is a concept pushed by vendors in order to justify why you should pay money for their snake oil security products. Don’t play the vendor’s game.

The correct concept is simply “risk analysis”. Here’s how it works.

List out all the risks. For each risk, calculate:

  • How often it occurs.
  • How much damage it does.
  • How to mitigate it.
  • How effective the mitigation is (reduces chance and/or cost).
  • How much the mitigation costs.

If you have risk of something that’ll happen once-per-day on average, costing $1000 each time, then a mitigation costing $500/day that reduces likelihood to once-per-week is a clear win for investment.

Now, ROI should in theory fit directly into this model. If you are paying $500/day to reduce that risk, I could use ROI to show you hypothetical products that will …

  • …reduce the remaining risk to once-per-month for an additional $10/day.
  • …replace that $500/day mitigation with a $400/day mitigation.

But this is never done. Companies don’t have a sophisticated enough risk matrix in order to plug in some ROI numbers to reduce cost/risk. Instead, ROI is a calculation is done standalone by a vendor pimping product, or a security engineer building empires within the company.

If you haven’t done risk analysis to begin with (and almost none of you have), then ROI calculations are pointless.

But there are further problems. This is risk analysis as done in industries like oil and gas, which have inanimate risk. Almost all their risks are due to accidental failures, like in the Deep Water Horizon incident. In our industry, cybersecurity, risks are animate — by hackers. Our risk models are based on trying to guess what hackers might do.

An example of this problem is when our drug company jacks up the price of an HIV drug, Anonymous hackers will break in and dump all our financial data, and our CFO will go to jail. A lot of our risks come now from the technical side, but the whims and fads of the hacker community.

Another example is when some Google researcher finds a vuln in WordPress, and our website gets hacked by that three months from now. We have to forecast not only what hackers can do now, but what they might be able to do in the future.

Finally, there is this problem with cybersecurity that we really can’t distinguish between pesky and existential threats. Take ransomware. A lot of large organizations have just gotten accustomed to just wiping a few worker’s machines every day and restoring from backups. It’s a small, pesky problem of little consequence. Then one day a ransomware gets domain admin privileges and takes down the entire business for several weeks, as happened after #nPetya. Inevitably our risk models always come down on the high side of estimates, with us claiming that all threats are existential, when in fact, most companies continue to survive major breaches.

These difficulties with risk analysis leads us to punting on the problem altogether, but that’s not the right answer. No matter how faulty our risk analysis is, we still have to go through the exercise.

One model of how to do this calculation is architecture. We know we need a certain number of toilets per building, even without doing ROI on the value of such toilets. The same is true for a lot of security engineering. We know we need firewalls, encryption, and OWASP hardening, even without specifically doing a calculation. Passwords and session cookies need to go across SSL. That’s the starting point from which we start to analysis risks and mitigations — what we need beyond SSL, for example.

So stop using “ROI”, or worse, the abomination “ROSI”. Start doing risk analysis.

More on the Vulnerabilities Equities Process

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2017/08/more_on_the_vul_1.html

Richard Ledgett — a former Deputy Director of the NSA — argues against the US government disclosing all vulnerabilities:

Proponents argue that this would allow patches to be developed, which in turn would help ensure that networks are secure. On its face, this argument might seem to make sense — but it is a gross oversimplification of the problem, one that not only would not have the desired effect but that also would be dangerous.

Actually, he doesn’t make that argument at all. He basically says that security is a lot more complicated than finding and disclosing vulnerabilities — something I don’t think anyone disagrees with. His conclusion:

Malicious software like WannaCry and Petya is a scourge in our digital lives, and we need to take concerted action to protect ourselves. That action must be grounded in an accurate understanding of how the vulnerability ecosystem works. Software vendors need to continue working to build better software and to provide patching support for software deployed in critical infrastructure. Customers need to budget and plan for upgrades as part of the going-in cost of IT, or for compensatory measures when upgrades are impossible. Those who discover vulnerabilities need to responsibly disclose them or, if they are retained for national security purposes, adequately safeguard them. And the partnership of intelligence, law enforcement and industry needs to work together to identify and disrupt actors who use these vulnerabilities for their criminal and destructive ends. No single set of actions will solve the problem; we must work together to protect ourselves. As for blame, we should place it where it really lies: on the criminals who intentionally and maliciously assembled this destructive ransomware and released it on the world.

I don’t think anyone would argue with any of that, either. The question is whether the US government should prioritize attack over defense, and security over surveillance. Disclosing, especially in a world where the secrecy of zero-day vulnerabilities is so fragile, greatly improves the security of our critical systems.

Yet more reasons to disagree with experts on nPetya

Post Syndicated from Robert Graham original http://blog.erratasec.com/2017/07/yet-more-reasons-to-disagree-with.html

In WW II, they looked at planes returning from bombing missions that were shot full of holes. Their natural conclusion was to add more armor to the sections that were damaged, to protect them in the future. But wait, said the statisticians. The original damage is likely spread evenly across the plane. Damage on returning planes indicates where they could damage and still return. The undamaged areas are where they were hit and couldn’t return. Thus, it’s the undamaged areas you need to protect.

This is called survivorship bias.
Many experts are making the same mistake with regards to the nPetya ransomware. 
I hate to point this out, because they are all experts I admire and respect, especially @MalwareJake, but it’s still an error. An example is this tweet:
The context of this tweet is the discussion of why nPetya was well written with regards to spreading, but full of bugs with regards to collecting on the ransom. The conclusion therefore that it wasn’t intended to be ransomware, but was intended to simply be a “wiper”, to cause destruction.
But this is just survivorship bias. If nPetya had been written the other way, with excellent ransomware features and poor spreading, we would not now be talking about it. Even that initial seeding with the trojaned MeDoc update wouldn’t have spread it far enough.
In other words, all malware samples we get are good at spreading, either on their own, or because the creator did a good job seeding them. It’s because we never see the ones that didn’t spread.
With regards to nPetya, a lot of experts are making this claim. Since it spread so well, but had hopelessly crippled ransomware features, that must have been the intent all along. Yet, as we see from survivorship bias, none of us would’ve seen nPetya had it not been for the spreading feature.

NonPetya: no evidence it was a "smokescreen"

Post Syndicated from Robert Graham original http://blog.erratasec.com/2017/06/nonpetya-no-evidence-it-was-smokescreen.html

Many well-regarded experts claim that the not-Petya ransomware wasn’t “ransomware” at all, but a “wiper” whose goal was to destroy files, without any intent at letting victims recover their files. I want to point out that there is no real evidence of this.

Certainly, things look suspicious. For one thing, it certainly targeted the Ukraine. For another thing, it made several mistakes that prevent them from ever decrypting drives. Their email account was shutdown, and it corrupts the boot sector.

But these things aren’t evidence, they are problems. They are things needing explanation, not things that support our preferred conspiracy theory.

The simplest, Occam’s Razor explanation explanation is that they were simple mistakes. Such mistakes are common among ransomware. We think of virus writers as professional software developers who thoroughly test their code. Decades of evidence show the opposite, that such software is of poor quality with shockingly bad bugs.

It’s true that effectively, nPetya is a wiper. Matthieu Suiche‏ does a great job describing one flaw that prevents it working. @hasherezade does a great job explaining another flaw.  But best explanation isn’t that this is intentional. Even if these bugs didn’t exist, it’d still be a wiper if the perpetrators simply ignored the decryption requests. They need not intentionally make the decryption fail.

Thus, the simpler explanation is that it’s simply a bug. Ransomware authors test the bits they care about, and test less well the bits they don’t. It’s quite plausible to believe that just before shipping the code, they’d add a few extra features, and forget to regression test the entire suite. I mean, I do that all the time with my code.

Some have pointed to the sophistication of the code as proof that such simple errors are unlikely. This isn’t true. While it’s more sophisticated than WannaCry, it’s about average for the current state-of-the-art for ransomware in general. What people think of, such the Petya base, or using PsExec to spread throughout a Windows domain, is already at least a year old.

Indeed, the use of PsExec itself is a bit clumsy, when the code for doing the same thing is already public. It’s just a few calls to basic Windows networking APIs. A sophisticated virus would do this itself, rather than clumsily use PsExec.

Infamy doesn’t mean skill. People keep making the mistake that the more widespread something is in the news, the more skill, the more of a “conspiracy” there must be behind it. This is not true. Virus/worm writers often do newsworthy things by accident. Indeed, the history of worms, starting with the Morris Worm, has been things running out of control more than the author’s expectations.

What makes nPetya newsworthy isn’t the EternalBlue exploit or the wiper feature. Instead, the creators got lucky with MeDoc. The software is used by every major organization in the Ukraine, and at the same time, their website was horribly insecure — laughably insecure. Furthermore, it’s autoupdate feature didn’t check cryptographic signatures. No hacker can plan for this level of widespread incompetence — it’s just extreme luck.

Thus, the effect of bumbling around is something that hit the Ukraine pretty hard, but it’s not necessarily the intent of the creators. It’s like how the Slammer worm hit South Korea pretty hard, or how the Witty worm hit the DoD pretty hard. These things look “targeted”, especially to the victims, but it was by pure chance (provably so, in the case of Witty).

Certainly, MeDoc was targeted. But then, targeting a single organization is the norm for ransomware. They have to do it that way, giving each target a different Bitcoin address for payment. That it then spread to the entire Ukraine, and further, is the sort of thing that typically surprises worm writers.

Finally, there’s little reason to believe that there needs to be a “smokescreen”. Russian hackers are targeting the Ukraine all the time. Whether Russian hackers are to blame for “ransomware” vs. “wiper” makes little difference.

Conclusion

We know that Russian hackers are constantly targeting the Ukraine. Therefore, the theory that this was nPetya’s goal all along, to destroy Ukraines computers, is a good one.

Yet, there’s no actual “evidence” of this. nPetya’s issues are just as easily explained by normal software bugs. The smokescreen isn’t needed. The boot record bug isn’t needed. The single email address that was shutdown isn’t significant, since half of all ransomware uses the same technique.

The experts who disagree with me are really smart/experienced people who you should generally trust. It’s just that I can’t see their evidence.

Update: I wrote another blogpost about “survivorship bias“, refuting the claim by many experts talking about the sophistication of the spreading feature.


Update: comment asks “why is there no Internet spreading code?”. The answer is “I don’t know”, but unanswerable questions aren’t evidence of a conspiracy. “What aren’t there any stars in the background?” isn’t proof the moon landings are fake, such because you can’t answer the question. One guess is that you never want ransomware to spread that far, until you’ve figured out how to get payment from so many people.

NotPetya Ransomeware Wreaking Havoc

Post Syndicated from Darknet original http://feedproxy.google.com/~r/darknethackers/~3/0IfKiBP5jIo/

The latest splash has been made by the Petya or NotPetya Ransomware that exploded in Ukraine and is infecting companies all over the World. It’s getting some people in deep trouble as there’s no way to recover the files once encrypted. The malware seems to be trying to hide it’s intent as it doesn’t really […]

The post NotPetya Ransomeware…

Read the full post at darknet.org.uk